1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014  Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22/**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48#include <linux/kernel.h>
49#include <linux/export.h>
50#include <linux/slab.h>
51#include <linux/list.h>
52#include <linux/ctype.h>
53#include <linux/nl80211.h>
54#include <linux/platform_device.h>
55#include <linux/moduleparam.h>
56#include <net/cfg80211.h>
57#include "core.h"
58#include "reg.h"
59#include "rdev-ops.h"
60#include "regdb.h"
61#include "nl80211.h"
62
63#ifdef CONFIG_CFG80211_REG_DEBUG
64#define REG_DBG_PRINT(format, args...)			\
65	printk(KERN_DEBUG pr_fmt(format), ##args)
66#else
67#define REG_DBG_PRINT(args...)
68#endif
69
70/*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74#define REG_ENFORCE_GRACE_MS 60000
75
76/**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 *	be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 *	regulatory settings, and no further processing is required.
85 */
86enum reg_request_treatment {
87	REG_REQ_OK,
88	REG_REQ_IGNORE,
89	REG_REQ_INTERSECT,
90	REG_REQ_ALREADY_SET,
91};
92
93static struct regulatory_request core_request_world = {
94	.initiator = NL80211_REGDOM_SET_BY_CORE,
95	.alpha2[0] = '0',
96	.alpha2[1] = '0',
97	.intersect = false,
98	.processed = true,
99	.country_ie_env = ENVIRON_ANY,
100};
101
102/*
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
105 */
106static struct regulatory_request __rcu *last_request =
107	(void __force __rcu *)&core_request_world;
108
109/* To trigger userspace events */
110static struct platform_device *reg_pdev;
111
112/*
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
117 */
118const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120/*
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
124 */
125static int reg_num_devs_support_basehint;
126
127/*
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
131 */
132static bool reg_is_indoor;
133static spinlock_t reg_indoor_lock;
134
135/* Used to track the userspace process controlling the indoor setting */
136static u32 reg_is_indoor_portid;
137
138static void restore_regulatory_settings(bool reset_user);
139
140static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141{
142	return rtnl_dereference(cfg80211_regdomain);
143}
144
145const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146{
147	return rtnl_dereference(wiphy->regd);
148}
149
150static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151{
152	switch (dfs_region) {
153	case NL80211_DFS_UNSET:
154		return "unset";
155	case NL80211_DFS_FCC:
156		return "FCC";
157	case NL80211_DFS_ETSI:
158		return "ETSI";
159	case NL80211_DFS_JP:
160		return "JP";
161	}
162	return "Unknown";
163}
164
165enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166{
167	const struct ieee80211_regdomain *regd = NULL;
168	const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170	regd = get_cfg80211_regdom();
171	if (!wiphy)
172		goto out;
173
174	wiphy_regd = get_wiphy_regdom(wiphy);
175	if (!wiphy_regd)
176		goto out;
177
178	if (wiphy_regd->dfs_region == regd->dfs_region)
179		goto out;
180
181	REG_DBG_PRINT("%s: device specific dfs_region "
182		      "(%s) disagrees with cfg80211's "
183		      "central dfs_region (%s)\n",
184		      dev_name(&wiphy->dev),
185		      reg_dfs_region_str(wiphy_regd->dfs_region),
186		      reg_dfs_region_str(regd->dfs_region));
187
188out:
189	return regd->dfs_region;
190}
191
192static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193{
194	if (!r)
195		return;
196	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197}
198
199static struct regulatory_request *get_last_request(void)
200{
201	return rcu_dereference_rtnl(last_request);
202}
203
204/* Used to queue up regulatory hints */
205static LIST_HEAD(reg_requests_list);
206static spinlock_t reg_requests_lock;
207
208/* Used to queue up beacon hints for review */
209static LIST_HEAD(reg_pending_beacons);
210static spinlock_t reg_pending_beacons_lock;
211
212/* Used to keep track of processed beacon hints */
213static LIST_HEAD(reg_beacon_list);
214
215struct reg_beacon {
216	struct list_head list;
217	struct ieee80211_channel chan;
218};
219
220static void reg_check_chans_work(struct work_struct *work);
221static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223static void reg_todo(struct work_struct *work);
224static DECLARE_WORK(reg_work, reg_todo);
225
226/* We keep a static world regulatory domain in case of the absence of CRDA */
227static const struct ieee80211_regdomain world_regdom = {
228	.n_reg_rules = 8,
229	.alpha2 =  "00",
230	.reg_rules = {
231		/* IEEE 802.11b/g, channels 1..11 */
232		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
233		/* IEEE 802.11b/g, channels 12..13. */
234		REG_RULE(2467-10, 2472+10, 40, 6, 20,
235			NL80211_RRF_NO_IR),
236		/* IEEE 802.11 channel 14 - Only JP enables
237		 * this and for 802.11b only */
238		REG_RULE(2484-10, 2484+10, 20, 6, 20,
239			NL80211_RRF_NO_IR |
240			NL80211_RRF_NO_OFDM),
241		/* IEEE 802.11a, channel 36..48 */
242		REG_RULE(5180-10, 5240+10, 160, 6, 20,
243                        NL80211_RRF_NO_IR),
244
245		/* IEEE 802.11a, channel 52..64 - DFS required */
246		REG_RULE(5260-10, 5320+10, 160, 6, 20,
247			NL80211_RRF_NO_IR |
248			NL80211_RRF_DFS),
249
250		/* IEEE 802.11a, channel 100..144 - DFS required */
251		REG_RULE(5500-10, 5720+10, 160, 6, 20,
252			NL80211_RRF_NO_IR |
253			NL80211_RRF_DFS),
254
255		/* IEEE 802.11a, channel 149..165 */
256		REG_RULE(5745-10, 5825+10, 80, 6, 20,
257			NL80211_RRF_NO_IR),
258
259		/* IEEE 802.11ad (60GHz), channels 1..3 */
260		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
261	}
262};
263
264/* protected by RTNL */
265static const struct ieee80211_regdomain *cfg80211_world_regdom =
266	&world_regdom;
267
268static char *ieee80211_regdom = "00";
269static char user_alpha2[2];
270
271module_param(ieee80211_regdom, charp, 0444);
272MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
273
274static void reg_free_request(struct regulatory_request *request)
275{
276	if (request == &core_request_world)
277		return;
278
279	if (request != get_last_request())
280		kfree(request);
281}
282
283static void reg_free_last_request(void)
284{
285	struct regulatory_request *lr = get_last_request();
286
287	if (lr != &core_request_world && lr)
288		kfree_rcu(lr, rcu_head);
289}
290
291static void reg_update_last_request(struct regulatory_request *request)
292{
293	struct regulatory_request *lr;
294
295	lr = get_last_request();
296	if (lr == request)
297		return;
298
299	reg_free_last_request();
300	rcu_assign_pointer(last_request, request);
301}
302
303static void reset_regdomains(bool full_reset,
304			     const struct ieee80211_regdomain *new_regdom)
305{
306	const struct ieee80211_regdomain *r;
307
308	ASSERT_RTNL();
309
310	r = get_cfg80211_regdom();
311
312	/* avoid freeing static information or freeing something twice */
313	if (r == cfg80211_world_regdom)
314		r = NULL;
315	if (cfg80211_world_regdom == &world_regdom)
316		cfg80211_world_regdom = NULL;
317	if (r == &world_regdom)
318		r = NULL;
319
320	rcu_free_regdom(r);
321	rcu_free_regdom(cfg80211_world_regdom);
322
323	cfg80211_world_regdom = &world_regdom;
324	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326	if (!full_reset)
327		return;
328
329	reg_update_last_request(&core_request_world);
330}
331
332/*
333 * Dynamic world regulatory domain requested by the wireless
334 * core upon initialization
335 */
336static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337{
338	struct regulatory_request *lr;
339
340	lr = get_last_request();
341
342	WARN_ON(!lr);
343
344	reset_regdomains(false, rd);
345
346	cfg80211_world_regdom = rd;
347}
348
349bool is_world_regdom(const char *alpha2)
350{
351	if (!alpha2)
352		return false;
353	return alpha2[0] == '0' && alpha2[1] == '0';
354}
355
356static bool is_alpha2_set(const char *alpha2)
357{
358	if (!alpha2)
359		return false;
360	return alpha2[0] && alpha2[1];
361}
362
363static bool is_unknown_alpha2(const char *alpha2)
364{
365	if (!alpha2)
366		return false;
367	/*
368	 * Special case where regulatory domain was built by driver
369	 * but a specific alpha2 cannot be determined
370	 */
371	return alpha2[0] == '9' && alpha2[1] == '9';
372}
373
374static bool is_intersected_alpha2(const char *alpha2)
375{
376	if (!alpha2)
377		return false;
378	/*
379	 * Special case where regulatory domain is the
380	 * result of an intersection between two regulatory domain
381	 * structures
382	 */
383	return alpha2[0] == '9' && alpha2[1] == '8';
384}
385
386static bool is_an_alpha2(const char *alpha2)
387{
388	if (!alpha2)
389		return false;
390	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391}
392
393static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394{
395	if (!alpha2_x || !alpha2_y)
396		return false;
397	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398}
399
400static bool regdom_changes(const char *alpha2)
401{
402	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404	if (!r)
405		return true;
406	return !alpha2_equal(r->alpha2, alpha2);
407}
408
409/*
410 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412 * has ever been issued.
413 */
414static bool is_user_regdom_saved(void)
415{
416	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417		return false;
418
419	/* This would indicate a mistake on the design */
420	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421		 "Unexpected user alpha2: %c%c\n",
422		 user_alpha2[0], user_alpha2[1]))
423		return false;
424
425	return true;
426}
427
428static const struct ieee80211_regdomain *
429reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430{
431	struct ieee80211_regdomain *regd;
432	int size_of_regd;
433	unsigned int i;
434
435	size_of_regd =
436		sizeof(struct ieee80211_regdomain) +
437		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439	regd = kzalloc(size_of_regd, GFP_KERNEL);
440	if (!regd)
441		return ERR_PTR(-ENOMEM);
442
443	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445	for (i = 0; i < src_regd->n_reg_rules; i++)
446		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447		       sizeof(struct ieee80211_reg_rule));
448
449	return regd;
450}
451
452#ifdef CONFIG_CFG80211_INTERNAL_REGDB
453struct reg_regdb_apply_request {
454	struct list_head list;
455	const struct ieee80211_regdomain *regdom;
456};
457
458static LIST_HEAD(reg_regdb_apply_list);
459static DEFINE_MUTEX(reg_regdb_apply_mutex);
460
461static void reg_regdb_apply(struct work_struct *work)
462{
463	struct reg_regdb_apply_request *request;
464
465	rtnl_lock();
466
467	mutex_lock(&reg_regdb_apply_mutex);
468	while (!list_empty(&reg_regdb_apply_list)) {
469		request = list_first_entry(&reg_regdb_apply_list,
470					   struct reg_regdb_apply_request,
471					   list);
472		list_del(&request->list);
473
474		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
475		kfree(request);
476	}
477	mutex_unlock(&reg_regdb_apply_mutex);
478
479	rtnl_unlock();
480}
481
482static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
483
484static int reg_query_builtin(const char *alpha2)
485{
486	const struct ieee80211_regdomain *regdom = NULL;
487	struct reg_regdb_apply_request *request;
488	unsigned int i;
489
490	for (i = 0; i < reg_regdb_size; i++) {
491		if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
492			regdom = reg_regdb[i];
493			break;
494		}
495	}
496
497	if (!regdom)
498		return -ENODATA;
499
500	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
501	if (!request)
502		return -ENOMEM;
503
504	request->regdom = reg_copy_regd(regdom);
505	if (IS_ERR_OR_NULL(request->regdom)) {
506		kfree(request);
507		return -ENOMEM;
508	}
509
510	mutex_lock(&reg_regdb_apply_mutex);
511	list_add_tail(&request->list, &reg_regdb_apply_list);
512	mutex_unlock(&reg_regdb_apply_mutex);
513
514	schedule_work(&reg_regdb_work);
515
516	return 0;
517}
518
519/* Feel free to add any other sanity checks here */
520static void reg_regdb_size_check(void)
521{
522	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
523	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
524}
525#else
526static inline void reg_regdb_size_check(void) {}
527static inline int reg_query_builtin(const char *alpha2)
528{
529	return -ENODATA;
530}
531#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
532
533#ifdef CONFIG_CFG80211_CRDA_SUPPORT
534/* Max number of consecutive attempts to communicate with CRDA  */
535#define REG_MAX_CRDA_TIMEOUTS 10
536
537static u32 reg_crda_timeouts;
538
539static void crda_timeout_work(struct work_struct *work);
540static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
541
542static void crda_timeout_work(struct work_struct *work)
543{
544	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
545	rtnl_lock();
546	reg_crda_timeouts++;
547	restore_regulatory_settings(true);
548	rtnl_unlock();
549}
550
551static void cancel_crda_timeout(void)
552{
553	cancel_delayed_work(&crda_timeout);
554}
555
556static void cancel_crda_timeout_sync(void)
557{
558	cancel_delayed_work_sync(&crda_timeout);
559}
560
561static void reset_crda_timeouts(void)
562{
563	reg_crda_timeouts = 0;
564}
565
566/*
567 * This lets us keep regulatory code which is updated on a regulatory
568 * basis in userspace.
569 */
570static int call_crda(const char *alpha2)
571{
572	char country[12];
573	char *env[] = { country, NULL };
574	int ret;
575
576	snprintf(country, sizeof(country), "COUNTRY=%c%c",
577		 alpha2[0], alpha2[1]);
578
579	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
580		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
581		return -EINVAL;
582	}
583
584	if (!is_world_regdom((char *) alpha2))
585		pr_debug("Calling CRDA for country: %c%c\n",
586			alpha2[0], alpha2[1]);
587	else
588		pr_debug("Calling CRDA to update world regulatory domain\n");
589
590	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
591	if (ret)
592		return ret;
593
594	queue_delayed_work(system_power_efficient_wq,
595			   &crda_timeout, msecs_to_jiffies(3142));
596	return 0;
597}
598#else
599static inline void cancel_crda_timeout(void) {}
600static inline void cancel_crda_timeout_sync(void) {}
601static inline void reset_crda_timeouts(void) {}
602static inline int call_crda(const char *alpha2)
603{
604	return -ENODATA;
605}
606#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
607
608static bool reg_query_database(struct regulatory_request *request)
609{
610	/* query internal regulatory database (if it exists) */
611	if (reg_query_builtin(request->alpha2) == 0)
612		return true;
613
614	if (call_crda(request->alpha2) == 0)
615		return true;
616
617	return false;
618}
619
620bool reg_is_valid_request(const char *alpha2)
621{
622	struct regulatory_request *lr = get_last_request();
623
624	if (!lr || lr->processed)
625		return false;
626
627	return alpha2_equal(lr->alpha2, alpha2);
628}
629
630static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
631{
632	struct regulatory_request *lr = get_last_request();
633
634	/*
635	 * Follow the driver's regulatory domain, if present, unless a country
636	 * IE has been processed or a user wants to help complaince further
637	 */
638	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
639	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
640	    wiphy->regd)
641		return get_wiphy_regdom(wiphy);
642
643	return get_cfg80211_regdom();
644}
645
646static unsigned int
647reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
648				 const struct ieee80211_reg_rule *rule)
649{
650	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
651	const struct ieee80211_freq_range *freq_range_tmp;
652	const struct ieee80211_reg_rule *tmp;
653	u32 start_freq, end_freq, idx, no;
654
655	for (idx = 0; idx < rd->n_reg_rules; idx++)
656		if (rule == &rd->reg_rules[idx])
657			break;
658
659	if (idx == rd->n_reg_rules)
660		return 0;
661
662	/* get start_freq */
663	no = idx;
664
665	while (no) {
666		tmp = &rd->reg_rules[--no];
667		freq_range_tmp = &tmp->freq_range;
668
669		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
670			break;
671
672		freq_range = freq_range_tmp;
673	}
674
675	start_freq = freq_range->start_freq_khz;
676
677	/* get end_freq */
678	freq_range = &rule->freq_range;
679	no = idx;
680
681	while (no < rd->n_reg_rules - 1) {
682		tmp = &rd->reg_rules[++no];
683		freq_range_tmp = &tmp->freq_range;
684
685		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
686			break;
687
688		freq_range = freq_range_tmp;
689	}
690
691	end_freq = freq_range->end_freq_khz;
692
693	return end_freq - start_freq;
694}
695
696unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
697				   const struct ieee80211_reg_rule *rule)
698{
699	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
700
701	if (rule->flags & NL80211_RRF_NO_160MHZ)
702		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
703	if (rule->flags & NL80211_RRF_NO_80MHZ)
704		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
705
706	/*
707	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
708	 * are not allowed.
709	 */
710	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
711	    rule->flags & NL80211_RRF_NO_HT40PLUS)
712		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
713
714	return bw;
715}
716
717/* Sanity check on a regulatory rule */
718static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
719{
720	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
721	u32 freq_diff;
722
723	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
724		return false;
725
726	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
727		return false;
728
729	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
730
731	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
732	    freq_range->max_bandwidth_khz > freq_diff)
733		return false;
734
735	return true;
736}
737
738static bool is_valid_rd(const struct ieee80211_regdomain *rd)
739{
740	const struct ieee80211_reg_rule *reg_rule = NULL;
741	unsigned int i;
742
743	if (!rd->n_reg_rules)
744		return false;
745
746	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
747		return false;
748
749	for (i = 0; i < rd->n_reg_rules; i++) {
750		reg_rule = &rd->reg_rules[i];
751		if (!is_valid_reg_rule(reg_rule))
752			return false;
753	}
754
755	return true;
756}
757
758static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
759			    u32 center_freq_khz, u32 bw_khz)
760{
761	u32 start_freq_khz, end_freq_khz;
762
763	start_freq_khz = center_freq_khz - (bw_khz/2);
764	end_freq_khz = center_freq_khz + (bw_khz/2);
765
766	if (start_freq_khz >= freq_range->start_freq_khz &&
767	    end_freq_khz <= freq_range->end_freq_khz)
768		return true;
769
770	return false;
771}
772
773/**
774 * freq_in_rule_band - tells us if a frequency is in a frequency band
775 * @freq_range: frequency rule we want to query
776 * @freq_khz: frequency we are inquiring about
777 *
778 * This lets us know if a specific frequency rule is or is not relevant to
779 * a specific frequency's band. Bands are device specific and artificial
780 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
781 * however it is safe for now to assume that a frequency rule should not be
782 * part of a frequency's band if the start freq or end freq are off by more
783 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
784 * 60 GHz band.
785 * This resolution can be lowered and should be considered as we add
786 * regulatory rule support for other "bands".
787 **/
788static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
789			      u32 freq_khz)
790{
791#define ONE_GHZ_IN_KHZ	1000000
792	/*
793	 * From 802.11ad: directional multi-gigabit (DMG):
794	 * Pertaining to operation in a frequency band containing a channel
795	 * with the Channel starting frequency above 45 GHz.
796	 */
797	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
798			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
799	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
800		return true;
801	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
802		return true;
803	return false;
804#undef ONE_GHZ_IN_KHZ
805}
806
807/*
808 * Later on we can perhaps use the more restrictive DFS
809 * region but we don't have information for that yet so
810 * for now simply disallow conflicts.
811 */
812static enum nl80211_dfs_regions
813reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
814			 const enum nl80211_dfs_regions dfs_region2)
815{
816	if (dfs_region1 != dfs_region2)
817		return NL80211_DFS_UNSET;
818	return dfs_region1;
819}
820
821/*
822 * Helper for regdom_intersect(), this does the real
823 * mathematical intersection fun
824 */
825static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
826			       const struct ieee80211_regdomain *rd2,
827			       const struct ieee80211_reg_rule *rule1,
828			       const struct ieee80211_reg_rule *rule2,
829			       struct ieee80211_reg_rule *intersected_rule)
830{
831	const struct ieee80211_freq_range *freq_range1, *freq_range2;
832	struct ieee80211_freq_range *freq_range;
833	const struct ieee80211_power_rule *power_rule1, *power_rule2;
834	struct ieee80211_power_rule *power_rule;
835	u32 freq_diff, max_bandwidth1, max_bandwidth2;
836
837	freq_range1 = &rule1->freq_range;
838	freq_range2 = &rule2->freq_range;
839	freq_range = &intersected_rule->freq_range;
840
841	power_rule1 = &rule1->power_rule;
842	power_rule2 = &rule2->power_rule;
843	power_rule = &intersected_rule->power_rule;
844
845	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
846					 freq_range2->start_freq_khz);
847	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
848				       freq_range2->end_freq_khz);
849
850	max_bandwidth1 = freq_range1->max_bandwidth_khz;
851	max_bandwidth2 = freq_range2->max_bandwidth_khz;
852
853	if (rule1->flags & NL80211_RRF_AUTO_BW)
854		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
855	if (rule2->flags & NL80211_RRF_AUTO_BW)
856		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
857
858	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
859
860	intersected_rule->flags = rule1->flags | rule2->flags;
861
862	/*
863	 * In case NL80211_RRF_AUTO_BW requested for both rules
864	 * set AUTO_BW in intersected rule also. Next we will
865	 * calculate BW correctly in handle_channel function.
866	 * In other case remove AUTO_BW flag while we calculate
867	 * maximum bandwidth correctly and auto calculation is
868	 * not required.
869	 */
870	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
871	    (rule2->flags & NL80211_RRF_AUTO_BW))
872		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
873	else
874		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
875
876	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
877	if (freq_range->max_bandwidth_khz > freq_diff)
878		freq_range->max_bandwidth_khz = freq_diff;
879
880	power_rule->max_eirp = min(power_rule1->max_eirp,
881		power_rule2->max_eirp);
882	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
883		power_rule2->max_antenna_gain);
884
885	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
886					   rule2->dfs_cac_ms);
887
888	if (!is_valid_reg_rule(intersected_rule))
889		return -EINVAL;
890
891	return 0;
892}
893
894/* check whether old rule contains new rule */
895static bool rule_contains(struct ieee80211_reg_rule *r1,
896			  struct ieee80211_reg_rule *r2)
897{
898	/* for simplicity, currently consider only same flags */
899	if (r1->flags != r2->flags)
900		return false;
901
902	/* verify r1 is more restrictive */
903	if ((r1->power_rule.max_antenna_gain >
904	     r2->power_rule.max_antenna_gain) ||
905	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
906		return false;
907
908	/* make sure r2's range is contained within r1 */
909	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
910	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
911		return false;
912
913	/* and finally verify that r1.max_bw >= r2.max_bw */
914	if (r1->freq_range.max_bandwidth_khz <
915	    r2->freq_range.max_bandwidth_khz)
916		return false;
917
918	return true;
919}
920
921/* add or extend current rules. do nothing if rule is already contained */
922static void add_rule(struct ieee80211_reg_rule *rule,
923		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
924{
925	struct ieee80211_reg_rule *tmp_rule;
926	int i;
927
928	for (i = 0; i < *n_rules; i++) {
929		tmp_rule = &reg_rules[i];
930		/* rule is already contained - do nothing */
931		if (rule_contains(tmp_rule, rule))
932			return;
933
934		/* extend rule if possible */
935		if (rule_contains(rule, tmp_rule)) {
936			memcpy(tmp_rule, rule, sizeof(*rule));
937			return;
938		}
939	}
940
941	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
942	(*n_rules)++;
943}
944
945/**
946 * regdom_intersect - do the intersection between two regulatory domains
947 * @rd1: first regulatory domain
948 * @rd2: second regulatory domain
949 *
950 * Use this function to get the intersection between two regulatory domains.
951 * Once completed we will mark the alpha2 for the rd as intersected, "98",
952 * as no one single alpha2 can represent this regulatory domain.
953 *
954 * Returns a pointer to the regulatory domain structure which will hold the
955 * resulting intersection of rules between rd1 and rd2. We will
956 * kzalloc() this structure for you.
957 */
958static struct ieee80211_regdomain *
959regdom_intersect(const struct ieee80211_regdomain *rd1,
960		 const struct ieee80211_regdomain *rd2)
961{
962	int r, size_of_regd;
963	unsigned int x, y;
964	unsigned int num_rules = 0;
965	const struct ieee80211_reg_rule *rule1, *rule2;
966	struct ieee80211_reg_rule intersected_rule;
967	struct ieee80211_regdomain *rd;
968
969	if (!rd1 || !rd2)
970		return NULL;
971
972	/*
973	 * First we get a count of the rules we'll need, then we actually
974	 * build them. This is to so we can malloc() and free() a
975	 * regdomain once. The reason we use reg_rules_intersect() here
976	 * is it will return -EINVAL if the rule computed makes no sense.
977	 * All rules that do check out OK are valid.
978	 */
979
980	for (x = 0; x < rd1->n_reg_rules; x++) {
981		rule1 = &rd1->reg_rules[x];
982		for (y = 0; y < rd2->n_reg_rules; y++) {
983			rule2 = &rd2->reg_rules[y];
984			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
985						 &intersected_rule))
986				num_rules++;
987		}
988	}
989
990	if (!num_rules)
991		return NULL;
992
993	size_of_regd = sizeof(struct ieee80211_regdomain) +
994		       num_rules * sizeof(struct ieee80211_reg_rule);
995
996	rd = kzalloc(size_of_regd, GFP_KERNEL);
997	if (!rd)
998		return NULL;
999
1000	for (x = 0; x < rd1->n_reg_rules; x++) {
1001		rule1 = &rd1->reg_rules[x];
1002		for (y = 0; y < rd2->n_reg_rules; y++) {
1003			rule2 = &rd2->reg_rules[y];
1004			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1005						&intersected_rule);
1006			/*
1007			 * No need to memset here the intersected rule here as
1008			 * we're not using the stack anymore
1009			 */
1010			if (r)
1011				continue;
1012
1013			add_rule(&intersected_rule, rd->reg_rules,
1014				 &rd->n_reg_rules);
1015		}
1016	}
1017
1018	rd->alpha2[0] = '9';
1019	rd->alpha2[1] = '8';
1020	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1021						  rd2->dfs_region);
1022
1023	return rd;
1024}
1025
1026/*
1027 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1028 * want to just have the channel structure use these
1029 */
1030static u32 map_regdom_flags(u32 rd_flags)
1031{
1032	u32 channel_flags = 0;
1033	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1034		channel_flags |= IEEE80211_CHAN_NO_IR;
1035	if (rd_flags & NL80211_RRF_DFS)
1036		channel_flags |= IEEE80211_CHAN_RADAR;
1037	if (rd_flags & NL80211_RRF_NO_OFDM)
1038		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1039	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1040		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1041	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1042		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1043	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1044		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1045	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1046		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1047	if (rd_flags & NL80211_RRF_NO_80MHZ)
1048		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1049	if (rd_flags & NL80211_RRF_NO_160MHZ)
1050		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1051	return channel_flags;
1052}
1053
1054static const struct ieee80211_reg_rule *
1055freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1056		   const struct ieee80211_regdomain *regd, u32 bw)
1057{
1058	int i;
1059	bool band_rule_found = false;
1060	bool bw_fits = false;
1061
1062	if (!regd)
1063		return ERR_PTR(-EINVAL);
1064
1065	for (i = 0; i < regd->n_reg_rules; i++) {
1066		const struct ieee80211_reg_rule *rr;
1067		const struct ieee80211_freq_range *fr = NULL;
1068
1069		rr = &regd->reg_rules[i];
1070		fr = &rr->freq_range;
1071
1072		/*
1073		 * We only need to know if one frequency rule was
1074		 * was in center_freq's band, that's enough, so lets
1075		 * not overwrite it once found
1076		 */
1077		if (!band_rule_found)
1078			band_rule_found = freq_in_rule_band(fr, center_freq);
1079
1080		bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1081
1082		if (band_rule_found && bw_fits)
1083			return rr;
1084	}
1085
1086	if (!band_rule_found)
1087		return ERR_PTR(-ERANGE);
1088
1089	return ERR_PTR(-EINVAL);
1090}
1091
1092static const struct ieee80211_reg_rule *
1093__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1094{
1095	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1096	const struct ieee80211_reg_rule *reg_rule = NULL;
1097	u32 bw;
1098
1099	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1100		reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1101		if (!IS_ERR(reg_rule))
1102			return reg_rule;
1103	}
1104
1105	return reg_rule;
1106}
1107
1108const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1109					       u32 center_freq)
1110{
1111	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1112}
1113EXPORT_SYMBOL(freq_reg_info);
1114
1115const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1116{
1117	switch (initiator) {
1118	case NL80211_REGDOM_SET_BY_CORE:
1119		return "core";
1120	case NL80211_REGDOM_SET_BY_USER:
1121		return "user";
1122	case NL80211_REGDOM_SET_BY_DRIVER:
1123		return "driver";
1124	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1125		return "country IE";
1126	default:
1127		WARN_ON(1);
1128		return "bug";
1129	}
1130}
1131EXPORT_SYMBOL(reg_initiator_name);
1132
1133static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1134				    struct ieee80211_channel *chan,
1135				    const struct ieee80211_reg_rule *reg_rule)
1136{
1137#ifdef CONFIG_CFG80211_REG_DEBUG
1138	const struct ieee80211_power_rule *power_rule;
1139	const struct ieee80211_freq_range *freq_range;
1140	char max_antenna_gain[32], bw[32];
1141
1142	power_rule = &reg_rule->power_rule;
1143	freq_range = &reg_rule->freq_range;
1144
1145	if (!power_rule->max_antenna_gain)
1146		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1147	else
1148		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi",
1149			 power_rule->max_antenna_gain);
1150
1151	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1152		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1153			 freq_range->max_bandwidth_khz,
1154			 reg_get_max_bandwidth(regd, reg_rule));
1155	else
1156		snprintf(bw, sizeof(bw), "%d KHz",
1157			 freq_range->max_bandwidth_khz);
1158
1159	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1160		      chan->center_freq);
1161
1162	REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n",
1163		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1164		      bw, max_antenna_gain,
1165		      power_rule->max_eirp);
1166#endif
1167}
1168
1169/*
1170 * Note that right now we assume the desired channel bandwidth
1171 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1172 * per channel, the primary and the extension channel).
1173 */
1174static void handle_channel(struct wiphy *wiphy,
1175			   enum nl80211_reg_initiator initiator,
1176			   struct ieee80211_channel *chan)
1177{
1178	u32 flags, bw_flags = 0;
1179	const struct ieee80211_reg_rule *reg_rule = NULL;
1180	const struct ieee80211_power_rule *power_rule = NULL;
1181	const struct ieee80211_freq_range *freq_range = NULL;
1182	struct wiphy *request_wiphy = NULL;
1183	struct regulatory_request *lr = get_last_request();
1184	const struct ieee80211_regdomain *regd;
1185	u32 max_bandwidth_khz;
1186
1187	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1188
1189	flags = chan->orig_flags;
1190
1191	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1192	if (IS_ERR(reg_rule)) {
1193		/*
1194		 * We will disable all channels that do not match our
1195		 * received regulatory rule unless the hint is coming
1196		 * from a Country IE and the Country IE had no information
1197		 * about a band. The IEEE 802.11 spec allows for an AP
1198		 * to send only a subset of the regulatory rules allowed,
1199		 * so an AP in the US that only supports 2.4 GHz may only send
1200		 * a country IE with information for the 2.4 GHz band
1201		 * while 5 GHz is still supported.
1202		 */
1203		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1204		    PTR_ERR(reg_rule) == -ERANGE)
1205			return;
1206
1207		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1208		    request_wiphy && request_wiphy == wiphy &&
1209		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1210			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1211				      chan->center_freq);
1212			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1213			chan->flags = chan->orig_flags;
1214		} else {
1215			REG_DBG_PRINT("Disabling freq %d MHz\n",
1216				      chan->center_freq);
1217			chan->flags |= IEEE80211_CHAN_DISABLED;
1218		}
1219		return;
1220	}
1221
1222	regd = reg_get_regdomain(wiphy);
1223	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1224
1225	power_rule = &reg_rule->power_rule;
1226	freq_range = &reg_rule->freq_range;
1227
1228	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1229	/* Check if auto calculation requested */
1230	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1231		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1232
1233	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1234	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1235			     MHZ_TO_KHZ(10)))
1236		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1237	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1238			     MHZ_TO_KHZ(20)))
1239		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1240
1241	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1242		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1243	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1244		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1245	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1246		bw_flags |= IEEE80211_CHAN_NO_HT40;
1247	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1248		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1249	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1250		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1251
1252	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1253	    request_wiphy && request_wiphy == wiphy &&
1254	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1255		/*
1256		 * This guarantees the driver's requested regulatory domain
1257		 * will always be used as a base for further regulatory
1258		 * settings
1259		 */
1260		chan->flags = chan->orig_flags =
1261			map_regdom_flags(reg_rule->flags) | bw_flags;
1262		chan->max_antenna_gain = chan->orig_mag =
1263			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1264		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1265			(int) MBM_TO_DBM(power_rule->max_eirp);
1266
1267		if (chan->flags & IEEE80211_CHAN_RADAR) {
1268			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1269			if (reg_rule->dfs_cac_ms)
1270				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1271		}
1272
1273		return;
1274	}
1275
1276	chan->dfs_state = NL80211_DFS_USABLE;
1277	chan->dfs_state_entered = jiffies;
1278
1279	chan->beacon_found = false;
1280	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1281	chan->max_antenna_gain =
1282		min_t(int, chan->orig_mag,
1283		      MBI_TO_DBI(power_rule->max_antenna_gain));
1284	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1285
1286	if (chan->flags & IEEE80211_CHAN_RADAR) {
1287		if (reg_rule->dfs_cac_ms)
1288			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1289		else
1290			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1291	}
1292
1293	if (chan->orig_mpwr) {
1294		/*
1295		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1296		 * will always follow the passed country IE power settings.
1297		 */
1298		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1299		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1300			chan->max_power = chan->max_reg_power;
1301		else
1302			chan->max_power = min(chan->orig_mpwr,
1303					      chan->max_reg_power);
1304	} else
1305		chan->max_power = chan->max_reg_power;
1306}
1307
1308static void handle_band(struct wiphy *wiphy,
1309			enum nl80211_reg_initiator initiator,
1310			struct ieee80211_supported_band *sband)
1311{
1312	unsigned int i;
1313
1314	if (!sband)
1315		return;
1316
1317	for (i = 0; i < sband->n_channels; i++)
1318		handle_channel(wiphy, initiator, &sband->channels[i]);
1319}
1320
1321static bool reg_request_cell_base(struct regulatory_request *request)
1322{
1323	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1324		return false;
1325	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1326}
1327
1328bool reg_last_request_cell_base(void)
1329{
1330	return reg_request_cell_base(get_last_request());
1331}
1332
1333#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1334/* Core specific check */
1335static enum reg_request_treatment
1336reg_ignore_cell_hint(struct regulatory_request *pending_request)
1337{
1338	struct regulatory_request *lr = get_last_request();
1339
1340	if (!reg_num_devs_support_basehint)
1341		return REG_REQ_IGNORE;
1342
1343	if (reg_request_cell_base(lr) &&
1344	    !regdom_changes(pending_request->alpha2))
1345		return REG_REQ_ALREADY_SET;
1346
1347	return REG_REQ_OK;
1348}
1349
1350/* Device specific check */
1351static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1352{
1353	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1354}
1355#else
1356static enum reg_request_treatment
1357reg_ignore_cell_hint(struct regulatory_request *pending_request)
1358{
1359	return REG_REQ_IGNORE;
1360}
1361
1362static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1363{
1364	return true;
1365}
1366#endif
1367
1368static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1369{
1370	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1371	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1372		return true;
1373	return false;
1374}
1375
1376static bool ignore_reg_update(struct wiphy *wiphy,
1377			      enum nl80211_reg_initiator initiator)
1378{
1379	struct regulatory_request *lr = get_last_request();
1380
1381	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1382		return true;
1383
1384	if (!lr) {
1385		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1386			      "since last_request is not set\n",
1387			      reg_initiator_name(initiator));
1388		return true;
1389	}
1390
1391	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1392	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1393		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1394			      "since the driver uses its own custom "
1395			      "regulatory domain\n",
1396			      reg_initiator_name(initiator));
1397		return true;
1398	}
1399
1400	/*
1401	 * wiphy->regd will be set once the device has its own
1402	 * desired regulatory domain set
1403	 */
1404	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1405	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1406	    !is_world_regdom(lr->alpha2)) {
1407		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1408			      "since the driver requires its own regulatory "
1409			      "domain to be set first\n",
1410			      reg_initiator_name(initiator));
1411		return true;
1412	}
1413
1414	if (reg_request_cell_base(lr))
1415		return reg_dev_ignore_cell_hint(wiphy);
1416
1417	return false;
1418}
1419
1420static bool reg_is_world_roaming(struct wiphy *wiphy)
1421{
1422	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1423	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1424	struct regulatory_request *lr = get_last_request();
1425
1426	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1427		return true;
1428
1429	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1430	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1431		return true;
1432
1433	return false;
1434}
1435
1436static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1437			      struct reg_beacon *reg_beacon)
1438{
1439	struct ieee80211_supported_band *sband;
1440	struct ieee80211_channel *chan;
1441	bool channel_changed = false;
1442	struct ieee80211_channel chan_before;
1443
1444	sband = wiphy->bands[reg_beacon->chan.band];
1445	chan = &sband->channels[chan_idx];
1446
1447	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1448		return;
1449
1450	if (chan->beacon_found)
1451		return;
1452
1453	chan->beacon_found = true;
1454
1455	if (!reg_is_world_roaming(wiphy))
1456		return;
1457
1458	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1459		return;
1460
1461	chan_before.center_freq = chan->center_freq;
1462	chan_before.flags = chan->flags;
1463
1464	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1465		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1466		channel_changed = true;
1467	}
1468
1469	if (channel_changed)
1470		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1471}
1472
1473/*
1474 * Called when a scan on a wiphy finds a beacon on
1475 * new channel
1476 */
1477static void wiphy_update_new_beacon(struct wiphy *wiphy,
1478				    struct reg_beacon *reg_beacon)
1479{
1480	unsigned int i;
1481	struct ieee80211_supported_band *sband;
1482
1483	if (!wiphy->bands[reg_beacon->chan.band])
1484		return;
1485
1486	sband = wiphy->bands[reg_beacon->chan.band];
1487
1488	for (i = 0; i < sband->n_channels; i++)
1489		handle_reg_beacon(wiphy, i, reg_beacon);
1490}
1491
1492/*
1493 * Called upon reg changes or a new wiphy is added
1494 */
1495static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1496{
1497	unsigned int i;
1498	struct ieee80211_supported_band *sband;
1499	struct reg_beacon *reg_beacon;
1500
1501	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1502		if (!wiphy->bands[reg_beacon->chan.band])
1503			continue;
1504		sband = wiphy->bands[reg_beacon->chan.band];
1505		for (i = 0; i < sband->n_channels; i++)
1506			handle_reg_beacon(wiphy, i, reg_beacon);
1507	}
1508}
1509
1510/* Reap the advantages of previously found beacons */
1511static void reg_process_beacons(struct wiphy *wiphy)
1512{
1513	/*
1514	 * Means we are just firing up cfg80211, so no beacons would
1515	 * have been processed yet.
1516	 */
1517	if (!last_request)
1518		return;
1519	wiphy_update_beacon_reg(wiphy);
1520}
1521
1522static bool is_ht40_allowed(struct ieee80211_channel *chan)
1523{
1524	if (!chan)
1525		return false;
1526	if (chan->flags & IEEE80211_CHAN_DISABLED)
1527		return false;
1528	/* This would happen when regulatory rules disallow HT40 completely */
1529	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1530		return false;
1531	return true;
1532}
1533
1534static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1535					 struct ieee80211_channel *channel)
1536{
1537	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1538	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1539	unsigned int i;
1540
1541	if (!is_ht40_allowed(channel)) {
1542		channel->flags |= IEEE80211_CHAN_NO_HT40;
1543		return;
1544	}
1545
1546	/*
1547	 * We need to ensure the extension channels exist to
1548	 * be able to use HT40- or HT40+, this finds them (or not)
1549	 */
1550	for (i = 0; i < sband->n_channels; i++) {
1551		struct ieee80211_channel *c = &sband->channels[i];
1552
1553		if (c->center_freq == (channel->center_freq - 20))
1554			channel_before = c;
1555		if (c->center_freq == (channel->center_freq + 20))
1556			channel_after = c;
1557	}
1558
1559	/*
1560	 * Please note that this assumes target bandwidth is 20 MHz,
1561	 * if that ever changes we also need to change the below logic
1562	 * to include that as well.
1563	 */
1564	if (!is_ht40_allowed(channel_before))
1565		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566	else
1567		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1568
1569	if (!is_ht40_allowed(channel_after))
1570		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1571	else
1572		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1573}
1574
1575static void reg_process_ht_flags_band(struct wiphy *wiphy,
1576				      struct ieee80211_supported_band *sband)
1577{
1578	unsigned int i;
1579
1580	if (!sband)
1581		return;
1582
1583	for (i = 0; i < sband->n_channels; i++)
1584		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1585}
1586
1587static void reg_process_ht_flags(struct wiphy *wiphy)
1588{
1589	enum ieee80211_band band;
1590
1591	if (!wiphy)
1592		return;
1593
1594	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1595		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1596}
1597
1598static void reg_call_notifier(struct wiphy *wiphy,
1599			      struct regulatory_request *request)
1600{
1601	if (wiphy->reg_notifier)
1602		wiphy->reg_notifier(wiphy, request);
1603}
1604
1605static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1606{
1607	struct cfg80211_chan_def chandef;
1608	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1609	enum nl80211_iftype iftype;
1610
1611	wdev_lock(wdev);
1612	iftype = wdev->iftype;
1613
1614	/* make sure the interface is active */
1615	if (!wdev->netdev || !netif_running(wdev->netdev))
1616		goto wdev_inactive_unlock;
1617
1618	switch (iftype) {
1619	case NL80211_IFTYPE_AP:
1620	case NL80211_IFTYPE_P2P_GO:
1621		if (!wdev->beacon_interval)
1622			goto wdev_inactive_unlock;
1623		chandef = wdev->chandef;
1624		break;
1625	case NL80211_IFTYPE_ADHOC:
1626		if (!wdev->ssid_len)
1627			goto wdev_inactive_unlock;
1628		chandef = wdev->chandef;
1629		break;
1630	case NL80211_IFTYPE_STATION:
1631	case NL80211_IFTYPE_P2P_CLIENT:
1632		if (!wdev->current_bss ||
1633		    !wdev->current_bss->pub.channel)
1634			goto wdev_inactive_unlock;
1635
1636		if (!rdev->ops->get_channel ||
1637		    rdev_get_channel(rdev, wdev, &chandef))
1638			cfg80211_chandef_create(&chandef,
1639						wdev->current_bss->pub.channel,
1640						NL80211_CHAN_NO_HT);
1641		break;
1642	case NL80211_IFTYPE_MONITOR:
1643	case NL80211_IFTYPE_AP_VLAN:
1644	case NL80211_IFTYPE_P2P_DEVICE:
1645		/* no enforcement required */
1646		break;
1647	default:
1648		/* others not implemented for now */
1649		WARN_ON(1);
1650		break;
1651	}
1652
1653	wdev_unlock(wdev);
1654
1655	switch (iftype) {
1656	case NL80211_IFTYPE_AP:
1657	case NL80211_IFTYPE_P2P_GO:
1658	case NL80211_IFTYPE_ADHOC:
1659		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1660	case NL80211_IFTYPE_STATION:
1661	case NL80211_IFTYPE_P2P_CLIENT:
1662		return cfg80211_chandef_usable(wiphy, &chandef,
1663					       IEEE80211_CHAN_DISABLED);
1664	default:
1665		break;
1666	}
1667
1668	return true;
1669
1670wdev_inactive_unlock:
1671	wdev_unlock(wdev);
1672	return true;
1673}
1674
1675static void reg_leave_invalid_chans(struct wiphy *wiphy)
1676{
1677	struct wireless_dev *wdev;
1678	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1679
1680	ASSERT_RTNL();
1681
1682	list_for_each_entry(wdev, &rdev->wdev_list, list)
1683		if (!reg_wdev_chan_valid(wiphy, wdev))
1684			cfg80211_leave(rdev, wdev);
1685}
1686
1687static void reg_check_chans_work(struct work_struct *work)
1688{
1689	struct cfg80211_registered_device *rdev;
1690
1691	REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1692	rtnl_lock();
1693
1694	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1695		if (!(rdev->wiphy.regulatory_flags &
1696		      REGULATORY_IGNORE_STALE_KICKOFF))
1697			reg_leave_invalid_chans(&rdev->wiphy);
1698
1699	rtnl_unlock();
1700}
1701
1702static void reg_check_channels(void)
1703{
1704	/*
1705	 * Give usermode a chance to do something nicer (move to another
1706	 * channel, orderly disconnection), before forcing a disconnection.
1707	 */
1708	mod_delayed_work(system_power_efficient_wq,
1709			 &reg_check_chans,
1710			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1711}
1712
1713static void wiphy_update_regulatory(struct wiphy *wiphy,
1714				    enum nl80211_reg_initiator initiator)
1715{
1716	enum ieee80211_band band;
1717	struct regulatory_request *lr = get_last_request();
1718
1719	if (ignore_reg_update(wiphy, initiator)) {
1720		/*
1721		 * Regulatory updates set by CORE are ignored for custom
1722		 * regulatory cards. Let us notify the changes to the driver,
1723		 * as some drivers used this to restore its orig_* reg domain.
1724		 */
1725		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1726		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1727			reg_call_notifier(wiphy, lr);
1728		return;
1729	}
1730
1731	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1732
1733	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1734		handle_band(wiphy, initiator, wiphy->bands[band]);
1735
1736	reg_process_beacons(wiphy);
1737	reg_process_ht_flags(wiphy);
1738	reg_call_notifier(wiphy, lr);
1739}
1740
1741static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1742{
1743	struct cfg80211_registered_device *rdev;
1744	struct wiphy *wiphy;
1745
1746	ASSERT_RTNL();
1747
1748	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1749		wiphy = &rdev->wiphy;
1750		wiphy_update_regulatory(wiphy, initiator);
1751	}
1752
1753	reg_check_channels();
1754}
1755
1756static void handle_channel_custom(struct wiphy *wiphy,
1757				  struct ieee80211_channel *chan,
1758				  const struct ieee80211_regdomain *regd)
1759{
1760	u32 bw_flags = 0;
1761	const struct ieee80211_reg_rule *reg_rule = NULL;
1762	const struct ieee80211_power_rule *power_rule = NULL;
1763	const struct ieee80211_freq_range *freq_range = NULL;
1764	u32 max_bandwidth_khz;
1765	u32 bw;
1766
1767	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1768		reg_rule = freq_reg_info_regd(wiphy,
1769					      MHZ_TO_KHZ(chan->center_freq),
1770					      regd, bw);
1771		if (!IS_ERR(reg_rule))
1772			break;
1773	}
1774
1775	if (IS_ERR(reg_rule)) {
1776		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1777			      chan->center_freq);
1778		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1779			chan->flags |= IEEE80211_CHAN_DISABLED;
1780		} else {
1781			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1782			chan->flags = chan->orig_flags;
1783		}
1784		return;
1785	}
1786
1787	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1788
1789	power_rule = &reg_rule->power_rule;
1790	freq_range = &reg_rule->freq_range;
1791
1792	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1793	/* Check if auto calculation requested */
1794	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1795		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1796
1797	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1798	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1799			     MHZ_TO_KHZ(10)))
1800		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1801	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1802			     MHZ_TO_KHZ(20)))
1803		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1804
1805	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1806		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1807	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1808		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1809	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1810		bw_flags |= IEEE80211_CHAN_NO_HT40;
1811	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1812		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1813	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1814		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1815
1816	chan->dfs_state_entered = jiffies;
1817	chan->dfs_state = NL80211_DFS_USABLE;
1818
1819	chan->beacon_found = false;
1820
1821	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1822		chan->flags = chan->orig_flags | bw_flags |
1823			      map_regdom_flags(reg_rule->flags);
1824	else
1825		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1826
1827	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1828	chan->max_reg_power = chan->max_power =
1829		(int) MBM_TO_DBM(power_rule->max_eirp);
1830
1831	if (chan->flags & IEEE80211_CHAN_RADAR) {
1832		if (reg_rule->dfs_cac_ms)
1833			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1834		else
1835			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1836	}
1837
1838	chan->max_power = chan->max_reg_power;
1839}
1840
1841static void handle_band_custom(struct wiphy *wiphy,
1842			       struct ieee80211_supported_band *sband,
1843			       const struct ieee80211_regdomain *regd)
1844{
1845	unsigned int i;
1846
1847	if (!sband)
1848		return;
1849
1850	for (i = 0; i < sband->n_channels; i++)
1851		handle_channel_custom(wiphy, &sband->channels[i], regd);
1852}
1853
1854/* Used by drivers prior to wiphy registration */
1855void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1856				   const struct ieee80211_regdomain *regd)
1857{
1858	enum ieee80211_band band;
1859	unsigned int bands_set = 0;
1860
1861	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1862	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1863	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1864
1865	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1866		if (!wiphy->bands[band])
1867			continue;
1868		handle_band_custom(wiphy, wiphy->bands[band], regd);
1869		bands_set++;
1870	}
1871
1872	/*
1873	 * no point in calling this if it won't have any effect
1874	 * on your device's supported bands.
1875	 */
1876	WARN_ON(!bands_set);
1877}
1878EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1879
1880static void reg_set_request_processed(void)
1881{
1882	bool need_more_processing = false;
1883	struct regulatory_request *lr = get_last_request();
1884
1885	lr->processed = true;
1886
1887	spin_lock(&reg_requests_lock);
1888	if (!list_empty(&reg_requests_list))
1889		need_more_processing = true;
1890	spin_unlock(&reg_requests_lock);
1891
1892	cancel_crda_timeout();
1893
1894	if (need_more_processing)
1895		schedule_work(&reg_work);
1896}
1897
1898/**
1899 * reg_process_hint_core - process core regulatory requests
1900 * @pending_request: a pending core regulatory request
1901 *
1902 * The wireless subsystem can use this function to process
1903 * a regulatory request issued by the regulatory core.
1904 */
1905static enum reg_request_treatment
1906reg_process_hint_core(struct regulatory_request *core_request)
1907{
1908	if (reg_query_database(core_request)) {
1909		core_request->intersect = false;
1910		core_request->processed = false;
1911		reg_update_last_request(core_request);
1912		return REG_REQ_OK;
1913	}
1914
1915	return REG_REQ_IGNORE;
1916}
1917
1918static enum reg_request_treatment
1919__reg_process_hint_user(struct regulatory_request *user_request)
1920{
1921	struct regulatory_request *lr = get_last_request();
1922
1923	if (reg_request_cell_base(user_request))
1924		return reg_ignore_cell_hint(user_request);
1925
1926	if (reg_request_cell_base(lr))
1927		return REG_REQ_IGNORE;
1928
1929	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1930		return REG_REQ_INTERSECT;
1931	/*
1932	 * If the user knows better the user should set the regdom
1933	 * to their country before the IE is picked up
1934	 */
1935	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1936	    lr->intersect)
1937		return REG_REQ_IGNORE;
1938	/*
1939	 * Process user requests only after previous user/driver/core
1940	 * requests have been processed
1941	 */
1942	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1943	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1944	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1945	    regdom_changes(lr->alpha2))
1946		return REG_REQ_IGNORE;
1947
1948	if (!regdom_changes(user_request->alpha2))
1949		return REG_REQ_ALREADY_SET;
1950
1951	return REG_REQ_OK;
1952}
1953
1954/**
1955 * reg_process_hint_user - process user regulatory requests
1956 * @user_request: a pending user regulatory request
1957 *
1958 * The wireless subsystem can use this function to process
1959 * a regulatory request initiated by userspace.
1960 */
1961static enum reg_request_treatment
1962reg_process_hint_user(struct regulatory_request *user_request)
1963{
1964	enum reg_request_treatment treatment;
1965
1966	treatment = __reg_process_hint_user(user_request);
1967	if (treatment == REG_REQ_IGNORE ||
1968	    treatment == REG_REQ_ALREADY_SET)
1969		return REG_REQ_IGNORE;
1970
1971	user_request->intersect = treatment == REG_REQ_INTERSECT;
1972	user_request->processed = false;
1973
1974	if (reg_query_database(user_request)) {
1975		reg_update_last_request(user_request);
1976		user_alpha2[0] = user_request->alpha2[0];
1977		user_alpha2[1] = user_request->alpha2[1];
1978		return REG_REQ_OK;
1979	}
1980
1981	return REG_REQ_IGNORE;
1982}
1983
1984static enum reg_request_treatment
1985__reg_process_hint_driver(struct regulatory_request *driver_request)
1986{
1987	struct regulatory_request *lr = get_last_request();
1988
1989	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1990		if (regdom_changes(driver_request->alpha2))
1991			return REG_REQ_OK;
1992		return REG_REQ_ALREADY_SET;
1993	}
1994
1995	/*
1996	 * This would happen if you unplug and plug your card
1997	 * back in or if you add a new device for which the previously
1998	 * loaded card also agrees on the regulatory domain.
1999	 */
2000	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2001	    !regdom_changes(driver_request->alpha2))
2002		return REG_REQ_ALREADY_SET;
2003
2004	return REG_REQ_INTERSECT;
2005}
2006
2007/**
2008 * reg_process_hint_driver - process driver regulatory requests
2009 * @driver_request: a pending driver regulatory request
2010 *
2011 * The wireless subsystem can use this function to process
2012 * a regulatory request issued by an 802.11 driver.
2013 *
2014 * Returns one of the different reg request treatment values.
2015 */
2016static enum reg_request_treatment
2017reg_process_hint_driver(struct wiphy *wiphy,
2018			struct regulatory_request *driver_request)
2019{
2020	const struct ieee80211_regdomain *regd, *tmp;
2021	enum reg_request_treatment treatment;
2022
2023	treatment = __reg_process_hint_driver(driver_request);
2024
2025	switch (treatment) {
2026	case REG_REQ_OK:
2027		break;
2028	case REG_REQ_IGNORE:
2029		return REG_REQ_IGNORE;
2030	case REG_REQ_INTERSECT:
2031	case REG_REQ_ALREADY_SET:
2032		regd = reg_copy_regd(get_cfg80211_regdom());
2033		if (IS_ERR(regd))
2034			return REG_REQ_IGNORE;
2035
2036		tmp = get_wiphy_regdom(wiphy);
2037		rcu_assign_pointer(wiphy->regd, regd);
2038		rcu_free_regdom(tmp);
2039	}
2040
2041
2042	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2043	driver_request->processed = false;
2044
2045	/*
2046	 * Since CRDA will not be called in this case as we already
2047	 * have applied the requested regulatory domain before we just
2048	 * inform userspace we have processed the request
2049	 */
2050	if (treatment == REG_REQ_ALREADY_SET) {
2051		nl80211_send_reg_change_event(driver_request);
2052		reg_update_last_request(driver_request);
2053		reg_set_request_processed();
2054		return REG_REQ_ALREADY_SET;
2055	}
2056
2057	if (reg_query_database(driver_request)) {
2058		reg_update_last_request(driver_request);
2059		return REG_REQ_OK;
2060	}
2061
2062	return REG_REQ_IGNORE;
2063}
2064
2065static enum reg_request_treatment
2066__reg_process_hint_country_ie(struct wiphy *wiphy,
2067			      struct regulatory_request *country_ie_request)
2068{
2069	struct wiphy *last_wiphy = NULL;
2070	struct regulatory_request *lr = get_last_request();
2071
2072	if (reg_request_cell_base(lr)) {
2073		/* Trust a Cell base station over the AP's country IE */
2074		if (regdom_changes(country_ie_request->alpha2))
2075			return REG_REQ_IGNORE;
2076		return REG_REQ_ALREADY_SET;
2077	} else {
2078		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2079			return REG_REQ_IGNORE;
2080	}
2081
2082	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2083		return -EINVAL;
2084
2085	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2086		return REG_REQ_OK;
2087
2088	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2089
2090	if (last_wiphy != wiphy) {
2091		/*
2092		 * Two cards with two APs claiming different
2093		 * Country IE alpha2s. We could
2094		 * intersect them, but that seems unlikely
2095		 * to be correct. Reject second one for now.
2096		 */
2097		if (regdom_changes(country_ie_request->alpha2))
2098			return REG_REQ_IGNORE;
2099		return REG_REQ_ALREADY_SET;
2100	}
2101
2102	if (regdom_changes(country_ie_request->alpha2))
2103		return REG_REQ_OK;
2104	return REG_REQ_ALREADY_SET;
2105}
2106
2107/**
2108 * reg_process_hint_country_ie - process regulatory requests from country IEs
2109 * @country_ie_request: a regulatory request from a country IE
2110 *
2111 * The wireless subsystem can use this function to process
2112 * a regulatory request issued by a country Information Element.
2113 *
2114 * Returns one of the different reg request treatment values.
2115 */
2116static enum reg_request_treatment
2117reg_process_hint_country_ie(struct wiphy *wiphy,
2118			    struct regulatory_request *country_ie_request)
2119{
2120	enum reg_request_treatment treatment;
2121
2122	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2123
2124	switch (treatment) {
2125	case REG_REQ_OK:
2126		break;
2127	case REG_REQ_IGNORE:
2128		return REG_REQ_IGNORE;
2129	case REG_REQ_ALREADY_SET:
2130		reg_free_request(country_ie_request);
2131		return REG_REQ_ALREADY_SET;
2132	case REG_REQ_INTERSECT:
2133		/*
2134		 * This doesn't happen yet, not sure we
2135		 * ever want to support it for this case.
2136		 */
2137		WARN_ONCE(1, "Unexpected intersection for country IEs");
2138		return REG_REQ_IGNORE;
2139	}
2140
2141	country_ie_request->intersect = false;
2142	country_ie_request->processed = false;
2143
2144	if (reg_query_database(country_ie_request)) {
2145		reg_update_last_request(country_ie_request);
2146		return REG_REQ_OK;
2147	}
2148
2149	return REG_REQ_IGNORE;
2150}
2151
2152/* This processes *all* regulatory hints */
2153static void reg_process_hint(struct regulatory_request *reg_request)
2154{
2155	struct wiphy *wiphy = NULL;
2156	enum reg_request_treatment treatment;
2157
2158	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2159		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2160
2161	switch (reg_request->initiator) {
2162	case NL80211_REGDOM_SET_BY_CORE:
2163		treatment = reg_process_hint_core(reg_request);
2164		break;
2165	case NL80211_REGDOM_SET_BY_USER:
2166		treatment = reg_process_hint_user(reg_request);
2167		break;
2168	case NL80211_REGDOM_SET_BY_DRIVER:
2169		if (!wiphy)
2170			goto out_free;
2171		treatment = reg_process_hint_driver(wiphy, reg_request);
2172		break;
2173	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2174		if (!wiphy)
2175			goto out_free;
2176		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2177		break;
2178	default:
2179		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2180		goto out_free;
2181	}
2182
2183	if (treatment == REG_REQ_IGNORE)
2184		goto out_free;
2185
2186	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2187	     "unexpected treatment value %d\n", treatment);
2188
2189	/* This is required so that the orig_* parameters are saved.
2190	 * NOTE: treatment must be set for any case that reaches here!
2191	 */
2192	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2193	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2194		wiphy_update_regulatory(wiphy, reg_request->initiator);
2195		reg_check_channels();
2196	}
2197
2198	return;
2199
2200out_free:
2201	reg_free_request(reg_request);
2202}
2203
2204static bool reg_only_self_managed_wiphys(void)
2205{
2206	struct cfg80211_registered_device *rdev;
2207	struct wiphy *wiphy;
2208	bool self_managed_found = false;
2209
2210	ASSERT_RTNL();
2211
2212	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2213		wiphy = &rdev->wiphy;
2214		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2215			self_managed_found = true;
2216		else
2217			return false;
2218	}
2219
2220	/* make sure at least one self-managed wiphy exists */
2221	return self_managed_found;
2222}
2223
2224/*
2225 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2226 * Regulatory hints come on a first come first serve basis and we
2227 * must process each one atomically.
2228 */
2229static void reg_process_pending_hints(void)
2230{
2231	struct regulatory_request *reg_request, *lr;
2232
2233	lr = get_last_request();
2234
2235	/* When last_request->processed becomes true this will be rescheduled */
2236	if (lr && !lr->processed) {
2237		reg_process_hint(lr);
2238		return;
2239	}
2240
2241	spin_lock(&reg_requests_lock);
2242
2243	if (list_empty(&reg_requests_list)) {
2244		spin_unlock(&reg_requests_lock);
2245		return;
2246	}
2247
2248	reg_request = list_first_entry(&reg_requests_list,
2249				       struct regulatory_request,
2250				       list);
2251	list_del_init(&reg_request->list);
2252
2253	spin_unlock(&reg_requests_lock);
2254
2255	if (reg_only_self_managed_wiphys()) {
2256		reg_free_request(reg_request);
2257		return;
2258	}
2259
2260	reg_process_hint(reg_request);
2261
2262	lr = get_last_request();
2263
2264	spin_lock(&reg_requests_lock);
2265	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2266		schedule_work(&reg_work);
2267	spin_unlock(&reg_requests_lock);
2268}
2269
2270/* Processes beacon hints -- this has nothing to do with country IEs */
2271static void reg_process_pending_beacon_hints(void)
2272{
2273	struct cfg80211_registered_device *rdev;
2274	struct reg_beacon *pending_beacon, *tmp;
2275
2276	/* This goes through the _pending_ beacon list */
2277	spin_lock_bh(&reg_pending_beacons_lock);
2278
2279	list_for_each_entry_safe(pending_beacon, tmp,
2280				 &reg_pending_beacons, list) {
2281		list_del_init(&pending_beacon->list);
2282
2283		/* Applies the beacon hint to current wiphys */
2284		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2285			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2286
2287		/* Remembers the beacon hint for new wiphys or reg changes */
2288		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2289	}
2290
2291	spin_unlock_bh(&reg_pending_beacons_lock);
2292}
2293
2294static void reg_process_self_managed_hints(void)
2295{
2296	struct cfg80211_registered_device *rdev;
2297	struct wiphy *wiphy;
2298	const struct ieee80211_regdomain *tmp;
2299	const struct ieee80211_regdomain *regd;
2300	enum ieee80211_band band;
2301	struct regulatory_request request = {};
2302
2303	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2304		wiphy = &rdev->wiphy;
2305
2306		spin_lock(&reg_requests_lock);
2307		regd = rdev->requested_regd;
2308		rdev->requested_regd = NULL;
2309		spin_unlock(&reg_requests_lock);
2310
2311		if (regd == NULL)
2312			continue;
2313
2314		tmp = get_wiphy_regdom(wiphy);
2315		rcu_assign_pointer(wiphy->regd, regd);
2316		rcu_free_regdom(tmp);
2317
2318		for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2319			handle_band_custom(wiphy, wiphy->bands[band], regd);
2320
2321		reg_process_ht_flags(wiphy);
2322
2323		request.wiphy_idx = get_wiphy_idx(wiphy);
2324		request.alpha2[0] = regd->alpha2[0];
2325		request.alpha2[1] = regd->alpha2[1];
2326		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2327
2328		nl80211_send_wiphy_reg_change_event(&request);
2329	}
2330
2331	reg_check_channels();
2332}
2333
2334static void reg_todo(struct work_struct *work)
2335{
2336	rtnl_lock();
2337	reg_process_pending_hints();
2338	reg_process_pending_beacon_hints();
2339	reg_process_self_managed_hints();
2340	rtnl_unlock();
2341}
2342
2343static void queue_regulatory_request(struct regulatory_request *request)
2344{
2345	request->alpha2[0] = toupper(request->alpha2[0]);
2346	request->alpha2[1] = toupper(request->alpha2[1]);
2347
2348	spin_lock(&reg_requests_lock);
2349	list_add_tail(&request->list, &reg_requests_list);
2350	spin_unlock(&reg_requests_lock);
2351
2352	schedule_work(&reg_work);
2353}
2354
2355/*
2356 * Core regulatory hint -- happens during cfg80211_init()
2357 * and when we restore regulatory settings.
2358 */
2359static int regulatory_hint_core(const char *alpha2)
2360{
2361	struct regulatory_request *request;
2362
2363	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2364	if (!request)
2365		return -ENOMEM;
2366
2367	request->alpha2[0] = alpha2[0];
2368	request->alpha2[1] = alpha2[1];
2369	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2370
2371	queue_regulatory_request(request);
2372
2373	return 0;
2374}
2375
2376/* User hints */
2377int regulatory_hint_user(const char *alpha2,
2378			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2379{
2380	struct regulatory_request *request;
2381
2382	if (WARN_ON(!alpha2))
2383		return -EINVAL;
2384
2385	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2386	if (!request)
2387		return -ENOMEM;
2388
2389	request->wiphy_idx = WIPHY_IDX_INVALID;
2390	request->alpha2[0] = alpha2[0];
2391	request->alpha2[1] = alpha2[1];
2392	request->initiator = NL80211_REGDOM_SET_BY_USER;
2393	request->user_reg_hint_type = user_reg_hint_type;
2394
2395	/* Allow calling CRDA again */
2396	reset_crda_timeouts();
2397
2398	queue_regulatory_request(request);
2399
2400	return 0;
2401}
2402
2403int regulatory_hint_indoor(bool is_indoor, u32 portid)
2404{
2405	spin_lock(&reg_indoor_lock);
2406
2407	/* It is possible that more than one user space process is trying to
2408	 * configure the indoor setting. To handle such cases, clear the indoor
2409	 * setting in case that some process does not think that the device
2410	 * is operating in an indoor environment. In addition, if a user space
2411	 * process indicates that it is controlling the indoor setting, save its
2412	 * portid, i.e., make it the owner.
2413	 */
2414	reg_is_indoor = is_indoor;
2415	if (reg_is_indoor) {
2416		if (!reg_is_indoor_portid)
2417			reg_is_indoor_portid = portid;
2418	} else {
2419		reg_is_indoor_portid = 0;
2420	}
2421
2422	spin_unlock(&reg_indoor_lock);
2423
2424	if (!is_indoor)
2425		reg_check_channels();
2426
2427	return 0;
2428}
2429
2430void regulatory_netlink_notify(u32 portid)
2431{
2432	spin_lock(&reg_indoor_lock);
2433
2434	if (reg_is_indoor_portid != portid) {
2435		spin_unlock(&reg_indoor_lock);
2436		return;
2437	}
2438
2439	reg_is_indoor = false;
2440	reg_is_indoor_portid = 0;
2441
2442	spin_unlock(&reg_indoor_lock);
2443
2444	reg_check_channels();
2445}
2446
2447/* Driver hints */
2448int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2449{
2450	struct regulatory_request *request;
2451
2452	if (WARN_ON(!alpha2 || !wiphy))
2453		return -EINVAL;
2454
2455	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2456
2457	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2458	if (!request)
2459		return -ENOMEM;
2460
2461	request->wiphy_idx = get_wiphy_idx(wiphy);
2462
2463	request->alpha2[0] = alpha2[0];
2464	request->alpha2[1] = alpha2[1];
2465	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2466
2467	/* Allow calling CRDA again */
2468	reset_crda_timeouts();
2469
2470	queue_regulatory_request(request);
2471
2472	return 0;
2473}
2474EXPORT_SYMBOL(regulatory_hint);
2475
2476void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2477				const u8 *country_ie, u8 country_ie_len)
2478{
2479	char alpha2[2];
2480	enum environment_cap env = ENVIRON_ANY;
2481	struct regulatory_request *request = NULL, *lr;
2482
2483	/* IE len must be evenly divisible by 2 */
2484	if (country_ie_len & 0x01)
2485		return;
2486
2487	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2488		return;
2489
2490	request = kzalloc(sizeof(*request), GFP_KERNEL);
2491	if (!request)
2492		return;
2493
2494	alpha2[0] = country_ie[0];
2495	alpha2[1] = country_ie[1];
2496
2497	if (country_ie[2] == 'I')
2498		env = ENVIRON_INDOOR;
2499	else if (country_ie[2] == 'O')
2500		env = ENVIRON_OUTDOOR;
2501
2502	rcu_read_lock();
2503	lr = get_last_request();
2504
2505	if (unlikely(!lr))
2506		goto out;
2507
2508	/*
2509	 * We will run this only upon a successful connection on cfg80211.
2510	 * We leave conflict resolution to the workqueue, where can hold
2511	 * the RTNL.
2512	 */
2513	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2514	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2515		goto out;
2516
2517	request->wiphy_idx = get_wiphy_idx(wiphy);
2518	request->alpha2[0] = alpha2[0];
2519	request->alpha2[1] = alpha2[1];
2520	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2521	request->country_ie_env = env;
2522
2523	/* Allow calling CRDA again */
2524	reset_crda_timeouts();
2525
2526	queue_regulatory_request(request);
2527	request = NULL;
2528out:
2529	kfree(request);
2530	rcu_read_unlock();
2531}
2532
2533static void restore_alpha2(char *alpha2, bool reset_user)
2534{
2535	/* indicates there is no alpha2 to consider for restoration */
2536	alpha2[0] = '9';
2537	alpha2[1] = '7';
2538
2539	/* The user setting has precedence over the module parameter */
2540	if (is_user_regdom_saved()) {
2541		/* Unless we're asked to ignore it and reset it */
2542		if (reset_user) {
2543			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2544			user_alpha2[0] = '9';
2545			user_alpha2[1] = '7';
2546
2547			/*
2548			 * If we're ignoring user settings, we still need to
2549			 * check the module parameter to ensure we put things
2550			 * back as they were for a full restore.
2551			 */
2552			if (!is_world_regdom(ieee80211_regdom)) {
2553				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2554					      ieee80211_regdom[0], ieee80211_regdom[1]);
2555				alpha2[0] = ieee80211_regdom[0];
2556				alpha2[1] = ieee80211_regdom[1];
2557			}
2558		} else {
2559			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2560				      user_alpha2[0], user_alpha2[1]);
2561			alpha2[0] = user_alpha2[0];
2562			alpha2[1] = user_alpha2[1];
2563		}
2564	} else if (!is_world_regdom(ieee80211_regdom)) {
2565		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2566			      ieee80211_regdom[0], ieee80211_regdom[1]);
2567		alpha2[0] = ieee80211_regdom[0];
2568		alpha2[1] = ieee80211_regdom[1];
2569	} else
2570		REG_DBG_PRINT("Restoring regulatory settings\n");
2571}
2572
2573static void restore_custom_reg_settings(struct wiphy *wiphy)
2574{
2575	struct ieee80211_supported_band *sband;
2576	enum ieee80211_band band;
2577	struct ieee80211_channel *chan;
2578	int i;
2579
2580	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2581		sband = wiphy->bands[band];
2582		if (!sband)
2583			continue;
2584		for (i = 0; i < sband->n_channels; i++) {
2585			chan = &sband->channels[i];
2586			chan->flags = chan->orig_flags;
2587			chan->max_antenna_gain = chan->orig_mag;
2588			chan->max_power = chan->orig_mpwr;
2589			chan->beacon_found = false;
2590		}
2591	}
2592}
2593
2594/*
2595 * Restoring regulatory settings involves ingoring any
2596 * possibly stale country IE information and user regulatory
2597 * settings if so desired, this includes any beacon hints
2598 * learned as we could have traveled outside to another country
2599 * after disconnection. To restore regulatory settings we do
2600 * exactly what we did at bootup:
2601 *
2602 *   - send a core regulatory hint
2603 *   - send a user regulatory hint if applicable
2604 *
2605 * Device drivers that send a regulatory hint for a specific country
2606 * keep their own regulatory domain on wiphy->regd so that does does
2607 * not need to be remembered.
2608 */
2609static void restore_regulatory_settings(bool reset_user)
2610{
2611	char alpha2[2];
2612	char world_alpha2[2];
2613	struct reg_beacon *reg_beacon, *btmp;
2614	LIST_HEAD(tmp_reg_req_list);
2615	struct cfg80211_registered_device *rdev;
2616
2617	ASSERT_RTNL();
2618
2619	/*
2620	 * Clear the indoor setting in case that it is not controlled by user
2621	 * space, as otherwise there is no guarantee that the device is still
2622	 * operating in an indoor environment.
2623	 */
2624	spin_lock(&reg_indoor_lock);
2625	if (reg_is_indoor && !reg_is_indoor_portid) {
2626		reg_is_indoor = false;
2627		reg_check_channels();
2628	}
2629	spin_unlock(&reg_indoor_lock);
2630
2631	reset_regdomains(true, &world_regdom);
2632	restore_alpha2(alpha2, reset_user);
2633
2634	/*
2635	 * If there's any pending requests we simply
2636	 * stash them to a temporary pending queue and
2637	 * add then after we've restored regulatory
2638	 * settings.
2639	 */
2640	spin_lock(&reg_requests_lock);
2641	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2642	spin_unlock(&reg_requests_lock);
2643
2644	/* Clear beacon hints */
2645	spin_lock_bh(&reg_pending_beacons_lock);
2646	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2647		list_del(&reg_beacon->list);
2648		kfree(reg_beacon);
2649	}
2650	spin_unlock_bh(&reg_pending_beacons_lock);
2651
2652	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2653		list_del(&reg_beacon->list);
2654		kfree(reg_beacon);
2655	}
2656
2657	/* First restore to the basic regulatory settings */
2658	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2659	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2660
2661	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2662		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2663			continue;
2664		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2665			restore_custom_reg_settings(&rdev->wiphy);
2666	}
2667
2668	regulatory_hint_core(world_alpha2);
2669
2670	/*
2671	 * This restores the ieee80211_regdom module parameter
2672	 * preference or the last user requested regulatory
2673	 * settings, user regulatory settings takes precedence.
2674	 */
2675	if (is_an_alpha2(alpha2))
2676		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2677
2678	spin_lock(&reg_requests_lock);
2679	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2680	spin_unlock(&reg_requests_lock);
2681
2682	REG_DBG_PRINT("Kicking the queue\n");
2683
2684	schedule_work(&reg_work);
2685}
2686
2687void regulatory_hint_disconnect(void)
2688{
2689	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2690	restore_regulatory_settings(false);
2691}
2692
2693static bool freq_is_chan_12_13_14(u16 freq)
2694{
2695	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2696	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2697	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2698		return true;
2699	return false;
2700}
2701
2702static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2703{
2704	struct reg_beacon *pending_beacon;
2705
2706	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2707		if (beacon_chan->center_freq ==
2708		    pending_beacon->chan.center_freq)
2709			return true;
2710	return false;
2711}
2712
2713int regulatory_hint_found_beacon(struct wiphy *wiphy,
2714				 struct ieee80211_channel *beacon_chan,
2715				 gfp_t gfp)
2716{
2717	struct reg_beacon *reg_beacon;
2718	bool processing;
2719
2720	if (beacon_chan->beacon_found ||
2721	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2722	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2723	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2724		return 0;
2725
2726	spin_lock_bh(&reg_pending_beacons_lock);
2727	processing = pending_reg_beacon(beacon_chan);
2728	spin_unlock_bh(&reg_pending_beacons_lock);
2729
2730	if (processing)
2731		return 0;
2732
2733	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2734	if (!reg_beacon)
2735		return -ENOMEM;
2736
2737	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2738		      beacon_chan->center_freq,
2739		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2740		      wiphy_name(wiphy));
2741
2742	memcpy(&reg_beacon->chan, beacon_chan,
2743	       sizeof(struct ieee80211_channel));
2744
2745	/*
2746	 * Since we can be called from BH or and non-BH context
2747	 * we must use spin_lock_bh()
2748	 */
2749	spin_lock_bh(&reg_pending_beacons_lock);
2750	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2751	spin_unlock_bh(&reg_pending_beacons_lock);
2752
2753	schedule_work(&reg_work);
2754
2755	return 0;
2756}
2757
2758static void print_rd_rules(const struct ieee80211_regdomain *rd)
2759{
2760	unsigned int i;
2761	const struct ieee80211_reg_rule *reg_rule = NULL;
2762	const struct ieee80211_freq_range *freq_range = NULL;
2763	const struct ieee80211_power_rule *power_rule = NULL;
2764	char bw[32], cac_time[32];
2765
2766	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2767
2768	for (i = 0; i < rd->n_reg_rules; i++) {
2769		reg_rule = &rd->reg_rules[i];
2770		freq_range = &reg_rule->freq_range;
2771		power_rule = &reg_rule->power_rule;
2772
2773		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2774			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2775				 freq_range->max_bandwidth_khz,
2776				 reg_get_max_bandwidth(rd, reg_rule));
2777		else
2778			snprintf(bw, sizeof(bw), "%d KHz",
2779				 freq_range->max_bandwidth_khz);
2780
2781		if (reg_rule->flags & NL80211_RRF_DFS)
2782			scnprintf(cac_time, sizeof(cac_time), "%u s",
2783				  reg_rule->dfs_cac_ms/1000);
2784		else
2785			scnprintf(cac_time, sizeof(cac_time), "N/A");
2786
2787
2788		/*
2789		 * There may not be documentation for max antenna gain
2790		 * in certain regions
2791		 */
2792		if (power_rule->max_antenna_gain)
2793			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2794				freq_range->start_freq_khz,
2795				freq_range->end_freq_khz,
2796				bw,
2797				power_rule->max_antenna_gain,
2798				power_rule->max_eirp,
2799				cac_time);
2800		else
2801			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2802				freq_range->start_freq_khz,
2803				freq_range->end_freq_khz,
2804				bw,
2805				power_rule->max_eirp,
2806				cac_time);
2807	}
2808}
2809
2810bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2811{
2812	switch (dfs_region) {
2813	case NL80211_DFS_UNSET:
2814	case NL80211_DFS_FCC:
2815	case NL80211_DFS_ETSI:
2816	case NL80211_DFS_JP:
2817		return true;
2818	default:
2819		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2820			      dfs_region);
2821		return false;
2822	}
2823}
2824
2825static void print_regdomain(const struct ieee80211_regdomain *rd)
2826{
2827	struct regulatory_request *lr = get_last_request();
2828
2829	if (is_intersected_alpha2(rd->alpha2)) {
2830		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2831			struct cfg80211_registered_device *rdev;
2832			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2833			if (rdev) {
2834				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2835					rdev->country_ie_alpha2[0],
2836					rdev->country_ie_alpha2[1]);
2837			} else
2838				pr_info("Current regulatory domain intersected:\n");
2839		} else
2840			pr_info("Current regulatory domain intersected:\n");
2841	} else if (is_world_regdom(rd->alpha2)) {
2842		pr_info("World regulatory domain updated:\n");
2843	} else {
2844		if (is_unknown_alpha2(rd->alpha2))
2845			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2846		else {
2847			if (reg_request_cell_base(lr))
2848				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2849					rd->alpha2[0], rd->alpha2[1]);
2850			else
2851				pr_info("Regulatory domain changed to country: %c%c\n",
2852					rd->alpha2[0], rd->alpha2[1]);
2853		}
2854	}
2855
2856	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2857	print_rd_rules(rd);
2858}
2859
2860static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2861{
2862	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2863	print_rd_rules(rd);
2864}
2865
2866static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2867{
2868	if (!is_world_regdom(rd->alpha2))
2869		return -EINVAL;
2870	update_world_regdomain(rd);
2871	return 0;
2872}
2873
2874static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2875			   struct regulatory_request *user_request)
2876{
2877	const struct ieee80211_regdomain *intersected_rd = NULL;
2878
2879	if (!regdom_changes(rd->alpha2))
2880		return -EALREADY;
2881
2882	if (!is_valid_rd(rd)) {
2883		pr_err("Invalid regulatory domain detected:\n");
2884		print_regdomain_info(rd);
2885		return -EINVAL;
2886	}
2887
2888	if (!user_request->intersect) {
2889		reset_regdomains(false, rd);
2890		return 0;
2891	}
2892
2893	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2894	if (!intersected_rd)
2895		return -EINVAL;
2896
2897	kfree(rd);
2898	rd = NULL;
2899	reset_regdomains(false, intersected_rd);
2900
2901	return 0;
2902}
2903
2904static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2905			     struct regulatory_request *driver_request)
2906{
2907	const struct ieee80211_regdomain *regd;
2908	const struct ieee80211_regdomain *intersected_rd = NULL;
2909	const struct ieee80211_regdomain *tmp;
2910	struct wiphy *request_wiphy;
2911
2912	if (is_world_regdom(rd->alpha2))
2913		return -EINVAL;
2914
2915	if (!regdom_changes(rd->alpha2))
2916		return -EALREADY;
2917
2918	if (!is_valid_rd(rd)) {
2919		pr_err("Invalid regulatory domain detected:\n");
2920		print_regdomain_info(rd);
2921		return -EINVAL;
2922	}
2923
2924	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2925	if (!request_wiphy)
2926		return -ENODEV;
2927
2928	if (!driver_request->intersect) {
2929		if (request_wiphy->regd)
2930			return -EALREADY;
2931
2932		regd = reg_copy_regd(rd);
2933		if (IS_ERR(regd))
2934			return PTR_ERR(regd);
2935
2936		rcu_assign_pointer(request_wiphy->regd, regd);
2937		reset_regdomains(false, rd);
2938		return 0;
2939	}
2940
2941	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2942	if (!intersected_rd)
2943		return -EINVAL;
2944
2945	/*
2946	 * We can trash what CRDA provided now.
2947	 * However if a driver requested this specific regulatory
2948	 * domain we keep it for its private use
2949	 */
2950	tmp = get_wiphy_regdom(request_wiphy);
2951	rcu_assign_pointer(request_wiphy->regd, rd);
2952	rcu_free_regdom(tmp);
2953
2954	rd = NULL;
2955
2956	reset_regdomains(false, intersected_rd);
2957
2958	return 0;
2959}
2960
2961static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2962				 struct regulatory_request *country_ie_request)
2963{
2964	struct wiphy *request_wiphy;
2965
2966	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2967	    !is_unknown_alpha2(rd->alpha2))
2968		return -EINVAL;
2969
2970	/*
2971	 * Lets only bother proceeding on the same alpha2 if the current
2972	 * rd is non static (it means CRDA was present and was used last)
2973	 * and the pending request came in from a country IE
2974	 */
2975
2976	if (!is_valid_rd(rd)) {
2977		pr_err("Invalid regulatory domain detected:\n");
2978		print_regdomain_info(rd);
2979		return -EINVAL;
2980	}
2981
2982	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2983	if (!request_wiphy)
2984		return -ENODEV;
2985
2986	if (country_ie_request->intersect)
2987		return -EINVAL;
2988
2989	reset_regdomains(false, rd);
2990	return 0;
2991}
2992
2993/*
2994 * Use this call to set the current regulatory domain. Conflicts with
2995 * multiple drivers can be ironed out later. Caller must've already
2996 * kmalloc'd the rd structure.
2997 */
2998int set_regdom(const struct ieee80211_regdomain *rd,
2999	       enum ieee80211_regd_source regd_src)
3000{
3001	struct regulatory_request *lr;
3002	bool user_reset = false;
3003	int r;
3004
3005	if (!reg_is_valid_request(rd->alpha2)) {
3006		kfree(rd);
3007		return -EINVAL;
3008	}
3009
3010	if (regd_src == REGD_SOURCE_CRDA)
3011		reset_crda_timeouts();
3012
3013	lr = get_last_request();
3014
3015	/* Note that this doesn't update the wiphys, this is done below */
3016	switch (lr->initiator) {
3017	case NL80211_REGDOM_SET_BY_CORE:
3018		r = reg_set_rd_core(rd);
3019		break;
3020	case NL80211_REGDOM_SET_BY_USER:
3021		r = reg_set_rd_user(rd, lr);
3022		user_reset = true;
3023		break;
3024	case NL80211_REGDOM_SET_BY_DRIVER:
3025		r = reg_set_rd_driver(rd, lr);
3026		break;
3027	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3028		r = reg_set_rd_country_ie(rd, lr);
3029		break;
3030	default:
3031		WARN(1, "invalid initiator %d\n", lr->initiator);
3032		kfree(rd);
3033		return -EINVAL;
3034	}
3035
3036	if (r) {
3037		switch (r) {
3038		case -EALREADY:
3039			reg_set_request_processed();
3040			break;
3041		default:
3042			/* Back to world regulatory in case of errors */
3043			restore_regulatory_settings(user_reset);
3044		}
3045
3046		kfree(rd);
3047		return r;
3048	}
3049
3050	/* This would make this whole thing pointless */
3051	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3052		return -EINVAL;
3053
3054	/* update all wiphys now with the new established regulatory domain */
3055	update_all_wiphy_regulatory(lr->initiator);
3056
3057	print_regdomain(get_cfg80211_regdom());
3058
3059	nl80211_send_reg_change_event(lr);
3060
3061	reg_set_request_processed();
3062
3063	return 0;
3064}
3065
3066static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3067				       struct ieee80211_regdomain *rd)
3068{
3069	const struct ieee80211_regdomain *regd;
3070	const struct ieee80211_regdomain *prev_regd;
3071	struct cfg80211_registered_device *rdev;
3072
3073	if (WARN_ON(!wiphy || !rd))
3074		return -EINVAL;
3075
3076	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3077		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3078		return -EPERM;
3079
3080	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3081		print_regdomain_info(rd);
3082		return -EINVAL;
3083	}
3084
3085	regd = reg_copy_regd(rd);
3086	if (IS_ERR(regd))
3087		return PTR_ERR(regd);
3088
3089	rdev = wiphy_to_rdev(wiphy);
3090
3091	spin_lock(&reg_requests_lock);
3092	prev_regd = rdev->requested_regd;
3093	rdev->requested_regd = regd;
3094	spin_unlock(&reg_requests_lock);
3095
3096	kfree(prev_regd);
3097	return 0;
3098}
3099
3100int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3101			      struct ieee80211_regdomain *rd)
3102{
3103	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3104
3105	if (ret)
3106		return ret;
3107
3108	schedule_work(&reg_work);
3109	return 0;
3110}
3111EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3112
3113int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3114					struct ieee80211_regdomain *rd)
3115{
3116	int ret;
3117
3118	ASSERT_RTNL();
3119
3120	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3121	if (ret)
3122		return ret;
3123
3124	/* process the request immediately */
3125	reg_process_self_managed_hints();
3126	return 0;
3127}
3128EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3129
3130void wiphy_regulatory_register(struct wiphy *wiphy)
3131{
3132	struct regulatory_request *lr;
3133
3134	/* self-managed devices ignore external hints */
3135	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3136		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3137					   REGULATORY_COUNTRY_IE_IGNORE;
3138
3139	if (!reg_dev_ignore_cell_hint(wiphy))
3140		reg_num_devs_support_basehint++;
3141
3142	lr = get_last_request();
3143	wiphy_update_regulatory(wiphy, lr->initiator);
3144}
3145
3146void wiphy_regulatory_deregister(struct wiphy *wiphy)
3147{
3148	struct wiphy *request_wiphy = NULL;
3149	struct regulatory_request *lr;
3150
3151	lr = get_last_request();
3152
3153	if (!reg_dev_ignore_cell_hint(wiphy))
3154		reg_num_devs_support_basehint--;
3155
3156	rcu_free_regdom(get_wiphy_regdom(wiphy));
3157	RCU_INIT_POINTER(wiphy->regd, NULL);
3158
3159	if (lr)
3160		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3161
3162	if (!request_wiphy || request_wiphy != wiphy)
3163		return;
3164
3165	lr->wiphy_idx = WIPHY_IDX_INVALID;
3166	lr->country_ie_env = ENVIRON_ANY;
3167}
3168
3169/*
3170 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3171 * UNII band definitions
3172 */
3173int cfg80211_get_unii(int freq)
3174{
3175	/* UNII-1 */
3176	if (freq >= 5150 && freq <= 5250)
3177		return 0;
3178
3179	/* UNII-2A */
3180	if (freq > 5250 && freq <= 5350)
3181		return 1;
3182
3183	/* UNII-2B */
3184	if (freq > 5350 && freq <= 5470)
3185		return 2;
3186
3187	/* UNII-2C */
3188	if (freq > 5470 && freq <= 5725)
3189		return 3;
3190
3191	/* UNII-3 */
3192	if (freq > 5725 && freq <= 5825)
3193		return 4;
3194
3195	return -EINVAL;
3196}
3197
3198bool regulatory_indoor_allowed(void)
3199{
3200	return reg_is_indoor;
3201}
3202
3203int __init regulatory_init(void)
3204{
3205	int err = 0;
3206
3207	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3208	if (IS_ERR(reg_pdev))
3209		return PTR_ERR(reg_pdev);
3210
3211	spin_lock_init(&reg_requests_lock);
3212	spin_lock_init(&reg_pending_beacons_lock);
3213	spin_lock_init(&reg_indoor_lock);
3214
3215	reg_regdb_size_check();
3216
3217	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3218
3219	user_alpha2[0] = '9';
3220	user_alpha2[1] = '7';
3221
3222	/* We always try to get an update for the static regdomain */
3223	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3224	if (err) {
3225		if (err == -ENOMEM) {
3226			platform_device_unregister(reg_pdev);
3227			return err;
3228		}
3229		/*
3230		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3231		 * memory which is handled and propagated appropriately above
3232		 * but it can also fail during a netlink_broadcast() or during
3233		 * early boot for call_usermodehelper(). For now treat these
3234		 * errors as non-fatal.
3235		 */
3236		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3237	}
3238
3239	/*
3240	 * Finally, if the user set the module parameter treat it
3241	 * as a user hint.
3242	 */
3243	if (!is_world_regdom(ieee80211_regdom))
3244		regulatory_hint_user(ieee80211_regdom,
3245				     NL80211_USER_REG_HINT_USER);
3246
3247	return 0;
3248}
3249
3250void regulatory_exit(void)
3251{
3252	struct regulatory_request *reg_request, *tmp;
3253	struct reg_beacon *reg_beacon, *btmp;
3254
3255	cancel_work_sync(&reg_work);
3256	cancel_crda_timeout_sync();
3257	cancel_delayed_work_sync(&reg_check_chans);
3258
3259	/* Lock to suppress warnings */
3260	rtnl_lock();
3261	reset_regdomains(true, NULL);
3262	rtnl_unlock();
3263
3264	dev_set_uevent_suppress(&reg_pdev->dev, true);
3265
3266	platform_device_unregister(reg_pdev);
3267
3268	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3269		list_del(&reg_beacon->list);
3270		kfree(reg_beacon);
3271	}
3272
3273	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3274		list_del(&reg_beacon->list);
3275		kfree(reg_beacon);
3276	}
3277
3278	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3279		list_del(&reg_request->list);
3280		kfree(reg_request);
3281	}
3282}
3283