1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002	Andrew Morton
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/backing-dev.h>
12#include <linux/gfp.h>
13#include <linux/mm.h>
14#include <linux/swap.h>
15#include <linux/export.h>
16#include <linux/pagemap.h>
17#include <linux/highmem.h>
18#include <linux/pagevec.h>
19#include <linux/task_io_accounting_ops.h>
20#include <linux/buffer_head.h>	/* grr. try_to_release_page,
21				   do_invalidatepage */
22#include <linux/cleancache.h>
23#include <linux/rmap.h>
24#include "internal.h"
25
26static void clear_exceptional_entry(struct address_space *mapping,
27				    pgoff_t index, void *entry)
28{
29	struct radix_tree_node *node;
30	void **slot;
31
32	/* Handled by shmem itself */
33	if (shmem_mapping(mapping))
34		return;
35
36	spin_lock_irq(&mapping->tree_lock);
37	/*
38	 * Regular page slots are stabilized by the page lock even
39	 * without the tree itself locked.  These unlocked entries
40	 * need verification under the tree lock.
41	 */
42	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
43		goto unlock;
44	if (*slot != entry)
45		goto unlock;
46	radix_tree_replace_slot(slot, NULL);
47	mapping->nrshadows--;
48	if (!node)
49		goto unlock;
50	workingset_node_shadows_dec(node);
51	/*
52	 * Don't track node without shadow entries.
53	 *
54	 * Avoid acquiring the list_lru lock if already untracked.
55	 * The list_empty() test is safe as node->private_list is
56	 * protected by mapping->tree_lock.
57	 */
58	if (!workingset_node_shadows(node) &&
59	    !list_empty(&node->private_list))
60		list_lru_del(&workingset_shadow_nodes, &node->private_list);
61	__radix_tree_delete_node(&mapping->page_tree, node);
62unlock:
63	spin_unlock_irq(&mapping->tree_lock);
64}
65
66/**
67 * do_invalidatepage - invalidate part or all of a page
68 * @page: the page which is affected
69 * @offset: start of the range to invalidate
70 * @length: length of the range to invalidate
71 *
72 * do_invalidatepage() is called when all or part of the page has become
73 * invalidated by a truncate operation.
74 *
75 * do_invalidatepage() does not have to release all buffers, but it must
76 * ensure that no dirty buffer is left outside @offset and that no I/O
77 * is underway against any of the blocks which are outside the truncation
78 * point.  Because the caller is about to free (and possibly reuse) those
79 * blocks on-disk.
80 */
81void do_invalidatepage(struct page *page, unsigned int offset,
82		       unsigned int length)
83{
84	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
85
86	invalidatepage = page->mapping->a_ops->invalidatepage;
87#ifdef CONFIG_BLOCK
88	if (!invalidatepage)
89		invalidatepage = block_invalidatepage;
90#endif
91	if (invalidatepage)
92		(*invalidatepage)(page, offset, length);
93}
94
95/*
96 * If truncate cannot remove the fs-private metadata from the page, the page
97 * becomes orphaned.  It will be left on the LRU and may even be mapped into
98 * user pagetables if we're racing with filemap_fault().
99 *
100 * We need to bale out if page->mapping is no longer equal to the original
101 * mapping.  This happens a) when the VM reclaimed the page while we waited on
102 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
103 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
104 */
105static int
106truncate_complete_page(struct address_space *mapping, struct page *page)
107{
108	if (page->mapping != mapping)
109		return -EIO;
110
111	if (page_has_private(page))
112		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
113
114	/*
115	 * Some filesystems seem to re-dirty the page even after
116	 * the VM has canceled the dirty bit (eg ext3 journaling).
117	 * Hence dirty accounting check is placed after invalidation.
118	 */
119	cancel_dirty_page(page);
120	ClearPageMappedToDisk(page);
121	delete_from_page_cache(page);
122	return 0;
123}
124
125/*
126 * This is for invalidate_mapping_pages().  That function can be called at
127 * any time, and is not supposed to throw away dirty pages.  But pages can
128 * be marked dirty at any time too, so use remove_mapping which safely
129 * discards clean, unused pages.
130 *
131 * Returns non-zero if the page was successfully invalidated.
132 */
133static int
134invalidate_complete_page(struct address_space *mapping, struct page *page)
135{
136	int ret;
137
138	if (page->mapping != mapping)
139		return 0;
140
141	if (page_has_private(page) && !try_to_release_page(page, 0))
142		return 0;
143
144	ret = remove_mapping(mapping, page);
145
146	return ret;
147}
148
149int truncate_inode_page(struct address_space *mapping, struct page *page)
150{
151	if (page_mapped(page)) {
152		unmap_mapping_range(mapping,
153				   (loff_t)page->index << PAGE_CACHE_SHIFT,
154				   PAGE_CACHE_SIZE, 0);
155	}
156	return truncate_complete_page(mapping, page);
157}
158
159/*
160 * Used to get rid of pages on hardware memory corruption.
161 */
162int generic_error_remove_page(struct address_space *mapping, struct page *page)
163{
164	if (!mapping)
165		return -EINVAL;
166	/*
167	 * Only punch for normal data pages for now.
168	 * Handling other types like directories would need more auditing.
169	 */
170	if (!S_ISREG(mapping->host->i_mode))
171		return -EIO;
172	return truncate_inode_page(mapping, page);
173}
174EXPORT_SYMBOL(generic_error_remove_page);
175
176/*
177 * Safely invalidate one page from its pagecache mapping.
178 * It only drops clean, unused pages. The page must be locked.
179 *
180 * Returns 1 if the page is successfully invalidated, otherwise 0.
181 */
182int invalidate_inode_page(struct page *page)
183{
184	struct address_space *mapping = page_mapping(page);
185	if (!mapping)
186		return 0;
187	if (PageDirty(page) || PageWriteback(page))
188		return 0;
189	if (page_mapped(page))
190		return 0;
191	return invalidate_complete_page(mapping, page);
192}
193
194/**
195 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
196 * @mapping: mapping to truncate
197 * @lstart: offset from which to truncate
198 * @lend: offset to which to truncate (inclusive)
199 *
200 * Truncate the page cache, removing the pages that are between
201 * specified offsets (and zeroing out partial pages
202 * if lstart or lend + 1 is not page aligned).
203 *
204 * Truncate takes two passes - the first pass is nonblocking.  It will not
205 * block on page locks and it will not block on writeback.  The second pass
206 * will wait.  This is to prevent as much IO as possible in the affected region.
207 * The first pass will remove most pages, so the search cost of the second pass
208 * is low.
209 *
210 * We pass down the cache-hot hint to the page freeing code.  Even if the
211 * mapping is large, it is probably the case that the final pages are the most
212 * recently touched, and freeing happens in ascending file offset order.
213 *
214 * Note that since ->invalidatepage() accepts range to invalidate
215 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
216 * page aligned properly.
217 */
218void truncate_inode_pages_range(struct address_space *mapping,
219				loff_t lstart, loff_t lend)
220{
221	pgoff_t		start;		/* inclusive */
222	pgoff_t		end;		/* exclusive */
223	unsigned int	partial_start;	/* inclusive */
224	unsigned int	partial_end;	/* exclusive */
225	struct pagevec	pvec;
226	pgoff_t		indices[PAGEVEC_SIZE];
227	pgoff_t		index;
228	int		i;
229
230	cleancache_invalidate_inode(mapping);
231	if (mapping->nrpages == 0 && mapping->nrshadows == 0)
232		return;
233
234	/* Offsets within partial pages */
235	partial_start = lstart & (PAGE_CACHE_SIZE - 1);
236	partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
237
238	/*
239	 * 'start' and 'end' always covers the range of pages to be fully
240	 * truncated. Partial pages are covered with 'partial_start' at the
241	 * start of the range and 'partial_end' at the end of the range.
242	 * Note that 'end' is exclusive while 'lend' is inclusive.
243	 */
244	start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
245	if (lend == -1)
246		/*
247		 * lend == -1 indicates end-of-file so we have to set 'end'
248		 * to the highest possible pgoff_t and since the type is
249		 * unsigned we're using -1.
250		 */
251		end = -1;
252	else
253		end = (lend + 1) >> PAGE_CACHE_SHIFT;
254
255	pagevec_init(&pvec, 0);
256	index = start;
257	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
258			min(end - index, (pgoff_t)PAGEVEC_SIZE),
259			indices)) {
260		for (i = 0; i < pagevec_count(&pvec); i++) {
261			struct page *page = pvec.pages[i];
262
263			/* We rely upon deletion not changing page->index */
264			index = indices[i];
265			if (index >= end)
266				break;
267
268			if (radix_tree_exceptional_entry(page)) {
269				clear_exceptional_entry(mapping, index, page);
270				continue;
271			}
272
273			if (!trylock_page(page))
274				continue;
275			WARN_ON(page->index != index);
276			if (PageWriteback(page)) {
277				unlock_page(page);
278				continue;
279			}
280			truncate_inode_page(mapping, page);
281			unlock_page(page);
282		}
283		pagevec_remove_exceptionals(&pvec);
284		pagevec_release(&pvec);
285		cond_resched();
286		index++;
287	}
288
289	if (partial_start) {
290		struct page *page = find_lock_page(mapping, start - 1);
291		if (page) {
292			unsigned int top = PAGE_CACHE_SIZE;
293			if (start > end) {
294				/* Truncation within a single page */
295				top = partial_end;
296				partial_end = 0;
297			}
298			wait_on_page_writeback(page);
299			zero_user_segment(page, partial_start, top);
300			cleancache_invalidate_page(mapping, page);
301			if (page_has_private(page))
302				do_invalidatepage(page, partial_start,
303						  top - partial_start);
304			unlock_page(page);
305			page_cache_release(page);
306		}
307	}
308	if (partial_end) {
309		struct page *page = find_lock_page(mapping, end);
310		if (page) {
311			wait_on_page_writeback(page);
312			zero_user_segment(page, 0, partial_end);
313			cleancache_invalidate_page(mapping, page);
314			if (page_has_private(page))
315				do_invalidatepage(page, 0,
316						  partial_end);
317			unlock_page(page);
318			page_cache_release(page);
319		}
320	}
321	/*
322	 * If the truncation happened within a single page no pages
323	 * will be released, just zeroed, so we can bail out now.
324	 */
325	if (start >= end)
326		return;
327
328	index = start;
329	for ( ; ; ) {
330		cond_resched();
331		if (!pagevec_lookup_entries(&pvec, mapping, index,
332			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
333			/* If all gone from start onwards, we're done */
334			if (index == start)
335				break;
336			/* Otherwise restart to make sure all gone */
337			index = start;
338			continue;
339		}
340		if (index == start && indices[0] >= end) {
341			/* All gone out of hole to be punched, we're done */
342			pagevec_remove_exceptionals(&pvec);
343			pagevec_release(&pvec);
344			break;
345		}
346		for (i = 0; i < pagevec_count(&pvec); i++) {
347			struct page *page = pvec.pages[i];
348
349			/* We rely upon deletion not changing page->index */
350			index = indices[i];
351			if (index >= end) {
352				/* Restart punch to make sure all gone */
353				index = start - 1;
354				break;
355			}
356
357			if (radix_tree_exceptional_entry(page)) {
358				clear_exceptional_entry(mapping, index, page);
359				continue;
360			}
361
362			lock_page(page);
363			WARN_ON(page->index != index);
364			wait_on_page_writeback(page);
365			truncate_inode_page(mapping, page);
366			unlock_page(page);
367		}
368		pagevec_remove_exceptionals(&pvec);
369		pagevec_release(&pvec);
370		index++;
371	}
372	cleancache_invalidate_inode(mapping);
373}
374EXPORT_SYMBOL(truncate_inode_pages_range);
375
376/**
377 * truncate_inode_pages - truncate *all* the pages from an offset
378 * @mapping: mapping to truncate
379 * @lstart: offset from which to truncate
380 *
381 * Called under (and serialised by) inode->i_mutex.
382 *
383 * Note: When this function returns, there can be a page in the process of
384 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
385 * mapping->nrpages can be non-zero when this function returns even after
386 * truncation of the whole mapping.
387 */
388void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
389{
390	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
391}
392EXPORT_SYMBOL(truncate_inode_pages);
393
394/**
395 * truncate_inode_pages_final - truncate *all* pages before inode dies
396 * @mapping: mapping to truncate
397 *
398 * Called under (and serialized by) inode->i_mutex.
399 *
400 * Filesystems have to use this in the .evict_inode path to inform the
401 * VM that this is the final truncate and the inode is going away.
402 */
403void truncate_inode_pages_final(struct address_space *mapping)
404{
405	unsigned long nrshadows;
406	unsigned long nrpages;
407
408	/*
409	 * Page reclaim can not participate in regular inode lifetime
410	 * management (can't call iput()) and thus can race with the
411	 * inode teardown.  Tell it when the address space is exiting,
412	 * so that it does not install eviction information after the
413	 * final truncate has begun.
414	 */
415	mapping_set_exiting(mapping);
416
417	/*
418	 * When reclaim installs eviction entries, it increases
419	 * nrshadows first, then decreases nrpages.  Make sure we see
420	 * this in the right order or we might miss an entry.
421	 */
422	nrpages = mapping->nrpages;
423	smp_rmb();
424	nrshadows = mapping->nrshadows;
425
426	if (nrpages || nrshadows) {
427		/*
428		 * As truncation uses a lockless tree lookup, cycle
429		 * the tree lock to make sure any ongoing tree
430		 * modification that does not see AS_EXITING is
431		 * completed before starting the final truncate.
432		 */
433		spin_lock_irq(&mapping->tree_lock);
434		spin_unlock_irq(&mapping->tree_lock);
435
436		truncate_inode_pages(mapping, 0);
437	}
438}
439EXPORT_SYMBOL(truncate_inode_pages_final);
440
441/**
442 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
443 * @mapping: the address_space which holds the pages to invalidate
444 * @start: the offset 'from' which to invalidate
445 * @end: the offset 'to' which to invalidate (inclusive)
446 *
447 * This function only removes the unlocked pages, if you want to
448 * remove all the pages of one inode, you must call truncate_inode_pages.
449 *
450 * invalidate_mapping_pages() will not block on IO activity. It will not
451 * invalidate pages which are dirty, locked, under writeback or mapped into
452 * pagetables.
453 */
454unsigned long invalidate_mapping_pages(struct address_space *mapping,
455		pgoff_t start, pgoff_t end)
456{
457	pgoff_t indices[PAGEVEC_SIZE];
458	struct pagevec pvec;
459	pgoff_t index = start;
460	unsigned long ret;
461	unsigned long count = 0;
462	int i;
463
464	pagevec_init(&pvec, 0);
465	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
466			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
467			indices)) {
468		for (i = 0; i < pagevec_count(&pvec); i++) {
469			struct page *page = pvec.pages[i];
470
471			/* We rely upon deletion not changing page->index */
472			index = indices[i];
473			if (index > end)
474				break;
475
476			if (radix_tree_exceptional_entry(page)) {
477				clear_exceptional_entry(mapping, index, page);
478				continue;
479			}
480
481			if (!trylock_page(page))
482				continue;
483			WARN_ON(page->index != index);
484			ret = invalidate_inode_page(page);
485			unlock_page(page);
486			/*
487			 * Invalidation is a hint that the page is no longer
488			 * of interest and try to speed up its reclaim.
489			 */
490			if (!ret)
491				deactivate_file_page(page);
492			count += ret;
493		}
494		pagevec_remove_exceptionals(&pvec);
495		pagevec_release(&pvec);
496		cond_resched();
497		index++;
498	}
499	return count;
500}
501EXPORT_SYMBOL(invalidate_mapping_pages);
502
503/*
504 * This is like invalidate_complete_page(), except it ignores the page's
505 * refcount.  We do this because invalidate_inode_pages2() needs stronger
506 * invalidation guarantees, and cannot afford to leave pages behind because
507 * shrink_page_list() has a temp ref on them, or because they're transiently
508 * sitting in the lru_cache_add() pagevecs.
509 */
510static int
511invalidate_complete_page2(struct address_space *mapping, struct page *page)
512{
513	struct mem_cgroup *memcg;
514	unsigned long flags;
515
516	if (page->mapping != mapping)
517		return 0;
518
519	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
520		return 0;
521
522	memcg = mem_cgroup_begin_page_stat(page);
523	spin_lock_irqsave(&mapping->tree_lock, flags);
524	if (PageDirty(page))
525		goto failed;
526
527	BUG_ON(page_has_private(page));
528	__delete_from_page_cache(page, NULL, memcg);
529	spin_unlock_irqrestore(&mapping->tree_lock, flags);
530	mem_cgroup_end_page_stat(memcg);
531
532	if (mapping->a_ops->freepage)
533		mapping->a_ops->freepage(page);
534
535	page_cache_release(page);	/* pagecache ref */
536	return 1;
537failed:
538	spin_unlock_irqrestore(&mapping->tree_lock, flags);
539	mem_cgroup_end_page_stat(memcg);
540	return 0;
541}
542
543static int do_launder_page(struct address_space *mapping, struct page *page)
544{
545	if (!PageDirty(page))
546		return 0;
547	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
548		return 0;
549	return mapping->a_ops->launder_page(page);
550}
551
552/**
553 * invalidate_inode_pages2_range - remove range of pages from an address_space
554 * @mapping: the address_space
555 * @start: the page offset 'from' which to invalidate
556 * @end: the page offset 'to' which to invalidate (inclusive)
557 *
558 * Any pages which are found to be mapped into pagetables are unmapped prior to
559 * invalidation.
560 *
561 * Returns -EBUSY if any pages could not be invalidated.
562 */
563int invalidate_inode_pages2_range(struct address_space *mapping,
564				  pgoff_t start, pgoff_t end)
565{
566	pgoff_t indices[PAGEVEC_SIZE];
567	struct pagevec pvec;
568	pgoff_t index;
569	int i;
570	int ret = 0;
571	int ret2 = 0;
572	int did_range_unmap = 0;
573
574	cleancache_invalidate_inode(mapping);
575	pagevec_init(&pvec, 0);
576	index = start;
577	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
578			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
579			indices)) {
580		for (i = 0; i < pagevec_count(&pvec); i++) {
581			struct page *page = pvec.pages[i];
582
583			/* We rely upon deletion not changing page->index */
584			index = indices[i];
585			if (index > end)
586				break;
587
588			if (radix_tree_exceptional_entry(page)) {
589				clear_exceptional_entry(mapping, index, page);
590				continue;
591			}
592
593			lock_page(page);
594			WARN_ON(page->index != index);
595			if (page->mapping != mapping) {
596				unlock_page(page);
597				continue;
598			}
599			wait_on_page_writeback(page);
600			if (page_mapped(page)) {
601				if (!did_range_unmap) {
602					/*
603					 * Zap the rest of the file in one hit.
604					 */
605					unmap_mapping_range(mapping,
606					   (loff_t)index << PAGE_CACHE_SHIFT,
607					   (loff_t)(1 + end - index)
608							 << PAGE_CACHE_SHIFT,
609					    0);
610					did_range_unmap = 1;
611				} else {
612					/*
613					 * Just zap this page
614					 */
615					unmap_mapping_range(mapping,
616					   (loff_t)index << PAGE_CACHE_SHIFT,
617					   PAGE_CACHE_SIZE, 0);
618				}
619			}
620			BUG_ON(page_mapped(page));
621			ret2 = do_launder_page(mapping, page);
622			if (ret2 == 0) {
623				if (!invalidate_complete_page2(mapping, page))
624					ret2 = -EBUSY;
625			}
626			if (ret2 < 0)
627				ret = ret2;
628			unlock_page(page);
629		}
630		pagevec_remove_exceptionals(&pvec);
631		pagevec_release(&pvec);
632		cond_resched();
633		index++;
634	}
635	cleancache_invalidate_inode(mapping);
636	return ret;
637}
638EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
639
640/**
641 * invalidate_inode_pages2 - remove all pages from an address_space
642 * @mapping: the address_space
643 *
644 * Any pages which are found to be mapped into pagetables are unmapped prior to
645 * invalidation.
646 *
647 * Returns -EBUSY if any pages could not be invalidated.
648 */
649int invalidate_inode_pages2(struct address_space *mapping)
650{
651	return invalidate_inode_pages2_range(mapping, 0, -1);
652}
653EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
654
655/**
656 * truncate_pagecache - unmap and remove pagecache that has been truncated
657 * @inode: inode
658 * @newsize: new file size
659 *
660 * inode's new i_size must already be written before truncate_pagecache
661 * is called.
662 *
663 * This function should typically be called before the filesystem
664 * releases resources associated with the freed range (eg. deallocates
665 * blocks). This way, pagecache will always stay logically coherent
666 * with on-disk format, and the filesystem would not have to deal with
667 * situations such as writepage being called for a page that has already
668 * had its underlying blocks deallocated.
669 */
670void truncate_pagecache(struct inode *inode, loff_t newsize)
671{
672	struct address_space *mapping = inode->i_mapping;
673	loff_t holebegin = round_up(newsize, PAGE_SIZE);
674
675	/*
676	 * unmap_mapping_range is called twice, first simply for
677	 * efficiency so that truncate_inode_pages does fewer
678	 * single-page unmaps.  However after this first call, and
679	 * before truncate_inode_pages finishes, it is possible for
680	 * private pages to be COWed, which remain after
681	 * truncate_inode_pages finishes, hence the second
682	 * unmap_mapping_range call must be made for correctness.
683	 */
684	unmap_mapping_range(mapping, holebegin, 0, 1);
685	truncate_inode_pages(mapping, newsize);
686	unmap_mapping_range(mapping, holebegin, 0, 1);
687}
688EXPORT_SYMBOL(truncate_pagecache);
689
690/**
691 * truncate_setsize - update inode and pagecache for a new file size
692 * @inode: inode
693 * @newsize: new file size
694 *
695 * truncate_setsize updates i_size and performs pagecache truncation (if
696 * necessary) to @newsize. It will be typically be called from the filesystem's
697 * setattr function when ATTR_SIZE is passed in.
698 *
699 * Must be called with a lock serializing truncates and writes (generally
700 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
701 * specific block truncation has been performed.
702 */
703void truncate_setsize(struct inode *inode, loff_t newsize)
704{
705	loff_t oldsize = inode->i_size;
706
707	i_size_write(inode, newsize);
708	if (newsize > oldsize)
709		pagecache_isize_extended(inode, oldsize, newsize);
710	truncate_pagecache(inode, newsize);
711}
712EXPORT_SYMBOL(truncate_setsize);
713
714/**
715 * pagecache_isize_extended - update pagecache after extension of i_size
716 * @inode:	inode for which i_size was extended
717 * @from:	original inode size
718 * @to:		new inode size
719 *
720 * Handle extension of inode size either caused by extending truncate or by
721 * write starting after current i_size. We mark the page straddling current
722 * i_size RO so that page_mkwrite() is called on the nearest write access to
723 * the page.  This way filesystem can be sure that page_mkwrite() is called on
724 * the page before user writes to the page via mmap after the i_size has been
725 * changed.
726 *
727 * The function must be called after i_size is updated so that page fault
728 * coming after we unlock the page will already see the new i_size.
729 * The function must be called while we still hold i_mutex - this not only
730 * makes sure i_size is stable but also that userspace cannot observe new
731 * i_size value before we are prepared to store mmap writes at new inode size.
732 */
733void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
734{
735	int bsize = 1 << inode->i_blkbits;
736	loff_t rounded_from;
737	struct page *page;
738	pgoff_t index;
739
740	WARN_ON(to > inode->i_size);
741
742	if (from >= to || bsize == PAGE_CACHE_SIZE)
743		return;
744	/* Page straddling @from will not have any hole block created? */
745	rounded_from = round_up(from, bsize);
746	if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1)))
747		return;
748
749	index = from >> PAGE_CACHE_SHIFT;
750	page = find_lock_page(inode->i_mapping, index);
751	/* Page not cached? Nothing to do */
752	if (!page)
753		return;
754	/*
755	 * See clear_page_dirty_for_io() for details why set_page_dirty()
756	 * is needed.
757	 */
758	if (page_mkclean(page))
759		set_page_dirty(page);
760	unlock_page(page);
761	page_cache_release(page);
762}
763EXPORT_SYMBOL(pagecache_isize_extended);
764
765/**
766 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
767 * @inode: inode
768 * @lstart: offset of beginning of hole
769 * @lend: offset of last byte of hole
770 *
771 * This function should typically be called before the filesystem
772 * releases resources associated with the freed range (eg. deallocates
773 * blocks). This way, pagecache will always stay logically coherent
774 * with on-disk format, and the filesystem would not have to deal with
775 * situations such as writepage being called for a page that has already
776 * had its underlying blocks deallocated.
777 */
778void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
779{
780	struct address_space *mapping = inode->i_mapping;
781	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
782	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
783	/*
784	 * This rounding is currently just for example: unmap_mapping_range
785	 * expands its hole outwards, whereas we want it to contract the hole
786	 * inwards.  However, existing callers of truncate_pagecache_range are
787	 * doing their own page rounding first.  Note that unmap_mapping_range
788	 * allows holelen 0 for all, and we allow lend -1 for end of file.
789	 */
790
791	/*
792	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
793	 * once (before truncating pagecache), and without "even_cows" flag:
794	 * hole-punching should not remove private COWed pages from the hole.
795	 */
796	if ((u64)unmap_end > (u64)unmap_start)
797		unmap_mapping_range(mapping, unmap_start,
798				    1 + unmap_end - unmap_start, 0);
799	truncate_inode_pages_range(mapping, lstart, lend);
800}
801EXPORT_SYMBOL(truncate_pagecache_range);
802