1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 *   Avi Kivity   <avi@qumranet.com>
12 *   Yaniv Kamay  <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.  See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include <kvm/iodev.h>
20
21#include <linux/kvm_host.h>
22#include <linux/kvm.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/percpu.h>
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
29#include <linux/reboot.h>
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
33#include <linux/syscore_ops.h>
34#include <linux/cpu.h>
35#include <linux/sched.h>
36#include <linux/cpumask.h>
37#include <linux/smp.h>
38#include <linux/anon_inodes.h>
39#include <linux/profile.h>
40#include <linux/kvm_para.h>
41#include <linux/pagemap.h>
42#include <linux/mman.h>
43#include <linux/swap.h>
44#include <linux/bitops.h>
45#include <linux/spinlock.h>
46#include <linux/compat.h>
47#include <linux/srcu.h>
48#include <linux/hugetlb.h>
49#include <linux/slab.h>
50#include <linux/sort.h>
51#include <linux/bsearch.h>
52
53#include <asm/processor.h>
54#include <asm/io.h>
55#include <asm/ioctl.h>
56#include <asm/uaccess.h>
57#include <asm/pgtable.h>
58
59#include "coalesced_mmio.h"
60#include "async_pf.h"
61#include "vfio.h"
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/kvm.h>
65
66MODULE_AUTHOR("Qumranet");
67MODULE_LICENSE("GPL");
68
69/* Architectures should define their poll value according to the halt latency */
70static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73/* Default doubles per-vcpu halt_poll_ns. */
74static unsigned int halt_poll_ns_grow = 2;
75module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77/* Default resets per-vcpu halt_poll_ns . */
78static unsigned int halt_poll_ns_shrink;
79module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81/*
82 * Ordering of locks:
83 *
84 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87DEFINE_SPINLOCK(kvm_lock);
88static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89LIST_HEAD(vm_list);
90
91static cpumask_var_t cpus_hardware_enabled;
92static int kvm_usage_count;
93static atomic_t hardware_enable_failed;
94
95struct kmem_cache *kvm_vcpu_cache;
96EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100struct dentry *kvm_debugfs_dir;
101EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104			   unsigned long arg);
105#ifdef CONFIG_KVM_COMPAT
106static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107				  unsigned long arg);
108#endif
109static int hardware_enable_all(void);
110static void hardware_disable_all(void);
111
112static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114static void kvm_release_pfn_dirty(pfn_t pfn);
115static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117__visible bool kvm_rebooting;
118EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120static bool largepages_enabled = true;
121
122bool kvm_is_reserved_pfn(pfn_t pfn)
123{
124	if (pfn_valid(pfn))
125		return PageReserved(pfn_to_page(pfn));
126
127	return true;
128}
129
130/*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133int vcpu_load(struct kvm_vcpu *vcpu)
134{
135	int cpu;
136
137	if (mutex_lock_killable(&vcpu->mutex))
138		return -EINTR;
139	cpu = get_cpu();
140	preempt_notifier_register(&vcpu->preempt_notifier);
141	kvm_arch_vcpu_load(vcpu, cpu);
142	put_cpu();
143	return 0;
144}
145
146void vcpu_put(struct kvm_vcpu *vcpu)
147{
148	preempt_disable();
149	kvm_arch_vcpu_put(vcpu);
150	preempt_notifier_unregister(&vcpu->preempt_notifier);
151	preempt_enable();
152	mutex_unlock(&vcpu->mutex);
153}
154
155static void ack_flush(void *_completed)
156{
157}
158
159bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160{
161	int i, cpu, me;
162	cpumask_var_t cpus;
163	bool called = true;
164	struct kvm_vcpu *vcpu;
165
166	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168	me = get_cpu();
169	kvm_for_each_vcpu(i, vcpu, kvm) {
170		kvm_make_request(req, vcpu);
171		cpu = vcpu->cpu;
172
173		/* Set ->requests bit before we read ->mode */
174		smp_mb();
175
176		if (cpus != NULL && cpu != -1 && cpu != me &&
177		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178			cpumask_set_cpu(cpu, cpus);
179	}
180	if (unlikely(cpus == NULL))
181		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182	else if (!cpumask_empty(cpus))
183		smp_call_function_many(cpus, ack_flush, NULL, 1);
184	else
185		called = false;
186	put_cpu();
187	free_cpumask_var(cpus);
188	return called;
189}
190
191#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192void kvm_flush_remote_tlbs(struct kvm *kvm)
193{
194	long dirty_count = kvm->tlbs_dirty;
195
196	smp_mb();
197	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198		++kvm->stat.remote_tlb_flush;
199	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200}
201EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202#endif
203
204void kvm_reload_remote_mmus(struct kvm *kvm)
205{
206	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207}
208
209void kvm_make_mclock_inprogress_request(struct kvm *kvm)
210{
211	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
212}
213
214void kvm_make_scan_ioapic_request(struct kvm *kvm)
215{
216	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
217}
218
219int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220{
221	struct page *page;
222	int r;
223
224	mutex_init(&vcpu->mutex);
225	vcpu->cpu = -1;
226	vcpu->kvm = kvm;
227	vcpu->vcpu_id = id;
228	vcpu->pid = NULL;
229	vcpu->halt_poll_ns = 0;
230	init_waitqueue_head(&vcpu->wq);
231	kvm_async_pf_vcpu_init(vcpu);
232
233	vcpu->pre_pcpu = -1;
234	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
235
236	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
237	if (!page) {
238		r = -ENOMEM;
239		goto fail;
240	}
241	vcpu->run = page_address(page);
242
243	kvm_vcpu_set_in_spin_loop(vcpu, false);
244	kvm_vcpu_set_dy_eligible(vcpu, false);
245	vcpu->preempted = false;
246
247	r = kvm_arch_vcpu_init(vcpu);
248	if (r < 0)
249		goto fail_free_run;
250	return 0;
251
252fail_free_run:
253	free_page((unsigned long)vcpu->run);
254fail:
255	return r;
256}
257EXPORT_SYMBOL_GPL(kvm_vcpu_init);
258
259void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
260{
261	put_pid(vcpu->pid);
262	kvm_arch_vcpu_uninit(vcpu);
263	free_page((unsigned long)vcpu->run);
264}
265EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
266
267#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
268static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
269{
270	return container_of(mn, struct kvm, mmu_notifier);
271}
272
273static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
274					     struct mm_struct *mm,
275					     unsigned long address)
276{
277	struct kvm *kvm = mmu_notifier_to_kvm(mn);
278	int need_tlb_flush, idx;
279
280	/*
281	 * When ->invalidate_page runs, the linux pte has been zapped
282	 * already but the page is still allocated until
283	 * ->invalidate_page returns. So if we increase the sequence
284	 * here the kvm page fault will notice if the spte can't be
285	 * established because the page is going to be freed. If
286	 * instead the kvm page fault establishes the spte before
287	 * ->invalidate_page runs, kvm_unmap_hva will release it
288	 * before returning.
289	 *
290	 * The sequence increase only need to be seen at spin_unlock
291	 * time, and not at spin_lock time.
292	 *
293	 * Increasing the sequence after the spin_unlock would be
294	 * unsafe because the kvm page fault could then establish the
295	 * pte after kvm_unmap_hva returned, without noticing the page
296	 * is going to be freed.
297	 */
298	idx = srcu_read_lock(&kvm->srcu);
299	spin_lock(&kvm->mmu_lock);
300
301	kvm->mmu_notifier_seq++;
302	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
303	/* we've to flush the tlb before the pages can be freed */
304	if (need_tlb_flush)
305		kvm_flush_remote_tlbs(kvm);
306
307	spin_unlock(&kvm->mmu_lock);
308
309	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
310
311	srcu_read_unlock(&kvm->srcu, idx);
312}
313
314static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
315					struct mm_struct *mm,
316					unsigned long address,
317					pte_t pte)
318{
319	struct kvm *kvm = mmu_notifier_to_kvm(mn);
320	int idx;
321
322	idx = srcu_read_lock(&kvm->srcu);
323	spin_lock(&kvm->mmu_lock);
324	kvm->mmu_notifier_seq++;
325	kvm_set_spte_hva(kvm, address, pte);
326	spin_unlock(&kvm->mmu_lock);
327	srcu_read_unlock(&kvm->srcu, idx);
328}
329
330static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
331						    struct mm_struct *mm,
332						    unsigned long start,
333						    unsigned long end)
334{
335	struct kvm *kvm = mmu_notifier_to_kvm(mn);
336	int need_tlb_flush = 0, idx;
337
338	idx = srcu_read_lock(&kvm->srcu);
339	spin_lock(&kvm->mmu_lock);
340	/*
341	 * The count increase must become visible at unlock time as no
342	 * spte can be established without taking the mmu_lock and
343	 * count is also read inside the mmu_lock critical section.
344	 */
345	kvm->mmu_notifier_count++;
346	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
347	need_tlb_flush |= kvm->tlbs_dirty;
348	/* we've to flush the tlb before the pages can be freed */
349	if (need_tlb_flush)
350		kvm_flush_remote_tlbs(kvm);
351
352	spin_unlock(&kvm->mmu_lock);
353	srcu_read_unlock(&kvm->srcu, idx);
354}
355
356static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
357						  struct mm_struct *mm,
358						  unsigned long start,
359						  unsigned long end)
360{
361	struct kvm *kvm = mmu_notifier_to_kvm(mn);
362
363	spin_lock(&kvm->mmu_lock);
364	/*
365	 * This sequence increase will notify the kvm page fault that
366	 * the page that is going to be mapped in the spte could have
367	 * been freed.
368	 */
369	kvm->mmu_notifier_seq++;
370	smp_wmb();
371	/*
372	 * The above sequence increase must be visible before the
373	 * below count decrease, which is ensured by the smp_wmb above
374	 * in conjunction with the smp_rmb in mmu_notifier_retry().
375	 */
376	kvm->mmu_notifier_count--;
377	spin_unlock(&kvm->mmu_lock);
378
379	BUG_ON(kvm->mmu_notifier_count < 0);
380}
381
382static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
383					      struct mm_struct *mm,
384					      unsigned long start,
385					      unsigned long end)
386{
387	struct kvm *kvm = mmu_notifier_to_kvm(mn);
388	int young, idx;
389
390	idx = srcu_read_lock(&kvm->srcu);
391	spin_lock(&kvm->mmu_lock);
392
393	young = kvm_age_hva(kvm, start, end);
394	if (young)
395		kvm_flush_remote_tlbs(kvm);
396
397	spin_unlock(&kvm->mmu_lock);
398	srcu_read_unlock(&kvm->srcu, idx);
399
400	return young;
401}
402
403static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
404					struct mm_struct *mm,
405					unsigned long start,
406					unsigned long end)
407{
408	struct kvm *kvm = mmu_notifier_to_kvm(mn);
409	int young, idx;
410
411	idx = srcu_read_lock(&kvm->srcu);
412	spin_lock(&kvm->mmu_lock);
413	/*
414	 * Even though we do not flush TLB, this will still adversely
415	 * affect performance on pre-Haswell Intel EPT, where there is
416	 * no EPT Access Bit to clear so that we have to tear down EPT
417	 * tables instead. If we find this unacceptable, we can always
418	 * add a parameter to kvm_age_hva so that it effectively doesn't
419	 * do anything on clear_young.
420	 *
421	 * Also note that currently we never issue secondary TLB flushes
422	 * from clear_young, leaving this job up to the regular system
423	 * cadence. If we find this inaccurate, we might come up with a
424	 * more sophisticated heuristic later.
425	 */
426	young = kvm_age_hva(kvm, start, end);
427	spin_unlock(&kvm->mmu_lock);
428	srcu_read_unlock(&kvm->srcu, idx);
429
430	return young;
431}
432
433static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
434				       struct mm_struct *mm,
435				       unsigned long address)
436{
437	struct kvm *kvm = mmu_notifier_to_kvm(mn);
438	int young, idx;
439
440	idx = srcu_read_lock(&kvm->srcu);
441	spin_lock(&kvm->mmu_lock);
442	young = kvm_test_age_hva(kvm, address);
443	spin_unlock(&kvm->mmu_lock);
444	srcu_read_unlock(&kvm->srcu, idx);
445
446	return young;
447}
448
449static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
450				     struct mm_struct *mm)
451{
452	struct kvm *kvm = mmu_notifier_to_kvm(mn);
453	int idx;
454
455	idx = srcu_read_lock(&kvm->srcu);
456	kvm_arch_flush_shadow_all(kvm);
457	srcu_read_unlock(&kvm->srcu, idx);
458}
459
460static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
461	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
462	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
463	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
464	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
465	.clear_young		= kvm_mmu_notifier_clear_young,
466	.test_young		= kvm_mmu_notifier_test_young,
467	.change_pte		= kvm_mmu_notifier_change_pte,
468	.release		= kvm_mmu_notifier_release,
469};
470
471static int kvm_init_mmu_notifier(struct kvm *kvm)
472{
473	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
474	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
475}
476
477#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
478
479static int kvm_init_mmu_notifier(struct kvm *kvm)
480{
481	return 0;
482}
483
484#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
485
486static struct kvm_memslots *kvm_alloc_memslots(void)
487{
488	int i;
489	struct kvm_memslots *slots;
490
491	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
492	if (!slots)
493		return NULL;
494
495	/*
496	 * Init kvm generation close to the maximum to easily test the
497	 * code of handling generation number wrap-around.
498	 */
499	slots->generation = -150;
500	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
501		slots->id_to_index[i] = slots->memslots[i].id = i;
502
503	return slots;
504}
505
506static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507{
508	if (!memslot->dirty_bitmap)
509		return;
510
511	kvfree(memslot->dirty_bitmap);
512	memslot->dirty_bitmap = NULL;
513}
514
515/*
516 * Free any memory in @free but not in @dont.
517 */
518static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
519			      struct kvm_memory_slot *dont)
520{
521	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
522		kvm_destroy_dirty_bitmap(free);
523
524	kvm_arch_free_memslot(kvm, free, dont);
525
526	free->npages = 0;
527}
528
529static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
530{
531	struct kvm_memory_slot *memslot;
532
533	if (!slots)
534		return;
535
536	kvm_for_each_memslot(memslot, slots)
537		kvm_free_memslot(kvm, memslot, NULL);
538
539	kvfree(slots);
540}
541
542static struct kvm *kvm_create_vm(unsigned long type)
543{
544	int r, i;
545	struct kvm *kvm = kvm_arch_alloc_vm();
546
547	if (!kvm)
548		return ERR_PTR(-ENOMEM);
549
550	spin_lock_init(&kvm->mmu_lock);
551	atomic_inc(&current->mm->mm_count);
552	kvm->mm = current->mm;
553	kvm_eventfd_init(kvm);
554	mutex_init(&kvm->lock);
555	mutex_init(&kvm->irq_lock);
556	mutex_init(&kvm->slots_lock);
557	atomic_set(&kvm->users_count, 1);
558	INIT_LIST_HEAD(&kvm->devices);
559
560	r = kvm_arch_init_vm(kvm, type);
561	if (r)
562		goto out_err_no_disable;
563
564	r = hardware_enable_all();
565	if (r)
566		goto out_err_no_disable;
567
568#ifdef CONFIG_HAVE_KVM_IRQFD
569	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
570#endif
571
572	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
573
574	r = -ENOMEM;
575	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
576		kvm->memslots[i] = kvm_alloc_memslots();
577		if (!kvm->memslots[i])
578			goto out_err_no_srcu;
579	}
580
581	if (init_srcu_struct(&kvm->srcu))
582		goto out_err_no_srcu;
583	if (init_srcu_struct(&kvm->irq_srcu))
584		goto out_err_no_irq_srcu;
585	for (i = 0; i < KVM_NR_BUSES; i++) {
586		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
587					GFP_KERNEL);
588		if (!kvm->buses[i])
589			goto out_err;
590	}
591
592	r = kvm_init_mmu_notifier(kvm);
593	if (r)
594		goto out_err;
595
596	spin_lock(&kvm_lock);
597	list_add(&kvm->vm_list, &vm_list);
598	spin_unlock(&kvm_lock);
599
600	preempt_notifier_inc();
601
602	return kvm;
603
604out_err:
605	cleanup_srcu_struct(&kvm->irq_srcu);
606out_err_no_irq_srcu:
607	cleanup_srcu_struct(&kvm->srcu);
608out_err_no_srcu:
609	hardware_disable_all();
610out_err_no_disable:
611	for (i = 0; i < KVM_NR_BUSES; i++)
612		kfree(kvm->buses[i]);
613	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
614		kvm_free_memslots(kvm, kvm->memslots[i]);
615	kvm_arch_free_vm(kvm);
616	mmdrop(current->mm);
617	return ERR_PTR(r);
618}
619
620/*
621 * Avoid using vmalloc for a small buffer.
622 * Should not be used when the size is statically known.
623 */
624void *kvm_kvzalloc(unsigned long size)
625{
626	if (size > PAGE_SIZE)
627		return vzalloc(size);
628	else
629		return kzalloc(size, GFP_KERNEL);
630}
631
632static void kvm_destroy_devices(struct kvm *kvm)
633{
634	struct list_head *node, *tmp;
635
636	list_for_each_safe(node, tmp, &kvm->devices) {
637		struct kvm_device *dev =
638			list_entry(node, struct kvm_device, vm_node);
639
640		list_del(node);
641		dev->ops->destroy(dev);
642	}
643}
644
645static void kvm_destroy_vm(struct kvm *kvm)
646{
647	int i;
648	struct mm_struct *mm = kvm->mm;
649
650	kvm_arch_sync_events(kvm);
651	spin_lock(&kvm_lock);
652	list_del(&kvm->vm_list);
653	spin_unlock(&kvm_lock);
654	kvm_free_irq_routing(kvm);
655	for (i = 0; i < KVM_NR_BUSES; i++)
656		kvm_io_bus_destroy(kvm->buses[i]);
657	kvm_coalesced_mmio_free(kvm);
658#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
659	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
660#else
661	kvm_arch_flush_shadow_all(kvm);
662#endif
663	kvm_arch_destroy_vm(kvm);
664	kvm_destroy_devices(kvm);
665	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
666		kvm_free_memslots(kvm, kvm->memslots[i]);
667	cleanup_srcu_struct(&kvm->irq_srcu);
668	cleanup_srcu_struct(&kvm->srcu);
669	kvm_arch_free_vm(kvm);
670	preempt_notifier_dec();
671	hardware_disable_all();
672	mmdrop(mm);
673}
674
675void kvm_get_kvm(struct kvm *kvm)
676{
677	atomic_inc(&kvm->users_count);
678}
679EXPORT_SYMBOL_GPL(kvm_get_kvm);
680
681void kvm_put_kvm(struct kvm *kvm)
682{
683	if (atomic_dec_and_test(&kvm->users_count))
684		kvm_destroy_vm(kvm);
685}
686EXPORT_SYMBOL_GPL(kvm_put_kvm);
687
688
689static int kvm_vm_release(struct inode *inode, struct file *filp)
690{
691	struct kvm *kvm = filp->private_data;
692
693	kvm_irqfd_release(kvm);
694
695	kvm_put_kvm(kvm);
696	return 0;
697}
698
699/*
700 * Allocation size is twice as large as the actual dirty bitmap size.
701 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
702 */
703static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
704{
705	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
706
707	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
708	if (!memslot->dirty_bitmap)
709		return -ENOMEM;
710
711	return 0;
712}
713
714/*
715 * Insert memslot and re-sort memslots based on their GFN,
716 * so binary search could be used to lookup GFN.
717 * Sorting algorithm takes advantage of having initially
718 * sorted array and known changed memslot position.
719 */
720static void update_memslots(struct kvm_memslots *slots,
721			    struct kvm_memory_slot *new)
722{
723	int id = new->id;
724	int i = slots->id_to_index[id];
725	struct kvm_memory_slot *mslots = slots->memslots;
726
727	WARN_ON(mslots[i].id != id);
728	if (!new->npages) {
729		WARN_ON(!mslots[i].npages);
730		if (mslots[i].npages)
731			slots->used_slots--;
732	} else {
733		if (!mslots[i].npages)
734			slots->used_slots++;
735	}
736
737	while (i < KVM_MEM_SLOTS_NUM - 1 &&
738	       new->base_gfn <= mslots[i + 1].base_gfn) {
739		if (!mslots[i + 1].npages)
740			break;
741		mslots[i] = mslots[i + 1];
742		slots->id_to_index[mslots[i].id] = i;
743		i++;
744	}
745
746	/*
747	 * The ">=" is needed when creating a slot with base_gfn == 0,
748	 * so that it moves before all those with base_gfn == npages == 0.
749	 *
750	 * On the other hand, if new->npages is zero, the above loop has
751	 * already left i pointing to the beginning of the empty part of
752	 * mslots, and the ">=" would move the hole backwards in this
753	 * case---which is wrong.  So skip the loop when deleting a slot.
754	 */
755	if (new->npages) {
756		while (i > 0 &&
757		       new->base_gfn >= mslots[i - 1].base_gfn) {
758			mslots[i] = mslots[i - 1];
759			slots->id_to_index[mslots[i].id] = i;
760			i--;
761		}
762	} else
763		WARN_ON_ONCE(i != slots->used_slots);
764
765	mslots[i] = *new;
766	slots->id_to_index[mslots[i].id] = i;
767}
768
769static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
770{
771	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
772
773#ifdef __KVM_HAVE_READONLY_MEM
774	valid_flags |= KVM_MEM_READONLY;
775#endif
776
777	if (mem->flags & ~valid_flags)
778		return -EINVAL;
779
780	return 0;
781}
782
783static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
784		int as_id, struct kvm_memslots *slots)
785{
786	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
787
788	/*
789	 * Set the low bit in the generation, which disables SPTE caching
790	 * until the end of synchronize_srcu_expedited.
791	 */
792	WARN_ON(old_memslots->generation & 1);
793	slots->generation = old_memslots->generation + 1;
794
795	rcu_assign_pointer(kvm->memslots[as_id], slots);
796	synchronize_srcu_expedited(&kvm->srcu);
797
798	/*
799	 * Increment the new memslot generation a second time. This prevents
800	 * vm exits that race with memslot updates from caching a memslot
801	 * generation that will (potentially) be valid forever.
802	 */
803	slots->generation++;
804
805	kvm_arch_memslots_updated(kvm, slots);
806
807	return old_memslots;
808}
809
810/*
811 * Allocate some memory and give it an address in the guest physical address
812 * space.
813 *
814 * Discontiguous memory is allowed, mostly for framebuffers.
815 *
816 * Must be called holding kvm->slots_lock for write.
817 */
818int __kvm_set_memory_region(struct kvm *kvm,
819			    const struct kvm_userspace_memory_region *mem)
820{
821	int r;
822	gfn_t base_gfn;
823	unsigned long npages;
824	struct kvm_memory_slot *slot;
825	struct kvm_memory_slot old, new;
826	struct kvm_memslots *slots = NULL, *old_memslots;
827	int as_id, id;
828	enum kvm_mr_change change;
829
830	r = check_memory_region_flags(mem);
831	if (r)
832		goto out;
833
834	r = -EINVAL;
835	as_id = mem->slot >> 16;
836	id = (u16)mem->slot;
837
838	/* General sanity checks */
839	if (mem->memory_size & (PAGE_SIZE - 1))
840		goto out;
841	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
842		goto out;
843	/* We can read the guest memory with __xxx_user() later on. */
844	if ((id < KVM_USER_MEM_SLOTS) &&
845	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
846	     !access_ok(VERIFY_WRITE,
847			(void __user *)(unsigned long)mem->userspace_addr,
848			mem->memory_size)))
849		goto out;
850	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
851		goto out;
852	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
853		goto out;
854
855	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
856	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
857	npages = mem->memory_size >> PAGE_SHIFT;
858
859	if (npages > KVM_MEM_MAX_NR_PAGES)
860		goto out;
861
862	new = old = *slot;
863
864	new.id = id;
865	new.base_gfn = base_gfn;
866	new.npages = npages;
867	new.flags = mem->flags;
868
869	if (npages) {
870		if (!old.npages)
871			change = KVM_MR_CREATE;
872		else { /* Modify an existing slot. */
873			if ((mem->userspace_addr != old.userspace_addr) ||
874			    (npages != old.npages) ||
875			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
876				goto out;
877
878			if (base_gfn != old.base_gfn)
879				change = KVM_MR_MOVE;
880			else if (new.flags != old.flags)
881				change = KVM_MR_FLAGS_ONLY;
882			else { /* Nothing to change. */
883				r = 0;
884				goto out;
885			}
886		}
887	} else {
888		if (!old.npages)
889			goto out;
890
891		change = KVM_MR_DELETE;
892		new.base_gfn = 0;
893		new.flags = 0;
894	}
895
896	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
897		/* Check for overlaps */
898		r = -EEXIST;
899		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
900			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
901			    (slot->id == id))
902				continue;
903			if (!((base_gfn + npages <= slot->base_gfn) ||
904			      (base_gfn >= slot->base_gfn + slot->npages)))
905				goto out;
906		}
907	}
908
909	/* Free page dirty bitmap if unneeded */
910	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
911		new.dirty_bitmap = NULL;
912
913	r = -ENOMEM;
914	if (change == KVM_MR_CREATE) {
915		new.userspace_addr = mem->userspace_addr;
916
917		if (kvm_arch_create_memslot(kvm, &new, npages))
918			goto out_free;
919	}
920
921	/* Allocate page dirty bitmap if needed */
922	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
923		if (kvm_create_dirty_bitmap(&new) < 0)
924			goto out_free;
925	}
926
927	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
928	if (!slots)
929		goto out_free;
930	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
931
932	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
933		slot = id_to_memslot(slots, id);
934		slot->flags |= KVM_MEMSLOT_INVALID;
935
936		old_memslots = install_new_memslots(kvm, as_id, slots);
937
938		/* slot was deleted or moved, clear iommu mapping */
939		kvm_iommu_unmap_pages(kvm, &old);
940		/* From this point no new shadow pages pointing to a deleted,
941		 * or moved, memslot will be created.
942		 *
943		 * validation of sp->gfn happens in:
944		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
945		 *	- kvm_is_visible_gfn (mmu_check_roots)
946		 */
947		kvm_arch_flush_shadow_memslot(kvm, slot);
948
949		/*
950		 * We can re-use the old_memslots from above, the only difference
951		 * from the currently installed memslots is the invalid flag.  This
952		 * will get overwritten by update_memslots anyway.
953		 */
954		slots = old_memslots;
955	}
956
957	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
958	if (r)
959		goto out_slots;
960
961	/* actual memory is freed via old in kvm_free_memslot below */
962	if (change == KVM_MR_DELETE) {
963		new.dirty_bitmap = NULL;
964		memset(&new.arch, 0, sizeof(new.arch));
965	}
966
967	update_memslots(slots, &new);
968	old_memslots = install_new_memslots(kvm, as_id, slots);
969
970	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
971
972	kvm_free_memslot(kvm, &old, &new);
973	kvfree(old_memslots);
974
975	/*
976	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
977	 * un-mapped and re-mapped if their base changes.  Since base change
978	 * unmapping is handled above with slot deletion, mapping alone is
979	 * needed here.  Anything else the iommu might care about for existing
980	 * slots (size changes, userspace addr changes and read-only flag
981	 * changes) is disallowed above, so any other attribute changes getting
982	 * here can be skipped.
983	 */
984	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
985		r = kvm_iommu_map_pages(kvm, &new);
986		return r;
987	}
988
989	return 0;
990
991out_slots:
992	kvfree(slots);
993out_free:
994	kvm_free_memslot(kvm, &new, &old);
995out:
996	return r;
997}
998EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
999
1000int kvm_set_memory_region(struct kvm *kvm,
1001			  const struct kvm_userspace_memory_region *mem)
1002{
1003	int r;
1004
1005	mutex_lock(&kvm->slots_lock);
1006	r = __kvm_set_memory_region(kvm, mem);
1007	mutex_unlock(&kvm->slots_lock);
1008	return r;
1009}
1010EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1011
1012static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1013					  struct kvm_userspace_memory_region *mem)
1014{
1015	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1016		return -EINVAL;
1017
1018	return kvm_set_memory_region(kvm, mem);
1019}
1020
1021int kvm_get_dirty_log(struct kvm *kvm,
1022			struct kvm_dirty_log *log, int *is_dirty)
1023{
1024	struct kvm_memslots *slots;
1025	struct kvm_memory_slot *memslot;
1026	int r, i, as_id, id;
1027	unsigned long n;
1028	unsigned long any = 0;
1029
1030	r = -EINVAL;
1031	as_id = log->slot >> 16;
1032	id = (u16)log->slot;
1033	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1034		goto out;
1035
1036	slots = __kvm_memslots(kvm, as_id);
1037	memslot = id_to_memslot(slots, id);
1038	r = -ENOENT;
1039	if (!memslot->dirty_bitmap)
1040		goto out;
1041
1042	n = kvm_dirty_bitmap_bytes(memslot);
1043
1044	for (i = 0; !any && i < n/sizeof(long); ++i)
1045		any = memslot->dirty_bitmap[i];
1046
1047	r = -EFAULT;
1048	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1049		goto out;
1050
1051	if (any)
1052		*is_dirty = 1;
1053
1054	r = 0;
1055out:
1056	return r;
1057}
1058EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1059
1060#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1061/**
1062 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1063 *	are dirty write protect them for next write.
1064 * @kvm:	pointer to kvm instance
1065 * @log:	slot id and address to which we copy the log
1066 * @is_dirty:	flag set if any page is dirty
1067 *
1068 * We need to keep it in mind that VCPU threads can write to the bitmap
1069 * concurrently. So, to avoid losing track of dirty pages we keep the
1070 * following order:
1071 *
1072 *    1. Take a snapshot of the bit and clear it if needed.
1073 *    2. Write protect the corresponding page.
1074 *    3. Copy the snapshot to the userspace.
1075 *    4. Upon return caller flushes TLB's if needed.
1076 *
1077 * Between 2 and 4, the guest may write to the page using the remaining TLB
1078 * entry.  This is not a problem because the page is reported dirty using
1079 * the snapshot taken before and step 4 ensures that writes done after
1080 * exiting to userspace will be logged for the next call.
1081 *
1082 */
1083int kvm_get_dirty_log_protect(struct kvm *kvm,
1084			struct kvm_dirty_log *log, bool *is_dirty)
1085{
1086	struct kvm_memslots *slots;
1087	struct kvm_memory_slot *memslot;
1088	int r, i, as_id, id;
1089	unsigned long n;
1090	unsigned long *dirty_bitmap;
1091	unsigned long *dirty_bitmap_buffer;
1092
1093	r = -EINVAL;
1094	as_id = log->slot >> 16;
1095	id = (u16)log->slot;
1096	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1097		goto out;
1098
1099	slots = __kvm_memslots(kvm, as_id);
1100	memslot = id_to_memslot(slots, id);
1101
1102	dirty_bitmap = memslot->dirty_bitmap;
1103	r = -ENOENT;
1104	if (!dirty_bitmap)
1105		goto out;
1106
1107	n = kvm_dirty_bitmap_bytes(memslot);
1108
1109	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1110	memset(dirty_bitmap_buffer, 0, n);
1111
1112	spin_lock(&kvm->mmu_lock);
1113	*is_dirty = false;
1114	for (i = 0; i < n / sizeof(long); i++) {
1115		unsigned long mask;
1116		gfn_t offset;
1117
1118		if (!dirty_bitmap[i])
1119			continue;
1120
1121		*is_dirty = true;
1122
1123		mask = xchg(&dirty_bitmap[i], 0);
1124		dirty_bitmap_buffer[i] = mask;
1125
1126		if (mask) {
1127			offset = i * BITS_PER_LONG;
1128			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1129								offset, mask);
1130		}
1131	}
1132
1133	spin_unlock(&kvm->mmu_lock);
1134
1135	r = -EFAULT;
1136	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1137		goto out;
1138
1139	r = 0;
1140out:
1141	return r;
1142}
1143EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1144#endif
1145
1146bool kvm_largepages_enabled(void)
1147{
1148	return largepages_enabled;
1149}
1150
1151void kvm_disable_largepages(void)
1152{
1153	largepages_enabled = false;
1154}
1155EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1156
1157struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1158{
1159	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1160}
1161EXPORT_SYMBOL_GPL(gfn_to_memslot);
1162
1163struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1164{
1165	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1166}
1167
1168int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1169{
1170	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1171
1172	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1173	      memslot->flags & KVM_MEMSLOT_INVALID)
1174		return 0;
1175
1176	return 1;
1177}
1178EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1179
1180unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1181{
1182	struct vm_area_struct *vma;
1183	unsigned long addr, size;
1184
1185	size = PAGE_SIZE;
1186
1187	addr = gfn_to_hva(kvm, gfn);
1188	if (kvm_is_error_hva(addr))
1189		return PAGE_SIZE;
1190
1191	down_read(&current->mm->mmap_sem);
1192	vma = find_vma(current->mm, addr);
1193	if (!vma)
1194		goto out;
1195
1196	size = vma_kernel_pagesize(vma);
1197
1198out:
1199	up_read(&current->mm->mmap_sem);
1200
1201	return size;
1202}
1203
1204static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1205{
1206	return slot->flags & KVM_MEM_READONLY;
1207}
1208
1209static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210				       gfn_t *nr_pages, bool write)
1211{
1212	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1213		return KVM_HVA_ERR_BAD;
1214
1215	if (memslot_is_readonly(slot) && write)
1216		return KVM_HVA_ERR_RO_BAD;
1217
1218	if (nr_pages)
1219		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1220
1221	return __gfn_to_hva_memslot(slot, gfn);
1222}
1223
1224static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1225				     gfn_t *nr_pages)
1226{
1227	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1228}
1229
1230unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1231					gfn_t gfn)
1232{
1233	return gfn_to_hva_many(slot, gfn, NULL);
1234}
1235EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1236
1237unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1238{
1239	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1240}
1241EXPORT_SYMBOL_GPL(gfn_to_hva);
1242
1243unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1244{
1245	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1246}
1247EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1248
1249/*
1250 * If writable is set to false, the hva returned by this function is only
1251 * allowed to be read.
1252 */
1253unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1254				      gfn_t gfn, bool *writable)
1255{
1256	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1257
1258	if (!kvm_is_error_hva(hva) && writable)
1259		*writable = !memslot_is_readonly(slot);
1260
1261	return hva;
1262}
1263
1264unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1265{
1266	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1267
1268	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1269}
1270
1271unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1272{
1273	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1274
1275	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1276}
1277
1278static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1279	unsigned long start, int write, struct page **page)
1280{
1281	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1282
1283	if (write)
1284		flags |= FOLL_WRITE;
1285
1286	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1287}
1288
1289static inline int check_user_page_hwpoison(unsigned long addr)
1290{
1291	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1292
1293	rc = __get_user_pages(current, current->mm, addr, 1,
1294			      flags, NULL, NULL, NULL);
1295	return rc == -EHWPOISON;
1296}
1297
1298/*
1299 * The atomic path to get the writable pfn which will be stored in @pfn,
1300 * true indicates success, otherwise false is returned.
1301 */
1302static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1303			    bool write_fault, bool *writable, pfn_t *pfn)
1304{
1305	struct page *page[1];
1306	int npages;
1307
1308	if (!(async || atomic))
1309		return false;
1310
1311	/*
1312	 * Fast pin a writable pfn only if it is a write fault request
1313	 * or the caller allows to map a writable pfn for a read fault
1314	 * request.
1315	 */
1316	if (!(write_fault || writable))
1317		return false;
1318
1319	npages = __get_user_pages_fast(addr, 1, 1, page);
1320	if (npages == 1) {
1321		*pfn = page_to_pfn(page[0]);
1322
1323		if (writable)
1324			*writable = true;
1325		return true;
1326	}
1327
1328	return false;
1329}
1330
1331/*
1332 * The slow path to get the pfn of the specified host virtual address,
1333 * 1 indicates success, -errno is returned if error is detected.
1334 */
1335static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1336			   bool *writable, pfn_t *pfn)
1337{
1338	struct page *page[1];
1339	int npages = 0;
1340
1341	might_sleep();
1342
1343	if (writable)
1344		*writable = write_fault;
1345
1346	if (async) {
1347		down_read(&current->mm->mmap_sem);
1348		npages = get_user_page_nowait(current, current->mm,
1349					      addr, write_fault, page);
1350		up_read(&current->mm->mmap_sem);
1351	} else
1352		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1353						   write_fault, 0, page,
1354						   FOLL_TOUCH|FOLL_HWPOISON);
1355	if (npages != 1)
1356		return npages;
1357
1358	/* map read fault as writable if possible */
1359	if (unlikely(!write_fault) && writable) {
1360		struct page *wpage[1];
1361
1362		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1363		if (npages == 1) {
1364			*writable = true;
1365			put_page(page[0]);
1366			page[0] = wpage[0];
1367		}
1368
1369		npages = 1;
1370	}
1371	*pfn = page_to_pfn(page[0]);
1372	return npages;
1373}
1374
1375static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1376{
1377	if (unlikely(!(vma->vm_flags & VM_READ)))
1378		return false;
1379
1380	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1381		return false;
1382
1383	return true;
1384}
1385
1386/*
1387 * Pin guest page in memory and return its pfn.
1388 * @addr: host virtual address which maps memory to the guest
1389 * @atomic: whether this function can sleep
1390 * @async: whether this function need to wait IO complete if the
1391 *         host page is not in the memory
1392 * @write_fault: whether we should get a writable host page
1393 * @writable: whether it allows to map a writable host page for !@write_fault
1394 *
1395 * The function will map a writable host page for these two cases:
1396 * 1): @write_fault = true
1397 * 2): @write_fault = false && @writable, @writable will tell the caller
1398 *     whether the mapping is writable.
1399 */
1400static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1401			bool write_fault, bool *writable)
1402{
1403	struct vm_area_struct *vma;
1404	pfn_t pfn = 0;
1405	int npages;
1406
1407	/* we can do it either atomically or asynchronously, not both */
1408	BUG_ON(atomic && async);
1409
1410	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1411		return pfn;
1412
1413	if (atomic)
1414		return KVM_PFN_ERR_FAULT;
1415
1416	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1417	if (npages == 1)
1418		return pfn;
1419
1420	down_read(&current->mm->mmap_sem);
1421	if (npages == -EHWPOISON ||
1422	      (!async && check_user_page_hwpoison(addr))) {
1423		pfn = KVM_PFN_ERR_HWPOISON;
1424		goto exit;
1425	}
1426
1427	vma = find_vma_intersection(current->mm, addr, addr + 1);
1428
1429	if (vma == NULL)
1430		pfn = KVM_PFN_ERR_FAULT;
1431	else if ((vma->vm_flags & VM_PFNMAP)) {
1432		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1433			vma->vm_pgoff;
1434		BUG_ON(!kvm_is_reserved_pfn(pfn));
1435	} else {
1436		if (async && vma_is_valid(vma, write_fault))
1437			*async = true;
1438		pfn = KVM_PFN_ERR_FAULT;
1439	}
1440exit:
1441	up_read(&current->mm->mmap_sem);
1442	return pfn;
1443}
1444
1445pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1446			   bool *async, bool write_fault, bool *writable)
1447{
1448	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1449
1450	if (addr == KVM_HVA_ERR_RO_BAD)
1451		return KVM_PFN_ERR_RO_FAULT;
1452
1453	if (kvm_is_error_hva(addr))
1454		return KVM_PFN_NOSLOT;
1455
1456	/* Do not map writable pfn in the readonly memslot. */
1457	if (writable && memslot_is_readonly(slot)) {
1458		*writable = false;
1459		writable = NULL;
1460	}
1461
1462	return hva_to_pfn(addr, atomic, async, write_fault,
1463			  writable);
1464}
1465EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1466
1467pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1468		      bool *writable)
1469{
1470	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1471				    write_fault, writable);
1472}
1473EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1474
1475pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1476{
1477	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1478}
1479EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1480
1481pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1482{
1483	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1484}
1485EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1486
1487pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1488{
1489	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1490}
1491EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1492
1493pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1494{
1495	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1496}
1497EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1498
1499pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1500{
1501	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1502}
1503EXPORT_SYMBOL_GPL(gfn_to_pfn);
1504
1505pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1506{
1507	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1508}
1509EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1510
1511int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1512			    struct page **pages, int nr_pages)
1513{
1514	unsigned long addr;
1515	gfn_t entry;
1516
1517	addr = gfn_to_hva_many(slot, gfn, &entry);
1518	if (kvm_is_error_hva(addr))
1519		return -1;
1520
1521	if (entry < nr_pages)
1522		return 0;
1523
1524	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1525}
1526EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1527
1528static struct page *kvm_pfn_to_page(pfn_t pfn)
1529{
1530	if (is_error_noslot_pfn(pfn))
1531		return KVM_ERR_PTR_BAD_PAGE;
1532
1533	if (kvm_is_reserved_pfn(pfn)) {
1534		WARN_ON(1);
1535		return KVM_ERR_PTR_BAD_PAGE;
1536	}
1537
1538	return pfn_to_page(pfn);
1539}
1540
1541struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1542{
1543	pfn_t pfn;
1544
1545	pfn = gfn_to_pfn(kvm, gfn);
1546
1547	return kvm_pfn_to_page(pfn);
1548}
1549EXPORT_SYMBOL_GPL(gfn_to_page);
1550
1551struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1552{
1553	pfn_t pfn;
1554
1555	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1556
1557	return kvm_pfn_to_page(pfn);
1558}
1559EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1560
1561void kvm_release_page_clean(struct page *page)
1562{
1563	WARN_ON(is_error_page(page));
1564
1565	kvm_release_pfn_clean(page_to_pfn(page));
1566}
1567EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1568
1569void kvm_release_pfn_clean(pfn_t pfn)
1570{
1571	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1572		put_page(pfn_to_page(pfn));
1573}
1574EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1575
1576void kvm_release_page_dirty(struct page *page)
1577{
1578	WARN_ON(is_error_page(page));
1579
1580	kvm_release_pfn_dirty(page_to_pfn(page));
1581}
1582EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1583
1584static void kvm_release_pfn_dirty(pfn_t pfn)
1585{
1586	kvm_set_pfn_dirty(pfn);
1587	kvm_release_pfn_clean(pfn);
1588}
1589
1590void kvm_set_pfn_dirty(pfn_t pfn)
1591{
1592	if (!kvm_is_reserved_pfn(pfn)) {
1593		struct page *page = pfn_to_page(pfn);
1594
1595		if (!PageReserved(page))
1596			SetPageDirty(page);
1597	}
1598}
1599EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1600
1601void kvm_set_pfn_accessed(pfn_t pfn)
1602{
1603	if (!kvm_is_reserved_pfn(pfn))
1604		mark_page_accessed(pfn_to_page(pfn));
1605}
1606EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1607
1608void kvm_get_pfn(pfn_t pfn)
1609{
1610	if (!kvm_is_reserved_pfn(pfn))
1611		get_page(pfn_to_page(pfn));
1612}
1613EXPORT_SYMBOL_GPL(kvm_get_pfn);
1614
1615static int next_segment(unsigned long len, int offset)
1616{
1617	if (len > PAGE_SIZE - offset)
1618		return PAGE_SIZE - offset;
1619	else
1620		return len;
1621}
1622
1623static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1624				 void *data, int offset, int len)
1625{
1626	int r;
1627	unsigned long addr;
1628
1629	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1630	if (kvm_is_error_hva(addr))
1631		return -EFAULT;
1632	r = __copy_from_user(data, (void __user *)addr + offset, len);
1633	if (r)
1634		return -EFAULT;
1635	return 0;
1636}
1637
1638int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1639			int len)
1640{
1641	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1642
1643	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1644}
1645EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1646
1647int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1648			     int offset, int len)
1649{
1650	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1651
1652	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1653}
1654EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1655
1656int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1657{
1658	gfn_t gfn = gpa >> PAGE_SHIFT;
1659	int seg;
1660	int offset = offset_in_page(gpa);
1661	int ret;
1662
1663	while ((seg = next_segment(len, offset)) != 0) {
1664		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1665		if (ret < 0)
1666			return ret;
1667		offset = 0;
1668		len -= seg;
1669		data += seg;
1670		++gfn;
1671	}
1672	return 0;
1673}
1674EXPORT_SYMBOL_GPL(kvm_read_guest);
1675
1676int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1677{
1678	gfn_t gfn = gpa >> PAGE_SHIFT;
1679	int seg;
1680	int offset = offset_in_page(gpa);
1681	int ret;
1682
1683	while ((seg = next_segment(len, offset)) != 0) {
1684		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1685		if (ret < 0)
1686			return ret;
1687		offset = 0;
1688		len -= seg;
1689		data += seg;
1690		++gfn;
1691	}
1692	return 0;
1693}
1694EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1695
1696static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1697			           void *data, int offset, unsigned long len)
1698{
1699	int r;
1700	unsigned long addr;
1701
1702	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1703	if (kvm_is_error_hva(addr))
1704		return -EFAULT;
1705	pagefault_disable();
1706	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1707	pagefault_enable();
1708	if (r)
1709		return -EFAULT;
1710	return 0;
1711}
1712
1713int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1714			  unsigned long len)
1715{
1716	gfn_t gfn = gpa >> PAGE_SHIFT;
1717	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1718	int offset = offset_in_page(gpa);
1719
1720	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1721}
1722EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1723
1724int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1725			       void *data, unsigned long len)
1726{
1727	gfn_t gfn = gpa >> PAGE_SHIFT;
1728	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1729	int offset = offset_in_page(gpa);
1730
1731	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1732}
1733EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1734
1735static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1736			          const void *data, int offset, int len)
1737{
1738	int r;
1739	unsigned long addr;
1740
1741	addr = gfn_to_hva_memslot(memslot, gfn);
1742	if (kvm_is_error_hva(addr))
1743		return -EFAULT;
1744	r = __copy_to_user((void __user *)addr + offset, data, len);
1745	if (r)
1746		return -EFAULT;
1747	mark_page_dirty_in_slot(memslot, gfn);
1748	return 0;
1749}
1750
1751int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1752			 const void *data, int offset, int len)
1753{
1754	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1755
1756	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1757}
1758EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1759
1760int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1761			      const void *data, int offset, int len)
1762{
1763	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1764
1765	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1766}
1767EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1768
1769int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1770		    unsigned long len)
1771{
1772	gfn_t gfn = gpa >> PAGE_SHIFT;
1773	int seg;
1774	int offset = offset_in_page(gpa);
1775	int ret;
1776
1777	while ((seg = next_segment(len, offset)) != 0) {
1778		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1779		if (ret < 0)
1780			return ret;
1781		offset = 0;
1782		len -= seg;
1783		data += seg;
1784		++gfn;
1785	}
1786	return 0;
1787}
1788EXPORT_SYMBOL_GPL(kvm_write_guest);
1789
1790int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1791		         unsigned long len)
1792{
1793	gfn_t gfn = gpa >> PAGE_SHIFT;
1794	int seg;
1795	int offset = offset_in_page(gpa);
1796	int ret;
1797
1798	while ((seg = next_segment(len, offset)) != 0) {
1799		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1800		if (ret < 0)
1801			return ret;
1802		offset = 0;
1803		len -= seg;
1804		data += seg;
1805		++gfn;
1806	}
1807	return 0;
1808}
1809EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1810
1811int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1812			      gpa_t gpa, unsigned long len)
1813{
1814	struct kvm_memslots *slots = kvm_memslots(kvm);
1815	int offset = offset_in_page(gpa);
1816	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1817	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1818	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1819	gfn_t nr_pages_avail;
1820
1821	ghc->gpa = gpa;
1822	ghc->generation = slots->generation;
1823	ghc->len = len;
1824	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1825	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1826	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1827		ghc->hva += offset;
1828	} else {
1829		/*
1830		 * If the requested region crosses two memslots, we still
1831		 * verify that the entire region is valid here.
1832		 */
1833		while (start_gfn <= end_gfn) {
1834			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1835			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1836						   &nr_pages_avail);
1837			if (kvm_is_error_hva(ghc->hva))
1838				return -EFAULT;
1839			start_gfn += nr_pages_avail;
1840		}
1841		/* Use the slow path for cross page reads and writes. */
1842		ghc->memslot = NULL;
1843	}
1844	return 0;
1845}
1846EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1847
1848int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1849			   void *data, unsigned long len)
1850{
1851	struct kvm_memslots *slots = kvm_memslots(kvm);
1852	int r;
1853
1854	BUG_ON(len > ghc->len);
1855
1856	if (slots->generation != ghc->generation)
1857		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1858
1859	if (unlikely(!ghc->memslot))
1860		return kvm_write_guest(kvm, ghc->gpa, data, len);
1861
1862	if (kvm_is_error_hva(ghc->hva))
1863		return -EFAULT;
1864
1865	r = __copy_to_user((void __user *)ghc->hva, data, len);
1866	if (r)
1867		return -EFAULT;
1868	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1869
1870	return 0;
1871}
1872EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1873
1874int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1875			   void *data, unsigned long len)
1876{
1877	struct kvm_memslots *slots = kvm_memslots(kvm);
1878	int r;
1879
1880	BUG_ON(len > ghc->len);
1881
1882	if (slots->generation != ghc->generation)
1883		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1884
1885	if (unlikely(!ghc->memslot))
1886		return kvm_read_guest(kvm, ghc->gpa, data, len);
1887
1888	if (kvm_is_error_hva(ghc->hva))
1889		return -EFAULT;
1890
1891	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1892	if (r)
1893		return -EFAULT;
1894
1895	return 0;
1896}
1897EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1898
1899int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1900{
1901	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1902
1903	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1904}
1905EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1906
1907int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1908{
1909	gfn_t gfn = gpa >> PAGE_SHIFT;
1910	int seg;
1911	int offset = offset_in_page(gpa);
1912	int ret;
1913
1914	while ((seg = next_segment(len, offset)) != 0) {
1915		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1916		if (ret < 0)
1917			return ret;
1918		offset = 0;
1919		len -= seg;
1920		++gfn;
1921	}
1922	return 0;
1923}
1924EXPORT_SYMBOL_GPL(kvm_clear_guest);
1925
1926static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1927				    gfn_t gfn)
1928{
1929	if (memslot && memslot->dirty_bitmap) {
1930		unsigned long rel_gfn = gfn - memslot->base_gfn;
1931
1932		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1933	}
1934}
1935
1936void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1937{
1938	struct kvm_memory_slot *memslot;
1939
1940	memslot = gfn_to_memslot(kvm, gfn);
1941	mark_page_dirty_in_slot(memslot, gfn);
1942}
1943EXPORT_SYMBOL_GPL(mark_page_dirty);
1944
1945void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1946{
1947	struct kvm_memory_slot *memslot;
1948
1949	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1950	mark_page_dirty_in_slot(memslot, gfn);
1951}
1952EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1953
1954static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1955{
1956	int old, val;
1957
1958	old = val = vcpu->halt_poll_ns;
1959	/* 10us base */
1960	if (val == 0 && halt_poll_ns_grow)
1961		val = 10000;
1962	else
1963		val *= halt_poll_ns_grow;
1964
1965	if (val > halt_poll_ns)
1966		val = halt_poll_ns;
1967
1968	vcpu->halt_poll_ns = val;
1969	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1970}
1971
1972static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1973{
1974	int old, val;
1975
1976	old = val = vcpu->halt_poll_ns;
1977	if (halt_poll_ns_shrink == 0)
1978		val = 0;
1979	else
1980		val /= halt_poll_ns_shrink;
1981
1982	vcpu->halt_poll_ns = val;
1983	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1984}
1985
1986static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1987{
1988	if (kvm_arch_vcpu_runnable(vcpu)) {
1989		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1990		return -EINTR;
1991	}
1992	if (kvm_cpu_has_pending_timer(vcpu))
1993		return -EINTR;
1994	if (signal_pending(current))
1995		return -EINTR;
1996
1997	return 0;
1998}
1999
2000/*
2001 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2002 */
2003void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2004{
2005	ktime_t start, cur;
2006	DEFINE_WAIT(wait);
2007	bool waited = false;
2008	u64 block_ns;
2009
2010	start = cur = ktime_get();
2011	if (vcpu->halt_poll_ns) {
2012		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2013
2014		++vcpu->stat.halt_attempted_poll;
2015		do {
2016			/*
2017			 * This sets KVM_REQ_UNHALT if an interrupt
2018			 * arrives.
2019			 */
2020			if (kvm_vcpu_check_block(vcpu) < 0) {
2021				++vcpu->stat.halt_successful_poll;
2022				goto out;
2023			}
2024			cur = ktime_get();
2025		} while (single_task_running() && ktime_before(cur, stop));
2026	}
2027
2028	kvm_arch_vcpu_blocking(vcpu);
2029
2030	for (;;) {
2031		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2032
2033		if (kvm_vcpu_check_block(vcpu) < 0)
2034			break;
2035
2036		waited = true;
2037		schedule();
2038	}
2039
2040	finish_wait(&vcpu->wq, &wait);
2041	cur = ktime_get();
2042
2043	kvm_arch_vcpu_unblocking(vcpu);
2044out:
2045	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2046
2047	if (halt_poll_ns) {
2048		if (block_ns <= vcpu->halt_poll_ns)
2049			;
2050		/* we had a long block, shrink polling */
2051		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2052			shrink_halt_poll_ns(vcpu);
2053		/* we had a short halt and our poll time is too small */
2054		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2055			block_ns < halt_poll_ns)
2056			grow_halt_poll_ns(vcpu);
2057	} else
2058		vcpu->halt_poll_ns = 0;
2059
2060	trace_kvm_vcpu_wakeup(block_ns, waited);
2061}
2062EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2063
2064#ifndef CONFIG_S390
2065/*
2066 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2067 */
2068void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2069{
2070	int me;
2071	int cpu = vcpu->cpu;
2072	wait_queue_head_t *wqp;
2073
2074	wqp = kvm_arch_vcpu_wq(vcpu);
2075	if (waitqueue_active(wqp)) {
2076		wake_up_interruptible(wqp);
2077		++vcpu->stat.halt_wakeup;
2078	}
2079
2080	me = get_cpu();
2081	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2082		if (kvm_arch_vcpu_should_kick(vcpu))
2083			smp_send_reschedule(cpu);
2084	put_cpu();
2085}
2086EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2087#endif /* !CONFIG_S390 */
2088
2089int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2090{
2091	struct pid *pid;
2092	struct task_struct *task = NULL;
2093	int ret = 0;
2094
2095	rcu_read_lock();
2096	pid = rcu_dereference(target->pid);
2097	if (pid)
2098		task = get_pid_task(pid, PIDTYPE_PID);
2099	rcu_read_unlock();
2100	if (!task)
2101		return ret;
2102	ret = yield_to(task, 1);
2103	put_task_struct(task);
2104
2105	return ret;
2106}
2107EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2108
2109/*
2110 * Helper that checks whether a VCPU is eligible for directed yield.
2111 * Most eligible candidate to yield is decided by following heuristics:
2112 *
2113 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2114 *  (preempted lock holder), indicated by @in_spin_loop.
2115 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2116 *
2117 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2118 *  chance last time (mostly it has become eligible now since we have probably
2119 *  yielded to lockholder in last iteration. This is done by toggling
2120 *  @dy_eligible each time a VCPU checked for eligibility.)
2121 *
2122 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2123 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2124 *  burning. Giving priority for a potential lock-holder increases lock
2125 *  progress.
2126 *
2127 *  Since algorithm is based on heuristics, accessing another VCPU data without
2128 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2129 *  and continue with next VCPU and so on.
2130 */
2131static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2132{
2133#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2134	bool eligible;
2135
2136	eligible = !vcpu->spin_loop.in_spin_loop ||
2137		    vcpu->spin_loop.dy_eligible;
2138
2139	if (vcpu->spin_loop.in_spin_loop)
2140		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2141
2142	return eligible;
2143#else
2144	return true;
2145#endif
2146}
2147
2148void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2149{
2150	struct kvm *kvm = me->kvm;
2151	struct kvm_vcpu *vcpu;
2152	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2153	int yielded = 0;
2154	int try = 3;
2155	int pass;
2156	int i;
2157
2158	kvm_vcpu_set_in_spin_loop(me, true);
2159	/*
2160	 * We boost the priority of a VCPU that is runnable but not
2161	 * currently running, because it got preempted by something
2162	 * else and called schedule in __vcpu_run.  Hopefully that
2163	 * VCPU is holding the lock that we need and will release it.
2164	 * We approximate round-robin by starting at the last boosted VCPU.
2165	 */
2166	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2167		kvm_for_each_vcpu(i, vcpu, kvm) {
2168			if (!pass && i <= last_boosted_vcpu) {
2169				i = last_boosted_vcpu;
2170				continue;
2171			} else if (pass && i > last_boosted_vcpu)
2172				break;
2173			if (!ACCESS_ONCE(vcpu->preempted))
2174				continue;
2175			if (vcpu == me)
2176				continue;
2177			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2178				continue;
2179			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2180				continue;
2181
2182			yielded = kvm_vcpu_yield_to(vcpu);
2183			if (yielded > 0) {
2184				kvm->last_boosted_vcpu = i;
2185				break;
2186			} else if (yielded < 0) {
2187				try--;
2188				if (!try)
2189					break;
2190			}
2191		}
2192	}
2193	kvm_vcpu_set_in_spin_loop(me, false);
2194
2195	/* Ensure vcpu is not eligible during next spinloop */
2196	kvm_vcpu_set_dy_eligible(me, false);
2197}
2198EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2199
2200static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2201{
2202	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2203	struct page *page;
2204
2205	if (vmf->pgoff == 0)
2206		page = virt_to_page(vcpu->run);
2207#ifdef CONFIG_X86
2208	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2209		page = virt_to_page(vcpu->arch.pio_data);
2210#endif
2211#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2212	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2213		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2214#endif
2215	else
2216		return kvm_arch_vcpu_fault(vcpu, vmf);
2217	get_page(page);
2218	vmf->page = page;
2219	return 0;
2220}
2221
2222static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2223	.fault = kvm_vcpu_fault,
2224};
2225
2226static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2227{
2228	vma->vm_ops = &kvm_vcpu_vm_ops;
2229	return 0;
2230}
2231
2232static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2233{
2234	struct kvm_vcpu *vcpu = filp->private_data;
2235
2236	kvm_put_kvm(vcpu->kvm);
2237	return 0;
2238}
2239
2240static struct file_operations kvm_vcpu_fops = {
2241	.release        = kvm_vcpu_release,
2242	.unlocked_ioctl = kvm_vcpu_ioctl,
2243#ifdef CONFIG_KVM_COMPAT
2244	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2245#endif
2246	.mmap           = kvm_vcpu_mmap,
2247	.llseek		= noop_llseek,
2248};
2249
2250/*
2251 * Allocates an inode for the vcpu.
2252 */
2253static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2254{
2255	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2256}
2257
2258/*
2259 * Creates some virtual cpus.  Good luck creating more than one.
2260 */
2261static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2262{
2263	int r;
2264	struct kvm_vcpu *vcpu, *v;
2265
2266	if (id >= KVM_MAX_VCPUS)
2267		return -EINVAL;
2268
2269	vcpu = kvm_arch_vcpu_create(kvm, id);
2270	if (IS_ERR(vcpu))
2271		return PTR_ERR(vcpu);
2272
2273	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2274
2275	r = kvm_arch_vcpu_setup(vcpu);
2276	if (r)
2277		goto vcpu_destroy;
2278
2279	mutex_lock(&kvm->lock);
2280	if (!kvm_vcpu_compatible(vcpu)) {
2281		r = -EINVAL;
2282		goto unlock_vcpu_destroy;
2283	}
2284	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2285		r = -EINVAL;
2286		goto unlock_vcpu_destroy;
2287	}
2288
2289	kvm_for_each_vcpu(r, v, kvm)
2290		if (v->vcpu_id == id) {
2291			r = -EEXIST;
2292			goto unlock_vcpu_destroy;
2293		}
2294
2295	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2296
2297	/* Now it's all set up, let userspace reach it */
2298	kvm_get_kvm(kvm);
2299	r = create_vcpu_fd(vcpu);
2300	if (r < 0) {
2301		kvm_put_kvm(kvm);
2302		goto unlock_vcpu_destroy;
2303	}
2304
2305	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2306
2307	/*
2308	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2309	 * before kvm->online_vcpu's incremented value.
2310	 */
2311	smp_wmb();
2312	atomic_inc(&kvm->online_vcpus);
2313
2314	mutex_unlock(&kvm->lock);
2315	kvm_arch_vcpu_postcreate(vcpu);
2316	return r;
2317
2318unlock_vcpu_destroy:
2319	mutex_unlock(&kvm->lock);
2320vcpu_destroy:
2321	kvm_arch_vcpu_destroy(vcpu);
2322	return r;
2323}
2324
2325static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2326{
2327	if (sigset) {
2328		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2329		vcpu->sigset_active = 1;
2330		vcpu->sigset = *sigset;
2331	} else
2332		vcpu->sigset_active = 0;
2333	return 0;
2334}
2335
2336static long kvm_vcpu_ioctl(struct file *filp,
2337			   unsigned int ioctl, unsigned long arg)
2338{
2339	struct kvm_vcpu *vcpu = filp->private_data;
2340	void __user *argp = (void __user *)arg;
2341	int r;
2342	struct kvm_fpu *fpu = NULL;
2343	struct kvm_sregs *kvm_sregs = NULL;
2344
2345	if (vcpu->kvm->mm != current->mm)
2346		return -EIO;
2347
2348	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2349		return -EINVAL;
2350
2351#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2352	/*
2353	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2354	 * so vcpu_load() would break it.
2355	 */
2356	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2357		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2358#endif
2359
2360
2361	r = vcpu_load(vcpu);
2362	if (r)
2363		return r;
2364	switch (ioctl) {
2365	case KVM_RUN:
2366		r = -EINVAL;
2367		if (arg)
2368			goto out;
2369		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2370			/* The thread running this VCPU changed. */
2371			struct pid *oldpid = vcpu->pid;
2372			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2373
2374			rcu_assign_pointer(vcpu->pid, newpid);
2375			if (oldpid)
2376				synchronize_rcu();
2377			put_pid(oldpid);
2378		}
2379		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2380		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2381		break;
2382	case KVM_GET_REGS: {
2383		struct kvm_regs *kvm_regs;
2384
2385		r = -ENOMEM;
2386		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2387		if (!kvm_regs)
2388			goto out;
2389		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2390		if (r)
2391			goto out_free1;
2392		r = -EFAULT;
2393		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2394			goto out_free1;
2395		r = 0;
2396out_free1:
2397		kfree(kvm_regs);
2398		break;
2399	}
2400	case KVM_SET_REGS: {
2401		struct kvm_regs *kvm_regs;
2402
2403		r = -ENOMEM;
2404		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2405		if (IS_ERR(kvm_regs)) {
2406			r = PTR_ERR(kvm_regs);
2407			goto out;
2408		}
2409		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2410		kfree(kvm_regs);
2411		break;
2412	}
2413	case KVM_GET_SREGS: {
2414		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2415		r = -ENOMEM;
2416		if (!kvm_sregs)
2417			goto out;
2418		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2419		if (r)
2420			goto out;
2421		r = -EFAULT;
2422		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2423			goto out;
2424		r = 0;
2425		break;
2426	}
2427	case KVM_SET_SREGS: {
2428		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2429		if (IS_ERR(kvm_sregs)) {
2430			r = PTR_ERR(kvm_sregs);
2431			kvm_sregs = NULL;
2432			goto out;
2433		}
2434		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2435		break;
2436	}
2437	case KVM_GET_MP_STATE: {
2438		struct kvm_mp_state mp_state;
2439
2440		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2441		if (r)
2442			goto out;
2443		r = -EFAULT;
2444		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2445			goto out;
2446		r = 0;
2447		break;
2448	}
2449	case KVM_SET_MP_STATE: {
2450		struct kvm_mp_state mp_state;
2451
2452		r = -EFAULT;
2453		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2454			goto out;
2455		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2456		break;
2457	}
2458	case KVM_TRANSLATE: {
2459		struct kvm_translation tr;
2460
2461		r = -EFAULT;
2462		if (copy_from_user(&tr, argp, sizeof(tr)))
2463			goto out;
2464		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2465		if (r)
2466			goto out;
2467		r = -EFAULT;
2468		if (copy_to_user(argp, &tr, sizeof(tr)))
2469			goto out;
2470		r = 0;
2471		break;
2472	}
2473	case KVM_SET_GUEST_DEBUG: {
2474		struct kvm_guest_debug dbg;
2475
2476		r = -EFAULT;
2477		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2478			goto out;
2479		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2480		break;
2481	}
2482	case KVM_SET_SIGNAL_MASK: {
2483		struct kvm_signal_mask __user *sigmask_arg = argp;
2484		struct kvm_signal_mask kvm_sigmask;
2485		sigset_t sigset, *p;
2486
2487		p = NULL;
2488		if (argp) {
2489			r = -EFAULT;
2490			if (copy_from_user(&kvm_sigmask, argp,
2491					   sizeof(kvm_sigmask)))
2492				goto out;
2493			r = -EINVAL;
2494			if (kvm_sigmask.len != sizeof(sigset))
2495				goto out;
2496			r = -EFAULT;
2497			if (copy_from_user(&sigset, sigmask_arg->sigset,
2498					   sizeof(sigset)))
2499				goto out;
2500			p = &sigset;
2501		}
2502		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2503		break;
2504	}
2505	case KVM_GET_FPU: {
2506		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2507		r = -ENOMEM;
2508		if (!fpu)
2509			goto out;
2510		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2511		if (r)
2512			goto out;
2513		r = -EFAULT;
2514		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2515			goto out;
2516		r = 0;
2517		break;
2518	}
2519	case KVM_SET_FPU: {
2520		fpu = memdup_user(argp, sizeof(*fpu));
2521		if (IS_ERR(fpu)) {
2522			r = PTR_ERR(fpu);
2523			fpu = NULL;
2524			goto out;
2525		}
2526		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2527		break;
2528	}
2529	default:
2530		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2531	}
2532out:
2533	vcpu_put(vcpu);
2534	kfree(fpu);
2535	kfree(kvm_sregs);
2536	return r;
2537}
2538
2539#ifdef CONFIG_KVM_COMPAT
2540static long kvm_vcpu_compat_ioctl(struct file *filp,
2541				  unsigned int ioctl, unsigned long arg)
2542{
2543	struct kvm_vcpu *vcpu = filp->private_data;
2544	void __user *argp = compat_ptr(arg);
2545	int r;
2546
2547	if (vcpu->kvm->mm != current->mm)
2548		return -EIO;
2549
2550	switch (ioctl) {
2551	case KVM_SET_SIGNAL_MASK: {
2552		struct kvm_signal_mask __user *sigmask_arg = argp;
2553		struct kvm_signal_mask kvm_sigmask;
2554		compat_sigset_t csigset;
2555		sigset_t sigset;
2556
2557		if (argp) {
2558			r = -EFAULT;
2559			if (copy_from_user(&kvm_sigmask, argp,
2560					   sizeof(kvm_sigmask)))
2561				goto out;
2562			r = -EINVAL;
2563			if (kvm_sigmask.len != sizeof(csigset))
2564				goto out;
2565			r = -EFAULT;
2566			if (copy_from_user(&csigset, sigmask_arg->sigset,
2567					   sizeof(csigset)))
2568				goto out;
2569			sigset_from_compat(&sigset, &csigset);
2570			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2571		} else
2572			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2573		break;
2574	}
2575	default:
2576		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2577	}
2578
2579out:
2580	return r;
2581}
2582#endif
2583
2584static int kvm_device_ioctl_attr(struct kvm_device *dev,
2585				 int (*accessor)(struct kvm_device *dev,
2586						 struct kvm_device_attr *attr),
2587				 unsigned long arg)
2588{
2589	struct kvm_device_attr attr;
2590
2591	if (!accessor)
2592		return -EPERM;
2593
2594	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2595		return -EFAULT;
2596
2597	return accessor(dev, &attr);
2598}
2599
2600static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2601			     unsigned long arg)
2602{
2603	struct kvm_device *dev = filp->private_data;
2604
2605	switch (ioctl) {
2606	case KVM_SET_DEVICE_ATTR:
2607		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2608	case KVM_GET_DEVICE_ATTR:
2609		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2610	case KVM_HAS_DEVICE_ATTR:
2611		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2612	default:
2613		if (dev->ops->ioctl)
2614			return dev->ops->ioctl(dev, ioctl, arg);
2615
2616		return -ENOTTY;
2617	}
2618}
2619
2620static int kvm_device_release(struct inode *inode, struct file *filp)
2621{
2622	struct kvm_device *dev = filp->private_data;
2623	struct kvm *kvm = dev->kvm;
2624
2625	kvm_put_kvm(kvm);
2626	return 0;
2627}
2628
2629static const struct file_operations kvm_device_fops = {
2630	.unlocked_ioctl = kvm_device_ioctl,
2631#ifdef CONFIG_KVM_COMPAT
2632	.compat_ioctl = kvm_device_ioctl,
2633#endif
2634	.release = kvm_device_release,
2635};
2636
2637struct kvm_device *kvm_device_from_filp(struct file *filp)
2638{
2639	if (filp->f_op != &kvm_device_fops)
2640		return NULL;
2641
2642	return filp->private_data;
2643}
2644
2645static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2646#ifdef CONFIG_KVM_MPIC
2647	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2648	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2649#endif
2650
2651#ifdef CONFIG_KVM_XICS
2652	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2653#endif
2654};
2655
2656int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2657{
2658	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2659		return -ENOSPC;
2660
2661	if (kvm_device_ops_table[type] != NULL)
2662		return -EEXIST;
2663
2664	kvm_device_ops_table[type] = ops;
2665	return 0;
2666}
2667
2668void kvm_unregister_device_ops(u32 type)
2669{
2670	if (kvm_device_ops_table[type] != NULL)
2671		kvm_device_ops_table[type] = NULL;
2672}
2673
2674static int kvm_ioctl_create_device(struct kvm *kvm,
2675				   struct kvm_create_device *cd)
2676{
2677	struct kvm_device_ops *ops = NULL;
2678	struct kvm_device *dev;
2679	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2680	int ret;
2681
2682	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2683		return -ENODEV;
2684
2685	ops = kvm_device_ops_table[cd->type];
2686	if (ops == NULL)
2687		return -ENODEV;
2688
2689	if (test)
2690		return 0;
2691
2692	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2693	if (!dev)
2694		return -ENOMEM;
2695
2696	dev->ops = ops;
2697	dev->kvm = kvm;
2698
2699	ret = ops->create(dev, cd->type);
2700	if (ret < 0) {
2701		kfree(dev);
2702		return ret;
2703	}
2704
2705	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2706	if (ret < 0) {
2707		ops->destroy(dev);
2708		return ret;
2709	}
2710
2711	list_add(&dev->vm_node, &kvm->devices);
2712	kvm_get_kvm(kvm);
2713	cd->fd = ret;
2714	return 0;
2715}
2716
2717static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2718{
2719	switch (arg) {
2720	case KVM_CAP_USER_MEMORY:
2721	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2722	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2723	case KVM_CAP_INTERNAL_ERROR_DATA:
2724#ifdef CONFIG_HAVE_KVM_MSI
2725	case KVM_CAP_SIGNAL_MSI:
2726#endif
2727#ifdef CONFIG_HAVE_KVM_IRQFD
2728	case KVM_CAP_IRQFD:
2729	case KVM_CAP_IRQFD_RESAMPLE:
2730#endif
2731	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2732	case KVM_CAP_CHECK_EXTENSION_VM:
2733		return 1;
2734#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2735	case KVM_CAP_IRQ_ROUTING:
2736		return KVM_MAX_IRQ_ROUTES;
2737#endif
2738#if KVM_ADDRESS_SPACE_NUM > 1
2739	case KVM_CAP_MULTI_ADDRESS_SPACE:
2740		return KVM_ADDRESS_SPACE_NUM;
2741#endif
2742	default:
2743		break;
2744	}
2745	return kvm_vm_ioctl_check_extension(kvm, arg);
2746}
2747
2748static long kvm_vm_ioctl(struct file *filp,
2749			   unsigned int ioctl, unsigned long arg)
2750{
2751	struct kvm *kvm = filp->private_data;
2752	void __user *argp = (void __user *)arg;
2753	int r;
2754
2755	if (kvm->mm != current->mm)
2756		return -EIO;
2757	switch (ioctl) {
2758	case KVM_CREATE_VCPU:
2759		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2760		break;
2761	case KVM_SET_USER_MEMORY_REGION: {
2762		struct kvm_userspace_memory_region kvm_userspace_mem;
2763
2764		r = -EFAULT;
2765		if (copy_from_user(&kvm_userspace_mem, argp,
2766						sizeof(kvm_userspace_mem)))
2767			goto out;
2768
2769		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2770		break;
2771	}
2772	case KVM_GET_DIRTY_LOG: {
2773		struct kvm_dirty_log log;
2774
2775		r = -EFAULT;
2776		if (copy_from_user(&log, argp, sizeof(log)))
2777			goto out;
2778		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2779		break;
2780	}
2781#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2782	case KVM_REGISTER_COALESCED_MMIO: {
2783		struct kvm_coalesced_mmio_zone zone;
2784
2785		r = -EFAULT;
2786		if (copy_from_user(&zone, argp, sizeof(zone)))
2787			goto out;
2788		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2789		break;
2790	}
2791	case KVM_UNREGISTER_COALESCED_MMIO: {
2792		struct kvm_coalesced_mmio_zone zone;
2793
2794		r = -EFAULT;
2795		if (copy_from_user(&zone, argp, sizeof(zone)))
2796			goto out;
2797		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2798		break;
2799	}
2800#endif
2801	case KVM_IRQFD: {
2802		struct kvm_irqfd data;
2803
2804		r = -EFAULT;
2805		if (copy_from_user(&data, argp, sizeof(data)))
2806			goto out;
2807		r = kvm_irqfd(kvm, &data);
2808		break;
2809	}
2810	case KVM_IOEVENTFD: {
2811		struct kvm_ioeventfd data;
2812
2813		r = -EFAULT;
2814		if (copy_from_user(&data, argp, sizeof(data)))
2815			goto out;
2816		r = kvm_ioeventfd(kvm, &data);
2817		break;
2818	}
2819#ifdef CONFIG_HAVE_KVM_MSI
2820	case KVM_SIGNAL_MSI: {
2821		struct kvm_msi msi;
2822
2823		r = -EFAULT;
2824		if (copy_from_user(&msi, argp, sizeof(msi)))
2825			goto out;
2826		r = kvm_send_userspace_msi(kvm, &msi);
2827		break;
2828	}
2829#endif
2830#ifdef __KVM_HAVE_IRQ_LINE
2831	case KVM_IRQ_LINE_STATUS:
2832	case KVM_IRQ_LINE: {
2833		struct kvm_irq_level irq_event;
2834
2835		r = -EFAULT;
2836		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2837			goto out;
2838
2839		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2840					ioctl == KVM_IRQ_LINE_STATUS);
2841		if (r)
2842			goto out;
2843
2844		r = -EFAULT;
2845		if (ioctl == KVM_IRQ_LINE_STATUS) {
2846			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2847				goto out;
2848		}
2849
2850		r = 0;
2851		break;
2852	}
2853#endif
2854#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2855	case KVM_SET_GSI_ROUTING: {
2856		struct kvm_irq_routing routing;
2857		struct kvm_irq_routing __user *urouting;
2858		struct kvm_irq_routing_entry *entries;
2859
2860		r = -EFAULT;
2861		if (copy_from_user(&routing, argp, sizeof(routing)))
2862			goto out;
2863		r = -EINVAL;
2864		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2865			goto out;
2866		if (routing.flags)
2867			goto out;
2868		r = -ENOMEM;
2869		entries = vmalloc(routing.nr * sizeof(*entries));
2870		if (!entries)
2871			goto out;
2872		r = -EFAULT;
2873		urouting = argp;
2874		if (copy_from_user(entries, urouting->entries,
2875				   routing.nr * sizeof(*entries)))
2876			goto out_free_irq_routing;
2877		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2878					routing.flags);
2879out_free_irq_routing:
2880		vfree(entries);
2881		break;
2882	}
2883#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2884	case KVM_CREATE_DEVICE: {
2885		struct kvm_create_device cd;
2886
2887		r = -EFAULT;
2888		if (copy_from_user(&cd, argp, sizeof(cd)))
2889			goto out;
2890
2891		r = kvm_ioctl_create_device(kvm, &cd);
2892		if (r)
2893			goto out;
2894
2895		r = -EFAULT;
2896		if (copy_to_user(argp, &cd, sizeof(cd)))
2897			goto out;
2898
2899		r = 0;
2900		break;
2901	}
2902	case KVM_CHECK_EXTENSION:
2903		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2904		break;
2905	default:
2906		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2907	}
2908out:
2909	return r;
2910}
2911
2912#ifdef CONFIG_KVM_COMPAT
2913struct compat_kvm_dirty_log {
2914	__u32 slot;
2915	__u32 padding1;
2916	union {
2917		compat_uptr_t dirty_bitmap; /* one bit per page */
2918		__u64 padding2;
2919	};
2920};
2921
2922static long kvm_vm_compat_ioctl(struct file *filp,
2923			   unsigned int ioctl, unsigned long arg)
2924{
2925	struct kvm *kvm = filp->private_data;
2926	int r;
2927
2928	if (kvm->mm != current->mm)
2929		return -EIO;
2930	switch (ioctl) {
2931	case KVM_GET_DIRTY_LOG: {
2932		struct compat_kvm_dirty_log compat_log;
2933		struct kvm_dirty_log log;
2934
2935		r = -EFAULT;
2936		if (copy_from_user(&compat_log, (void __user *)arg,
2937				   sizeof(compat_log)))
2938			goto out;
2939		log.slot	 = compat_log.slot;
2940		log.padding1	 = compat_log.padding1;
2941		log.padding2	 = compat_log.padding2;
2942		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2943
2944		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2945		break;
2946	}
2947	default:
2948		r = kvm_vm_ioctl(filp, ioctl, arg);
2949	}
2950
2951out:
2952	return r;
2953}
2954#endif
2955
2956static struct file_operations kvm_vm_fops = {
2957	.release        = kvm_vm_release,
2958	.unlocked_ioctl = kvm_vm_ioctl,
2959#ifdef CONFIG_KVM_COMPAT
2960	.compat_ioctl   = kvm_vm_compat_ioctl,
2961#endif
2962	.llseek		= noop_llseek,
2963};
2964
2965static int kvm_dev_ioctl_create_vm(unsigned long type)
2966{
2967	int r;
2968	struct kvm *kvm;
2969
2970	kvm = kvm_create_vm(type);
2971	if (IS_ERR(kvm))
2972		return PTR_ERR(kvm);
2973#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2974	r = kvm_coalesced_mmio_init(kvm);
2975	if (r < 0) {
2976		kvm_put_kvm(kvm);
2977		return r;
2978	}
2979#endif
2980	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2981	if (r < 0)
2982		kvm_put_kvm(kvm);
2983
2984	return r;
2985}
2986
2987static long kvm_dev_ioctl(struct file *filp,
2988			  unsigned int ioctl, unsigned long arg)
2989{
2990	long r = -EINVAL;
2991
2992	switch (ioctl) {
2993	case KVM_GET_API_VERSION:
2994		if (arg)
2995			goto out;
2996		r = KVM_API_VERSION;
2997		break;
2998	case KVM_CREATE_VM:
2999		r = kvm_dev_ioctl_create_vm(arg);
3000		break;
3001	case KVM_CHECK_EXTENSION:
3002		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3003		break;
3004	case KVM_GET_VCPU_MMAP_SIZE:
3005		if (arg)
3006			goto out;
3007		r = PAGE_SIZE;     /* struct kvm_run */
3008#ifdef CONFIG_X86
3009		r += PAGE_SIZE;    /* pio data page */
3010#endif
3011#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3012		r += PAGE_SIZE;    /* coalesced mmio ring page */
3013#endif
3014		break;
3015	case KVM_TRACE_ENABLE:
3016	case KVM_TRACE_PAUSE:
3017	case KVM_TRACE_DISABLE:
3018		r = -EOPNOTSUPP;
3019		break;
3020	default:
3021		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3022	}
3023out:
3024	return r;
3025}
3026
3027static struct file_operations kvm_chardev_ops = {
3028	.unlocked_ioctl = kvm_dev_ioctl,
3029	.compat_ioctl   = kvm_dev_ioctl,
3030	.llseek		= noop_llseek,
3031};
3032
3033static struct miscdevice kvm_dev = {
3034	KVM_MINOR,
3035	"kvm",
3036	&kvm_chardev_ops,
3037};
3038
3039static void hardware_enable_nolock(void *junk)
3040{
3041	int cpu = raw_smp_processor_id();
3042	int r;
3043
3044	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3045		return;
3046
3047	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3048
3049	r = kvm_arch_hardware_enable();
3050
3051	if (r) {
3052		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3053		atomic_inc(&hardware_enable_failed);
3054		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3055	}
3056}
3057
3058static void hardware_enable(void)
3059{
3060	raw_spin_lock(&kvm_count_lock);
3061	if (kvm_usage_count)
3062		hardware_enable_nolock(NULL);
3063	raw_spin_unlock(&kvm_count_lock);
3064}
3065
3066static void hardware_disable_nolock(void *junk)
3067{
3068	int cpu = raw_smp_processor_id();
3069
3070	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3071		return;
3072	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3073	kvm_arch_hardware_disable();
3074}
3075
3076static void hardware_disable(void)
3077{
3078	raw_spin_lock(&kvm_count_lock);
3079	if (kvm_usage_count)
3080		hardware_disable_nolock(NULL);
3081	raw_spin_unlock(&kvm_count_lock);
3082}
3083
3084static void hardware_disable_all_nolock(void)
3085{
3086	BUG_ON(!kvm_usage_count);
3087
3088	kvm_usage_count--;
3089	if (!kvm_usage_count)
3090		on_each_cpu(hardware_disable_nolock, NULL, 1);
3091}
3092
3093static void hardware_disable_all(void)
3094{
3095	raw_spin_lock(&kvm_count_lock);
3096	hardware_disable_all_nolock();
3097	raw_spin_unlock(&kvm_count_lock);
3098}
3099
3100static int hardware_enable_all(void)
3101{
3102	int r = 0;
3103
3104	raw_spin_lock(&kvm_count_lock);
3105
3106	kvm_usage_count++;
3107	if (kvm_usage_count == 1) {
3108		atomic_set(&hardware_enable_failed, 0);
3109		on_each_cpu(hardware_enable_nolock, NULL, 1);
3110
3111		if (atomic_read(&hardware_enable_failed)) {
3112			hardware_disable_all_nolock();
3113			r = -EBUSY;
3114		}
3115	}
3116
3117	raw_spin_unlock(&kvm_count_lock);
3118
3119	return r;
3120}
3121
3122static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3123			   void *v)
3124{
3125	val &= ~CPU_TASKS_FROZEN;
3126	switch (val) {
3127	case CPU_DYING:
3128		hardware_disable();
3129		break;
3130	case CPU_STARTING:
3131		hardware_enable();
3132		break;
3133	}
3134	return NOTIFY_OK;
3135}
3136
3137static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3138		      void *v)
3139{
3140	/*
3141	 * Some (well, at least mine) BIOSes hang on reboot if
3142	 * in vmx root mode.
3143	 *
3144	 * And Intel TXT required VMX off for all cpu when system shutdown.
3145	 */
3146	pr_info("kvm: exiting hardware virtualization\n");
3147	kvm_rebooting = true;
3148	on_each_cpu(hardware_disable_nolock, NULL, 1);
3149	return NOTIFY_OK;
3150}
3151
3152static struct notifier_block kvm_reboot_notifier = {
3153	.notifier_call = kvm_reboot,
3154	.priority = 0,
3155};
3156
3157static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3158{
3159	int i;
3160
3161	for (i = 0; i < bus->dev_count; i++) {
3162		struct kvm_io_device *pos = bus->range[i].dev;
3163
3164		kvm_iodevice_destructor(pos);
3165	}
3166	kfree(bus);
3167}
3168
3169static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3170				 const struct kvm_io_range *r2)
3171{
3172	gpa_t addr1 = r1->addr;
3173	gpa_t addr2 = r2->addr;
3174
3175	if (addr1 < addr2)
3176		return -1;
3177
3178	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3179	 * accept any overlapping write.  Any order is acceptable for
3180	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3181	 * we process all of them.
3182	 */
3183	if (r2->len) {
3184		addr1 += r1->len;
3185		addr2 += r2->len;
3186	}
3187
3188	if (addr1 > addr2)
3189		return 1;
3190
3191	return 0;
3192}
3193
3194static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3195{
3196	return kvm_io_bus_cmp(p1, p2);
3197}
3198
3199static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3200			  gpa_t addr, int len)
3201{
3202	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3203		.addr = addr,
3204		.len = len,
3205		.dev = dev,
3206	};
3207
3208	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3209		kvm_io_bus_sort_cmp, NULL);
3210
3211	return 0;
3212}
3213
3214static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3215			     gpa_t addr, int len)
3216{
3217	struct kvm_io_range *range, key;
3218	int off;
3219
3220	key = (struct kvm_io_range) {
3221		.addr = addr,
3222		.len = len,
3223	};
3224
3225	range = bsearch(&key, bus->range, bus->dev_count,
3226			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3227	if (range == NULL)
3228		return -ENOENT;
3229
3230	off = range - bus->range;
3231
3232	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3233		off--;
3234
3235	return off;
3236}
3237
3238static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3239			      struct kvm_io_range *range, const void *val)
3240{
3241	int idx;
3242
3243	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3244	if (idx < 0)
3245		return -EOPNOTSUPP;
3246
3247	while (idx < bus->dev_count &&
3248		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3249		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3250					range->len, val))
3251			return idx;
3252		idx++;
3253	}
3254
3255	return -EOPNOTSUPP;
3256}
3257
3258/* kvm_io_bus_write - called under kvm->slots_lock */
3259int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3260		     int len, const void *val)
3261{
3262	struct kvm_io_bus *bus;
3263	struct kvm_io_range range;
3264	int r;
3265
3266	range = (struct kvm_io_range) {
3267		.addr = addr,
3268		.len = len,
3269	};
3270
3271	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3272	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3273	return r < 0 ? r : 0;
3274}
3275
3276/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3277int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3278			    gpa_t addr, int len, const void *val, long cookie)
3279{
3280	struct kvm_io_bus *bus;
3281	struct kvm_io_range range;
3282
3283	range = (struct kvm_io_range) {
3284		.addr = addr,
3285		.len = len,
3286	};
3287
3288	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3289
3290	/* First try the device referenced by cookie. */
3291	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3292	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3293		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3294					val))
3295			return cookie;
3296
3297	/*
3298	 * cookie contained garbage; fall back to search and return the
3299	 * correct cookie value.
3300	 */
3301	return __kvm_io_bus_write(vcpu, bus, &range, val);
3302}
3303
3304static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3305			     struct kvm_io_range *range, void *val)
3306{
3307	int idx;
3308
3309	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3310	if (idx < 0)
3311		return -EOPNOTSUPP;
3312
3313	while (idx < bus->dev_count &&
3314		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3315		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3316				       range->len, val))
3317			return idx;
3318		idx++;
3319	}
3320
3321	return -EOPNOTSUPP;
3322}
3323EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3324
3325/* kvm_io_bus_read - called under kvm->slots_lock */
3326int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3327		    int len, void *val)
3328{
3329	struct kvm_io_bus *bus;
3330	struct kvm_io_range range;
3331	int r;
3332
3333	range = (struct kvm_io_range) {
3334		.addr = addr,
3335		.len = len,
3336	};
3337
3338	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3339	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3340	return r < 0 ? r : 0;
3341}
3342
3343
3344/* Caller must hold slots_lock. */
3345int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3346			    int len, struct kvm_io_device *dev)
3347{
3348	struct kvm_io_bus *new_bus, *bus;
3349
3350	bus = kvm->buses[bus_idx];
3351	/* exclude ioeventfd which is limited by maximum fd */
3352	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3353		return -ENOSPC;
3354
3355	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3356			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3357	if (!new_bus)
3358		return -ENOMEM;
3359	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3360	       sizeof(struct kvm_io_range)));
3361	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3362	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3363	synchronize_srcu_expedited(&kvm->srcu);
3364	kfree(bus);
3365
3366	return 0;
3367}
3368
3369/* Caller must hold slots_lock. */
3370int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3371			      struct kvm_io_device *dev)
3372{
3373	int i, r;
3374	struct kvm_io_bus *new_bus, *bus;
3375
3376	bus = kvm->buses[bus_idx];
3377	r = -ENOENT;
3378	for (i = 0; i < bus->dev_count; i++)
3379		if (bus->range[i].dev == dev) {
3380			r = 0;
3381			break;
3382		}
3383
3384	if (r)
3385		return r;
3386
3387	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3388			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3389	if (!new_bus)
3390		return -ENOMEM;
3391
3392	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3393	new_bus->dev_count--;
3394	memcpy(new_bus->range + i, bus->range + i + 1,
3395	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3396
3397	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3398	synchronize_srcu_expedited(&kvm->srcu);
3399	kfree(bus);
3400	return r;
3401}
3402
3403static struct notifier_block kvm_cpu_notifier = {
3404	.notifier_call = kvm_cpu_hotplug,
3405};
3406
3407static int vm_stat_get(void *_offset, u64 *val)
3408{
3409	unsigned offset = (long)_offset;
3410	struct kvm *kvm;
3411
3412	*val = 0;
3413	spin_lock(&kvm_lock);
3414	list_for_each_entry(kvm, &vm_list, vm_list)
3415		*val += *(u32 *)((void *)kvm + offset);
3416	spin_unlock(&kvm_lock);
3417	return 0;
3418}
3419
3420DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3421
3422static int vcpu_stat_get(void *_offset, u64 *val)
3423{
3424	unsigned offset = (long)_offset;
3425	struct kvm *kvm;
3426	struct kvm_vcpu *vcpu;
3427	int i;
3428
3429	*val = 0;
3430	spin_lock(&kvm_lock);
3431	list_for_each_entry(kvm, &vm_list, vm_list)
3432		kvm_for_each_vcpu(i, vcpu, kvm)
3433			*val += *(u32 *)((void *)vcpu + offset);
3434
3435	spin_unlock(&kvm_lock);
3436	return 0;
3437}
3438
3439DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3440
3441static const struct file_operations *stat_fops[] = {
3442	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3443	[KVM_STAT_VM]   = &vm_stat_fops,
3444};
3445
3446static int kvm_init_debug(void)
3447{
3448	int r = -EEXIST;
3449	struct kvm_stats_debugfs_item *p;
3450
3451	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3452	if (kvm_debugfs_dir == NULL)
3453		goto out;
3454
3455	for (p = debugfs_entries; p->name; ++p) {
3456		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3457						(void *)(long)p->offset,
3458						stat_fops[p->kind]);
3459		if (p->dentry == NULL)
3460			goto out_dir;
3461	}
3462
3463	return 0;
3464
3465out_dir:
3466	debugfs_remove_recursive(kvm_debugfs_dir);
3467out:
3468	return r;
3469}
3470
3471static void kvm_exit_debug(void)
3472{
3473	struct kvm_stats_debugfs_item *p;
3474
3475	for (p = debugfs_entries; p->name; ++p)
3476		debugfs_remove(p->dentry);
3477	debugfs_remove(kvm_debugfs_dir);
3478}
3479
3480static int kvm_suspend(void)
3481{
3482	if (kvm_usage_count)
3483		hardware_disable_nolock(NULL);
3484	return 0;
3485}
3486
3487static void kvm_resume(void)
3488{
3489	if (kvm_usage_count) {
3490		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3491		hardware_enable_nolock(NULL);
3492	}
3493}
3494
3495static struct syscore_ops kvm_syscore_ops = {
3496	.suspend = kvm_suspend,
3497	.resume = kvm_resume,
3498};
3499
3500static inline
3501struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3502{
3503	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3504}
3505
3506static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3507{
3508	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3509
3510	if (vcpu->preempted)
3511		vcpu->preempted = false;
3512
3513	kvm_arch_sched_in(vcpu, cpu);
3514
3515	kvm_arch_vcpu_load(vcpu, cpu);
3516}
3517
3518static void kvm_sched_out(struct preempt_notifier *pn,
3519			  struct task_struct *next)
3520{
3521	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3522
3523	if (current->state == TASK_RUNNING)
3524		vcpu->preempted = true;
3525	kvm_arch_vcpu_put(vcpu);
3526}
3527
3528int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3529		  struct module *module)
3530{
3531	int r;
3532	int cpu;
3533
3534	r = kvm_arch_init(opaque);
3535	if (r)
3536		goto out_fail;
3537
3538	/*
3539	 * kvm_arch_init makes sure there's at most one caller
3540	 * for architectures that support multiple implementations,
3541	 * like intel and amd on x86.
3542	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3543	 * conflicts in case kvm is already setup for another implementation.
3544	 */
3545	r = kvm_irqfd_init();
3546	if (r)
3547		goto out_irqfd;
3548
3549	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3550		r = -ENOMEM;
3551		goto out_free_0;
3552	}
3553
3554	r = kvm_arch_hardware_setup();
3555	if (r < 0)
3556		goto out_free_0a;
3557
3558	for_each_online_cpu(cpu) {
3559		smp_call_function_single(cpu,
3560				kvm_arch_check_processor_compat,
3561				&r, 1);
3562		if (r < 0)
3563			goto out_free_1;
3564	}
3565
3566	r = register_cpu_notifier(&kvm_cpu_notifier);
3567	if (r)
3568		goto out_free_2;
3569	register_reboot_notifier(&kvm_reboot_notifier);
3570
3571	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3572	if (!vcpu_align)
3573		vcpu_align = __alignof__(struct kvm_vcpu);
3574	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3575					   0, NULL);
3576	if (!kvm_vcpu_cache) {
3577		r = -ENOMEM;
3578		goto out_free_3;
3579	}
3580
3581	r = kvm_async_pf_init();
3582	if (r)
3583		goto out_free;
3584
3585	kvm_chardev_ops.owner = module;
3586	kvm_vm_fops.owner = module;
3587	kvm_vcpu_fops.owner = module;
3588
3589	r = misc_register(&kvm_dev);
3590	if (r) {
3591		pr_err("kvm: misc device register failed\n");
3592		goto out_unreg;
3593	}
3594
3595	register_syscore_ops(&kvm_syscore_ops);
3596
3597	kvm_preempt_ops.sched_in = kvm_sched_in;
3598	kvm_preempt_ops.sched_out = kvm_sched_out;
3599
3600	r = kvm_init_debug();
3601	if (r) {
3602		pr_err("kvm: create debugfs files failed\n");
3603		goto out_undebugfs;
3604	}
3605
3606	r = kvm_vfio_ops_init();
3607	WARN_ON(r);
3608
3609	return 0;
3610
3611out_undebugfs:
3612	unregister_syscore_ops(&kvm_syscore_ops);
3613	misc_deregister(&kvm_dev);
3614out_unreg:
3615	kvm_async_pf_deinit();
3616out_free:
3617	kmem_cache_destroy(kvm_vcpu_cache);
3618out_free_3:
3619	unregister_reboot_notifier(&kvm_reboot_notifier);
3620	unregister_cpu_notifier(&kvm_cpu_notifier);
3621out_free_2:
3622out_free_1:
3623	kvm_arch_hardware_unsetup();
3624out_free_0a:
3625	free_cpumask_var(cpus_hardware_enabled);
3626out_free_0:
3627	kvm_irqfd_exit();
3628out_irqfd:
3629	kvm_arch_exit();
3630out_fail:
3631	return r;
3632}
3633EXPORT_SYMBOL_GPL(kvm_init);
3634
3635void kvm_exit(void)
3636{
3637	kvm_exit_debug();
3638	misc_deregister(&kvm_dev);
3639	kmem_cache_destroy(kvm_vcpu_cache);
3640	kvm_async_pf_deinit();
3641	unregister_syscore_ops(&kvm_syscore_ops);
3642	unregister_reboot_notifier(&kvm_reboot_notifier);
3643	unregister_cpu_notifier(&kvm_cpu_notifier);
3644	on_each_cpu(hardware_disable_nolock, NULL, 1);
3645	kvm_arch_hardware_unsetup();
3646	kvm_arch_exit();
3647	kvm_irqfd_exit();
3648	free_cpumask_var(cpus_hardware_enabled);
3649	kvm_vfio_ops_exit();
3650}
3651EXPORT_SYMBOL_GPL(kvm_exit);
3652