1/*
2 * Copyright (c) 2006 Oracle.  All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/slab.h>
35#include <linux/ratelimit.h>
36
37#include "rds.h"
38#include "iw.h"
39
40
41/*
42 * This is stored as mr->r_trans_private.
43 */
44struct rds_iw_mr {
45	struct rds_iw_device	*device;
46	struct rds_iw_mr_pool	*pool;
47	struct rdma_cm_id	*cm_id;
48
49	struct ib_mr	*mr;
50
51	struct rds_iw_mapping	mapping;
52	unsigned char		remap_count;
53};
54
55/*
56 * Our own little MR pool
57 */
58struct rds_iw_mr_pool {
59	struct rds_iw_device	*device;		/* back ptr to the device that owns us */
60
61	struct mutex		flush_lock;		/* serialize fmr invalidate */
62	struct work_struct	flush_worker;		/* flush worker */
63
64	spinlock_t		list_lock;		/* protect variables below */
65	atomic_t		item_count;		/* total # of MRs */
66	atomic_t		dirty_count;		/* # dirty of MRs */
67	struct list_head	dirty_list;		/* dirty mappings */
68	struct list_head	clean_list;		/* unused & unamapped MRs */
69	atomic_t		free_pinned;		/* memory pinned by free MRs */
70	unsigned long		max_message_size;	/* in pages */
71	unsigned long		max_items;
72	unsigned long		max_items_soft;
73	unsigned long		max_free_pinned;
74	int			max_pages;
75};
76
77static void rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
78static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
79static int rds_iw_init_reg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
80static int rds_iw_map_reg(struct rds_iw_mr_pool *pool,
81			  struct rds_iw_mr *ibmr,
82			  struct scatterlist *sg, unsigned int nents);
83static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
84static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
85			struct list_head *unmap_list,
86			struct list_head *kill_list,
87			int *unpinned);
88static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
89
90static int rds_iw_get_device(struct sockaddr_in *src, struct sockaddr_in *dst,
91			     struct rds_iw_device **rds_iwdev,
92			     struct rdma_cm_id **cm_id)
93{
94	struct rds_iw_device *iwdev;
95	struct rds_iw_cm_id *i_cm_id;
96
97	*rds_iwdev = NULL;
98	*cm_id = NULL;
99
100	list_for_each_entry(iwdev, &rds_iw_devices, list) {
101		spin_lock_irq(&iwdev->spinlock);
102		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
103			struct sockaddr_in *src_addr, *dst_addr;
104
105			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
106			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
107
108			rdsdebug("local ipaddr = %x port %d, "
109				 "remote ipaddr = %x port %d"
110				 "..looking for %x port %d, "
111				 "remote ipaddr = %x port %d\n",
112				src_addr->sin_addr.s_addr,
113				src_addr->sin_port,
114				dst_addr->sin_addr.s_addr,
115				dst_addr->sin_port,
116				src->sin_addr.s_addr,
117				src->sin_port,
118				dst->sin_addr.s_addr,
119				dst->sin_port);
120#ifdef WORKING_TUPLE_DETECTION
121			if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr &&
122			    src_addr->sin_port == src->sin_port &&
123			    dst_addr->sin_addr.s_addr == dst->sin_addr.s_addr &&
124			    dst_addr->sin_port == dst->sin_port) {
125#else
126			/* FIXME - needs to compare the local and remote
127			 * ipaddr/port tuple, but the ipaddr is the only
128			 * available information in the rds_sock (as the rest are
129			 * zero'ed.  It doesn't appear to be properly populated
130			 * during connection setup...
131			 */
132			if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr) {
133#endif
134				spin_unlock_irq(&iwdev->spinlock);
135				*rds_iwdev = iwdev;
136				*cm_id = i_cm_id->cm_id;
137				return 0;
138			}
139		}
140		spin_unlock_irq(&iwdev->spinlock);
141	}
142
143	return 1;
144}
145
146static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
147{
148	struct rds_iw_cm_id *i_cm_id;
149
150	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
151	if (!i_cm_id)
152		return -ENOMEM;
153
154	i_cm_id->cm_id = cm_id;
155
156	spin_lock_irq(&rds_iwdev->spinlock);
157	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
158	spin_unlock_irq(&rds_iwdev->spinlock);
159
160	return 0;
161}
162
163static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
164				struct rdma_cm_id *cm_id)
165{
166	struct rds_iw_cm_id *i_cm_id;
167
168	spin_lock_irq(&rds_iwdev->spinlock);
169	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
170		if (i_cm_id->cm_id == cm_id) {
171			list_del(&i_cm_id->list);
172			kfree(i_cm_id);
173			break;
174		}
175	}
176	spin_unlock_irq(&rds_iwdev->spinlock);
177}
178
179
180int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
181{
182	struct sockaddr_in *src_addr, *dst_addr;
183	struct rds_iw_device *rds_iwdev_old;
184	struct rdma_cm_id *pcm_id;
185	int rc;
186
187	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
188	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
189
190	rc = rds_iw_get_device(src_addr, dst_addr, &rds_iwdev_old, &pcm_id);
191	if (rc)
192		rds_iw_remove_cm_id(rds_iwdev, cm_id);
193
194	return rds_iw_add_cm_id(rds_iwdev, cm_id);
195}
196
197void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
198{
199	struct rds_iw_connection *ic = conn->c_transport_data;
200
201	/* conn was previously on the nodev_conns_list */
202	spin_lock_irq(&iw_nodev_conns_lock);
203	BUG_ON(list_empty(&iw_nodev_conns));
204	BUG_ON(list_empty(&ic->iw_node));
205	list_del(&ic->iw_node);
206
207	spin_lock(&rds_iwdev->spinlock);
208	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
209	spin_unlock(&rds_iwdev->spinlock);
210	spin_unlock_irq(&iw_nodev_conns_lock);
211
212	ic->rds_iwdev = rds_iwdev;
213}
214
215void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
216{
217	struct rds_iw_connection *ic = conn->c_transport_data;
218
219	/* place conn on nodev_conns_list */
220	spin_lock(&iw_nodev_conns_lock);
221
222	spin_lock_irq(&rds_iwdev->spinlock);
223	BUG_ON(list_empty(&ic->iw_node));
224	list_del(&ic->iw_node);
225	spin_unlock_irq(&rds_iwdev->spinlock);
226
227	list_add_tail(&ic->iw_node, &iw_nodev_conns);
228
229	spin_unlock(&iw_nodev_conns_lock);
230
231	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
232	ic->rds_iwdev = NULL;
233}
234
235void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
236{
237	struct rds_iw_connection *ic, *_ic;
238	LIST_HEAD(tmp_list);
239
240	/* avoid calling conn_destroy with irqs off */
241	spin_lock_irq(list_lock);
242	list_splice(list, &tmp_list);
243	INIT_LIST_HEAD(list);
244	spin_unlock_irq(list_lock);
245
246	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
247		rds_conn_destroy(ic->conn);
248}
249
250static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
251		struct scatterlist *list, unsigned int sg_len)
252{
253	sg->list = list;
254	sg->len = sg_len;
255	sg->dma_len = 0;
256	sg->dma_npages = 0;
257	sg->bytes = 0;
258}
259
260static int rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
261				  struct rds_iw_scatterlist *sg)
262{
263	struct ib_device *dev = rds_iwdev->dev;
264	int i, ret;
265
266	WARN_ON(sg->dma_len);
267
268	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
269	if (unlikely(!sg->dma_len)) {
270		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
271		return -EBUSY;
272	}
273
274	sg->bytes = 0;
275	sg->dma_npages = 0;
276
277	ret = -EINVAL;
278	for (i = 0; i < sg->dma_len; ++i) {
279		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
280		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
281		u64 end_addr;
282
283		sg->bytes += dma_len;
284
285		end_addr = dma_addr + dma_len;
286		if (dma_addr & PAGE_MASK) {
287			if (i > 0)
288				goto out_unmap;
289			dma_addr &= ~PAGE_MASK;
290		}
291		if (end_addr & PAGE_MASK) {
292			if (i < sg->dma_len - 1)
293				goto out_unmap;
294			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
295		}
296
297		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
298	}
299
300	/* Now gather the dma addrs into one list */
301	if (sg->dma_npages > fastreg_message_size)
302		goto out_unmap;
303
304
305
306	return 0;
307
308out_unmap:
309	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
310	sg->dma_len = 0;
311	return ret;
312}
313
314
315struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
316{
317	struct rds_iw_mr_pool *pool;
318
319	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
320	if (!pool) {
321		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
322		return ERR_PTR(-ENOMEM);
323	}
324
325	pool->device = rds_iwdev;
326	INIT_LIST_HEAD(&pool->dirty_list);
327	INIT_LIST_HEAD(&pool->clean_list);
328	mutex_init(&pool->flush_lock);
329	spin_lock_init(&pool->list_lock);
330	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
331
332	pool->max_message_size = fastreg_message_size;
333	pool->max_items = fastreg_pool_size;
334	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
335	pool->max_pages = fastreg_message_size;
336
337	/* We never allow more than max_items MRs to be allocated.
338	 * When we exceed more than max_items_soft, we start freeing
339	 * items more aggressively.
340	 * Make sure that max_items > max_items_soft > max_items / 2
341	 */
342	pool->max_items_soft = pool->max_items * 3 / 4;
343
344	return pool;
345}
346
347void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
348{
349	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
350
351	iinfo->rdma_mr_max = pool->max_items;
352	iinfo->rdma_mr_size = pool->max_pages;
353}
354
355void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
356{
357	flush_workqueue(rds_wq);
358	rds_iw_flush_mr_pool(pool, 1);
359	BUG_ON(atomic_read(&pool->item_count));
360	BUG_ON(atomic_read(&pool->free_pinned));
361	kfree(pool);
362}
363
364static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
365{
366	struct rds_iw_mr *ibmr = NULL;
367	unsigned long flags;
368
369	spin_lock_irqsave(&pool->list_lock, flags);
370	if (!list_empty(&pool->clean_list)) {
371		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
372		list_del_init(&ibmr->mapping.m_list);
373	}
374	spin_unlock_irqrestore(&pool->list_lock, flags);
375
376	return ibmr;
377}
378
379static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
380{
381	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
382	struct rds_iw_mr *ibmr = NULL;
383	int err = 0, iter = 0;
384
385	while (1) {
386		ibmr = rds_iw_reuse_fmr(pool);
387		if (ibmr)
388			return ibmr;
389
390		/* No clean MRs - now we have the choice of either
391		 * allocating a fresh MR up to the limit imposed by the
392		 * driver, or flush any dirty unused MRs.
393		 * We try to avoid stalling in the send path if possible,
394		 * so we allocate as long as we're allowed to.
395		 *
396		 * We're fussy with enforcing the FMR limit, though. If the driver
397		 * tells us we can't use more than N fmrs, we shouldn't start
398		 * arguing with it */
399		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
400			break;
401
402		atomic_dec(&pool->item_count);
403
404		if (++iter > 2) {
405			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
406			return ERR_PTR(-EAGAIN);
407		}
408
409		/* We do have some empty MRs. Flush them out. */
410		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
411		rds_iw_flush_mr_pool(pool, 0);
412	}
413
414	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
415	if (!ibmr) {
416		err = -ENOMEM;
417		goto out_no_cigar;
418	}
419
420	spin_lock_init(&ibmr->mapping.m_lock);
421	INIT_LIST_HEAD(&ibmr->mapping.m_list);
422	ibmr->mapping.m_mr = ibmr;
423
424	err = rds_iw_init_reg(pool, ibmr);
425	if (err)
426		goto out_no_cigar;
427
428	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
429	return ibmr;
430
431out_no_cigar:
432	if (ibmr) {
433		rds_iw_destroy_fastreg(pool, ibmr);
434		kfree(ibmr);
435	}
436	atomic_dec(&pool->item_count);
437	return ERR_PTR(err);
438}
439
440void rds_iw_sync_mr(void *trans_private, int direction)
441{
442	struct rds_iw_mr *ibmr = trans_private;
443	struct rds_iw_device *rds_iwdev = ibmr->device;
444
445	switch (direction) {
446	case DMA_FROM_DEVICE:
447		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
448			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
449		break;
450	case DMA_TO_DEVICE:
451		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
452			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
453		break;
454	}
455}
456
457/*
458 * Flush our pool of MRs.
459 * At a minimum, all currently unused MRs are unmapped.
460 * If the number of MRs allocated exceeds the limit, we also try
461 * to free as many MRs as needed to get back to this limit.
462 */
463static void rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
464{
465	struct rds_iw_mr *ibmr, *next;
466	LIST_HEAD(unmap_list);
467	LIST_HEAD(kill_list);
468	unsigned long flags;
469	unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
470
471	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
472
473	mutex_lock(&pool->flush_lock);
474
475	spin_lock_irqsave(&pool->list_lock, flags);
476	/* Get the list of all mappings to be destroyed */
477	list_splice_init(&pool->dirty_list, &unmap_list);
478	if (free_all)
479		list_splice_init(&pool->clean_list, &kill_list);
480	spin_unlock_irqrestore(&pool->list_lock, flags);
481
482	/* Batched invalidate of dirty MRs.
483	 * For FMR based MRs, the mappings on the unmap list are
484	 * actually members of an ibmr (ibmr->mapping). They either
485	 * migrate to the kill_list, or have been cleaned and should be
486	 * moved to the clean_list.
487	 * For fastregs, they will be dynamically allocated, and
488	 * will be destroyed by the unmap function.
489	 */
490	if (!list_empty(&unmap_list)) {
491		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
492						     &kill_list, &unpinned);
493		/* If we've been asked to destroy all MRs, move those
494		 * that were simply cleaned to the kill list */
495		if (free_all)
496			list_splice_init(&unmap_list, &kill_list);
497	}
498
499	/* Destroy any MRs that are past their best before date */
500	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
501		rds_iw_stats_inc(s_iw_rdma_mr_free);
502		list_del(&ibmr->mapping.m_list);
503		rds_iw_destroy_fastreg(pool, ibmr);
504		kfree(ibmr);
505		nfreed++;
506	}
507
508	/* Anything that remains are laundered ibmrs, which we can add
509	 * back to the clean list. */
510	if (!list_empty(&unmap_list)) {
511		spin_lock_irqsave(&pool->list_lock, flags);
512		list_splice(&unmap_list, &pool->clean_list);
513		spin_unlock_irqrestore(&pool->list_lock, flags);
514	}
515
516	atomic_sub(unpinned, &pool->free_pinned);
517	atomic_sub(ncleaned, &pool->dirty_count);
518	atomic_sub(nfreed, &pool->item_count);
519
520	mutex_unlock(&pool->flush_lock);
521}
522
523static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
524{
525	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
526
527	rds_iw_flush_mr_pool(pool, 0);
528}
529
530void rds_iw_free_mr(void *trans_private, int invalidate)
531{
532	struct rds_iw_mr *ibmr = trans_private;
533	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
534
535	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
536	if (!pool)
537		return;
538
539	/* Return it to the pool's free list */
540	rds_iw_free_fastreg(pool, ibmr);
541
542	/* If we've pinned too many pages, request a flush */
543	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
544	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
545		queue_work(rds_wq, &pool->flush_worker);
546
547	if (invalidate) {
548		if (likely(!in_interrupt())) {
549			rds_iw_flush_mr_pool(pool, 0);
550		} else {
551			/* We get here if the user created a MR marked
552			 * as use_once and invalidate at the same time. */
553			queue_work(rds_wq, &pool->flush_worker);
554		}
555	}
556}
557
558void rds_iw_flush_mrs(void)
559{
560	struct rds_iw_device *rds_iwdev;
561
562	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
563		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
564
565		if (pool)
566			rds_iw_flush_mr_pool(pool, 0);
567	}
568}
569
570void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
571		    struct rds_sock *rs, u32 *key_ret)
572{
573	struct rds_iw_device *rds_iwdev;
574	struct rds_iw_mr *ibmr = NULL;
575	struct rdma_cm_id *cm_id;
576	struct sockaddr_in src = {
577		.sin_addr.s_addr = rs->rs_bound_addr,
578		.sin_port = rs->rs_bound_port,
579	};
580	struct sockaddr_in dst = {
581		.sin_addr.s_addr = rs->rs_conn_addr,
582		.sin_port = rs->rs_conn_port,
583	};
584	int ret;
585
586	ret = rds_iw_get_device(&src, &dst, &rds_iwdev, &cm_id);
587	if (ret || !cm_id) {
588		ret = -ENODEV;
589		goto out;
590	}
591
592	if (!rds_iwdev->mr_pool) {
593		ret = -ENODEV;
594		goto out;
595	}
596
597	ibmr = rds_iw_alloc_mr(rds_iwdev);
598	if (IS_ERR(ibmr))
599		return ibmr;
600
601	ibmr->cm_id = cm_id;
602	ibmr->device = rds_iwdev;
603
604	ret = rds_iw_map_reg(rds_iwdev->mr_pool, ibmr, sg, nents);
605	if (ret == 0)
606		*key_ret = ibmr->mr->rkey;
607	else
608		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
609
610out:
611	if (ret) {
612		if (ibmr)
613			rds_iw_free_mr(ibmr, 0);
614		ibmr = ERR_PTR(ret);
615	}
616	return ibmr;
617}
618
619/*
620 * iWARP reg handling
621 *
622 * The life cycle of a fastreg registration is a bit different from
623 * FMRs.
624 * The idea behind fastreg is to have one MR, to which we bind different
625 * mappings over time. To avoid stalling on the expensive map and invalidate
626 * operations, these operations are pipelined on the same send queue on
627 * which we want to send the message containing the r_key.
628 *
629 * This creates a bit of a problem for us, as we do not have the destination
630 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
631 * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
632 * will try to queue a LOCAL_INV (if needed) and a REG_MR work request
633 * before queuing the SEND. When completions for these arrive, they are
634 * dispatched to the MR has a bit set showing that RDMa can be performed.
635 *
636 * There is another interesting aspect that's related to invalidation.
637 * The application can request that a mapping is invalidated in FREE_MR.
638 * The expectation there is that this invalidation step includes ALL
639 * PREVIOUSLY FREED MRs.
640 */
641static int rds_iw_init_reg(struct rds_iw_mr_pool *pool,
642			   struct rds_iw_mr *ibmr)
643{
644	struct rds_iw_device *rds_iwdev = pool->device;
645	struct ib_mr *mr;
646	int err;
647
648	mr = ib_alloc_mr(rds_iwdev->pd, IB_MR_TYPE_MEM_REG,
649			 pool->max_message_size);
650	if (IS_ERR(mr)) {
651		err = PTR_ERR(mr);
652
653		printk(KERN_WARNING "RDS/IW: ib_alloc_mr failed (err=%d)\n", err);
654		return err;
655	}
656
657	ibmr->mr = mr;
658	return 0;
659}
660
661static int rds_iw_rdma_reg_mr(struct rds_iw_mapping *mapping)
662{
663	struct rds_iw_mr *ibmr = mapping->m_mr;
664	struct rds_iw_scatterlist *m_sg = &mapping->m_sg;
665	struct ib_reg_wr reg_wr;
666	struct ib_send_wr *failed_wr;
667	int ret, n;
668
669	n = ib_map_mr_sg_zbva(ibmr->mr, m_sg->list, m_sg->len, PAGE_SIZE);
670	if (unlikely(n != m_sg->len))
671		return n < 0 ? n : -EINVAL;
672
673	reg_wr.wr.next = NULL;
674	reg_wr.wr.opcode = IB_WR_REG_MR;
675	reg_wr.wr.wr_id = RDS_IW_REG_WR_ID;
676	reg_wr.wr.num_sge = 0;
677	reg_wr.mr = ibmr->mr;
678	reg_wr.key = mapping->m_rkey;
679	reg_wr.access = IB_ACCESS_LOCAL_WRITE |
680			IB_ACCESS_REMOTE_READ |
681			IB_ACCESS_REMOTE_WRITE;
682
683	/*
684	 * Perform a WR for the reg_mr. Each individual page
685	 * in the sg list is added to the fast reg page list and placed
686	 * inside the reg_mr WR.  The key used is a rolling 8bit
687	 * counter, which should guarantee uniqueness.
688	 */
689	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
690	mapping->m_rkey = ibmr->mr->rkey;
691
692	failed_wr = &reg_wr.wr;
693	ret = ib_post_send(ibmr->cm_id->qp, &reg_wr.wr, &failed_wr);
694	BUG_ON(failed_wr != &reg_wr.wr);
695	if (ret)
696		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
697			__func__, __LINE__, ret);
698	return ret;
699}
700
701static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
702{
703	struct ib_send_wr s_wr, *failed_wr;
704	int ret = 0;
705
706	if (!ibmr->cm_id->qp || !ibmr->mr)
707		goto out;
708
709	memset(&s_wr, 0, sizeof(s_wr));
710	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
711	s_wr.opcode = IB_WR_LOCAL_INV;
712	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
713	s_wr.send_flags = IB_SEND_SIGNALED;
714
715	failed_wr = &s_wr;
716	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
717	if (ret) {
718		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
719			__func__, __LINE__, ret);
720		goto out;
721	}
722out:
723	return ret;
724}
725
726static int rds_iw_map_reg(struct rds_iw_mr_pool *pool,
727			  struct rds_iw_mr *ibmr,
728			  struct scatterlist *sg,
729			  unsigned int sg_len)
730{
731	struct rds_iw_device *rds_iwdev = pool->device;
732	struct rds_iw_mapping *mapping = &ibmr->mapping;
733	u64 *dma_pages;
734	int ret = 0;
735
736	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
737
738	ret = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
739	if (ret) {
740		dma_pages = NULL;
741		goto out;
742	}
743
744	if (mapping->m_sg.dma_len > pool->max_message_size) {
745		ret = -EMSGSIZE;
746		goto out;
747	}
748
749	ret = rds_iw_rdma_reg_mr(mapping);
750	if (ret)
751		goto out;
752
753	rds_iw_stats_inc(s_iw_rdma_mr_used);
754
755out:
756	kfree(dma_pages);
757
758	return ret;
759}
760
761/*
762 * "Free" a fastreg MR.
763 */
764static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
765		struct rds_iw_mr *ibmr)
766{
767	unsigned long flags;
768	int ret;
769
770	if (!ibmr->mapping.m_sg.dma_len)
771		return;
772
773	ret = rds_iw_rdma_fastreg_inv(ibmr);
774	if (ret)
775		return;
776
777	/* Try to post the LOCAL_INV WR to the queue. */
778	spin_lock_irqsave(&pool->list_lock, flags);
779
780	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
781	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
782	atomic_inc(&pool->dirty_count);
783
784	spin_unlock_irqrestore(&pool->list_lock, flags);
785}
786
787static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
788				struct list_head *unmap_list,
789				struct list_head *kill_list,
790				int *unpinned)
791{
792	struct rds_iw_mapping *mapping, *next;
793	unsigned int ncleaned = 0;
794	LIST_HEAD(laundered);
795
796	/* Batched invalidation of fastreg MRs.
797	 * Why do we do it this way, even though we could pipeline unmap
798	 * and remap? The reason is the application semantics - when the
799	 * application requests an invalidation of MRs, it expects all
800	 * previously released R_Keys to become invalid.
801	 *
802	 * If we implement MR reuse naively, we risk memory corruption
803	 * (this has actually been observed). So the default behavior
804	 * requires that a MR goes through an explicit unmap operation before
805	 * we can reuse it again.
806	 *
807	 * We could probably improve on this a little, by allowing immediate
808	 * reuse of a MR on the same socket (eg you could add small
809	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
810	 * of these without requiring an explicit invalidate).
811	 */
812	while (!list_empty(unmap_list)) {
813		unsigned long flags;
814
815		spin_lock_irqsave(&pool->list_lock, flags);
816		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
817			*unpinned += mapping->m_sg.len;
818			list_move(&mapping->m_list, &laundered);
819			ncleaned++;
820		}
821		spin_unlock_irqrestore(&pool->list_lock, flags);
822	}
823
824	/* Move all laundered mappings back to the unmap list.
825	 * We do not kill any WRs right now - it doesn't seem the
826	 * fastreg API has a max_remap limit. */
827	list_splice_init(&laundered, unmap_list);
828
829	return ncleaned;
830}
831
832static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
833		struct rds_iw_mr *ibmr)
834{
835	if (ibmr->mr)
836		ib_dereg_mr(ibmr->mr);
837}
838