1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70 
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
74 
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79 
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85  * defined in <linux/topology.h>.
86  */
87 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91 
92 /*
93  * Array of node states.
94  */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 	[N_POSSIBLE] = NODE_MASK_ALL,
97 	[N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 	[N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 	[N_CPU] = { { [0] = 1UL } },
107 #endif	/* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110 
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113 
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118  * When calculating the number of globally allowed dirty pages, there
119  * is a certain number of per-zone reserves that should not be
120  * considered dirtyable memory.  This is the sum of those reserves
121  * over all existing zones that contribute dirtyable memory.
122  */
123 unsigned long dirty_balance_reserve __read_mostly;
124 
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127 
128 /*
129  * A cached value of the page's pageblock's migratetype, used when the page is
130  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132  * Also the migratetype set in the page does not necessarily match the pcplist
133  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134  * other index - this ensures that it will be put on the correct CMA freelist.
135  */
get_pcppage_migratetype(struct page * page)136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 	return page->index;
139 }
140 
set_pcppage_migratetype(struct page * page,int migratetype)141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 	page->index = migratetype;
144 }
145 
146 #ifdef CONFIG_PM_SLEEP
147 /*
148  * The following functions are used by the suspend/hibernate code to temporarily
149  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150  * while devices are suspended.  To avoid races with the suspend/hibernate code,
151  * they should always be called with pm_mutex held (gfp_allowed_mask also should
152  * only be modified with pm_mutex held, unless the suspend/hibernate code is
153  * guaranteed not to run in parallel with that modification).
154  */
155 
156 static gfp_t saved_gfp_mask;
157 
pm_restore_gfp_mask(void)158 void pm_restore_gfp_mask(void)
159 {
160 	WARN_ON(!mutex_is_locked(&pm_mutex));
161 	if (saved_gfp_mask) {
162 		gfp_allowed_mask = saved_gfp_mask;
163 		saved_gfp_mask = 0;
164 	}
165 }
166 
pm_restrict_gfp_mask(void)167 void pm_restrict_gfp_mask(void)
168 {
169 	WARN_ON(!mutex_is_locked(&pm_mutex));
170 	WARN_ON(saved_gfp_mask);
171 	saved_gfp_mask = gfp_allowed_mask;
172 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174 
pm_suspended_storage(void)175 bool pm_suspended_storage(void)
176 {
177 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 		return false;
179 	return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182 
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186 
187 static void __free_pages_ok(struct page *page, unsigned int order);
188 
189 /*
190  * results with 256, 32 in the lowmem_reserve sysctl:
191  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192  *	1G machine -> (16M dma, 784M normal, 224M high)
193  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196  *
197  * TBD: should special case ZONE_DMA32 machines here - in those we normally
198  * don't need any ZONE_NORMAL reservation
199  */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 	 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 	 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 	 32,
209 #endif
210 	 32,
211 };
212 
213 EXPORT_SYMBOL(totalram_pages);
214 
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 	 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 	 "DMA32",
221 #endif
222 	 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 	 "HighMem",
225 #endif
226 	 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 	 "Device",
229 #endif
230 };
231 
232 static void free_compound_page(struct page *page);
233 compound_page_dtor * const compound_page_dtors[] = {
234 	NULL,
235 	free_compound_page,
236 #ifdef CONFIG_HUGETLB_PAGE
237 	free_huge_page,
238 #endif
239 };
240 
241 int min_free_kbytes = 1024;
242 int user_min_free_kbytes = -1;
243 
244 static unsigned long __meminitdata nr_kernel_pages;
245 static unsigned long __meminitdata nr_all_pages;
246 static unsigned long __meminitdata dma_reserve;
247 
248 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
249 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
250 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
251 static unsigned long __initdata required_kernelcore;
252 static unsigned long __initdata required_movablecore;
253 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
254 
255 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
256 int movable_zone;
257 EXPORT_SYMBOL(movable_zone);
258 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
259 
260 #if MAX_NUMNODES > 1
261 int nr_node_ids __read_mostly = MAX_NUMNODES;
262 int nr_online_nodes __read_mostly = 1;
263 EXPORT_SYMBOL(nr_node_ids);
264 EXPORT_SYMBOL(nr_online_nodes);
265 #endif
266 
267 int page_group_by_mobility_disabled __read_mostly;
268 
269 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
reset_deferred_meminit(pg_data_t * pgdat)270 static inline void reset_deferred_meminit(pg_data_t *pgdat)
271 {
272 	pgdat->first_deferred_pfn = ULONG_MAX;
273 }
274 
275 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)276 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
277 {
278 	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
279 		return true;
280 
281 	return false;
282 }
283 
early_page_nid_uninitialised(unsigned long pfn,int nid)284 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
285 {
286 	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
287 		return true;
288 
289 	return false;
290 }
291 
292 /*
293  * Returns false when the remaining initialisation should be deferred until
294  * later in the boot cycle when it can be parallelised.
295  */
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)296 static inline bool update_defer_init(pg_data_t *pgdat,
297 				unsigned long pfn, unsigned long zone_end,
298 				unsigned long *nr_initialised)
299 {
300 	/* Always populate low zones for address-contrained allocations */
301 	if (zone_end < pgdat_end_pfn(pgdat))
302 		return true;
303 
304 	/* Initialise at least 2G of the highest zone */
305 	(*nr_initialised)++;
306 	if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
307 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
308 		pgdat->first_deferred_pfn = pfn;
309 		return false;
310 	}
311 
312 	return true;
313 }
314 #else
reset_deferred_meminit(pg_data_t * pgdat)315 static inline void reset_deferred_meminit(pg_data_t *pgdat)
316 {
317 }
318 
early_page_uninitialised(unsigned long pfn)319 static inline bool early_page_uninitialised(unsigned long pfn)
320 {
321 	return false;
322 }
323 
early_page_nid_uninitialised(unsigned long pfn,int nid)324 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
325 {
326 	return false;
327 }
328 
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)329 static inline bool update_defer_init(pg_data_t *pgdat,
330 				unsigned long pfn, unsigned long zone_end,
331 				unsigned long *nr_initialised)
332 {
333 	return true;
334 }
335 #endif
336 
337 
set_pageblock_migratetype(struct page * page,int migratetype)338 void set_pageblock_migratetype(struct page *page, int migratetype)
339 {
340 	if (unlikely(page_group_by_mobility_disabled &&
341 		     migratetype < MIGRATE_PCPTYPES))
342 		migratetype = MIGRATE_UNMOVABLE;
343 
344 	set_pageblock_flags_group(page, (unsigned long)migratetype,
345 					PB_migrate, PB_migrate_end);
346 }
347 
348 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)349 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
350 {
351 	int ret = 0;
352 	unsigned seq;
353 	unsigned long pfn = page_to_pfn(page);
354 	unsigned long sp, start_pfn;
355 
356 	do {
357 		seq = zone_span_seqbegin(zone);
358 		start_pfn = zone->zone_start_pfn;
359 		sp = zone->spanned_pages;
360 		if (!zone_spans_pfn(zone, pfn))
361 			ret = 1;
362 	} while (zone_span_seqretry(zone, seq));
363 
364 	if (ret)
365 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
366 			pfn, zone_to_nid(zone), zone->name,
367 			start_pfn, start_pfn + sp);
368 
369 	return ret;
370 }
371 
page_is_consistent(struct zone * zone,struct page * page)372 static int page_is_consistent(struct zone *zone, struct page *page)
373 {
374 	if (!pfn_valid_within(page_to_pfn(page)))
375 		return 0;
376 	if (zone != page_zone(page))
377 		return 0;
378 
379 	return 1;
380 }
381 /*
382  * Temporary debugging check for pages not lying within a given zone.
383  */
bad_range(struct zone * zone,struct page * page)384 static int bad_range(struct zone *zone, struct page *page)
385 {
386 	if (page_outside_zone_boundaries(zone, page))
387 		return 1;
388 	if (!page_is_consistent(zone, page))
389 		return 1;
390 
391 	return 0;
392 }
393 #else
bad_range(struct zone * zone,struct page * page)394 static inline int bad_range(struct zone *zone, struct page *page)
395 {
396 	return 0;
397 }
398 #endif
399 
bad_page(struct page * page,const char * reason,unsigned long bad_flags)400 static void bad_page(struct page *page, const char *reason,
401 		unsigned long bad_flags)
402 {
403 	static unsigned long resume;
404 	static unsigned long nr_shown;
405 	static unsigned long nr_unshown;
406 
407 	/* Don't complain about poisoned pages */
408 	if (PageHWPoison(page)) {
409 		page_mapcount_reset(page); /* remove PageBuddy */
410 		return;
411 	}
412 
413 	/*
414 	 * Allow a burst of 60 reports, then keep quiet for that minute;
415 	 * or allow a steady drip of one report per second.
416 	 */
417 	if (nr_shown == 60) {
418 		if (time_before(jiffies, resume)) {
419 			nr_unshown++;
420 			goto out;
421 		}
422 		if (nr_unshown) {
423 			printk(KERN_ALERT
424 			      "BUG: Bad page state: %lu messages suppressed\n",
425 				nr_unshown);
426 			nr_unshown = 0;
427 		}
428 		nr_shown = 0;
429 	}
430 	if (nr_shown++ == 0)
431 		resume = jiffies + 60 * HZ;
432 
433 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
434 		current->comm, page_to_pfn(page));
435 	dump_page_badflags(page, reason, bad_flags);
436 
437 	print_modules();
438 	dump_stack();
439 out:
440 	/* Leave bad fields for debug, except PageBuddy could make trouble */
441 	page_mapcount_reset(page); /* remove PageBuddy */
442 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
443 }
444 
445 /*
446  * Higher-order pages are called "compound pages".  They are structured thusly:
447  *
448  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
449  *
450  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
451  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
452  *
453  * The first tail page's ->compound_dtor holds the offset in array of compound
454  * page destructors. See compound_page_dtors.
455  *
456  * The first tail page's ->compound_order holds the order of allocation.
457  * This usage means that zero-order pages may not be compound.
458  */
459 
free_compound_page(struct page * page)460 static void free_compound_page(struct page *page)
461 {
462 	__free_pages_ok(page, compound_order(page));
463 }
464 
prep_compound_page(struct page * page,unsigned int order)465 void prep_compound_page(struct page *page, unsigned int order)
466 {
467 	int i;
468 	int nr_pages = 1 << order;
469 
470 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
471 	set_compound_order(page, order);
472 	__SetPageHead(page);
473 	for (i = 1; i < nr_pages; i++) {
474 		struct page *p = page + i;
475 		set_page_count(p, 0);
476 		set_compound_head(p, page);
477 	}
478 }
479 
480 #ifdef CONFIG_DEBUG_PAGEALLOC
481 unsigned int _debug_guardpage_minorder;
482 bool _debug_pagealloc_enabled __read_mostly;
483 bool _debug_guardpage_enabled __read_mostly;
484 
early_debug_pagealloc(char * buf)485 static int __init early_debug_pagealloc(char *buf)
486 {
487 	if (!buf)
488 		return -EINVAL;
489 
490 	if (strcmp(buf, "on") == 0)
491 		_debug_pagealloc_enabled = true;
492 
493 	return 0;
494 }
495 early_param("debug_pagealloc", early_debug_pagealloc);
496 
need_debug_guardpage(void)497 static bool need_debug_guardpage(void)
498 {
499 	/* If we don't use debug_pagealloc, we don't need guard page */
500 	if (!debug_pagealloc_enabled())
501 		return false;
502 
503 	return true;
504 }
505 
init_debug_guardpage(void)506 static void init_debug_guardpage(void)
507 {
508 	if (!debug_pagealloc_enabled())
509 		return;
510 
511 	_debug_guardpage_enabled = true;
512 }
513 
514 struct page_ext_operations debug_guardpage_ops = {
515 	.need = need_debug_guardpage,
516 	.init = init_debug_guardpage,
517 };
518 
debug_guardpage_minorder_setup(char * buf)519 static int __init debug_guardpage_minorder_setup(char *buf)
520 {
521 	unsigned long res;
522 
523 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
524 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
525 		return 0;
526 	}
527 	_debug_guardpage_minorder = res;
528 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
529 	return 0;
530 }
531 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
532 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)533 static inline void set_page_guard(struct zone *zone, struct page *page,
534 				unsigned int order, int migratetype)
535 {
536 	struct page_ext *page_ext;
537 
538 	if (!debug_guardpage_enabled())
539 		return;
540 
541 	page_ext = lookup_page_ext(page);
542 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
543 
544 	INIT_LIST_HEAD(&page->lru);
545 	set_page_private(page, order);
546 	/* Guard pages are not available for any usage */
547 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
548 }
549 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)550 static inline void clear_page_guard(struct zone *zone, struct page *page,
551 				unsigned int order, int migratetype)
552 {
553 	struct page_ext *page_ext;
554 
555 	if (!debug_guardpage_enabled())
556 		return;
557 
558 	page_ext = lookup_page_ext(page);
559 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
560 
561 	set_page_private(page, 0);
562 	if (!is_migrate_isolate(migratetype))
563 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
564 }
565 #else
566 struct page_ext_operations debug_guardpage_ops = { NULL, };
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)567 static inline void set_page_guard(struct zone *zone, struct page *page,
568 				unsigned int order, int migratetype) {}
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)569 static inline void clear_page_guard(struct zone *zone, struct page *page,
570 				unsigned int order, int migratetype) {}
571 #endif
572 
set_page_order(struct page * page,unsigned int order)573 static inline void set_page_order(struct page *page, unsigned int order)
574 {
575 	set_page_private(page, order);
576 	__SetPageBuddy(page);
577 }
578 
rmv_page_order(struct page * page)579 static inline void rmv_page_order(struct page *page)
580 {
581 	__ClearPageBuddy(page);
582 	set_page_private(page, 0);
583 }
584 
585 /*
586  * This function checks whether a page is free && is the buddy
587  * we can do coalesce a page and its buddy if
588  * (a) the buddy is not in a hole &&
589  * (b) the buddy is in the buddy system &&
590  * (c) a page and its buddy have the same order &&
591  * (d) a page and its buddy are in the same zone.
592  *
593  * For recording whether a page is in the buddy system, we set ->_mapcount
594  * PAGE_BUDDY_MAPCOUNT_VALUE.
595  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
596  * serialized by zone->lock.
597  *
598  * For recording page's order, we use page_private(page).
599  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)600 static inline int page_is_buddy(struct page *page, struct page *buddy,
601 							unsigned int order)
602 {
603 	if (!pfn_valid_within(page_to_pfn(buddy)))
604 		return 0;
605 
606 	if (page_is_guard(buddy) && page_order(buddy) == order) {
607 		if (page_zone_id(page) != page_zone_id(buddy))
608 			return 0;
609 
610 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
611 
612 		return 1;
613 	}
614 
615 	if (PageBuddy(buddy) && page_order(buddy) == order) {
616 		/*
617 		 * zone check is done late to avoid uselessly
618 		 * calculating zone/node ids for pages that could
619 		 * never merge.
620 		 */
621 		if (page_zone_id(page) != page_zone_id(buddy))
622 			return 0;
623 
624 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
625 
626 		return 1;
627 	}
628 	return 0;
629 }
630 
631 /*
632  * Freeing function for a buddy system allocator.
633  *
634  * The concept of a buddy system is to maintain direct-mapped table
635  * (containing bit values) for memory blocks of various "orders".
636  * The bottom level table contains the map for the smallest allocatable
637  * units of memory (here, pages), and each level above it describes
638  * pairs of units from the levels below, hence, "buddies".
639  * At a high level, all that happens here is marking the table entry
640  * at the bottom level available, and propagating the changes upward
641  * as necessary, plus some accounting needed to play nicely with other
642  * parts of the VM system.
643  * At each level, we keep a list of pages, which are heads of continuous
644  * free pages of length of (1 << order) and marked with _mapcount
645  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
646  * field.
647  * So when we are allocating or freeing one, we can derive the state of the
648  * other.  That is, if we allocate a small block, and both were
649  * free, the remainder of the region must be split into blocks.
650  * If a block is freed, and its buddy is also free, then this
651  * triggers coalescing into a block of larger size.
652  *
653  * -- nyc
654  */
655 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)656 static inline void __free_one_page(struct page *page,
657 		unsigned long pfn,
658 		struct zone *zone, unsigned int order,
659 		int migratetype)
660 {
661 	unsigned long page_idx;
662 	unsigned long combined_idx;
663 	unsigned long uninitialized_var(buddy_idx);
664 	struct page *buddy;
665 	unsigned int max_order;
666 
667 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
668 
669 	VM_BUG_ON(!zone_is_initialized(zone));
670 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
671 
672 	VM_BUG_ON(migratetype == -1);
673 	if (likely(!is_migrate_isolate(migratetype)))
674 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
675 
676 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
677 
678 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
679 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
680 
681 continue_merging:
682 	while (order < max_order - 1) {
683 		buddy_idx = __find_buddy_index(page_idx, order);
684 		buddy = page + (buddy_idx - page_idx);
685 		if (!page_is_buddy(page, buddy, order))
686 			goto done_merging;
687 		/*
688 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
689 		 * merge with it and move up one order.
690 		 */
691 		if (page_is_guard(buddy)) {
692 			clear_page_guard(zone, buddy, order, migratetype);
693 		} else {
694 			list_del(&buddy->lru);
695 			zone->free_area[order].nr_free--;
696 			rmv_page_order(buddy);
697 		}
698 		combined_idx = buddy_idx & page_idx;
699 		page = page + (combined_idx - page_idx);
700 		page_idx = combined_idx;
701 		order++;
702 	}
703 	if (max_order < MAX_ORDER) {
704 		/* If we are here, it means order is >= pageblock_order.
705 		 * We want to prevent merge between freepages on isolate
706 		 * pageblock and normal pageblock. Without this, pageblock
707 		 * isolation could cause incorrect freepage or CMA accounting.
708 		 *
709 		 * We don't want to hit this code for the more frequent
710 		 * low-order merging.
711 		 */
712 		if (unlikely(has_isolate_pageblock(zone))) {
713 			int buddy_mt;
714 
715 			buddy_idx = __find_buddy_index(page_idx, order);
716 			buddy = page + (buddy_idx - page_idx);
717 			buddy_mt = get_pageblock_migratetype(buddy);
718 
719 			if (migratetype != buddy_mt
720 					&& (is_migrate_isolate(migratetype) ||
721 						is_migrate_isolate(buddy_mt)))
722 				goto done_merging;
723 		}
724 		max_order++;
725 		goto continue_merging;
726 	}
727 
728 done_merging:
729 	set_page_order(page, order);
730 
731 	/*
732 	 * If this is not the largest possible page, check if the buddy
733 	 * of the next-highest order is free. If it is, it's possible
734 	 * that pages are being freed that will coalesce soon. In case,
735 	 * that is happening, add the free page to the tail of the list
736 	 * so it's less likely to be used soon and more likely to be merged
737 	 * as a higher order page
738 	 */
739 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
740 		struct page *higher_page, *higher_buddy;
741 		combined_idx = buddy_idx & page_idx;
742 		higher_page = page + (combined_idx - page_idx);
743 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
744 		higher_buddy = higher_page + (buddy_idx - combined_idx);
745 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
746 			list_add_tail(&page->lru,
747 				&zone->free_area[order].free_list[migratetype]);
748 			goto out;
749 		}
750 	}
751 
752 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
753 out:
754 	zone->free_area[order].nr_free++;
755 }
756 
free_pages_check(struct page * page)757 static inline int free_pages_check(struct page *page)
758 {
759 	const char *bad_reason = NULL;
760 	unsigned long bad_flags = 0;
761 
762 	if (unlikely(page_mapcount(page)))
763 		bad_reason = "nonzero mapcount";
764 	if (unlikely(page->mapping != NULL))
765 		bad_reason = "non-NULL mapping";
766 	if (unlikely(atomic_read(&page->_count) != 0))
767 		bad_reason = "nonzero _count";
768 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
769 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
770 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
771 	}
772 #ifdef CONFIG_MEMCG
773 	if (unlikely(page->mem_cgroup))
774 		bad_reason = "page still charged to cgroup";
775 #endif
776 	if (unlikely(bad_reason)) {
777 		bad_page(page, bad_reason, bad_flags);
778 		return 1;
779 	}
780 	page_cpupid_reset_last(page);
781 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
782 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
783 	return 0;
784 }
785 
786 /*
787  * Frees a number of pages from the PCP lists
788  * Assumes all pages on list are in same zone, and of same order.
789  * count is the number of pages to free.
790  *
791  * If the zone was previously in an "all pages pinned" state then look to
792  * see if this freeing clears that state.
793  *
794  * And clear the zone's pages_scanned counter, to hold off the "all pages are
795  * pinned" detection logic.
796  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)797 static void free_pcppages_bulk(struct zone *zone, int count,
798 					struct per_cpu_pages *pcp)
799 {
800 	int migratetype = 0;
801 	int batch_free = 0;
802 	int to_free = count;
803 	unsigned long nr_scanned;
804 
805 	spin_lock(&zone->lock);
806 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
807 	if (nr_scanned)
808 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
809 
810 	while (to_free) {
811 		struct page *page;
812 		struct list_head *list;
813 
814 		/*
815 		 * Remove pages from lists in a round-robin fashion. A
816 		 * batch_free count is maintained that is incremented when an
817 		 * empty list is encountered.  This is so more pages are freed
818 		 * off fuller lists instead of spinning excessively around empty
819 		 * lists
820 		 */
821 		do {
822 			batch_free++;
823 			if (++migratetype == MIGRATE_PCPTYPES)
824 				migratetype = 0;
825 			list = &pcp->lists[migratetype];
826 		} while (list_empty(list));
827 
828 		/* This is the only non-empty list. Free them all. */
829 		if (batch_free == MIGRATE_PCPTYPES)
830 			batch_free = to_free;
831 
832 		do {
833 			int mt;	/* migratetype of the to-be-freed page */
834 
835 			page = list_entry(list->prev, struct page, lru);
836 			/* must delete as __free_one_page list manipulates */
837 			list_del(&page->lru);
838 
839 			mt = get_pcppage_migratetype(page);
840 			/* MIGRATE_ISOLATE page should not go to pcplists */
841 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
842 			/* Pageblock could have been isolated meanwhile */
843 			if (unlikely(has_isolate_pageblock(zone)))
844 				mt = get_pageblock_migratetype(page);
845 
846 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
847 			trace_mm_page_pcpu_drain(page, 0, mt);
848 		} while (--to_free && --batch_free && !list_empty(list));
849 	}
850 	spin_unlock(&zone->lock);
851 }
852 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)853 static void free_one_page(struct zone *zone,
854 				struct page *page, unsigned long pfn,
855 				unsigned int order,
856 				int migratetype)
857 {
858 	unsigned long nr_scanned;
859 	spin_lock(&zone->lock);
860 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
861 	if (nr_scanned)
862 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
863 
864 	if (unlikely(has_isolate_pageblock(zone) ||
865 		is_migrate_isolate(migratetype))) {
866 		migratetype = get_pfnblock_migratetype(page, pfn);
867 	}
868 	__free_one_page(page, pfn, zone, order, migratetype);
869 	spin_unlock(&zone->lock);
870 }
871 
free_tail_pages_check(struct page * head_page,struct page * page)872 static int free_tail_pages_check(struct page *head_page, struct page *page)
873 {
874 	int ret = 1;
875 
876 	/*
877 	 * We rely page->lru.next never has bit 0 set, unless the page
878 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
879 	 */
880 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
881 
882 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
883 		ret = 0;
884 		goto out;
885 	}
886 	if (unlikely(!PageTail(page))) {
887 		bad_page(page, "PageTail not set", 0);
888 		goto out;
889 	}
890 	if (unlikely(compound_head(page) != head_page)) {
891 		bad_page(page, "compound_head not consistent", 0);
892 		goto out;
893 	}
894 	ret = 0;
895 out:
896 	clear_compound_head(page);
897 	return ret;
898 }
899 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)900 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
901 				unsigned long zone, int nid)
902 {
903 	set_page_links(page, zone, nid, pfn);
904 	init_page_count(page);
905 	page_mapcount_reset(page);
906 	page_cpupid_reset_last(page);
907 
908 	INIT_LIST_HEAD(&page->lru);
909 #ifdef WANT_PAGE_VIRTUAL
910 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
911 	if (!is_highmem_idx(zone))
912 		set_page_address(page, __va(pfn << PAGE_SHIFT));
913 #endif
914 }
915 
__init_single_pfn(unsigned long pfn,unsigned long zone,int nid)916 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
917 					int nid)
918 {
919 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
920 }
921 
922 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)923 static void init_reserved_page(unsigned long pfn)
924 {
925 	pg_data_t *pgdat;
926 	int nid, zid;
927 
928 	if (!early_page_uninitialised(pfn))
929 		return;
930 
931 	nid = early_pfn_to_nid(pfn);
932 	pgdat = NODE_DATA(nid);
933 
934 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
935 		struct zone *zone = &pgdat->node_zones[zid];
936 
937 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
938 			break;
939 	}
940 	__init_single_pfn(pfn, zid, nid);
941 }
942 #else
init_reserved_page(unsigned long pfn)943 static inline void init_reserved_page(unsigned long pfn)
944 {
945 }
946 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
947 
948 /*
949  * Initialised pages do not have PageReserved set. This function is
950  * called for each range allocated by the bootmem allocator and
951  * marks the pages PageReserved. The remaining valid pages are later
952  * sent to the buddy page allocator.
953  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)954 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
955 {
956 	unsigned long start_pfn = PFN_DOWN(start);
957 	unsigned long end_pfn = PFN_UP(end);
958 
959 	for (; start_pfn < end_pfn; start_pfn++) {
960 		if (pfn_valid(start_pfn)) {
961 			struct page *page = pfn_to_page(start_pfn);
962 
963 			init_reserved_page(start_pfn);
964 
965 			/* Avoid false-positive PageTail() */
966 			INIT_LIST_HEAD(&page->lru);
967 
968 			SetPageReserved(page);
969 		}
970 	}
971 }
972 
free_pages_prepare(struct page * page,unsigned int order)973 static bool free_pages_prepare(struct page *page, unsigned int order)
974 {
975 	bool compound = PageCompound(page);
976 	int i, bad = 0;
977 
978 	VM_BUG_ON_PAGE(PageTail(page), page);
979 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
980 
981 	trace_mm_page_free(page, order);
982 	kmemcheck_free_shadow(page, order);
983 	kasan_free_pages(page, order);
984 
985 	if (PageAnon(page))
986 		page->mapping = NULL;
987 	bad += free_pages_check(page);
988 	for (i = 1; i < (1 << order); i++) {
989 		if (compound)
990 			bad += free_tail_pages_check(page, page + i);
991 		bad += free_pages_check(page + i);
992 	}
993 	if (bad)
994 		return false;
995 
996 	reset_page_owner(page, order);
997 
998 	if (!PageHighMem(page)) {
999 		debug_check_no_locks_freed(page_address(page),
1000 					   PAGE_SIZE << order);
1001 		debug_check_no_obj_freed(page_address(page),
1002 					   PAGE_SIZE << order);
1003 	}
1004 	arch_free_page(page, order);
1005 	kernel_map_pages(page, 1 << order, 0);
1006 
1007 	return true;
1008 }
1009 
__free_pages_ok(struct page * page,unsigned int order)1010 static void __free_pages_ok(struct page *page, unsigned int order)
1011 {
1012 	unsigned long flags;
1013 	int migratetype;
1014 	unsigned long pfn = page_to_pfn(page);
1015 
1016 	if (!free_pages_prepare(page, order))
1017 		return;
1018 
1019 	migratetype = get_pfnblock_migratetype(page, pfn);
1020 	local_irq_save(flags);
1021 	__count_vm_events(PGFREE, 1 << order);
1022 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1023 	local_irq_restore(flags);
1024 }
1025 
__free_pages_boot_core(struct page * page,unsigned long pfn,unsigned int order)1026 static void __init __free_pages_boot_core(struct page *page,
1027 					unsigned long pfn, unsigned int order)
1028 {
1029 	unsigned int nr_pages = 1 << order;
1030 	struct page *p = page;
1031 	unsigned int loop;
1032 
1033 	prefetchw(p);
1034 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1035 		prefetchw(p + 1);
1036 		__ClearPageReserved(p);
1037 		set_page_count(p, 0);
1038 	}
1039 	__ClearPageReserved(p);
1040 	set_page_count(p, 0);
1041 
1042 	page_zone(page)->managed_pages += nr_pages;
1043 	set_page_refcounted(page);
1044 	__free_pages(page, order);
1045 }
1046 
1047 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1048 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1049 
1050 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1051 
early_pfn_to_nid(unsigned long pfn)1052 int __meminit early_pfn_to_nid(unsigned long pfn)
1053 {
1054 	static DEFINE_SPINLOCK(early_pfn_lock);
1055 	int nid;
1056 
1057 	spin_lock(&early_pfn_lock);
1058 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1059 	if (nid < 0)
1060 		nid = 0;
1061 	spin_unlock(&early_pfn_lock);
1062 
1063 	return nid;
1064 }
1065 #endif
1066 
1067 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1068 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1069 					struct mminit_pfnnid_cache *state)
1070 {
1071 	int nid;
1072 
1073 	nid = __early_pfn_to_nid(pfn, state);
1074 	if (nid >= 0 && nid != node)
1075 		return false;
1076 	return true;
1077 }
1078 
1079 /* Only safe to use early in boot when initialisation is single-threaded */
early_pfn_in_nid(unsigned long pfn,int node)1080 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1081 {
1082 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1083 }
1084 
1085 #else
1086 
early_pfn_in_nid(unsigned long pfn,int node)1087 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1088 {
1089 	return true;
1090 }
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1091 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1092 					struct mminit_pfnnid_cache *state)
1093 {
1094 	return true;
1095 }
1096 #endif
1097 
1098 
__free_pages_bootmem(struct page * page,unsigned long pfn,unsigned int order)1099 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1100 							unsigned int order)
1101 {
1102 	if (early_page_uninitialised(pfn))
1103 		return;
1104 	return __free_pages_boot_core(page, pfn, order);
1105 }
1106 
1107 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(struct page * page,unsigned long pfn,int nr_pages)1108 static void __init deferred_free_range(struct page *page,
1109 					unsigned long pfn, int nr_pages)
1110 {
1111 	int i;
1112 
1113 	if (!page)
1114 		return;
1115 
1116 	/* Free a large naturally-aligned chunk if possible */
1117 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1118 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1119 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1120 		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
1121 		return;
1122 	}
1123 
1124 	for (i = 0; i < nr_pages; i++, page++, pfn++)
1125 		__free_pages_boot_core(page, pfn, 0);
1126 }
1127 
1128 /* Completion tracking for deferred_init_memmap() threads */
1129 static atomic_t pgdat_init_n_undone __initdata;
1130 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1131 
pgdat_init_report_one_done(void)1132 static inline void __init pgdat_init_report_one_done(void)
1133 {
1134 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1135 		complete(&pgdat_init_all_done_comp);
1136 }
1137 
1138 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1139 static int __init deferred_init_memmap(void *data)
1140 {
1141 	pg_data_t *pgdat = data;
1142 	int nid = pgdat->node_id;
1143 	struct mminit_pfnnid_cache nid_init_state = { };
1144 	unsigned long start = jiffies;
1145 	unsigned long nr_pages = 0;
1146 	unsigned long walk_start, walk_end;
1147 	int i, zid;
1148 	struct zone *zone;
1149 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1150 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1151 
1152 	if (first_init_pfn == ULONG_MAX) {
1153 		pgdat_init_report_one_done();
1154 		return 0;
1155 	}
1156 
1157 	/* Bind memory initialisation thread to a local node if possible */
1158 	if (!cpumask_empty(cpumask))
1159 		set_cpus_allowed_ptr(current, cpumask);
1160 
1161 	/* Sanity check boundaries */
1162 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1163 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1164 	pgdat->first_deferred_pfn = ULONG_MAX;
1165 
1166 	/* Only the highest zone is deferred so find it */
1167 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1168 		zone = pgdat->node_zones + zid;
1169 		if (first_init_pfn < zone_end_pfn(zone))
1170 			break;
1171 	}
1172 
1173 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1174 		unsigned long pfn, end_pfn;
1175 		struct page *page = NULL;
1176 		struct page *free_base_page = NULL;
1177 		unsigned long free_base_pfn = 0;
1178 		int nr_to_free = 0;
1179 
1180 		end_pfn = min(walk_end, zone_end_pfn(zone));
1181 		pfn = first_init_pfn;
1182 		if (pfn < walk_start)
1183 			pfn = walk_start;
1184 		if (pfn < zone->zone_start_pfn)
1185 			pfn = zone->zone_start_pfn;
1186 
1187 		for (; pfn < end_pfn; pfn++) {
1188 			if (!pfn_valid_within(pfn))
1189 				goto free_range;
1190 
1191 			/*
1192 			 * Ensure pfn_valid is checked every
1193 			 * MAX_ORDER_NR_PAGES for memory holes
1194 			 */
1195 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1196 				if (!pfn_valid(pfn)) {
1197 					page = NULL;
1198 					goto free_range;
1199 				}
1200 			}
1201 
1202 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1203 				page = NULL;
1204 				goto free_range;
1205 			}
1206 
1207 			/* Minimise pfn page lookups and scheduler checks */
1208 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1209 				page++;
1210 			} else {
1211 				nr_pages += nr_to_free;
1212 				deferred_free_range(free_base_page,
1213 						free_base_pfn, nr_to_free);
1214 				free_base_page = NULL;
1215 				free_base_pfn = nr_to_free = 0;
1216 
1217 				page = pfn_to_page(pfn);
1218 				cond_resched();
1219 			}
1220 
1221 			if (page->flags) {
1222 				VM_BUG_ON(page_zone(page) != zone);
1223 				goto free_range;
1224 			}
1225 
1226 			__init_single_page(page, pfn, zid, nid);
1227 			if (!free_base_page) {
1228 				free_base_page = page;
1229 				free_base_pfn = pfn;
1230 				nr_to_free = 0;
1231 			}
1232 			nr_to_free++;
1233 
1234 			/* Where possible, batch up pages for a single free */
1235 			continue;
1236 free_range:
1237 			/* Free the current block of pages to allocator */
1238 			nr_pages += nr_to_free;
1239 			deferred_free_range(free_base_page, free_base_pfn,
1240 								nr_to_free);
1241 			free_base_page = NULL;
1242 			free_base_pfn = nr_to_free = 0;
1243 		}
1244 
1245 		first_init_pfn = max(end_pfn, first_init_pfn);
1246 	}
1247 
1248 	/* Sanity check that the next zone really is unpopulated */
1249 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1250 
1251 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1252 					jiffies_to_msecs(jiffies - start));
1253 
1254 	pgdat_init_report_one_done();
1255 	return 0;
1256 }
1257 
page_alloc_init_late(void)1258 void __init page_alloc_init_late(void)
1259 {
1260 	int nid;
1261 
1262 	/* There will be num_node_state(N_MEMORY) threads */
1263 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1264 	for_each_node_state(nid, N_MEMORY) {
1265 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1266 	}
1267 
1268 	/* Block until all are initialised */
1269 	wait_for_completion(&pgdat_init_all_done_comp);
1270 
1271 	/* Reinit limits that are based on free pages after the kernel is up */
1272 	files_maxfiles_init();
1273 }
1274 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1275 
1276 #ifdef CONFIG_CMA
1277 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)1278 void __init init_cma_reserved_pageblock(struct page *page)
1279 {
1280 	unsigned i = pageblock_nr_pages;
1281 	struct page *p = page;
1282 
1283 	do {
1284 		__ClearPageReserved(p);
1285 		set_page_count(p, 0);
1286 	} while (++p, --i);
1287 
1288 	set_pageblock_migratetype(page, MIGRATE_CMA);
1289 
1290 	if (pageblock_order >= MAX_ORDER) {
1291 		i = pageblock_nr_pages;
1292 		p = page;
1293 		do {
1294 			set_page_refcounted(p);
1295 			__free_pages(p, MAX_ORDER - 1);
1296 			p += MAX_ORDER_NR_PAGES;
1297 		} while (i -= MAX_ORDER_NR_PAGES);
1298 	} else {
1299 		set_page_refcounted(page);
1300 		__free_pages(page, pageblock_order);
1301 	}
1302 
1303 	adjust_managed_page_count(page, pageblock_nr_pages);
1304 }
1305 #endif
1306 
1307 /*
1308  * The order of subdivision here is critical for the IO subsystem.
1309  * Please do not alter this order without good reasons and regression
1310  * testing. Specifically, as large blocks of memory are subdivided,
1311  * the order in which smaller blocks are delivered depends on the order
1312  * they're subdivided in this function. This is the primary factor
1313  * influencing the order in which pages are delivered to the IO
1314  * subsystem according to empirical testing, and this is also justified
1315  * by considering the behavior of a buddy system containing a single
1316  * large block of memory acted on by a series of small allocations.
1317  * This behavior is a critical factor in sglist merging's success.
1318  *
1319  * -- nyc
1320  */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)1321 static inline void expand(struct zone *zone, struct page *page,
1322 	int low, int high, struct free_area *area,
1323 	int migratetype)
1324 {
1325 	unsigned long size = 1 << high;
1326 
1327 	while (high > low) {
1328 		area--;
1329 		high--;
1330 		size >>= 1;
1331 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1332 
1333 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1334 			debug_guardpage_enabled() &&
1335 			high < debug_guardpage_minorder()) {
1336 			/*
1337 			 * Mark as guard pages (or page), that will allow to
1338 			 * merge back to allocator when buddy will be freed.
1339 			 * Corresponding page table entries will not be touched,
1340 			 * pages will stay not present in virtual address space
1341 			 */
1342 			set_page_guard(zone, &page[size], high, migratetype);
1343 			continue;
1344 		}
1345 		list_add(&page[size].lru, &area->free_list[migratetype]);
1346 		area->nr_free++;
1347 		set_page_order(&page[size], high);
1348 	}
1349 }
1350 
1351 /*
1352  * This page is about to be returned from the page allocator
1353  */
check_new_page(struct page * page)1354 static inline int check_new_page(struct page *page)
1355 {
1356 	const char *bad_reason = NULL;
1357 	unsigned long bad_flags = 0;
1358 
1359 	if (unlikely(page_mapcount(page)))
1360 		bad_reason = "nonzero mapcount";
1361 	if (unlikely(page->mapping != NULL))
1362 		bad_reason = "non-NULL mapping";
1363 	if (unlikely(atomic_read(&page->_count) != 0))
1364 		bad_reason = "nonzero _count";
1365 	if (unlikely(page->flags & __PG_HWPOISON)) {
1366 		bad_reason = "HWPoisoned (hardware-corrupted)";
1367 		bad_flags = __PG_HWPOISON;
1368 	}
1369 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1370 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1371 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1372 	}
1373 #ifdef CONFIG_MEMCG
1374 	if (unlikely(page->mem_cgroup))
1375 		bad_reason = "page still charged to cgroup";
1376 #endif
1377 	if (unlikely(bad_reason)) {
1378 		bad_page(page, bad_reason, bad_flags);
1379 		return 1;
1380 	}
1381 	return 0;
1382 }
1383 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,int alloc_flags)1384 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1385 								int alloc_flags)
1386 {
1387 	int i;
1388 
1389 	for (i = 0; i < (1 << order); i++) {
1390 		struct page *p = page + i;
1391 		if (unlikely(check_new_page(p)))
1392 			return 1;
1393 	}
1394 
1395 	set_page_private(page, 0);
1396 	set_page_refcounted(page);
1397 
1398 	arch_alloc_page(page, order);
1399 	kernel_map_pages(page, 1 << order, 1);
1400 	kasan_alloc_pages(page, order);
1401 
1402 	if (gfp_flags & __GFP_ZERO)
1403 		for (i = 0; i < (1 << order); i++)
1404 			clear_highpage(page + i);
1405 
1406 	if (order && (gfp_flags & __GFP_COMP))
1407 		prep_compound_page(page, order);
1408 
1409 	set_page_owner(page, order, gfp_flags);
1410 
1411 	/*
1412 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1413 	 * allocate the page. The expectation is that the caller is taking
1414 	 * steps that will free more memory. The caller should avoid the page
1415 	 * being used for !PFMEMALLOC purposes.
1416 	 */
1417 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1418 		set_page_pfmemalloc(page);
1419 	else
1420 		clear_page_pfmemalloc(page);
1421 
1422 	return 0;
1423 }
1424 
1425 /*
1426  * Go through the free lists for the given migratetype and remove
1427  * the smallest available page from the freelists
1428  */
1429 static inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1430 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1431 						int migratetype)
1432 {
1433 	unsigned int current_order;
1434 	struct free_area *area;
1435 	struct page *page;
1436 
1437 	/* Find a page of the appropriate size in the preferred list */
1438 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1439 		area = &(zone->free_area[current_order]);
1440 		if (list_empty(&area->free_list[migratetype]))
1441 			continue;
1442 
1443 		page = list_entry(area->free_list[migratetype].next,
1444 							struct page, lru);
1445 		list_del(&page->lru);
1446 		rmv_page_order(page);
1447 		area->nr_free--;
1448 		expand(zone, page, order, current_order, area, migratetype);
1449 		set_pcppage_migratetype(page, migratetype);
1450 		return page;
1451 	}
1452 
1453 	return NULL;
1454 }
1455 
1456 
1457 /*
1458  * This array describes the order lists are fallen back to when
1459  * the free lists for the desirable migrate type are depleted
1460  */
1461 static int fallbacks[MIGRATE_TYPES][4] = {
1462 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1463 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1464 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1465 #ifdef CONFIG_CMA
1466 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1467 #endif
1468 #ifdef CONFIG_MEMORY_ISOLATION
1469 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1470 #endif
1471 };
1472 
1473 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1474 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1475 					unsigned int order)
1476 {
1477 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1478 }
1479 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1480 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1481 					unsigned int order) { return NULL; }
1482 #endif
1483 
1484 /*
1485  * Move the free pages in a range to the free lists of the requested type.
1486  * Note that start_page and end_pages are not aligned on a pageblock
1487  * boundary. If alignment is required, use move_freepages_block()
1488  */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype)1489 int move_freepages(struct zone *zone,
1490 			  struct page *start_page, struct page *end_page,
1491 			  int migratetype)
1492 {
1493 	struct page *page;
1494 	unsigned int order;
1495 	int pages_moved = 0;
1496 
1497 #ifndef CONFIG_HOLES_IN_ZONE
1498 	/*
1499 	 * page_zone is not safe to call in this context when
1500 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1501 	 * anyway as we check zone boundaries in move_freepages_block().
1502 	 * Remove at a later date when no bug reports exist related to
1503 	 * grouping pages by mobility
1504 	 */
1505 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1506 #endif
1507 
1508 	for (page = start_page; page <= end_page;) {
1509 		/* Make sure we are not inadvertently changing nodes */
1510 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1511 
1512 		if (!pfn_valid_within(page_to_pfn(page))) {
1513 			page++;
1514 			continue;
1515 		}
1516 
1517 		if (!PageBuddy(page)) {
1518 			page++;
1519 			continue;
1520 		}
1521 
1522 		order = page_order(page);
1523 		list_move(&page->lru,
1524 			  &zone->free_area[order].free_list[migratetype]);
1525 		page += 1 << order;
1526 		pages_moved += 1 << order;
1527 	}
1528 
1529 	return pages_moved;
1530 }
1531 
move_freepages_block(struct zone * zone,struct page * page,int migratetype)1532 int move_freepages_block(struct zone *zone, struct page *page,
1533 				int migratetype)
1534 {
1535 	unsigned long start_pfn, end_pfn;
1536 	struct page *start_page, *end_page;
1537 
1538 	start_pfn = page_to_pfn(page);
1539 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1540 	start_page = pfn_to_page(start_pfn);
1541 	end_page = start_page + pageblock_nr_pages - 1;
1542 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1543 
1544 	/* Do not cross zone boundaries */
1545 	if (!zone_spans_pfn(zone, start_pfn))
1546 		start_page = page;
1547 	if (!zone_spans_pfn(zone, end_pfn))
1548 		return 0;
1549 
1550 	return move_freepages(zone, start_page, end_page, migratetype);
1551 }
1552 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1553 static void change_pageblock_range(struct page *pageblock_page,
1554 					int start_order, int migratetype)
1555 {
1556 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1557 
1558 	while (nr_pageblocks--) {
1559 		set_pageblock_migratetype(pageblock_page, migratetype);
1560 		pageblock_page += pageblock_nr_pages;
1561 	}
1562 }
1563 
1564 /*
1565  * When we are falling back to another migratetype during allocation, try to
1566  * steal extra free pages from the same pageblocks to satisfy further
1567  * allocations, instead of polluting multiple pageblocks.
1568  *
1569  * If we are stealing a relatively large buddy page, it is likely there will
1570  * be more free pages in the pageblock, so try to steal them all. For
1571  * reclaimable and unmovable allocations, we steal regardless of page size,
1572  * as fragmentation caused by those allocations polluting movable pageblocks
1573  * is worse than movable allocations stealing from unmovable and reclaimable
1574  * pageblocks.
1575  */
can_steal_fallback(unsigned int order,int start_mt)1576 static bool can_steal_fallback(unsigned int order, int start_mt)
1577 {
1578 	/*
1579 	 * Leaving this order check is intended, although there is
1580 	 * relaxed order check in next check. The reason is that
1581 	 * we can actually steal whole pageblock if this condition met,
1582 	 * but, below check doesn't guarantee it and that is just heuristic
1583 	 * so could be changed anytime.
1584 	 */
1585 	if (order >= pageblock_order)
1586 		return true;
1587 
1588 	if (order >= pageblock_order / 2 ||
1589 		start_mt == MIGRATE_RECLAIMABLE ||
1590 		start_mt == MIGRATE_UNMOVABLE ||
1591 		page_group_by_mobility_disabled)
1592 		return true;
1593 
1594 	return false;
1595 }
1596 
1597 /*
1598  * This function implements actual steal behaviour. If order is large enough,
1599  * we can steal whole pageblock. If not, we first move freepages in this
1600  * pageblock and check whether half of pages are moved or not. If half of
1601  * pages are moved, we can change migratetype of pageblock and permanently
1602  * use it's pages as requested migratetype in the future.
1603  */
steal_suitable_fallback(struct zone * zone,struct page * page,int start_type)1604 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1605 							  int start_type)
1606 {
1607 	unsigned int current_order = page_order(page);
1608 	int pages;
1609 
1610 	/* Take ownership for orders >= pageblock_order */
1611 	if (current_order >= pageblock_order) {
1612 		change_pageblock_range(page, current_order, start_type);
1613 		return;
1614 	}
1615 
1616 	pages = move_freepages_block(zone, page, start_type);
1617 
1618 	/* Claim the whole block if over half of it is free */
1619 	if (pages >= (1 << (pageblock_order-1)) ||
1620 			page_group_by_mobility_disabled)
1621 		set_pageblock_migratetype(page, start_type);
1622 }
1623 
1624 /*
1625  * Check whether there is a suitable fallback freepage with requested order.
1626  * If only_stealable is true, this function returns fallback_mt only if
1627  * we can steal other freepages all together. This would help to reduce
1628  * fragmentation due to mixed migratetype pages in one pageblock.
1629  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1630 int find_suitable_fallback(struct free_area *area, unsigned int order,
1631 			int migratetype, bool only_stealable, bool *can_steal)
1632 {
1633 	int i;
1634 	int fallback_mt;
1635 
1636 	if (area->nr_free == 0)
1637 		return -1;
1638 
1639 	*can_steal = false;
1640 	for (i = 0;; i++) {
1641 		fallback_mt = fallbacks[migratetype][i];
1642 		if (fallback_mt == MIGRATE_TYPES)
1643 			break;
1644 
1645 		if (list_empty(&area->free_list[fallback_mt]))
1646 			continue;
1647 
1648 		if (can_steal_fallback(order, migratetype))
1649 			*can_steal = true;
1650 
1651 		if (!only_stealable)
1652 			return fallback_mt;
1653 
1654 		if (*can_steal)
1655 			return fallback_mt;
1656 	}
1657 
1658 	return -1;
1659 }
1660 
1661 /*
1662  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1663  * there are no empty page blocks that contain a page with a suitable order
1664  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)1665 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1666 				unsigned int alloc_order)
1667 {
1668 	int mt;
1669 	unsigned long max_managed, flags;
1670 
1671 	/*
1672 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1673 	 * Check is race-prone but harmless.
1674 	 */
1675 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1676 	if (zone->nr_reserved_highatomic >= max_managed)
1677 		return;
1678 
1679 	spin_lock_irqsave(&zone->lock, flags);
1680 
1681 	/* Recheck the nr_reserved_highatomic limit under the lock */
1682 	if (zone->nr_reserved_highatomic >= max_managed)
1683 		goto out_unlock;
1684 
1685 	/* Yoink! */
1686 	mt = get_pageblock_migratetype(page);
1687 	if (mt != MIGRATE_HIGHATOMIC &&
1688 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1689 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1690 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1691 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1692 	}
1693 
1694 out_unlock:
1695 	spin_unlock_irqrestore(&zone->lock, flags);
1696 }
1697 
1698 /*
1699  * Used when an allocation is about to fail under memory pressure. This
1700  * potentially hurts the reliability of high-order allocations when under
1701  * intense memory pressure but failed atomic allocations should be easier
1702  * to recover from than an OOM.
1703  */
unreserve_highatomic_pageblock(const struct alloc_context * ac)1704 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1705 {
1706 	struct zonelist *zonelist = ac->zonelist;
1707 	unsigned long flags;
1708 	struct zoneref *z;
1709 	struct zone *zone;
1710 	struct page *page;
1711 	int order;
1712 
1713 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1714 								ac->nodemask) {
1715 		/* Preserve at least one pageblock */
1716 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1717 			continue;
1718 
1719 		spin_lock_irqsave(&zone->lock, flags);
1720 		for (order = 0; order < MAX_ORDER; order++) {
1721 			struct free_area *area = &(zone->free_area[order]);
1722 
1723 			if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1724 				continue;
1725 
1726 			page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1727 						struct page, lru);
1728 
1729 			/*
1730 			 * It should never happen but changes to locking could
1731 			 * inadvertently allow a per-cpu drain to add pages
1732 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1733 			 * and watch for underflows.
1734 			 */
1735 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1736 				zone->nr_reserved_highatomic);
1737 
1738 			/*
1739 			 * Convert to ac->migratetype and avoid the normal
1740 			 * pageblock stealing heuristics. Minimally, the caller
1741 			 * is doing the work and needs the pages. More
1742 			 * importantly, if the block was always converted to
1743 			 * MIGRATE_UNMOVABLE or another type then the number
1744 			 * of pageblocks that cannot be completely freed
1745 			 * may increase.
1746 			 */
1747 			set_pageblock_migratetype(page, ac->migratetype);
1748 			move_freepages_block(zone, page, ac->migratetype);
1749 			spin_unlock_irqrestore(&zone->lock, flags);
1750 			return;
1751 		}
1752 		spin_unlock_irqrestore(&zone->lock, flags);
1753 	}
1754 }
1755 
1756 /* Remove an element from the buddy allocator from the fallback list */
1757 static inline struct page *
__rmqueue_fallback(struct zone * zone,unsigned int order,int start_migratetype)1758 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1759 {
1760 	struct free_area *area;
1761 	unsigned int current_order;
1762 	struct page *page;
1763 	int fallback_mt;
1764 	bool can_steal;
1765 
1766 	/* Find the largest possible block of pages in the other list */
1767 	for (current_order = MAX_ORDER-1;
1768 				current_order >= order && current_order <= MAX_ORDER-1;
1769 				--current_order) {
1770 		area = &(zone->free_area[current_order]);
1771 		fallback_mt = find_suitable_fallback(area, current_order,
1772 				start_migratetype, false, &can_steal);
1773 		if (fallback_mt == -1)
1774 			continue;
1775 
1776 		page = list_entry(area->free_list[fallback_mt].next,
1777 						struct page, lru);
1778 		if (can_steal)
1779 			steal_suitable_fallback(zone, page, start_migratetype);
1780 
1781 		/* Remove the page from the freelists */
1782 		area->nr_free--;
1783 		list_del(&page->lru);
1784 		rmv_page_order(page);
1785 
1786 		expand(zone, page, order, current_order, area,
1787 					start_migratetype);
1788 		/*
1789 		 * The pcppage_migratetype may differ from pageblock's
1790 		 * migratetype depending on the decisions in
1791 		 * find_suitable_fallback(). This is OK as long as it does not
1792 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
1793 		 * fallback only via special __rmqueue_cma_fallback() function
1794 		 */
1795 		set_pcppage_migratetype(page, start_migratetype);
1796 
1797 		trace_mm_page_alloc_extfrag(page, order, current_order,
1798 			start_migratetype, fallback_mt);
1799 
1800 		return page;
1801 	}
1802 
1803 	return NULL;
1804 }
1805 
1806 /*
1807  * Do the hard work of removing an element from the buddy allocator.
1808  * Call me with the zone->lock already held.
1809  */
__rmqueue(struct zone * zone,unsigned int order,int migratetype,gfp_t gfp_flags)1810 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1811 				int migratetype, gfp_t gfp_flags)
1812 {
1813 	struct page *page;
1814 
1815 	page = __rmqueue_smallest(zone, order, migratetype);
1816 	if (unlikely(!page)) {
1817 		if (migratetype == MIGRATE_MOVABLE)
1818 			page = __rmqueue_cma_fallback(zone, order);
1819 
1820 		if (!page)
1821 			page = __rmqueue_fallback(zone, order, migratetype);
1822 	}
1823 
1824 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1825 	return page;
1826 }
1827 
1828 /*
1829  * Obtain a specified number of elements from the buddy allocator, all under
1830  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1831  * Returns the number of new pages which were placed at *list.
1832  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,bool cold)1833 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1834 			unsigned long count, struct list_head *list,
1835 			int migratetype, bool cold)
1836 {
1837 	int i;
1838 
1839 	spin_lock(&zone->lock);
1840 	for (i = 0; i < count; ++i) {
1841 		struct page *page = __rmqueue(zone, order, migratetype, 0);
1842 		if (unlikely(page == NULL))
1843 			break;
1844 
1845 		/*
1846 		 * Split buddy pages returned by expand() are received here
1847 		 * in physical page order. The page is added to the callers and
1848 		 * list and the list head then moves forward. From the callers
1849 		 * perspective, the linked list is ordered by page number in
1850 		 * some conditions. This is useful for IO devices that can
1851 		 * merge IO requests if the physical pages are ordered
1852 		 * properly.
1853 		 */
1854 		if (likely(!cold))
1855 			list_add(&page->lru, list);
1856 		else
1857 			list_add_tail(&page->lru, list);
1858 		list = &page->lru;
1859 		if (is_migrate_cma(get_pcppage_migratetype(page)))
1860 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1861 					      -(1 << order));
1862 	}
1863 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1864 	spin_unlock(&zone->lock);
1865 	return i;
1866 }
1867 
1868 #ifdef CONFIG_NUMA
1869 /*
1870  * Called from the vmstat counter updater to drain pagesets of this
1871  * currently executing processor on remote nodes after they have
1872  * expired.
1873  *
1874  * Note that this function must be called with the thread pinned to
1875  * a single processor.
1876  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)1877 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1878 {
1879 	unsigned long flags;
1880 	int to_drain, batch;
1881 
1882 	local_irq_save(flags);
1883 	batch = READ_ONCE(pcp->batch);
1884 	to_drain = min(pcp->count, batch);
1885 	if (to_drain > 0) {
1886 		free_pcppages_bulk(zone, to_drain, pcp);
1887 		pcp->count -= to_drain;
1888 	}
1889 	local_irq_restore(flags);
1890 }
1891 #endif
1892 
1893 /*
1894  * Drain pcplists of the indicated processor and zone.
1895  *
1896  * The processor must either be the current processor and the
1897  * thread pinned to the current processor or a processor that
1898  * is not online.
1899  */
drain_pages_zone(unsigned int cpu,struct zone * zone)1900 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1901 {
1902 	unsigned long flags;
1903 	struct per_cpu_pageset *pset;
1904 	struct per_cpu_pages *pcp;
1905 
1906 	local_irq_save(flags);
1907 	pset = per_cpu_ptr(zone->pageset, cpu);
1908 
1909 	pcp = &pset->pcp;
1910 	if (pcp->count) {
1911 		free_pcppages_bulk(zone, pcp->count, pcp);
1912 		pcp->count = 0;
1913 	}
1914 	local_irq_restore(flags);
1915 }
1916 
1917 /*
1918  * Drain pcplists of all zones on the indicated processor.
1919  *
1920  * The processor must either be the current processor and the
1921  * thread pinned to the current processor or a processor that
1922  * is not online.
1923  */
drain_pages(unsigned int cpu)1924 static void drain_pages(unsigned int cpu)
1925 {
1926 	struct zone *zone;
1927 
1928 	for_each_populated_zone(zone) {
1929 		drain_pages_zone(cpu, zone);
1930 	}
1931 }
1932 
1933 /*
1934  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1935  *
1936  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1937  * the single zone's pages.
1938  */
drain_local_pages(struct zone * zone)1939 void drain_local_pages(struct zone *zone)
1940 {
1941 	int cpu = smp_processor_id();
1942 
1943 	if (zone)
1944 		drain_pages_zone(cpu, zone);
1945 	else
1946 		drain_pages(cpu);
1947 }
1948 
1949 /*
1950  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1951  *
1952  * When zone parameter is non-NULL, spill just the single zone's pages.
1953  *
1954  * Note that this code is protected against sending an IPI to an offline
1955  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1956  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1957  * nothing keeps CPUs from showing up after we populated the cpumask and
1958  * before the call to on_each_cpu_mask().
1959  */
drain_all_pages(struct zone * zone)1960 void drain_all_pages(struct zone *zone)
1961 {
1962 	int cpu;
1963 
1964 	/*
1965 	 * Allocate in the BSS so we wont require allocation in
1966 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1967 	 */
1968 	static cpumask_t cpus_with_pcps;
1969 
1970 	/*
1971 	 * We don't care about racing with CPU hotplug event
1972 	 * as offline notification will cause the notified
1973 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1974 	 * disables preemption as part of its processing
1975 	 */
1976 	for_each_online_cpu(cpu) {
1977 		struct per_cpu_pageset *pcp;
1978 		struct zone *z;
1979 		bool has_pcps = false;
1980 
1981 		if (zone) {
1982 			pcp = per_cpu_ptr(zone->pageset, cpu);
1983 			if (pcp->pcp.count)
1984 				has_pcps = true;
1985 		} else {
1986 			for_each_populated_zone(z) {
1987 				pcp = per_cpu_ptr(z->pageset, cpu);
1988 				if (pcp->pcp.count) {
1989 					has_pcps = true;
1990 					break;
1991 				}
1992 			}
1993 		}
1994 
1995 		if (has_pcps)
1996 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1997 		else
1998 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1999 	}
2000 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2001 								zone, 1);
2002 }
2003 
2004 #ifdef CONFIG_HIBERNATION
2005 
mark_free_pages(struct zone * zone)2006 void mark_free_pages(struct zone *zone)
2007 {
2008 	unsigned long pfn, max_zone_pfn;
2009 	unsigned long flags;
2010 	unsigned int order, t;
2011 	struct list_head *curr;
2012 
2013 	if (zone_is_empty(zone))
2014 		return;
2015 
2016 	spin_lock_irqsave(&zone->lock, flags);
2017 
2018 	max_zone_pfn = zone_end_pfn(zone);
2019 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2020 		if (pfn_valid(pfn)) {
2021 			struct page *page = pfn_to_page(pfn);
2022 
2023 			if (!swsusp_page_is_forbidden(page))
2024 				swsusp_unset_page_free(page);
2025 		}
2026 
2027 	for_each_migratetype_order(order, t) {
2028 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
2029 			unsigned long i;
2030 
2031 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
2032 			for (i = 0; i < (1UL << order); i++)
2033 				swsusp_set_page_free(pfn_to_page(pfn + i));
2034 		}
2035 	}
2036 	spin_unlock_irqrestore(&zone->lock, flags);
2037 }
2038 #endif /* CONFIG_PM */
2039 
2040 /*
2041  * Free a 0-order page
2042  * cold == true ? free a cold page : free a hot page
2043  */
free_hot_cold_page(struct page * page,bool cold)2044 void free_hot_cold_page(struct page *page, bool cold)
2045 {
2046 	struct zone *zone = page_zone(page);
2047 	struct per_cpu_pages *pcp;
2048 	unsigned long flags;
2049 	unsigned long pfn = page_to_pfn(page);
2050 	int migratetype;
2051 
2052 	if (!free_pages_prepare(page, 0))
2053 		return;
2054 
2055 	migratetype = get_pfnblock_migratetype(page, pfn);
2056 	set_pcppage_migratetype(page, migratetype);
2057 	local_irq_save(flags);
2058 	__count_vm_event(PGFREE);
2059 
2060 	/*
2061 	 * We only track unmovable, reclaimable and movable on pcp lists.
2062 	 * Free ISOLATE pages back to the allocator because they are being
2063 	 * offlined but treat RESERVE as movable pages so we can get those
2064 	 * areas back if necessary. Otherwise, we may have to free
2065 	 * excessively into the page allocator
2066 	 */
2067 	if (migratetype >= MIGRATE_PCPTYPES) {
2068 		if (unlikely(is_migrate_isolate(migratetype))) {
2069 			free_one_page(zone, page, pfn, 0, migratetype);
2070 			goto out;
2071 		}
2072 		migratetype = MIGRATE_MOVABLE;
2073 	}
2074 
2075 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2076 	if (!cold)
2077 		list_add(&page->lru, &pcp->lists[migratetype]);
2078 	else
2079 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2080 	pcp->count++;
2081 	if (pcp->count >= pcp->high) {
2082 		unsigned long batch = READ_ONCE(pcp->batch);
2083 		free_pcppages_bulk(zone, batch, pcp);
2084 		pcp->count -= batch;
2085 	}
2086 
2087 out:
2088 	local_irq_restore(flags);
2089 }
2090 
2091 /*
2092  * Free a list of 0-order pages
2093  */
free_hot_cold_page_list(struct list_head * list,bool cold)2094 void free_hot_cold_page_list(struct list_head *list, bool cold)
2095 {
2096 	struct page *page, *next;
2097 
2098 	list_for_each_entry_safe(page, next, list, lru) {
2099 		trace_mm_page_free_batched(page, cold);
2100 		free_hot_cold_page(page, cold);
2101 	}
2102 }
2103 
2104 /*
2105  * split_page takes a non-compound higher-order page, and splits it into
2106  * n (1<<order) sub-pages: page[0..n]
2107  * Each sub-page must be freed individually.
2108  *
2109  * Note: this is probably too low level an operation for use in drivers.
2110  * Please consult with lkml before using this in your driver.
2111  */
split_page(struct page * page,unsigned int order)2112 void split_page(struct page *page, unsigned int order)
2113 {
2114 	int i;
2115 	gfp_t gfp_mask;
2116 
2117 	VM_BUG_ON_PAGE(PageCompound(page), page);
2118 	VM_BUG_ON_PAGE(!page_count(page), page);
2119 
2120 #ifdef CONFIG_KMEMCHECK
2121 	/*
2122 	 * Split shadow pages too, because free(page[0]) would
2123 	 * otherwise free the whole shadow.
2124 	 */
2125 	if (kmemcheck_page_is_tracked(page))
2126 		split_page(virt_to_page(page[0].shadow), order);
2127 #endif
2128 
2129 	gfp_mask = get_page_owner_gfp(page);
2130 	set_page_owner(page, 0, gfp_mask);
2131 	for (i = 1; i < (1 << order); i++) {
2132 		set_page_refcounted(page + i);
2133 		set_page_owner(page + i, 0, gfp_mask);
2134 	}
2135 }
2136 EXPORT_SYMBOL_GPL(split_page);
2137 
__isolate_free_page(struct page * page,unsigned int order)2138 int __isolate_free_page(struct page *page, unsigned int order)
2139 {
2140 	unsigned long watermark;
2141 	struct zone *zone;
2142 	int mt;
2143 
2144 	BUG_ON(!PageBuddy(page));
2145 
2146 	zone = page_zone(page);
2147 	mt = get_pageblock_migratetype(page);
2148 
2149 	if (!is_migrate_isolate(mt)) {
2150 		/* Obey watermarks as if the page was being allocated */
2151 		watermark = low_wmark_pages(zone) + (1 << order);
2152 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2153 			return 0;
2154 
2155 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2156 	}
2157 
2158 	/* Remove page from free list */
2159 	list_del(&page->lru);
2160 	zone->free_area[order].nr_free--;
2161 	rmv_page_order(page);
2162 
2163 	set_page_owner(page, order, __GFP_MOVABLE);
2164 
2165 	/* Set the pageblock if the isolated page is at least a pageblock */
2166 	if (order >= pageblock_order - 1) {
2167 		struct page *endpage = page + (1 << order) - 1;
2168 		for (; page < endpage; page += pageblock_nr_pages) {
2169 			int mt = get_pageblock_migratetype(page);
2170 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2171 				set_pageblock_migratetype(page,
2172 							  MIGRATE_MOVABLE);
2173 		}
2174 	}
2175 
2176 
2177 	return 1UL << order;
2178 }
2179 
2180 /*
2181  * Similar to split_page except the page is already free. As this is only
2182  * being used for migration, the migratetype of the block also changes.
2183  * As this is called with interrupts disabled, the caller is responsible
2184  * for calling arch_alloc_page() and kernel_map_page() after interrupts
2185  * are enabled.
2186  *
2187  * Note: this is probably too low level an operation for use in drivers.
2188  * Please consult with lkml before using this in your driver.
2189  */
split_free_page(struct page * page)2190 int split_free_page(struct page *page)
2191 {
2192 	unsigned int order;
2193 	int nr_pages;
2194 
2195 	order = page_order(page);
2196 
2197 	nr_pages = __isolate_free_page(page, order);
2198 	if (!nr_pages)
2199 		return 0;
2200 
2201 	/* Split into individual pages */
2202 	set_page_refcounted(page);
2203 	split_page(page, order);
2204 	return nr_pages;
2205 }
2206 
2207 /*
2208  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2209  */
2210 static inline
buffered_rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int alloc_flags,int migratetype)2211 struct page *buffered_rmqueue(struct zone *preferred_zone,
2212 			struct zone *zone, unsigned int order,
2213 			gfp_t gfp_flags, int alloc_flags, int migratetype)
2214 {
2215 	unsigned long flags;
2216 	struct page *page;
2217 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2218 
2219 	if (likely(order == 0)) {
2220 		struct per_cpu_pages *pcp;
2221 		struct list_head *list;
2222 
2223 		local_irq_save(flags);
2224 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
2225 		list = &pcp->lists[migratetype];
2226 		if (list_empty(list)) {
2227 			pcp->count += rmqueue_bulk(zone, 0,
2228 					pcp->batch, list,
2229 					migratetype, cold);
2230 			if (unlikely(list_empty(list)))
2231 				goto failed;
2232 		}
2233 
2234 		if (cold)
2235 			page = list_entry(list->prev, struct page, lru);
2236 		else
2237 			page = list_entry(list->next, struct page, lru);
2238 
2239 		list_del(&page->lru);
2240 		pcp->count--;
2241 	} else {
2242 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2243 			/*
2244 			 * __GFP_NOFAIL is not to be used in new code.
2245 			 *
2246 			 * All __GFP_NOFAIL callers should be fixed so that they
2247 			 * properly detect and handle allocation failures.
2248 			 *
2249 			 * We most definitely don't want callers attempting to
2250 			 * allocate greater than order-1 page units with
2251 			 * __GFP_NOFAIL.
2252 			 */
2253 			WARN_ON_ONCE(order > 1);
2254 		}
2255 		spin_lock_irqsave(&zone->lock, flags);
2256 
2257 		page = NULL;
2258 		if (alloc_flags & ALLOC_HARDER) {
2259 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2260 			if (page)
2261 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2262 		}
2263 		if (!page)
2264 			page = __rmqueue(zone, order, migratetype, gfp_flags);
2265 		spin_unlock(&zone->lock);
2266 		if (!page)
2267 			goto failed;
2268 		__mod_zone_freepage_state(zone, -(1 << order),
2269 					  get_pcppage_migratetype(page));
2270 	}
2271 
2272 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2273 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2274 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2275 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2276 
2277 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2278 	zone_statistics(preferred_zone, zone, gfp_flags);
2279 	local_irq_restore(flags);
2280 
2281 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2282 	return page;
2283 
2284 failed:
2285 	local_irq_restore(flags);
2286 	return NULL;
2287 }
2288 
2289 #ifdef CONFIG_FAIL_PAGE_ALLOC
2290 
2291 static struct {
2292 	struct fault_attr attr;
2293 
2294 	bool ignore_gfp_highmem;
2295 	bool ignore_gfp_reclaim;
2296 	u32 min_order;
2297 } fail_page_alloc = {
2298 	.attr = FAULT_ATTR_INITIALIZER,
2299 	.ignore_gfp_reclaim = true,
2300 	.ignore_gfp_highmem = true,
2301 	.min_order = 1,
2302 };
2303 
setup_fail_page_alloc(char * str)2304 static int __init setup_fail_page_alloc(char *str)
2305 {
2306 	return setup_fault_attr(&fail_page_alloc.attr, str);
2307 }
2308 __setup("fail_page_alloc=", setup_fail_page_alloc);
2309 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2310 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2311 {
2312 	if (order < fail_page_alloc.min_order)
2313 		return false;
2314 	if (gfp_mask & __GFP_NOFAIL)
2315 		return false;
2316 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2317 		return false;
2318 	if (fail_page_alloc.ignore_gfp_reclaim &&
2319 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2320 		return false;
2321 
2322 	return should_fail(&fail_page_alloc.attr, 1 << order);
2323 }
2324 
2325 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2326 
fail_page_alloc_debugfs(void)2327 static int __init fail_page_alloc_debugfs(void)
2328 {
2329 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2330 	struct dentry *dir;
2331 
2332 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2333 					&fail_page_alloc.attr);
2334 	if (IS_ERR(dir))
2335 		return PTR_ERR(dir);
2336 
2337 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2338 				&fail_page_alloc.ignore_gfp_reclaim))
2339 		goto fail;
2340 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2341 				&fail_page_alloc.ignore_gfp_highmem))
2342 		goto fail;
2343 	if (!debugfs_create_u32("min-order", mode, dir,
2344 				&fail_page_alloc.min_order))
2345 		goto fail;
2346 
2347 	return 0;
2348 fail:
2349 	debugfs_remove_recursive(dir);
2350 
2351 	return -ENOMEM;
2352 }
2353 
2354 late_initcall(fail_page_alloc_debugfs);
2355 
2356 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2357 
2358 #else /* CONFIG_FAIL_PAGE_ALLOC */
2359 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2360 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2361 {
2362 	return false;
2363 }
2364 
2365 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2366 
2367 /*
2368  * Return true if free base pages are above 'mark'. For high-order checks it
2369  * will return true of the order-0 watermark is reached and there is at least
2370  * one free page of a suitable size. Checking now avoids taking the zone lock
2371  * to check in the allocation paths if no pages are free.
2372  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags,long free_pages)2373 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2374 			unsigned long mark, int classzone_idx, int alloc_flags,
2375 			long free_pages)
2376 {
2377 	long min = mark;
2378 	int o;
2379 	const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2380 
2381 	/* free_pages may go negative - that's OK */
2382 	free_pages -= (1 << order) - 1;
2383 
2384 	if (alloc_flags & ALLOC_HIGH)
2385 		min -= min / 2;
2386 
2387 	/*
2388 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2389 	 * the high-atomic reserves. This will over-estimate the size of the
2390 	 * atomic reserve but it avoids a search.
2391 	 */
2392 	if (likely(!alloc_harder))
2393 		free_pages -= z->nr_reserved_highatomic;
2394 	else
2395 		min -= min / 4;
2396 
2397 #ifdef CONFIG_CMA
2398 	/* If allocation can't use CMA areas don't use free CMA pages */
2399 	if (!(alloc_flags & ALLOC_CMA))
2400 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2401 #endif
2402 
2403 	/*
2404 	 * Check watermarks for an order-0 allocation request. If these
2405 	 * are not met, then a high-order request also cannot go ahead
2406 	 * even if a suitable page happened to be free.
2407 	 */
2408 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2409 		return false;
2410 
2411 	/* If this is an order-0 request then the watermark is fine */
2412 	if (!order)
2413 		return true;
2414 
2415 	/* For a high-order request, check at least one suitable page is free */
2416 	for (o = order; o < MAX_ORDER; o++) {
2417 		struct free_area *area = &z->free_area[o];
2418 		int mt;
2419 
2420 		if (!area->nr_free)
2421 			continue;
2422 
2423 		if (alloc_harder)
2424 			return true;
2425 
2426 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2427 			if (!list_empty(&area->free_list[mt]))
2428 				return true;
2429 		}
2430 
2431 #ifdef CONFIG_CMA
2432 		if ((alloc_flags & ALLOC_CMA) &&
2433 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2434 			return true;
2435 		}
2436 #endif
2437 	}
2438 	return false;
2439 }
2440 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags)2441 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2442 		      int classzone_idx, int alloc_flags)
2443 {
2444 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2445 					zone_page_state(z, NR_FREE_PAGES));
2446 }
2447 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx)2448 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2449 			unsigned long mark, int classzone_idx)
2450 {
2451 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2452 
2453 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2454 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2455 
2456 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2457 								free_pages);
2458 }
2459 
2460 #ifdef CONFIG_NUMA
zone_local(struct zone * local_zone,struct zone * zone)2461 static bool zone_local(struct zone *local_zone, struct zone *zone)
2462 {
2463 	return local_zone->node == zone->node;
2464 }
2465 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)2466 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2467 {
2468 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2469 				RECLAIM_DISTANCE;
2470 }
2471 #else	/* CONFIG_NUMA */
zone_local(struct zone * local_zone,struct zone * zone)2472 static bool zone_local(struct zone *local_zone, struct zone *zone)
2473 {
2474 	return true;
2475 }
2476 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)2477 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2478 {
2479 	return true;
2480 }
2481 #endif	/* CONFIG_NUMA */
2482 
reset_alloc_batches(struct zone * preferred_zone)2483 static void reset_alloc_batches(struct zone *preferred_zone)
2484 {
2485 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2486 
2487 	do {
2488 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2489 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2490 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2491 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2492 	} while (zone++ != preferred_zone);
2493 }
2494 
2495 /*
2496  * get_page_from_freelist goes through the zonelist trying to allocate
2497  * a page.
2498  */
2499 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)2500 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2501 						const struct alloc_context *ac)
2502 {
2503 	struct zonelist *zonelist = ac->zonelist;
2504 	struct zoneref *z;
2505 	struct page *page = NULL;
2506 	struct zone *zone;
2507 	int nr_fair_skipped = 0;
2508 	bool zonelist_rescan;
2509 
2510 zonelist_scan:
2511 	zonelist_rescan = false;
2512 
2513 	/*
2514 	 * Scan zonelist, looking for a zone with enough free.
2515 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2516 	 */
2517 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2518 								ac->nodemask) {
2519 		unsigned long mark;
2520 
2521 		if (cpusets_enabled() &&
2522 			(alloc_flags & ALLOC_CPUSET) &&
2523 			!cpuset_zone_allowed(zone, gfp_mask))
2524 				continue;
2525 		/*
2526 		 * Distribute pages in proportion to the individual
2527 		 * zone size to ensure fair page aging.  The zone a
2528 		 * page was allocated in should have no effect on the
2529 		 * time the page has in memory before being reclaimed.
2530 		 */
2531 		if (alloc_flags & ALLOC_FAIR) {
2532 			if (!zone_local(ac->preferred_zone, zone))
2533 				break;
2534 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2535 				nr_fair_skipped++;
2536 				continue;
2537 			}
2538 		}
2539 		/*
2540 		 * When allocating a page cache page for writing, we
2541 		 * want to get it from a zone that is within its dirty
2542 		 * limit, such that no single zone holds more than its
2543 		 * proportional share of globally allowed dirty pages.
2544 		 * The dirty limits take into account the zone's
2545 		 * lowmem reserves and high watermark so that kswapd
2546 		 * should be able to balance it without having to
2547 		 * write pages from its LRU list.
2548 		 *
2549 		 * This may look like it could increase pressure on
2550 		 * lower zones by failing allocations in higher zones
2551 		 * before they are full.  But the pages that do spill
2552 		 * over are limited as the lower zones are protected
2553 		 * by this very same mechanism.  It should not become
2554 		 * a practical burden to them.
2555 		 *
2556 		 * XXX: For now, allow allocations to potentially
2557 		 * exceed the per-zone dirty limit in the slowpath
2558 		 * (spread_dirty_pages unset) before going into reclaim,
2559 		 * which is important when on a NUMA setup the allowed
2560 		 * zones are together not big enough to reach the
2561 		 * global limit.  The proper fix for these situations
2562 		 * will require awareness of zones in the
2563 		 * dirty-throttling and the flusher threads.
2564 		 */
2565 		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2566 			continue;
2567 
2568 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2569 		if (!zone_watermark_ok(zone, order, mark,
2570 				       ac->classzone_idx, alloc_flags)) {
2571 			int ret;
2572 
2573 			/* Checked here to keep the fast path fast */
2574 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2575 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2576 				goto try_this_zone;
2577 
2578 			if (zone_reclaim_mode == 0 ||
2579 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2580 				continue;
2581 
2582 			ret = zone_reclaim(zone, gfp_mask, order);
2583 			switch (ret) {
2584 			case ZONE_RECLAIM_NOSCAN:
2585 				/* did not scan */
2586 				continue;
2587 			case ZONE_RECLAIM_FULL:
2588 				/* scanned but unreclaimable */
2589 				continue;
2590 			default:
2591 				/* did we reclaim enough */
2592 				if (zone_watermark_ok(zone, order, mark,
2593 						ac->classzone_idx, alloc_flags))
2594 					goto try_this_zone;
2595 
2596 				continue;
2597 			}
2598 		}
2599 
2600 try_this_zone:
2601 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2602 				gfp_mask, alloc_flags, ac->migratetype);
2603 		if (page) {
2604 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2605 				goto try_this_zone;
2606 
2607 			/*
2608 			 * If this is a high-order atomic allocation then check
2609 			 * if the pageblock should be reserved for the future
2610 			 */
2611 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2612 				reserve_highatomic_pageblock(page, zone, order);
2613 
2614 			return page;
2615 		}
2616 	}
2617 
2618 	/*
2619 	 * The first pass makes sure allocations are spread fairly within the
2620 	 * local node.  However, the local node might have free pages left
2621 	 * after the fairness batches are exhausted, and remote zones haven't
2622 	 * even been considered yet.  Try once more without fairness, and
2623 	 * include remote zones now, before entering the slowpath and waking
2624 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2625 	 */
2626 	if (alloc_flags & ALLOC_FAIR) {
2627 		alloc_flags &= ~ALLOC_FAIR;
2628 		if (nr_fair_skipped) {
2629 			zonelist_rescan = true;
2630 			reset_alloc_batches(ac->preferred_zone);
2631 		}
2632 		if (nr_online_nodes > 1)
2633 			zonelist_rescan = true;
2634 	}
2635 
2636 	if (zonelist_rescan)
2637 		goto zonelist_scan;
2638 
2639 	return NULL;
2640 }
2641 
2642 /*
2643  * Large machines with many possible nodes should not always dump per-node
2644  * meminfo in irq context.
2645  */
should_suppress_show_mem(void)2646 static inline bool should_suppress_show_mem(void)
2647 {
2648 	bool ret = false;
2649 
2650 #if NODES_SHIFT > 8
2651 	ret = in_interrupt();
2652 #endif
2653 	return ret;
2654 }
2655 
2656 static DEFINE_RATELIMIT_STATE(nopage_rs,
2657 		DEFAULT_RATELIMIT_INTERVAL,
2658 		DEFAULT_RATELIMIT_BURST);
2659 
warn_alloc_failed(gfp_t gfp_mask,unsigned int order,const char * fmt,...)2660 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2661 {
2662 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2663 
2664 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2665 	    debug_guardpage_minorder() > 0)
2666 		return;
2667 
2668 	/*
2669 	 * This documents exceptions given to allocations in certain
2670 	 * contexts that are allowed to allocate outside current's set
2671 	 * of allowed nodes.
2672 	 */
2673 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2674 		if (test_thread_flag(TIF_MEMDIE) ||
2675 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2676 			filter &= ~SHOW_MEM_FILTER_NODES;
2677 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2678 		filter &= ~SHOW_MEM_FILTER_NODES;
2679 
2680 	if (fmt) {
2681 		struct va_format vaf;
2682 		va_list args;
2683 
2684 		va_start(args, fmt);
2685 
2686 		vaf.fmt = fmt;
2687 		vaf.va = &args;
2688 
2689 		pr_warn("%pV", &vaf);
2690 
2691 		va_end(args);
2692 	}
2693 
2694 	pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2695 		current->comm, order, gfp_mask);
2696 
2697 	dump_stack();
2698 	if (!should_suppress_show_mem())
2699 		show_mem(filter);
2700 }
2701 
2702 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)2703 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2704 	const struct alloc_context *ac, unsigned long *did_some_progress)
2705 {
2706 	struct oom_control oc = {
2707 		.zonelist = ac->zonelist,
2708 		.nodemask = ac->nodemask,
2709 		.gfp_mask = gfp_mask,
2710 		.order = order,
2711 	};
2712 	struct page *page;
2713 
2714 	*did_some_progress = 0;
2715 
2716 	/*
2717 	 * Acquire the oom lock.  If that fails, somebody else is
2718 	 * making progress for us.
2719 	 */
2720 	if (!mutex_trylock(&oom_lock)) {
2721 		*did_some_progress = 1;
2722 		schedule_timeout_uninterruptible(1);
2723 		return NULL;
2724 	}
2725 
2726 	/*
2727 	 * Go through the zonelist yet one more time, keep very high watermark
2728 	 * here, this is only to catch a parallel oom killing, we must fail if
2729 	 * we're still under heavy pressure.
2730 	 */
2731 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2732 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2733 	if (page)
2734 		goto out;
2735 
2736 	if (!(gfp_mask & __GFP_NOFAIL)) {
2737 		/* Coredumps can quickly deplete all memory reserves */
2738 		if (current->flags & PF_DUMPCORE)
2739 			goto out;
2740 		/* The OOM killer will not help higher order allocs */
2741 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2742 			goto out;
2743 		/* The OOM killer does not needlessly kill tasks for lowmem */
2744 		if (ac->high_zoneidx < ZONE_NORMAL)
2745 			goto out;
2746 		/* The OOM killer does not compensate for IO-less reclaim */
2747 		if (!(gfp_mask & __GFP_FS)) {
2748 			/*
2749 			 * XXX: Page reclaim didn't yield anything,
2750 			 * and the OOM killer can't be invoked, but
2751 			 * keep looping as per tradition.
2752 			 */
2753 			*did_some_progress = 1;
2754 			goto out;
2755 		}
2756 		if (pm_suspended_storage())
2757 			goto out;
2758 		/* The OOM killer may not free memory on a specific node */
2759 		if (gfp_mask & __GFP_THISNODE)
2760 			goto out;
2761 	}
2762 	/* Exhausted what can be done so it's blamo time */
2763 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2764 		*did_some_progress = 1;
2765 out:
2766 	mutex_unlock(&oom_lock);
2767 	return page;
2768 }
2769 
2770 #ifdef CONFIG_COMPACTION
2771 /* Try memory compaction for high-order allocations before reclaim */
2772 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended_compaction,bool * deferred_compaction)2773 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2774 		int alloc_flags, const struct alloc_context *ac,
2775 		enum migrate_mode mode, int *contended_compaction,
2776 		bool *deferred_compaction)
2777 {
2778 	unsigned long compact_result;
2779 	struct page *page;
2780 
2781 	if (!order)
2782 		return NULL;
2783 
2784 	current->flags |= PF_MEMALLOC;
2785 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2786 						mode, contended_compaction);
2787 	current->flags &= ~PF_MEMALLOC;
2788 
2789 	switch (compact_result) {
2790 	case COMPACT_DEFERRED:
2791 		*deferred_compaction = true;
2792 		/* fall-through */
2793 	case COMPACT_SKIPPED:
2794 		return NULL;
2795 	default:
2796 		break;
2797 	}
2798 
2799 	/*
2800 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2801 	 * count a compaction stall
2802 	 */
2803 	count_vm_event(COMPACTSTALL);
2804 
2805 	page = get_page_from_freelist(gfp_mask, order,
2806 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2807 
2808 	if (page) {
2809 		struct zone *zone = page_zone(page);
2810 
2811 		zone->compact_blockskip_flush = false;
2812 		compaction_defer_reset(zone, order, true);
2813 		count_vm_event(COMPACTSUCCESS);
2814 		return page;
2815 	}
2816 
2817 	/*
2818 	 * It's bad if compaction run occurs and fails. The most likely reason
2819 	 * is that pages exist, but not enough to satisfy watermarks.
2820 	 */
2821 	count_vm_event(COMPACTFAIL);
2822 
2823 	cond_resched();
2824 
2825 	return NULL;
2826 }
2827 #else
2828 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended_compaction,bool * deferred_compaction)2829 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2830 		int alloc_flags, const struct alloc_context *ac,
2831 		enum migrate_mode mode, int *contended_compaction,
2832 		bool *deferred_compaction)
2833 {
2834 	return NULL;
2835 }
2836 #endif /* CONFIG_COMPACTION */
2837 
2838 /* Perform direct synchronous page reclaim */
2839 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)2840 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2841 					const struct alloc_context *ac)
2842 {
2843 	struct reclaim_state reclaim_state;
2844 	int progress;
2845 
2846 	cond_resched();
2847 
2848 	/* We now go into synchronous reclaim */
2849 	cpuset_memory_pressure_bump();
2850 	current->flags |= PF_MEMALLOC;
2851 	lockdep_set_current_reclaim_state(gfp_mask);
2852 	reclaim_state.reclaimed_slab = 0;
2853 	current->reclaim_state = &reclaim_state;
2854 
2855 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2856 								ac->nodemask);
2857 
2858 	current->reclaim_state = NULL;
2859 	lockdep_clear_current_reclaim_state();
2860 	current->flags &= ~PF_MEMALLOC;
2861 
2862 	cond_resched();
2863 
2864 	return progress;
2865 }
2866 
2867 /* The really slow allocator path where we enter direct reclaim */
2868 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)2869 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2870 		int alloc_flags, const struct alloc_context *ac,
2871 		unsigned long *did_some_progress)
2872 {
2873 	struct page *page = NULL;
2874 	bool drained = false;
2875 
2876 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2877 	if (unlikely(!(*did_some_progress)))
2878 		return NULL;
2879 
2880 retry:
2881 	page = get_page_from_freelist(gfp_mask, order,
2882 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2883 
2884 	/*
2885 	 * If an allocation failed after direct reclaim, it could be because
2886 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
2887 	 * Shrink them them and try again
2888 	 */
2889 	if (!page && !drained) {
2890 		unreserve_highatomic_pageblock(ac);
2891 		drain_all_pages(NULL);
2892 		drained = true;
2893 		goto retry;
2894 	}
2895 
2896 	return page;
2897 }
2898 
2899 /*
2900  * This is called in the allocator slow-path if the allocation request is of
2901  * sufficient urgency to ignore watermarks and take other desperate measures
2902  */
2903 static inline struct page *
__alloc_pages_high_priority(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)2904 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2905 				const struct alloc_context *ac)
2906 {
2907 	struct page *page;
2908 
2909 	do {
2910 		page = get_page_from_freelist(gfp_mask, order,
2911 						ALLOC_NO_WATERMARKS, ac);
2912 
2913 		if (!page && gfp_mask & __GFP_NOFAIL)
2914 			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2915 									HZ/50);
2916 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2917 
2918 	return page;
2919 }
2920 
wake_all_kswapds(unsigned int order,const struct alloc_context * ac)2921 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2922 {
2923 	struct zoneref *z;
2924 	struct zone *zone;
2925 
2926 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2927 						ac->high_zoneidx, ac->nodemask)
2928 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2929 }
2930 
2931 static inline int
gfp_to_alloc_flags(gfp_t gfp_mask)2932 gfp_to_alloc_flags(gfp_t gfp_mask)
2933 {
2934 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2935 
2936 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2937 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2938 
2939 	/*
2940 	 * The caller may dip into page reserves a bit more if the caller
2941 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2942 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2943 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2944 	 */
2945 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2946 
2947 	if (gfp_mask & __GFP_ATOMIC) {
2948 		/*
2949 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2950 		 * if it can't schedule.
2951 		 */
2952 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2953 			alloc_flags |= ALLOC_HARDER;
2954 		/*
2955 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2956 		 * comment for __cpuset_node_allowed().
2957 		 */
2958 		alloc_flags &= ~ALLOC_CPUSET;
2959 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2960 		alloc_flags |= ALLOC_HARDER;
2961 
2962 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2963 		if (gfp_mask & __GFP_MEMALLOC)
2964 			alloc_flags |= ALLOC_NO_WATERMARKS;
2965 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2966 			alloc_flags |= ALLOC_NO_WATERMARKS;
2967 		else if (!in_interrupt() &&
2968 				((current->flags & PF_MEMALLOC) ||
2969 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2970 			alloc_flags |= ALLOC_NO_WATERMARKS;
2971 	}
2972 #ifdef CONFIG_CMA
2973 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2974 		alloc_flags |= ALLOC_CMA;
2975 #endif
2976 	return alloc_flags;
2977 }
2978 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)2979 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2980 {
2981 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2982 }
2983 
is_thp_gfp_mask(gfp_t gfp_mask)2984 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2985 {
2986 	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2987 }
2988 
2989 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)2990 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2991 						struct alloc_context *ac)
2992 {
2993 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
2994 	struct page *page = NULL;
2995 	int alloc_flags;
2996 	unsigned long pages_reclaimed = 0;
2997 	unsigned long did_some_progress;
2998 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2999 	bool deferred_compaction = false;
3000 	int contended_compaction = COMPACT_CONTENDED_NONE;
3001 
3002 	/*
3003 	 * In the slowpath, we sanity check order to avoid ever trying to
3004 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3005 	 * be using allocators in order of preference for an area that is
3006 	 * too large.
3007 	 */
3008 	if (order >= MAX_ORDER) {
3009 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3010 		return NULL;
3011 	}
3012 
3013 	/*
3014 	 * We also sanity check to catch abuse of atomic reserves being used by
3015 	 * callers that are not in atomic context.
3016 	 */
3017 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3018 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3019 		gfp_mask &= ~__GFP_ATOMIC;
3020 
3021 	/*
3022 	 * If this allocation cannot block and it is for a specific node, then
3023 	 * fail early.  There's no need to wakeup kswapd or retry for a
3024 	 * speculative node-specific allocation.
3025 	 */
3026 	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3027 		goto nopage;
3028 
3029 retry:
3030 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3031 		wake_all_kswapds(order, ac);
3032 
3033 	/*
3034 	 * OK, we're below the kswapd watermark and have kicked background
3035 	 * reclaim. Now things get more complex, so set up alloc_flags according
3036 	 * to how we want to proceed.
3037 	 */
3038 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3039 
3040 	/*
3041 	 * Find the true preferred zone if the allocation is unconstrained by
3042 	 * cpusets.
3043 	 */
3044 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3045 		struct zoneref *preferred_zoneref;
3046 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
3047 				ac->high_zoneidx, NULL, &ac->preferred_zone);
3048 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3049 	}
3050 
3051 	/* This is the last chance, in general, before the goto nopage. */
3052 	page = get_page_from_freelist(gfp_mask, order,
3053 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3054 	if (page)
3055 		goto got_pg;
3056 
3057 	/* Allocate without watermarks if the context allows */
3058 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3059 		/*
3060 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3061 		 * the allocation is high priority and these type of
3062 		 * allocations are system rather than user orientated
3063 		 */
3064 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3065 
3066 		page = __alloc_pages_high_priority(gfp_mask, order, ac);
3067 
3068 		if (page) {
3069 			goto got_pg;
3070 		}
3071 	}
3072 
3073 	/* Caller is not willing to reclaim, we can't balance anything */
3074 	if (!can_direct_reclaim) {
3075 		/*
3076 		 * All existing users of the deprecated __GFP_NOFAIL are
3077 		 * blockable, so warn of any new users that actually allow this
3078 		 * type of allocation to fail.
3079 		 */
3080 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3081 		goto nopage;
3082 	}
3083 
3084 	/* Avoid recursion of direct reclaim */
3085 	if (current->flags & PF_MEMALLOC)
3086 		goto nopage;
3087 
3088 	/* Avoid allocations with no watermarks from looping endlessly */
3089 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3090 		goto nopage;
3091 
3092 	/*
3093 	 * Try direct compaction. The first pass is asynchronous. Subsequent
3094 	 * attempts after direct reclaim are synchronous
3095 	 */
3096 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3097 					migration_mode,
3098 					&contended_compaction,
3099 					&deferred_compaction);
3100 	if (page)
3101 		goto got_pg;
3102 
3103 	/* Checks for THP-specific high-order allocations */
3104 	if (is_thp_gfp_mask(gfp_mask)) {
3105 		/*
3106 		 * If compaction is deferred for high-order allocations, it is
3107 		 * because sync compaction recently failed. If this is the case
3108 		 * and the caller requested a THP allocation, we do not want
3109 		 * to heavily disrupt the system, so we fail the allocation
3110 		 * instead of entering direct reclaim.
3111 		 */
3112 		if (deferred_compaction)
3113 			goto nopage;
3114 
3115 		/*
3116 		 * In all zones where compaction was attempted (and not
3117 		 * deferred or skipped), lock contention has been detected.
3118 		 * For THP allocation we do not want to disrupt the others
3119 		 * so we fallback to base pages instead.
3120 		 */
3121 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
3122 			goto nopage;
3123 
3124 		/*
3125 		 * If compaction was aborted due to need_resched(), we do not
3126 		 * want to further increase allocation latency, unless it is
3127 		 * khugepaged trying to collapse.
3128 		 */
3129 		if (contended_compaction == COMPACT_CONTENDED_SCHED
3130 			&& !(current->flags & PF_KTHREAD))
3131 			goto nopage;
3132 	}
3133 
3134 	/*
3135 	 * It can become very expensive to allocate transparent hugepages at
3136 	 * fault, so use asynchronous memory compaction for THP unless it is
3137 	 * khugepaged trying to collapse.
3138 	 */
3139 	if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3140 		migration_mode = MIGRATE_SYNC_LIGHT;
3141 
3142 	/* Try direct reclaim and then allocating */
3143 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3144 							&did_some_progress);
3145 	if (page)
3146 		goto got_pg;
3147 
3148 	/* Do not loop if specifically requested */
3149 	if (gfp_mask & __GFP_NORETRY)
3150 		goto noretry;
3151 
3152 	/* Keep reclaiming pages as long as there is reasonable progress */
3153 	pages_reclaimed += did_some_progress;
3154 	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3155 	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3156 		/* Wait for some write requests to complete then retry */
3157 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3158 		goto retry;
3159 	}
3160 
3161 	/* Reclaim has failed us, start killing things */
3162 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3163 	if (page)
3164 		goto got_pg;
3165 
3166 	/* Retry as long as the OOM killer is making progress */
3167 	if (did_some_progress)
3168 		goto retry;
3169 
3170 noretry:
3171 	/*
3172 	 * High-order allocations do not necessarily loop after
3173 	 * direct reclaim and reclaim/compaction depends on compaction
3174 	 * being called after reclaim so call directly if necessary
3175 	 */
3176 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3177 					    ac, migration_mode,
3178 					    &contended_compaction,
3179 					    &deferred_compaction);
3180 	if (page)
3181 		goto got_pg;
3182 nopage:
3183 	warn_alloc_failed(gfp_mask, order, NULL);
3184 got_pg:
3185 	return page;
3186 }
3187 
3188 /*
3189  * This is the 'heart' of the zoned buddy allocator.
3190  */
3191 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,nodemask_t * nodemask)3192 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3193 			struct zonelist *zonelist, nodemask_t *nodemask)
3194 {
3195 	struct zoneref *preferred_zoneref;
3196 	struct page *page = NULL;
3197 	unsigned int cpuset_mems_cookie;
3198 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3199 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3200 	struct alloc_context ac = {
3201 		.high_zoneidx = gfp_zone(gfp_mask),
3202 		.nodemask = nodemask,
3203 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3204 	};
3205 
3206 	gfp_mask &= gfp_allowed_mask;
3207 
3208 	lockdep_trace_alloc(gfp_mask);
3209 
3210 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3211 
3212 	if (should_fail_alloc_page(gfp_mask, order))
3213 		return NULL;
3214 
3215 	/*
3216 	 * Check the zones suitable for the gfp_mask contain at least one
3217 	 * valid zone. It's possible to have an empty zonelist as a result
3218 	 * of __GFP_THISNODE and a memoryless node
3219 	 */
3220 	if (unlikely(!zonelist->_zonerefs->zone))
3221 		return NULL;
3222 
3223 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3224 		alloc_flags |= ALLOC_CMA;
3225 
3226 retry_cpuset:
3227 	cpuset_mems_cookie = read_mems_allowed_begin();
3228 
3229 	/* We set it here, as __alloc_pages_slowpath might have changed it */
3230 	ac.zonelist = zonelist;
3231 
3232 	/* Dirty zone balancing only done in the fast path */
3233 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3234 
3235 	/* The preferred zone is used for statistics later */
3236 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3237 				ac.nodemask ? : &cpuset_current_mems_allowed,
3238 				&ac.preferred_zone);
3239 	if (!ac.preferred_zone)
3240 		goto out;
3241 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3242 
3243 	/* First allocation attempt */
3244 	alloc_mask = gfp_mask|__GFP_HARDWALL;
3245 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3246 	if (unlikely(!page)) {
3247 		/*
3248 		 * Runtime PM, block IO and its error handling path
3249 		 * can deadlock because I/O on the device might not
3250 		 * complete.
3251 		 */
3252 		alloc_mask = memalloc_noio_flags(gfp_mask);
3253 		ac.spread_dirty_pages = false;
3254 
3255 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3256 	}
3257 
3258 	if (kmemcheck_enabled && page)
3259 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3260 
3261 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3262 
3263 out:
3264 	/*
3265 	 * When updating a task's mems_allowed, it is possible to race with
3266 	 * parallel threads in such a way that an allocation can fail while
3267 	 * the mask is being updated. If a page allocation is about to fail,
3268 	 * check if the cpuset changed during allocation and if so, retry.
3269 	 */
3270 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3271 		goto retry_cpuset;
3272 
3273 	return page;
3274 }
3275 EXPORT_SYMBOL(__alloc_pages_nodemask);
3276 
3277 /*
3278  * Common helper functions.
3279  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)3280 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3281 {
3282 	struct page *page;
3283 
3284 	/*
3285 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3286 	 * a highmem page
3287 	 */
3288 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3289 
3290 	page = alloc_pages(gfp_mask, order);
3291 	if (!page)
3292 		return 0;
3293 	return (unsigned long) page_address(page);
3294 }
3295 EXPORT_SYMBOL(__get_free_pages);
3296 
get_zeroed_page(gfp_t gfp_mask)3297 unsigned long get_zeroed_page(gfp_t gfp_mask)
3298 {
3299 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3300 }
3301 EXPORT_SYMBOL(get_zeroed_page);
3302 
__free_pages(struct page * page,unsigned int order)3303 void __free_pages(struct page *page, unsigned int order)
3304 {
3305 	if (put_page_testzero(page)) {
3306 		if (order == 0)
3307 			free_hot_cold_page(page, false);
3308 		else
3309 			__free_pages_ok(page, order);
3310 	}
3311 }
3312 
3313 EXPORT_SYMBOL(__free_pages);
3314 
free_pages(unsigned long addr,unsigned int order)3315 void free_pages(unsigned long addr, unsigned int order)
3316 {
3317 	if (addr != 0) {
3318 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3319 		__free_pages(virt_to_page((void *)addr), order);
3320 	}
3321 }
3322 
3323 EXPORT_SYMBOL(free_pages);
3324 
3325 /*
3326  * Page Fragment:
3327  *  An arbitrary-length arbitrary-offset area of memory which resides
3328  *  within a 0 or higher order page.  Multiple fragments within that page
3329  *  are individually refcounted, in the page's reference counter.
3330  *
3331  * The page_frag functions below provide a simple allocation framework for
3332  * page fragments.  This is used by the network stack and network device
3333  * drivers to provide a backing region of memory for use as either an
3334  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3335  */
__page_frag_refill(struct page_frag_cache * nc,gfp_t gfp_mask)3336 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3337 				       gfp_t gfp_mask)
3338 {
3339 	struct page *page = NULL;
3340 	gfp_t gfp = gfp_mask;
3341 
3342 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3343 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3344 		    __GFP_NOMEMALLOC;
3345 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3346 				PAGE_FRAG_CACHE_MAX_ORDER);
3347 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3348 #endif
3349 	if (unlikely(!page))
3350 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3351 
3352 	nc->va = page ? page_address(page) : NULL;
3353 
3354 	return page;
3355 }
3356 
__alloc_page_frag(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)3357 void *__alloc_page_frag(struct page_frag_cache *nc,
3358 			unsigned int fragsz, gfp_t gfp_mask)
3359 {
3360 	unsigned int size = PAGE_SIZE;
3361 	struct page *page;
3362 	int offset;
3363 
3364 	if (unlikely(!nc->va)) {
3365 refill:
3366 		page = __page_frag_refill(nc, gfp_mask);
3367 		if (!page)
3368 			return NULL;
3369 
3370 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3371 		/* if size can vary use size else just use PAGE_SIZE */
3372 		size = nc->size;
3373 #endif
3374 		/* Even if we own the page, we do not use atomic_set().
3375 		 * This would break get_page_unless_zero() users.
3376 		 */
3377 		atomic_add(size - 1, &page->_count);
3378 
3379 		/* reset page count bias and offset to start of new frag */
3380 		nc->pfmemalloc = page_is_pfmemalloc(page);
3381 		nc->pagecnt_bias = size;
3382 		nc->offset = size;
3383 	}
3384 
3385 	offset = nc->offset - fragsz;
3386 	if (unlikely(offset < 0)) {
3387 		page = virt_to_page(nc->va);
3388 
3389 		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3390 			goto refill;
3391 
3392 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3393 		/* if size can vary use size else just use PAGE_SIZE */
3394 		size = nc->size;
3395 #endif
3396 		/* OK, page count is 0, we can safely set it */
3397 		atomic_set(&page->_count, size);
3398 
3399 		/* reset page count bias and offset to start of new frag */
3400 		nc->pagecnt_bias = size;
3401 		offset = size - fragsz;
3402 	}
3403 
3404 	nc->pagecnt_bias--;
3405 	nc->offset = offset;
3406 
3407 	return nc->va + offset;
3408 }
3409 EXPORT_SYMBOL(__alloc_page_frag);
3410 
3411 /*
3412  * Frees a page fragment allocated out of either a compound or order 0 page.
3413  */
__free_page_frag(void * addr)3414 void __free_page_frag(void *addr)
3415 {
3416 	struct page *page = virt_to_head_page(addr);
3417 
3418 	if (unlikely(put_page_testzero(page)))
3419 		__free_pages_ok(page, compound_order(page));
3420 }
3421 EXPORT_SYMBOL(__free_page_frag);
3422 
3423 /*
3424  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3425  * of the current memory cgroup.
3426  *
3427  * It should be used when the caller would like to use kmalloc, but since the
3428  * allocation is large, it has to fall back to the page allocator.
3429  */
alloc_kmem_pages(gfp_t gfp_mask,unsigned int order)3430 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3431 {
3432 	struct page *page;
3433 
3434 	page = alloc_pages(gfp_mask, order);
3435 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3436 		__free_pages(page, order);
3437 		page = NULL;
3438 	}
3439 	return page;
3440 }
3441 
alloc_kmem_pages_node(int nid,gfp_t gfp_mask,unsigned int order)3442 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3443 {
3444 	struct page *page;
3445 
3446 	page = alloc_pages_node(nid, gfp_mask, order);
3447 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3448 		__free_pages(page, order);
3449 		page = NULL;
3450 	}
3451 	return page;
3452 }
3453 
3454 /*
3455  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3456  * alloc_kmem_pages.
3457  */
__free_kmem_pages(struct page * page,unsigned int order)3458 void __free_kmem_pages(struct page *page, unsigned int order)
3459 {
3460 	memcg_kmem_uncharge(page, order);
3461 	__free_pages(page, order);
3462 }
3463 
free_kmem_pages(unsigned long addr,unsigned int order)3464 void free_kmem_pages(unsigned long addr, unsigned int order)
3465 {
3466 	if (addr != 0) {
3467 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3468 		__free_kmem_pages(virt_to_page((void *)addr), order);
3469 	}
3470 }
3471 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)3472 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3473 		size_t size)
3474 {
3475 	if (addr) {
3476 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3477 		unsigned long used = addr + PAGE_ALIGN(size);
3478 
3479 		split_page(virt_to_page((void *)addr), order);
3480 		while (used < alloc_end) {
3481 			free_page(used);
3482 			used += PAGE_SIZE;
3483 		}
3484 	}
3485 	return (void *)addr;
3486 }
3487 
3488 /**
3489  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3490  * @size: the number of bytes to allocate
3491  * @gfp_mask: GFP flags for the allocation
3492  *
3493  * This function is similar to alloc_pages(), except that it allocates the
3494  * minimum number of pages to satisfy the request.  alloc_pages() can only
3495  * allocate memory in power-of-two pages.
3496  *
3497  * This function is also limited by MAX_ORDER.
3498  *
3499  * Memory allocated by this function must be released by free_pages_exact().
3500  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)3501 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3502 {
3503 	unsigned int order = get_order(size);
3504 	unsigned long addr;
3505 
3506 	addr = __get_free_pages(gfp_mask, order);
3507 	return make_alloc_exact(addr, order, size);
3508 }
3509 EXPORT_SYMBOL(alloc_pages_exact);
3510 
3511 /**
3512  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3513  *			   pages on a node.
3514  * @nid: the preferred node ID where memory should be allocated
3515  * @size: the number of bytes to allocate
3516  * @gfp_mask: GFP flags for the allocation
3517  *
3518  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3519  * back.
3520  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)3521 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3522 {
3523 	unsigned int order = get_order(size);
3524 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3525 	if (!p)
3526 		return NULL;
3527 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3528 }
3529 
3530 /**
3531  * free_pages_exact - release memory allocated via alloc_pages_exact()
3532  * @virt: the value returned by alloc_pages_exact.
3533  * @size: size of allocation, same value as passed to alloc_pages_exact().
3534  *
3535  * Release the memory allocated by a previous call to alloc_pages_exact.
3536  */
free_pages_exact(void * virt,size_t size)3537 void free_pages_exact(void *virt, size_t size)
3538 {
3539 	unsigned long addr = (unsigned long)virt;
3540 	unsigned long end = addr + PAGE_ALIGN(size);
3541 
3542 	while (addr < end) {
3543 		free_page(addr);
3544 		addr += PAGE_SIZE;
3545 	}
3546 }
3547 EXPORT_SYMBOL(free_pages_exact);
3548 
3549 /**
3550  * nr_free_zone_pages - count number of pages beyond high watermark
3551  * @offset: The zone index of the highest zone
3552  *
3553  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3554  * high watermark within all zones at or below a given zone index.  For each
3555  * zone, the number of pages is calculated as:
3556  *     managed_pages - high_pages
3557  */
nr_free_zone_pages(int offset)3558 static unsigned long nr_free_zone_pages(int offset)
3559 {
3560 	struct zoneref *z;
3561 	struct zone *zone;
3562 
3563 	/* Just pick one node, since fallback list is circular */
3564 	unsigned long sum = 0;
3565 
3566 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3567 
3568 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3569 		unsigned long size = zone->managed_pages;
3570 		unsigned long high = high_wmark_pages(zone);
3571 		if (size > high)
3572 			sum += size - high;
3573 	}
3574 
3575 	return sum;
3576 }
3577 
3578 /**
3579  * nr_free_buffer_pages - count number of pages beyond high watermark
3580  *
3581  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3582  * watermark within ZONE_DMA and ZONE_NORMAL.
3583  */
nr_free_buffer_pages(void)3584 unsigned long nr_free_buffer_pages(void)
3585 {
3586 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3587 }
3588 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3589 
3590 /**
3591  * nr_free_pagecache_pages - count number of pages beyond high watermark
3592  *
3593  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3594  * high watermark within all zones.
3595  */
nr_free_pagecache_pages(void)3596 unsigned long nr_free_pagecache_pages(void)
3597 {
3598 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3599 }
3600 
show_node(struct zone * zone)3601 static inline void show_node(struct zone *zone)
3602 {
3603 	if (IS_ENABLED(CONFIG_NUMA))
3604 		printk("Node %d ", zone_to_nid(zone));
3605 }
3606 
si_meminfo(struct sysinfo * val)3607 void si_meminfo(struct sysinfo *val)
3608 {
3609 	val->totalram = totalram_pages;
3610 	val->sharedram = global_page_state(NR_SHMEM);
3611 	val->freeram = global_page_state(NR_FREE_PAGES);
3612 	val->bufferram = nr_blockdev_pages();
3613 	val->totalhigh = totalhigh_pages;
3614 	val->freehigh = nr_free_highpages();
3615 	val->mem_unit = PAGE_SIZE;
3616 }
3617 
3618 EXPORT_SYMBOL(si_meminfo);
3619 
3620 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)3621 void si_meminfo_node(struct sysinfo *val, int nid)
3622 {
3623 	int zone_type;		/* needs to be signed */
3624 	unsigned long managed_pages = 0;
3625 	pg_data_t *pgdat = NODE_DATA(nid);
3626 
3627 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3628 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3629 	val->totalram = managed_pages;
3630 	val->sharedram = node_page_state(nid, NR_SHMEM);
3631 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3632 #ifdef CONFIG_HIGHMEM
3633 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3634 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3635 			NR_FREE_PAGES);
3636 #else
3637 	val->totalhigh = 0;
3638 	val->freehigh = 0;
3639 #endif
3640 	val->mem_unit = PAGE_SIZE;
3641 }
3642 #endif
3643 
3644 /*
3645  * Determine whether the node should be displayed or not, depending on whether
3646  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3647  */
skip_free_areas_node(unsigned int flags,int nid)3648 bool skip_free_areas_node(unsigned int flags, int nid)
3649 {
3650 	bool ret = false;
3651 	unsigned int cpuset_mems_cookie;
3652 
3653 	if (!(flags & SHOW_MEM_FILTER_NODES))
3654 		goto out;
3655 
3656 	do {
3657 		cpuset_mems_cookie = read_mems_allowed_begin();
3658 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3659 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3660 out:
3661 	return ret;
3662 }
3663 
3664 #define K(x) ((x) << (PAGE_SHIFT-10))
3665 
show_migration_types(unsigned char type)3666 static void show_migration_types(unsigned char type)
3667 {
3668 	static const char types[MIGRATE_TYPES] = {
3669 		[MIGRATE_UNMOVABLE]	= 'U',
3670 		[MIGRATE_MOVABLE]	= 'M',
3671 		[MIGRATE_RECLAIMABLE]	= 'E',
3672 		[MIGRATE_HIGHATOMIC]	= 'H',
3673 #ifdef CONFIG_CMA
3674 		[MIGRATE_CMA]		= 'C',
3675 #endif
3676 #ifdef CONFIG_MEMORY_ISOLATION
3677 		[MIGRATE_ISOLATE]	= 'I',
3678 #endif
3679 	};
3680 	char tmp[MIGRATE_TYPES + 1];
3681 	char *p = tmp;
3682 	int i;
3683 
3684 	for (i = 0; i < MIGRATE_TYPES; i++) {
3685 		if (type & (1 << i))
3686 			*p++ = types[i];
3687 	}
3688 
3689 	*p = '\0';
3690 	printk("(%s) ", tmp);
3691 }
3692 
3693 /*
3694  * Show free area list (used inside shift_scroll-lock stuff)
3695  * We also calculate the percentage fragmentation. We do this by counting the
3696  * memory on each free list with the exception of the first item on the list.
3697  *
3698  * Bits in @filter:
3699  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3700  *   cpuset.
3701  */
show_free_areas(unsigned int filter)3702 void show_free_areas(unsigned int filter)
3703 {
3704 	unsigned long free_pcp = 0;
3705 	int cpu;
3706 	struct zone *zone;
3707 
3708 	for_each_populated_zone(zone) {
3709 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3710 			continue;
3711 
3712 		for_each_online_cpu(cpu)
3713 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3714 	}
3715 
3716 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3717 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3718 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3719 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3720 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3721 		" free:%lu free_pcp:%lu free_cma:%lu\n",
3722 		global_page_state(NR_ACTIVE_ANON),
3723 		global_page_state(NR_INACTIVE_ANON),
3724 		global_page_state(NR_ISOLATED_ANON),
3725 		global_page_state(NR_ACTIVE_FILE),
3726 		global_page_state(NR_INACTIVE_FILE),
3727 		global_page_state(NR_ISOLATED_FILE),
3728 		global_page_state(NR_UNEVICTABLE),
3729 		global_page_state(NR_FILE_DIRTY),
3730 		global_page_state(NR_WRITEBACK),
3731 		global_page_state(NR_UNSTABLE_NFS),
3732 		global_page_state(NR_SLAB_RECLAIMABLE),
3733 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3734 		global_page_state(NR_FILE_MAPPED),
3735 		global_page_state(NR_SHMEM),
3736 		global_page_state(NR_PAGETABLE),
3737 		global_page_state(NR_BOUNCE),
3738 		global_page_state(NR_FREE_PAGES),
3739 		free_pcp,
3740 		global_page_state(NR_FREE_CMA_PAGES));
3741 
3742 	for_each_populated_zone(zone) {
3743 		int i;
3744 
3745 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3746 			continue;
3747 
3748 		free_pcp = 0;
3749 		for_each_online_cpu(cpu)
3750 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3751 
3752 		show_node(zone);
3753 		printk("%s"
3754 			" free:%lukB"
3755 			" min:%lukB"
3756 			" low:%lukB"
3757 			" high:%lukB"
3758 			" active_anon:%lukB"
3759 			" inactive_anon:%lukB"
3760 			" active_file:%lukB"
3761 			" inactive_file:%lukB"
3762 			" unevictable:%lukB"
3763 			" isolated(anon):%lukB"
3764 			" isolated(file):%lukB"
3765 			" present:%lukB"
3766 			" managed:%lukB"
3767 			" mlocked:%lukB"
3768 			" dirty:%lukB"
3769 			" writeback:%lukB"
3770 			" mapped:%lukB"
3771 			" shmem:%lukB"
3772 			" slab_reclaimable:%lukB"
3773 			" slab_unreclaimable:%lukB"
3774 			" kernel_stack:%lukB"
3775 			" pagetables:%lukB"
3776 			" unstable:%lukB"
3777 			" bounce:%lukB"
3778 			" free_pcp:%lukB"
3779 			" local_pcp:%ukB"
3780 			" free_cma:%lukB"
3781 			" writeback_tmp:%lukB"
3782 			" pages_scanned:%lu"
3783 			" all_unreclaimable? %s"
3784 			"\n",
3785 			zone->name,
3786 			K(zone_page_state(zone, NR_FREE_PAGES)),
3787 			K(min_wmark_pages(zone)),
3788 			K(low_wmark_pages(zone)),
3789 			K(high_wmark_pages(zone)),
3790 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3791 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3792 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3793 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3794 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3795 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3796 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3797 			K(zone->present_pages),
3798 			K(zone->managed_pages),
3799 			K(zone_page_state(zone, NR_MLOCK)),
3800 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3801 			K(zone_page_state(zone, NR_WRITEBACK)),
3802 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3803 			K(zone_page_state(zone, NR_SHMEM)),
3804 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3805 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3806 			zone_page_state(zone, NR_KERNEL_STACK) *
3807 				THREAD_SIZE / 1024,
3808 			K(zone_page_state(zone, NR_PAGETABLE)),
3809 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3810 			K(zone_page_state(zone, NR_BOUNCE)),
3811 			K(free_pcp),
3812 			K(this_cpu_read(zone->pageset->pcp.count)),
3813 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3814 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3815 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3816 			(!zone_reclaimable(zone) ? "yes" : "no")
3817 			);
3818 		printk("lowmem_reserve[]:");
3819 		for (i = 0; i < MAX_NR_ZONES; i++)
3820 			printk(" %ld", zone->lowmem_reserve[i]);
3821 		printk("\n");
3822 	}
3823 
3824 	for_each_populated_zone(zone) {
3825 		unsigned int order;
3826 		unsigned long nr[MAX_ORDER], flags, total = 0;
3827 		unsigned char types[MAX_ORDER];
3828 
3829 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3830 			continue;
3831 		show_node(zone);
3832 		printk("%s: ", zone->name);
3833 
3834 		spin_lock_irqsave(&zone->lock, flags);
3835 		for (order = 0; order < MAX_ORDER; order++) {
3836 			struct free_area *area = &zone->free_area[order];
3837 			int type;
3838 
3839 			nr[order] = area->nr_free;
3840 			total += nr[order] << order;
3841 
3842 			types[order] = 0;
3843 			for (type = 0; type < MIGRATE_TYPES; type++) {
3844 				if (!list_empty(&area->free_list[type]))
3845 					types[order] |= 1 << type;
3846 			}
3847 		}
3848 		spin_unlock_irqrestore(&zone->lock, flags);
3849 		for (order = 0; order < MAX_ORDER; order++) {
3850 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3851 			if (nr[order])
3852 				show_migration_types(types[order]);
3853 		}
3854 		printk("= %lukB\n", K(total));
3855 	}
3856 
3857 	hugetlb_show_meminfo();
3858 
3859 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3860 
3861 	show_swap_cache_info();
3862 }
3863 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)3864 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3865 {
3866 	zoneref->zone = zone;
3867 	zoneref->zone_idx = zone_idx(zone);
3868 }
3869 
3870 /*
3871  * Builds allocation fallback zone lists.
3872  *
3873  * Add all populated zones of a node to the zonelist.
3874  */
build_zonelists_node(pg_data_t * pgdat,struct zonelist * zonelist,int nr_zones)3875 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3876 				int nr_zones)
3877 {
3878 	struct zone *zone;
3879 	enum zone_type zone_type = MAX_NR_ZONES;
3880 
3881 	do {
3882 		zone_type--;
3883 		zone = pgdat->node_zones + zone_type;
3884 		if (populated_zone(zone)) {
3885 			zoneref_set_zone(zone,
3886 				&zonelist->_zonerefs[nr_zones++]);
3887 			check_highest_zone(zone_type);
3888 		}
3889 	} while (zone_type);
3890 
3891 	return nr_zones;
3892 }
3893 
3894 
3895 /*
3896  *  zonelist_order:
3897  *  0 = automatic detection of better ordering.
3898  *  1 = order by ([node] distance, -zonetype)
3899  *  2 = order by (-zonetype, [node] distance)
3900  *
3901  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3902  *  the same zonelist. So only NUMA can configure this param.
3903  */
3904 #define ZONELIST_ORDER_DEFAULT  0
3905 #define ZONELIST_ORDER_NODE     1
3906 #define ZONELIST_ORDER_ZONE     2
3907 
3908 /* zonelist order in the kernel.
3909  * set_zonelist_order() will set this to NODE or ZONE.
3910  */
3911 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3912 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3913 
3914 
3915 #ifdef CONFIG_NUMA
3916 /* The value user specified ....changed by config */
3917 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3918 /* string for sysctl */
3919 #define NUMA_ZONELIST_ORDER_LEN	16
3920 char numa_zonelist_order[16] = "default";
3921 
3922 /*
3923  * interface for configure zonelist ordering.
3924  * command line option "numa_zonelist_order"
3925  *	= "[dD]efault	- default, automatic configuration.
3926  *	= "[nN]ode 	- order by node locality, then by zone within node
3927  *	= "[zZ]one      - order by zone, then by locality within zone
3928  */
3929 
__parse_numa_zonelist_order(char * s)3930 static int __parse_numa_zonelist_order(char *s)
3931 {
3932 	if (*s == 'd' || *s == 'D') {
3933 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3934 	} else if (*s == 'n' || *s == 'N') {
3935 		user_zonelist_order = ZONELIST_ORDER_NODE;
3936 	} else if (*s == 'z' || *s == 'Z') {
3937 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3938 	} else {
3939 		printk(KERN_WARNING
3940 			"Ignoring invalid numa_zonelist_order value:  "
3941 			"%s\n", s);
3942 		return -EINVAL;
3943 	}
3944 	return 0;
3945 }
3946 
setup_numa_zonelist_order(char * s)3947 static __init int setup_numa_zonelist_order(char *s)
3948 {
3949 	int ret;
3950 
3951 	if (!s)
3952 		return 0;
3953 
3954 	ret = __parse_numa_zonelist_order(s);
3955 	if (ret == 0)
3956 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3957 
3958 	return ret;
3959 }
3960 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3961 
3962 /*
3963  * sysctl handler for numa_zonelist_order
3964  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3965 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3966 		void __user *buffer, size_t *length,
3967 		loff_t *ppos)
3968 {
3969 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3970 	int ret;
3971 	static DEFINE_MUTEX(zl_order_mutex);
3972 
3973 	mutex_lock(&zl_order_mutex);
3974 	if (write) {
3975 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3976 			ret = -EINVAL;
3977 			goto out;
3978 		}
3979 		strcpy(saved_string, (char *)table->data);
3980 	}
3981 	ret = proc_dostring(table, write, buffer, length, ppos);
3982 	if (ret)
3983 		goto out;
3984 	if (write) {
3985 		int oldval = user_zonelist_order;
3986 
3987 		ret = __parse_numa_zonelist_order((char *)table->data);
3988 		if (ret) {
3989 			/*
3990 			 * bogus value.  restore saved string
3991 			 */
3992 			strncpy((char *)table->data, saved_string,
3993 				NUMA_ZONELIST_ORDER_LEN);
3994 			user_zonelist_order = oldval;
3995 		} else if (oldval != user_zonelist_order) {
3996 			mutex_lock(&zonelists_mutex);
3997 			build_all_zonelists(NULL, NULL);
3998 			mutex_unlock(&zonelists_mutex);
3999 		}
4000 	}
4001 out:
4002 	mutex_unlock(&zl_order_mutex);
4003 	return ret;
4004 }
4005 
4006 
4007 #define MAX_NODE_LOAD (nr_online_nodes)
4008 static int node_load[MAX_NUMNODES];
4009 
4010 /**
4011  * find_next_best_node - find the next node that should appear in a given node's fallback list
4012  * @node: node whose fallback list we're appending
4013  * @used_node_mask: nodemask_t of already used nodes
4014  *
4015  * We use a number of factors to determine which is the next node that should
4016  * appear on a given node's fallback list.  The node should not have appeared
4017  * already in @node's fallback list, and it should be the next closest node
4018  * according to the distance array (which contains arbitrary distance values
4019  * from each node to each node in the system), and should also prefer nodes
4020  * with no CPUs, since presumably they'll have very little allocation pressure
4021  * on them otherwise.
4022  * It returns -1 if no node is found.
4023  */
find_next_best_node(int node,nodemask_t * used_node_mask)4024 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4025 {
4026 	int n, val;
4027 	int min_val = INT_MAX;
4028 	int best_node = NUMA_NO_NODE;
4029 	const struct cpumask *tmp = cpumask_of_node(0);
4030 
4031 	/* Use the local node if we haven't already */
4032 	if (!node_isset(node, *used_node_mask)) {
4033 		node_set(node, *used_node_mask);
4034 		return node;
4035 	}
4036 
4037 	for_each_node_state(n, N_MEMORY) {
4038 
4039 		/* Don't want a node to appear more than once */
4040 		if (node_isset(n, *used_node_mask))
4041 			continue;
4042 
4043 		/* Use the distance array to find the distance */
4044 		val = node_distance(node, n);
4045 
4046 		/* Penalize nodes under us ("prefer the next node") */
4047 		val += (n < node);
4048 
4049 		/* Give preference to headless and unused nodes */
4050 		tmp = cpumask_of_node(n);
4051 		if (!cpumask_empty(tmp))
4052 			val += PENALTY_FOR_NODE_WITH_CPUS;
4053 
4054 		/* Slight preference for less loaded node */
4055 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4056 		val += node_load[n];
4057 
4058 		if (val < min_val) {
4059 			min_val = val;
4060 			best_node = n;
4061 		}
4062 	}
4063 
4064 	if (best_node >= 0)
4065 		node_set(best_node, *used_node_mask);
4066 
4067 	return best_node;
4068 }
4069 
4070 
4071 /*
4072  * Build zonelists ordered by node and zones within node.
4073  * This results in maximum locality--normal zone overflows into local
4074  * DMA zone, if any--but risks exhausting DMA zone.
4075  */
build_zonelists_in_node_order(pg_data_t * pgdat,int node)4076 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4077 {
4078 	int j;
4079 	struct zonelist *zonelist;
4080 
4081 	zonelist = &pgdat->node_zonelists[0];
4082 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4083 		;
4084 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4085 	zonelist->_zonerefs[j].zone = NULL;
4086 	zonelist->_zonerefs[j].zone_idx = 0;
4087 }
4088 
4089 /*
4090  * Build gfp_thisnode zonelists
4091  */
build_thisnode_zonelists(pg_data_t * pgdat)4092 static void build_thisnode_zonelists(pg_data_t *pgdat)
4093 {
4094 	int j;
4095 	struct zonelist *zonelist;
4096 
4097 	zonelist = &pgdat->node_zonelists[1];
4098 	j = build_zonelists_node(pgdat, zonelist, 0);
4099 	zonelist->_zonerefs[j].zone = NULL;
4100 	zonelist->_zonerefs[j].zone_idx = 0;
4101 }
4102 
4103 /*
4104  * Build zonelists ordered by zone and nodes within zones.
4105  * This results in conserving DMA zone[s] until all Normal memory is
4106  * exhausted, but results in overflowing to remote node while memory
4107  * may still exist in local DMA zone.
4108  */
4109 static int node_order[MAX_NUMNODES];
4110 
build_zonelists_in_zone_order(pg_data_t * pgdat,int nr_nodes)4111 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4112 {
4113 	int pos, j, node;
4114 	int zone_type;		/* needs to be signed */
4115 	struct zone *z;
4116 	struct zonelist *zonelist;
4117 
4118 	zonelist = &pgdat->node_zonelists[0];
4119 	pos = 0;
4120 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4121 		for (j = 0; j < nr_nodes; j++) {
4122 			node = node_order[j];
4123 			z = &NODE_DATA(node)->node_zones[zone_type];
4124 			if (populated_zone(z)) {
4125 				zoneref_set_zone(z,
4126 					&zonelist->_zonerefs[pos++]);
4127 				check_highest_zone(zone_type);
4128 			}
4129 		}
4130 	}
4131 	zonelist->_zonerefs[pos].zone = NULL;
4132 	zonelist->_zonerefs[pos].zone_idx = 0;
4133 }
4134 
4135 #if defined(CONFIG_64BIT)
4136 /*
4137  * Devices that require DMA32/DMA are relatively rare and do not justify a
4138  * penalty to every machine in case the specialised case applies. Default
4139  * to Node-ordering on 64-bit NUMA machines
4140  */
default_zonelist_order(void)4141 static int default_zonelist_order(void)
4142 {
4143 	return ZONELIST_ORDER_NODE;
4144 }
4145 #else
4146 /*
4147  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4148  * by the kernel. If processes running on node 0 deplete the low memory zone
4149  * then reclaim will occur more frequency increasing stalls and potentially
4150  * be easier to OOM if a large percentage of the zone is under writeback or
4151  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4152  * Hence, default to zone ordering on 32-bit.
4153  */
default_zonelist_order(void)4154 static int default_zonelist_order(void)
4155 {
4156 	return ZONELIST_ORDER_ZONE;
4157 }
4158 #endif /* CONFIG_64BIT */
4159 
set_zonelist_order(void)4160 static void set_zonelist_order(void)
4161 {
4162 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4163 		current_zonelist_order = default_zonelist_order();
4164 	else
4165 		current_zonelist_order = user_zonelist_order;
4166 }
4167 
build_zonelists(pg_data_t * pgdat)4168 static void build_zonelists(pg_data_t *pgdat)
4169 {
4170 	int j, node, load;
4171 	enum zone_type i;
4172 	nodemask_t used_mask;
4173 	int local_node, prev_node;
4174 	struct zonelist *zonelist;
4175 	unsigned int order = current_zonelist_order;
4176 
4177 	/* initialize zonelists */
4178 	for (i = 0; i < MAX_ZONELISTS; i++) {
4179 		zonelist = pgdat->node_zonelists + i;
4180 		zonelist->_zonerefs[0].zone = NULL;
4181 		zonelist->_zonerefs[0].zone_idx = 0;
4182 	}
4183 
4184 	/* NUMA-aware ordering of nodes */
4185 	local_node = pgdat->node_id;
4186 	load = nr_online_nodes;
4187 	prev_node = local_node;
4188 	nodes_clear(used_mask);
4189 
4190 	memset(node_order, 0, sizeof(node_order));
4191 	j = 0;
4192 
4193 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4194 		/*
4195 		 * We don't want to pressure a particular node.
4196 		 * So adding penalty to the first node in same
4197 		 * distance group to make it round-robin.
4198 		 */
4199 		if (node_distance(local_node, node) !=
4200 		    node_distance(local_node, prev_node))
4201 			node_load[node] = load;
4202 
4203 		prev_node = node;
4204 		load--;
4205 		if (order == ZONELIST_ORDER_NODE)
4206 			build_zonelists_in_node_order(pgdat, node);
4207 		else
4208 			node_order[j++] = node;	/* remember order */
4209 	}
4210 
4211 	if (order == ZONELIST_ORDER_ZONE) {
4212 		/* calculate node order -- i.e., DMA last! */
4213 		build_zonelists_in_zone_order(pgdat, j);
4214 	}
4215 
4216 	build_thisnode_zonelists(pgdat);
4217 }
4218 
4219 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4220 /*
4221  * Return node id of node used for "local" allocations.
4222  * I.e., first node id of first zone in arg node's generic zonelist.
4223  * Used for initializing percpu 'numa_mem', which is used primarily
4224  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4225  */
local_memory_node(int node)4226 int local_memory_node(int node)
4227 {
4228 	struct zone *zone;
4229 
4230 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4231 				   gfp_zone(GFP_KERNEL),
4232 				   NULL,
4233 				   &zone);
4234 	return zone->node;
4235 }
4236 #endif
4237 
4238 #else	/* CONFIG_NUMA */
4239 
set_zonelist_order(void)4240 static void set_zonelist_order(void)
4241 {
4242 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4243 }
4244 
build_zonelists(pg_data_t * pgdat)4245 static void build_zonelists(pg_data_t *pgdat)
4246 {
4247 	int node, local_node;
4248 	enum zone_type j;
4249 	struct zonelist *zonelist;
4250 
4251 	local_node = pgdat->node_id;
4252 
4253 	zonelist = &pgdat->node_zonelists[0];
4254 	j = build_zonelists_node(pgdat, zonelist, 0);
4255 
4256 	/*
4257 	 * Now we build the zonelist so that it contains the zones
4258 	 * of all the other nodes.
4259 	 * We don't want to pressure a particular node, so when
4260 	 * building the zones for node N, we make sure that the
4261 	 * zones coming right after the local ones are those from
4262 	 * node N+1 (modulo N)
4263 	 */
4264 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4265 		if (!node_online(node))
4266 			continue;
4267 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4268 	}
4269 	for (node = 0; node < local_node; node++) {
4270 		if (!node_online(node))
4271 			continue;
4272 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4273 	}
4274 
4275 	zonelist->_zonerefs[j].zone = NULL;
4276 	zonelist->_zonerefs[j].zone_idx = 0;
4277 }
4278 
4279 #endif	/* CONFIG_NUMA */
4280 
4281 /*
4282  * Boot pageset table. One per cpu which is going to be used for all
4283  * zones and all nodes. The parameters will be set in such a way
4284  * that an item put on a list will immediately be handed over to
4285  * the buddy list. This is safe since pageset manipulation is done
4286  * with interrupts disabled.
4287  *
4288  * The boot_pagesets must be kept even after bootup is complete for
4289  * unused processors and/or zones. They do play a role for bootstrapping
4290  * hotplugged processors.
4291  *
4292  * zoneinfo_show() and maybe other functions do
4293  * not check if the processor is online before following the pageset pointer.
4294  * Other parts of the kernel may not check if the zone is available.
4295  */
4296 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4297 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4298 static void setup_zone_pageset(struct zone *zone);
4299 
4300 /*
4301  * Global mutex to protect against size modification of zonelists
4302  * as well as to serialize pageset setup for the new populated zone.
4303  */
4304 DEFINE_MUTEX(zonelists_mutex);
4305 
4306 /* return values int ....just for stop_machine() */
__build_all_zonelists(void * data)4307 static int __build_all_zonelists(void *data)
4308 {
4309 	int nid;
4310 	int cpu;
4311 	pg_data_t *self = data;
4312 
4313 #ifdef CONFIG_NUMA
4314 	memset(node_load, 0, sizeof(node_load));
4315 #endif
4316 
4317 	if (self && !node_online(self->node_id)) {
4318 		build_zonelists(self);
4319 	}
4320 
4321 	for_each_online_node(nid) {
4322 		pg_data_t *pgdat = NODE_DATA(nid);
4323 
4324 		build_zonelists(pgdat);
4325 	}
4326 
4327 	/*
4328 	 * Initialize the boot_pagesets that are going to be used
4329 	 * for bootstrapping processors. The real pagesets for
4330 	 * each zone will be allocated later when the per cpu
4331 	 * allocator is available.
4332 	 *
4333 	 * boot_pagesets are used also for bootstrapping offline
4334 	 * cpus if the system is already booted because the pagesets
4335 	 * are needed to initialize allocators on a specific cpu too.
4336 	 * F.e. the percpu allocator needs the page allocator which
4337 	 * needs the percpu allocator in order to allocate its pagesets
4338 	 * (a chicken-egg dilemma).
4339 	 */
4340 	for_each_possible_cpu(cpu) {
4341 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4342 
4343 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4344 		/*
4345 		 * We now know the "local memory node" for each node--
4346 		 * i.e., the node of the first zone in the generic zonelist.
4347 		 * Set up numa_mem percpu variable for on-line cpus.  During
4348 		 * boot, only the boot cpu should be on-line;  we'll init the
4349 		 * secondary cpus' numa_mem as they come on-line.  During
4350 		 * node/memory hotplug, we'll fixup all on-line cpus.
4351 		 */
4352 		if (cpu_online(cpu))
4353 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4354 #endif
4355 	}
4356 
4357 	return 0;
4358 }
4359 
4360 static noinline void __init
build_all_zonelists_init(void)4361 build_all_zonelists_init(void)
4362 {
4363 	__build_all_zonelists(NULL);
4364 	mminit_verify_zonelist();
4365 	cpuset_init_current_mems_allowed();
4366 }
4367 
4368 /*
4369  * Called with zonelists_mutex held always
4370  * unless system_state == SYSTEM_BOOTING.
4371  *
4372  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4373  * [we're only called with non-NULL zone through __meminit paths] and
4374  * (2) call of __init annotated helper build_all_zonelists_init
4375  * [protected by SYSTEM_BOOTING].
4376  */
build_all_zonelists(pg_data_t * pgdat,struct zone * zone)4377 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4378 {
4379 	set_zonelist_order();
4380 
4381 	if (system_state == SYSTEM_BOOTING) {
4382 		build_all_zonelists_init();
4383 	} else {
4384 #ifdef CONFIG_MEMORY_HOTPLUG
4385 		if (zone)
4386 			setup_zone_pageset(zone);
4387 #endif
4388 		/* we have to stop all cpus to guarantee there is no user
4389 		   of zonelist */
4390 		stop_machine(__build_all_zonelists, pgdat, NULL);
4391 		/* cpuset refresh routine should be here */
4392 	}
4393 	vm_total_pages = nr_free_pagecache_pages();
4394 	/*
4395 	 * Disable grouping by mobility if the number of pages in the
4396 	 * system is too low to allow the mechanism to work. It would be
4397 	 * more accurate, but expensive to check per-zone. This check is
4398 	 * made on memory-hotadd so a system can start with mobility
4399 	 * disabled and enable it later
4400 	 */
4401 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4402 		page_group_by_mobility_disabled = 1;
4403 	else
4404 		page_group_by_mobility_disabled = 0;
4405 
4406 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
4407 		"Total pages: %ld\n",
4408 			nr_online_nodes,
4409 			zonelist_order_name[current_zonelist_order],
4410 			page_group_by_mobility_disabled ? "off" : "on",
4411 			vm_total_pages);
4412 #ifdef CONFIG_NUMA
4413 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4414 #endif
4415 }
4416 
4417 /*
4418  * Helper functions to size the waitqueue hash table.
4419  * Essentially these want to choose hash table sizes sufficiently
4420  * large so that collisions trying to wait on pages are rare.
4421  * But in fact, the number of active page waitqueues on typical
4422  * systems is ridiculously low, less than 200. So this is even
4423  * conservative, even though it seems large.
4424  *
4425  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4426  * waitqueues, i.e. the size of the waitq table given the number of pages.
4427  */
4428 #define PAGES_PER_WAITQUEUE	256
4429 
4430 #ifndef CONFIG_MEMORY_HOTPLUG
wait_table_hash_nr_entries(unsigned long pages)4431 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4432 {
4433 	unsigned long size = 1;
4434 
4435 	pages /= PAGES_PER_WAITQUEUE;
4436 
4437 	while (size < pages)
4438 		size <<= 1;
4439 
4440 	/*
4441 	 * Once we have dozens or even hundreds of threads sleeping
4442 	 * on IO we've got bigger problems than wait queue collision.
4443 	 * Limit the size of the wait table to a reasonable size.
4444 	 */
4445 	size = min(size, 4096UL);
4446 
4447 	return max(size, 4UL);
4448 }
4449 #else
4450 /*
4451  * A zone's size might be changed by hot-add, so it is not possible to determine
4452  * a suitable size for its wait_table.  So we use the maximum size now.
4453  *
4454  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4455  *
4456  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4457  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4458  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4459  *
4460  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4461  * or more by the traditional way. (See above).  It equals:
4462  *
4463  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4464  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4465  *    powerpc (64K page size)             : =  (32G +16M)byte.
4466  */
wait_table_hash_nr_entries(unsigned long pages)4467 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4468 {
4469 	return 4096UL;
4470 }
4471 #endif
4472 
4473 /*
4474  * This is an integer logarithm so that shifts can be used later
4475  * to extract the more random high bits from the multiplicative
4476  * hash function before the remainder is taken.
4477  */
wait_table_bits(unsigned long size)4478 static inline unsigned long wait_table_bits(unsigned long size)
4479 {
4480 	return ffz(~size);
4481 }
4482 
4483 /*
4484  * Initially all pages are reserved - free ones are freed
4485  * up by free_all_bootmem() once the early boot process is
4486  * done. Non-atomic initialization, single-pass.
4487  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum memmap_context context)4488 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4489 		unsigned long start_pfn, enum memmap_context context)
4490 {
4491 	pg_data_t *pgdat = NODE_DATA(nid);
4492 	unsigned long end_pfn = start_pfn + size;
4493 	unsigned long pfn;
4494 	struct zone *z;
4495 	unsigned long nr_initialised = 0;
4496 
4497 	if (highest_memmap_pfn < end_pfn - 1)
4498 		highest_memmap_pfn = end_pfn - 1;
4499 
4500 	z = &pgdat->node_zones[zone];
4501 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4502 		/*
4503 		 * There can be holes in boot-time mem_map[]s
4504 		 * handed to this function.  They do not
4505 		 * exist on hotplugged memory.
4506 		 */
4507 		if (context == MEMMAP_EARLY) {
4508 			if (!early_pfn_valid(pfn))
4509 				continue;
4510 			if (!early_pfn_in_nid(pfn, nid))
4511 				continue;
4512 			if (!update_defer_init(pgdat, pfn, end_pfn,
4513 						&nr_initialised))
4514 				break;
4515 		}
4516 
4517 		/*
4518 		 * Mark the block movable so that blocks are reserved for
4519 		 * movable at startup. This will force kernel allocations
4520 		 * to reserve their blocks rather than leaking throughout
4521 		 * the address space during boot when many long-lived
4522 		 * kernel allocations are made.
4523 		 *
4524 		 * bitmap is created for zone's valid pfn range. but memmap
4525 		 * can be created for invalid pages (for alignment)
4526 		 * check here not to call set_pageblock_migratetype() against
4527 		 * pfn out of zone.
4528 		 */
4529 		if (!(pfn & (pageblock_nr_pages - 1))) {
4530 			struct page *page = pfn_to_page(pfn);
4531 
4532 			__init_single_page(page, pfn, zone, nid);
4533 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4534 		} else {
4535 			__init_single_pfn(pfn, zone, nid);
4536 		}
4537 	}
4538 }
4539 
zone_init_free_lists(struct zone * zone)4540 static void __meminit zone_init_free_lists(struct zone *zone)
4541 {
4542 	unsigned int order, t;
4543 	for_each_migratetype_order(order, t) {
4544 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4545 		zone->free_area[order].nr_free = 0;
4546 	}
4547 }
4548 
4549 #ifndef __HAVE_ARCH_MEMMAP_INIT
4550 #define memmap_init(size, nid, zone, start_pfn) \
4551 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4552 #endif
4553 
zone_batchsize(struct zone * zone)4554 static int zone_batchsize(struct zone *zone)
4555 {
4556 #ifdef CONFIG_MMU
4557 	int batch;
4558 
4559 	/*
4560 	 * The per-cpu-pages pools are set to around 1000th of the
4561 	 * size of the zone.  But no more than 1/2 of a meg.
4562 	 *
4563 	 * OK, so we don't know how big the cache is.  So guess.
4564 	 */
4565 	batch = zone->managed_pages / 1024;
4566 	if (batch * PAGE_SIZE > 512 * 1024)
4567 		batch = (512 * 1024) / PAGE_SIZE;
4568 	batch /= 4;		/* We effectively *= 4 below */
4569 	if (batch < 1)
4570 		batch = 1;
4571 
4572 	/*
4573 	 * Clamp the batch to a 2^n - 1 value. Having a power
4574 	 * of 2 value was found to be more likely to have
4575 	 * suboptimal cache aliasing properties in some cases.
4576 	 *
4577 	 * For example if 2 tasks are alternately allocating
4578 	 * batches of pages, one task can end up with a lot
4579 	 * of pages of one half of the possible page colors
4580 	 * and the other with pages of the other colors.
4581 	 */
4582 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4583 
4584 	return batch;
4585 
4586 #else
4587 	/* The deferral and batching of frees should be suppressed under NOMMU
4588 	 * conditions.
4589 	 *
4590 	 * The problem is that NOMMU needs to be able to allocate large chunks
4591 	 * of contiguous memory as there's no hardware page translation to
4592 	 * assemble apparent contiguous memory from discontiguous pages.
4593 	 *
4594 	 * Queueing large contiguous runs of pages for batching, however,
4595 	 * causes the pages to actually be freed in smaller chunks.  As there
4596 	 * can be a significant delay between the individual batches being
4597 	 * recycled, this leads to the once large chunks of space being
4598 	 * fragmented and becoming unavailable for high-order allocations.
4599 	 */
4600 	return 0;
4601 #endif
4602 }
4603 
4604 /*
4605  * pcp->high and pcp->batch values are related and dependent on one another:
4606  * ->batch must never be higher then ->high.
4607  * The following function updates them in a safe manner without read side
4608  * locking.
4609  *
4610  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4611  * those fields changing asynchronously (acording the the above rule).
4612  *
4613  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4614  * outside of boot time (or some other assurance that no concurrent updaters
4615  * exist).
4616  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)4617 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4618 		unsigned long batch)
4619 {
4620        /* start with a fail safe value for batch */
4621 	pcp->batch = 1;
4622 	smp_wmb();
4623 
4624        /* Update high, then batch, in order */
4625 	pcp->high = high;
4626 	smp_wmb();
4627 
4628 	pcp->batch = batch;
4629 }
4630 
4631 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)4632 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4633 {
4634 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4635 }
4636 
pageset_init(struct per_cpu_pageset * p)4637 static void pageset_init(struct per_cpu_pageset *p)
4638 {
4639 	struct per_cpu_pages *pcp;
4640 	int migratetype;
4641 
4642 	memset(p, 0, sizeof(*p));
4643 
4644 	pcp = &p->pcp;
4645 	pcp->count = 0;
4646 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4647 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4648 }
4649 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)4650 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4651 {
4652 	pageset_init(p);
4653 	pageset_set_batch(p, batch);
4654 }
4655 
4656 /*
4657  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4658  * to the value high for the pageset p.
4659  */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)4660 static void pageset_set_high(struct per_cpu_pageset *p,
4661 				unsigned long high)
4662 {
4663 	unsigned long batch = max(1UL, high / 4);
4664 	if ((high / 4) > (PAGE_SHIFT * 8))
4665 		batch = PAGE_SHIFT * 8;
4666 
4667 	pageset_update(&p->pcp, high, batch);
4668 }
4669 
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)4670 static void pageset_set_high_and_batch(struct zone *zone,
4671 				       struct per_cpu_pageset *pcp)
4672 {
4673 	if (percpu_pagelist_fraction)
4674 		pageset_set_high(pcp,
4675 			(zone->managed_pages /
4676 				percpu_pagelist_fraction));
4677 	else
4678 		pageset_set_batch(pcp, zone_batchsize(zone));
4679 }
4680 
zone_pageset_init(struct zone * zone,int cpu)4681 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4682 {
4683 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4684 
4685 	pageset_init(pcp);
4686 	pageset_set_high_and_batch(zone, pcp);
4687 }
4688 
setup_zone_pageset(struct zone * zone)4689 static void __meminit setup_zone_pageset(struct zone *zone)
4690 {
4691 	int cpu;
4692 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4693 	for_each_possible_cpu(cpu)
4694 		zone_pageset_init(zone, cpu);
4695 }
4696 
4697 /*
4698  * Allocate per cpu pagesets and initialize them.
4699  * Before this call only boot pagesets were available.
4700  */
setup_per_cpu_pageset(void)4701 void __init setup_per_cpu_pageset(void)
4702 {
4703 	struct zone *zone;
4704 
4705 	for_each_populated_zone(zone)
4706 		setup_zone_pageset(zone);
4707 }
4708 
4709 static noinline __init_refok
zone_wait_table_init(struct zone * zone,unsigned long zone_size_pages)4710 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4711 {
4712 	int i;
4713 	size_t alloc_size;
4714 
4715 	/*
4716 	 * The per-page waitqueue mechanism uses hashed waitqueues
4717 	 * per zone.
4718 	 */
4719 	zone->wait_table_hash_nr_entries =
4720 		 wait_table_hash_nr_entries(zone_size_pages);
4721 	zone->wait_table_bits =
4722 		wait_table_bits(zone->wait_table_hash_nr_entries);
4723 	alloc_size = zone->wait_table_hash_nr_entries
4724 					* sizeof(wait_queue_head_t);
4725 
4726 	if (!slab_is_available()) {
4727 		zone->wait_table = (wait_queue_head_t *)
4728 			memblock_virt_alloc_node_nopanic(
4729 				alloc_size, zone->zone_pgdat->node_id);
4730 	} else {
4731 		/*
4732 		 * This case means that a zone whose size was 0 gets new memory
4733 		 * via memory hot-add.
4734 		 * But it may be the case that a new node was hot-added.  In
4735 		 * this case vmalloc() will not be able to use this new node's
4736 		 * memory - this wait_table must be initialized to use this new
4737 		 * node itself as well.
4738 		 * To use this new node's memory, further consideration will be
4739 		 * necessary.
4740 		 */
4741 		zone->wait_table = vmalloc(alloc_size);
4742 	}
4743 	if (!zone->wait_table)
4744 		return -ENOMEM;
4745 
4746 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4747 		init_waitqueue_head(zone->wait_table + i);
4748 
4749 	return 0;
4750 }
4751 
zone_pcp_init(struct zone * zone)4752 static __meminit void zone_pcp_init(struct zone *zone)
4753 {
4754 	/*
4755 	 * per cpu subsystem is not up at this point. The following code
4756 	 * relies on the ability of the linker to provide the
4757 	 * offset of a (static) per cpu variable into the per cpu area.
4758 	 */
4759 	zone->pageset = &boot_pageset;
4760 
4761 	if (populated_zone(zone))
4762 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4763 			zone->name, zone->present_pages,
4764 					 zone_batchsize(zone));
4765 }
4766 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)4767 int __meminit init_currently_empty_zone(struct zone *zone,
4768 					unsigned long zone_start_pfn,
4769 					unsigned long size)
4770 {
4771 	struct pglist_data *pgdat = zone->zone_pgdat;
4772 	int ret;
4773 	ret = zone_wait_table_init(zone, size);
4774 	if (ret)
4775 		return ret;
4776 	pgdat->nr_zones = zone_idx(zone) + 1;
4777 
4778 	zone->zone_start_pfn = zone_start_pfn;
4779 
4780 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4781 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4782 			pgdat->node_id,
4783 			(unsigned long)zone_idx(zone),
4784 			zone_start_pfn, (zone_start_pfn + size));
4785 
4786 	zone_init_free_lists(zone);
4787 
4788 	return 0;
4789 }
4790 
4791 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4792 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4793 
4794 /*
4795  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4796  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)4797 int __meminit __early_pfn_to_nid(unsigned long pfn,
4798 					struct mminit_pfnnid_cache *state)
4799 {
4800 	unsigned long start_pfn, end_pfn;
4801 	int nid;
4802 
4803 	if (state->last_start <= pfn && pfn < state->last_end)
4804 		return state->last_nid;
4805 
4806 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4807 	if (nid != -1) {
4808 		state->last_start = start_pfn;
4809 		state->last_end = end_pfn;
4810 		state->last_nid = nid;
4811 	}
4812 
4813 	return nid;
4814 }
4815 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4816 
4817 /**
4818  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4819  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4820  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4821  *
4822  * If an architecture guarantees that all ranges registered contain no holes
4823  * and may be freed, this this function may be used instead of calling
4824  * memblock_free_early_nid() manually.
4825  */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)4826 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4827 {
4828 	unsigned long start_pfn, end_pfn;
4829 	int i, this_nid;
4830 
4831 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4832 		start_pfn = min(start_pfn, max_low_pfn);
4833 		end_pfn = min(end_pfn, max_low_pfn);
4834 
4835 		if (start_pfn < end_pfn)
4836 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4837 					(end_pfn - start_pfn) << PAGE_SHIFT,
4838 					this_nid);
4839 	}
4840 }
4841 
4842 /**
4843  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4844  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4845  *
4846  * If an architecture guarantees that all ranges registered contain no holes and may
4847  * be freed, this function may be used instead of calling memory_present() manually.
4848  */
sparse_memory_present_with_active_regions(int nid)4849 void __init sparse_memory_present_with_active_regions(int nid)
4850 {
4851 	unsigned long start_pfn, end_pfn;
4852 	int i, this_nid;
4853 
4854 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4855 		memory_present(this_nid, start_pfn, end_pfn);
4856 }
4857 
4858 /**
4859  * get_pfn_range_for_nid - Return the start and end page frames for a node
4860  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4861  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4862  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4863  *
4864  * It returns the start and end page frame of a node based on information
4865  * provided by memblock_set_node(). If called for a node
4866  * with no available memory, a warning is printed and the start and end
4867  * PFNs will be 0.
4868  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)4869 void __meminit get_pfn_range_for_nid(unsigned int nid,
4870 			unsigned long *start_pfn, unsigned long *end_pfn)
4871 {
4872 	unsigned long this_start_pfn, this_end_pfn;
4873 	int i;
4874 
4875 	*start_pfn = -1UL;
4876 	*end_pfn = 0;
4877 
4878 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4879 		*start_pfn = min(*start_pfn, this_start_pfn);
4880 		*end_pfn = max(*end_pfn, this_end_pfn);
4881 	}
4882 
4883 	if (*start_pfn == -1UL)
4884 		*start_pfn = 0;
4885 }
4886 
4887 /*
4888  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4889  * assumption is made that zones within a node are ordered in monotonic
4890  * increasing memory addresses so that the "highest" populated zone is used
4891  */
find_usable_zone_for_movable(void)4892 static void __init find_usable_zone_for_movable(void)
4893 {
4894 	int zone_index;
4895 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4896 		if (zone_index == ZONE_MOVABLE)
4897 			continue;
4898 
4899 		if (arch_zone_highest_possible_pfn[zone_index] >
4900 				arch_zone_lowest_possible_pfn[zone_index])
4901 			break;
4902 	}
4903 
4904 	VM_BUG_ON(zone_index == -1);
4905 	movable_zone = zone_index;
4906 }
4907 
4908 /*
4909  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4910  * because it is sized independent of architecture. Unlike the other zones,
4911  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4912  * in each node depending on the size of each node and how evenly kernelcore
4913  * is distributed. This helper function adjusts the zone ranges
4914  * provided by the architecture for a given node by using the end of the
4915  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4916  * zones within a node are in order of monotonic increases memory addresses
4917  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)4918 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4919 					unsigned long zone_type,
4920 					unsigned long node_start_pfn,
4921 					unsigned long node_end_pfn,
4922 					unsigned long *zone_start_pfn,
4923 					unsigned long *zone_end_pfn)
4924 {
4925 	/* Only adjust if ZONE_MOVABLE is on this node */
4926 	if (zone_movable_pfn[nid]) {
4927 		/* Size ZONE_MOVABLE */
4928 		if (zone_type == ZONE_MOVABLE) {
4929 			*zone_start_pfn = zone_movable_pfn[nid];
4930 			*zone_end_pfn = min(node_end_pfn,
4931 				arch_zone_highest_possible_pfn[movable_zone]);
4932 
4933 		/* Adjust for ZONE_MOVABLE starting within this range */
4934 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4935 				*zone_end_pfn > zone_movable_pfn[nid]) {
4936 			*zone_end_pfn = zone_movable_pfn[nid];
4937 
4938 		/* Check if this whole range is within ZONE_MOVABLE */
4939 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4940 			*zone_start_pfn = *zone_end_pfn;
4941 	}
4942 }
4943 
4944 /*
4945  * Return the number of pages a zone spans in a node, including holes
4946  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4947  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)4948 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4949 					unsigned long zone_type,
4950 					unsigned long node_start_pfn,
4951 					unsigned long node_end_pfn,
4952 					unsigned long *ignored)
4953 {
4954 	unsigned long zone_start_pfn, zone_end_pfn;
4955 
4956 	/* When hotadd a new node from cpu_up(), the node should be empty */
4957 	if (!node_start_pfn && !node_end_pfn)
4958 		return 0;
4959 
4960 	/* Get the start and end of the zone */
4961 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4962 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4963 	adjust_zone_range_for_zone_movable(nid, zone_type,
4964 				node_start_pfn, node_end_pfn,
4965 				&zone_start_pfn, &zone_end_pfn);
4966 
4967 	/* Check that this node has pages within the zone's required range */
4968 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4969 		return 0;
4970 
4971 	/* Move the zone boundaries inside the node if necessary */
4972 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4973 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4974 
4975 	/* Return the spanned pages */
4976 	return zone_end_pfn - zone_start_pfn;
4977 }
4978 
4979 /*
4980  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4981  * then all holes in the requested range will be accounted for.
4982  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)4983 unsigned long __meminit __absent_pages_in_range(int nid,
4984 				unsigned long range_start_pfn,
4985 				unsigned long range_end_pfn)
4986 {
4987 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4988 	unsigned long start_pfn, end_pfn;
4989 	int i;
4990 
4991 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4992 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4993 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4994 		nr_absent -= end_pfn - start_pfn;
4995 	}
4996 	return nr_absent;
4997 }
4998 
4999 /**
5000  * absent_pages_in_range - Return number of page frames in holes within a range
5001  * @start_pfn: The start PFN to start searching for holes
5002  * @end_pfn: The end PFN to stop searching for holes
5003  *
5004  * It returns the number of pages frames in memory holes within a range.
5005  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)5006 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5007 							unsigned long end_pfn)
5008 {
5009 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5010 }
5011 
5012 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)5013 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5014 					unsigned long zone_type,
5015 					unsigned long node_start_pfn,
5016 					unsigned long node_end_pfn,
5017 					unsigned long *ignored)
5018 {
5019 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5020 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5021 	unsigned long zone_start_pfn, zone_end_pfn;
5022 
5023 	/* When hotadd a new node from cpu_up(), the node should be empty */
5024 	if (!node_start_pfn && !node_end_pfn)
5025 		return 0;
5026 
5027 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5028 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5029 
5030 	adjust_zone_range_for_zone_movable(nid, zone_type,
5031 			node_start_pfn, node_end_pfn,
5032 			&zone_start_pfn, &zone_end_pfn);
5033 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5034 }
5035 
5036 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size)5037 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5038 					unsigned long zone_type,
5039 					unsigned long node_start_pfn,
5040 					unsigned long node_end_pfn,
5041 					unsigned long *zones_size)
5042 {
5043 	return zones_size[zone_type];
5044 }
5045 
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)5046 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5047 						unsigned long zone_type,
5048 						unsigned long node_start_pfn,
5049 						unsigned long node_end_pfn,
5050 						unsigned long *zholes_size)
5051 {
5052 	if (!zholes_size)
5053 		return 0;
5054 
5055 	return zholes_size[zone_type];
5056 }
5057 
5058 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5059 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)5060 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5061 						unsigned long node_start_pfn,
5062 						unsigned long node_end_pfn,
5063 						unsigned long *zones_size,
5064 						unsigned long *zholes_size)
5065 {
5066 	unsigned long realtotalpages = 0, totalpages = 0;
5067 	enum zone_type i;
5068 
5069 	for (i = 0; i < MAX_NR_ZONES; i++) {
5070 		struct zone *zone = pgdat->node_zones + i;
5071 		unsigned long size, real_size;
5072 
5073 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5074 						  node_start_pfn,
5075 						  node_end_pfn,
5076 						  zones_size);
5077 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5078 						  node_start_pfn, node_end_pfn,
5079 						  zholes_size);
5080 		zone->spanned_pages = size;
5081 		zone->present_pages = real_size;
5082 
5083 		totalpages += size;
5084 		realtotalpages += real_size;
5085 	}
5086 
5087 	pgdat->node_spanned_pages = totalpages;
5088 	pgdat->node_present_pages = realtotalpages;
5089 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5090 							realtotalpages);
5091 }
5092 
5093 #ifndef CONFIG_SPARSEMEM
5094 /*
5095  * Calculate the size of the zone->blockflags rounded to an unsigned long
5096  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5097  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5098  * round what is now in bits to nearest long in bits, then return it in
5099  * bytes.
5100  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)5101 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5102 {
5103 	unsigned long usemapsize;
5104 
5105 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5106 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5107 	usemapsize = usemapsize >> pageblock_order;
5108 	usemapsize *= NR_PAGEBLOCK_BITS;
5109 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5110 
5111 	return usemapsize / 8;
5112 }
5113 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)5114 static void __init setup_usemap(struct pglist_data *pgdat,
5115 				struct zone *zone,
5116 				unsigned long zone_start_pfn,
5117 				unsigned long zonesize)
5118 {
5119 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5120 	zone->pageblock_flags = NULL;
5121 	if (usemapsize)
5122 		zone->pageblock_flags =
5123 			memblock_virt_alloc_node_nopanic(usemapsize,
5124 							 pgdat->node_id);
5125 }
5126 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)5127 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5128 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5129 #endif /* CONFIG_SPARSEMEM */
5130 
5131 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5132 
5133 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)5134 void __paginginit set_pageblock_order(void)
5135 {
5136 	unsigned int order;
5137 
5138 	/* Check that pageblock_nr_pages has not already been setup */
5139 	if (pageblock_order)
5140 		return;
5141 
5142 	if (HPAGE_SHIFT > PAGE_SHIFT)
5143 		order = HUGETLB_PAGE_ORDER;
5144 	else
5145 		order = MAX_ORDER - 1;
5146 
5147 	/*
5148 	 * Assume the largest contiguous order of interest is a huge page.
5149 	 * This value may be variable depending on boot parameters on IA64 and
5150 	 * powerpc.
5151 	 */
5152 	pageblock_order = order;
5153 }
5154 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5155 
5156 /*
5157  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5158  * is unused as pageblock_order is set at compile-time. See
5159  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5160  * the kernel config
5161  */
set_pageblock_order(void)5162 void __paginginit set_pageblock_order(void)
5163 {
5164 }
5165 
5166 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5167 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)5168 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5169 						   unsigned long present_pages)
5170 {
5171 	unsigned long pages = spanned_pages;
5172 
5173 	/*
5174 	 * Provide a more accurate estimation if there are holes within
5175 	 * the zone and SPARSEMEM is in use. If there are holes within the
5176 	 * zone, each populated memory region may cost us one or two extra
5177 	 * memmap pages due to alignment because memmap pages for each
5178 	 * populated regions may not naturally algined on page boundary.
5179 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5180 	 */
5181 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5182 	    IS_ENABLED(CONFIG_SPARSEMEM))
5183 		pages = present_pages;
5184 
5185 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5186 }
5187 
5188 /*
5189  * Set up the zone data structures:
5190  *   - mark all pages reserved
5191  *   - mark all memory queues empty
5192  *   - clear the memory bitmaps
5193  *
5194  * NOTE: pgdat should get zeroed by caller.
5195  */
free_area_init_core(struct pglist_data * pgdat)5196 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5197 {
5198 	enum zone_type j;
5199 	int nid = pgdat->node_id;
5200 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
5201 	int ret;
5202 
5203 	pgdat_resize_init(pgdat);
5204 #ifdef CONFIG_NUMA_BALANCING
5205 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5206 	pgdat->numabalancing_migrate_nr_pages = 0;
5207 	pgdat->numabalancing_migrate_next_window = jiffies;
5208 #endif
5209 	init_waitqueue_head(&pgdat->kswapd_wait);
5210 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5211 	pgdat_page_ext_init(pgdat);
5212 
5213 	for (j = 0; j < MAX_NR_ZONES; j++) {
5214 		struct zone *zone = pgdat->node_zones + j;
5215 		unsigned long size, realsize, freesize, memmap_pages;
5216 
5217 		size = zone->spanned_pages;
5218 		realsize = freesize = zone->present_pages;
5219 
5220 		/*
5221 		 * Adjust freesize so that it accounts for how much memory
5222 		 * is used by this zone for memmap. This affects the watermark
5223 		 * and per-cpu initialisations
5224 		 */
5225 		memmap_pages = calc_memmap_size(size, realsize);
5226 		if (!is_highmem_idx(j)) {
5227 			if (freesize >= memmap_pages) {
5228 				freesize -= memmap_pages;
5229 				if (memmap_pages)
5230 					printk(KERN_DEBUG
5231 					       "  %s zone: %lu pages used for memmap\n",
5232 					       zone_names[j], memmap_pages);
5233 			} else
5234 				printk(KERN_WARNING
5235 					"  %s zone: %lu pages exceeds freesize %lu\n",
5236 					zone_names[j], memmap_pages, freesize);
5237 		}
5238 
5239 		/* Account for reserved pages */
5240 		if (j == 0 && freesize > dma_reserve) {
5241 			freesize -= dma_reserve;
5242 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5243 					zone_names[0], dma_reserve);
5244 		}
5245 
5246 		if (!is_highmem_idx(j))
5247 			nr_kernel_pages += freesize;
5248 		/* Charge for highmem memmap if there are enough kernel pages */
5249 		else if (nr_kernel_pages > memmap_pages * 2)
5250 			nr_kernel_pages -= memmap_pages;
5251 		nr_all_pages += freesize;
5252 
5253 		/*
5254 		 * Set an approximate value for lowmem here, it will be adjusted
5255 		 * when the bootmem allocator frees pages into the buddy system.
5256 		 * And all highmem pages will be managed by the buddy system.
5257 		 */
5258 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5259 #ifdef CONFIG_NUMA
5260 		zone->node = nid;
5261 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5262 						/ 100;
5263 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5264 #endif
5265 		zone->name = zone_names[j];
5266 		spin_lock_init(&zone->lock);
5267 		spin_lock_init(&zone->lru_lock);
5268 		zone_seqlock_init(zone);
5269 		zone->zone_pgdat = pgdat;
5270 		zone_pcp_init(zone);
5271 
5272 		/* For bootup, initialized properly in watermark setup */
5273 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5274 
5275 		lruvec_init(&zone->lruvec);
5276 		if (!size)
5277 			continue;
5278 
5279 		set_pageblock_order();
5280 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5281 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5282 		BUG_ON(ret);
5283 		memmap_init(size, nid, j, zone_start_pfn);
5284 		zone_start_pfn += size;
5285 	}
5286 }
5287 
alloc_node_mem_map(struct pglist_data * pgdat)5288 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5289 {
5290 	unsigned long __maybe_unused start = 0;
5291 	unsigned long __maybe_unused offset = 0;
5292 
5293 	/* Skip empty nodes */
5294 	if (!pgdat->node_spanned_pages)
5295 		return;
5296 
5297 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5298 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5299 	offset = pgdat->node_start_pfn - start;
5300 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5301 	if (!pgdat->node_mem_map) {
5302 		unsigned long size, end;
5303 		struct page *map;
5304 
5305 		/*
5306 		 * The zone's endpoints aren't required to be MAX_ORDER
5307 		 * aligned but the node_mem_map endpoints must be in order
5308 		 * for the buddy allocator to function correctly.
5309 		 */
5310 		end = pgdat_end_pfn(pgdat);
5311 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5312 		size =  (end - start) * sizeof(struct page);
5313 		map = alloc_remap(pgdat->node_id, size);
5314 		if (!map)
5315 			map = memblock_virt_alloc_node_nopanic(size,
5316 							       pgdat->node_id);
5317 		pgdat->node_mem_map = map + offset;
5318 	}
5319 #ifndef CONFIG_NEED_MULTIPLE_NODES
5320 	/*
5321 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5322 	 */
5323 	if (pgdat == NODE_DATA(0)) {
5324 		mem_map = NODE_DATA(0)->node_mem_map;
5325 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5326 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5327 			mem_map -= offset;
5328 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5329 	}
5330 #endif
5331 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5332 }
5333 
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)5334 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5335 		unsigned long node_start_pfn, unsigned long *zholes_size)
5336 {
5337 	pg_data_t *pgdat = NODE_DATA(nid);
5338 	unsigned long start_pfn = 0;
5339 	unsigned long end_pfn = 0;
5340 
5341 	/* pg_data_t should be reset to zero when it's allocated */
5342 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5343 
5344 	reset_deferred_meminit(pgdat);
5345 	pgdat->node_id = nid;
5346 	pgdat->node_start_pfn = node_start_pfn;
5347 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5348 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5349 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5350 		(u64)start_pfn << PAGE_SHIFT,
5351 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5352 #endif
5353 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5354 				  zones_size, zholes_size);
5355 
5356 	alloc_node_mem_map(pgdat);
5357 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5358 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5359 		nid, (unsigned long)pgdat,
5360 		(unsigned long)pgdat->node_mem_map);
5361 #endif
5362 
5363 	free_area_init_core(pgdat);
5364 }
5365 
5366 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5367 
5368 #if MAX_NUMNODES > 1
5369 /*
5370  * Figure out the number of possible node ids.
5371  */
setup_nr_node_ids(void)5372 void __init setup_nr_node_ids(void)
5373 {
5374 	unsigned int highest;
5375 
5376 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5377 	nr_node_ids = highest + 1;
5378 }
5379 #endif
5380 
5381 /**
5382  * node_map_pfn_alignment - determine the maximum internode alignment
5383  *
5384  * This function should be called after node map is populated and sorted.
5385  * It calculates the maximum power of two alignment which can distinguish
5386  * all the nodes.
5387  *
5388  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5389  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5390  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5391  * shifted, 1GiB is enough and this function will indicate so.
5392  *
5393  * This is used to test whether pfn -> nid mapping of the chosen memory
5394  * model has fine enough granularity to avoid incorrect mapping for the
5395  * populated node map.
5396  *
5397  * Returns the determined alignment in pfn's.  0 if there is no alignment
5398  * requirement (single node).
5399  */
node_map_pfn_alignment(void)5400 unsigned long __init node_map_pfn_alignment(void)
5401 {
5402 	unsigned long accl_mask = 0, last_end = 0;
5403 	unsigned long start, end, mask;
5404 	int last_nid = -1;
5405 	int i, nid;
5406 
5407 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5408 		if (!start || last_nid < 0 || last_nid == nid) {
5409 			last_nid = nid;
5410 			last_end = end;
5411 			continue;
5412 		}
5413 
5414 		/*
5415 		 * Start with a mask granular enough to pin-point to the
5416 		 * start pfn and tick off bits one-by-one until it becomes
5417 		 * too coarse to separate the current node from the last.
5418 		 */
5419 		mask = ~((1 << __ffs(start)) - 1);
5420 		while (mask && last_end <= (start & (mask << 1)))
5421 			mask <<= 1;
5422 
5423 		/* accumulate all internode masks */
5424 		accl_mask |= mask;
5425 	}
5426 
5427 	/* convert mask to number of pages */
5428 	return ~accl_mask + 1;
5429 }
5430 
5431 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)5432 static unsigned long __init find_min_pfn_for_node(int nid)
5433 {
5434 	unsigned long min_pfn = ULONG_MAX;
5435 	unsigned long start_pfn;
5436 	int i;
5437 
5438 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5439 		min_pfn = min(min_pfn, start_pfn);
5440 
5441 	if (min_pfn == ULONG_MAX) {
5442 		printk(KERN_WARNING
5443 			"Could not find start_pfn for node %d\n", nid);
5444 		return 0;
5445 	}
5446 
5447 	return min_pfn;
5448 }
5449 
5450 /**
5451  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5452  *
5453  * It returns the minimum PFN based on information provided via
5454  * memblock_set_node().
5455  */
find_min_pfn_with_active_regions(void)5456 unsigned long __init find_min_pfn_with_active_regions(void)
5457 {
5458 	return find_min_pfn_for_node(MAX_NUMNODES);
5459 }
5460 
5461 /*
5462  * early_calculate_totalpages()
5463  * Sum pages in active regions for movable zone.
5464  * Populate N_MEMORY for calculating usable_nodes.
5465  */
early_calculate_totalpages(void)5466 static unsigned long __init early_calculate_totalpages(void)
5467 {
5468 	unsigned long totalpages = 0;
5469 	unsigned long start_pfn, end_pfn;
5470 	int i, nid;
5471 
5472 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5473 		unsigned long pages = end_pfn - start_pfn;
5474 
5475 		totalpages += pages;
5476 		if (pages)
5477 			node_set_state(nid, N_MEMORY);
5478 	}
5479 	return totalpages;
5480 }
5481 
5482 /*
5483  * Find the PFN the Movable zone begins in each node. Kernel memory
5484  * is spread evenly between nodes as long as the nodes have enough
5485  * memory. When they don't, some nodes will have more kernelcore than
5486  * others
5487  */
find_zone_movable_pfns_for_nodes(void)5488 static void __init find_zone_movable_pfns_for_nodes(void)
5489 {
5490 	int i, nid;
5491 	unsigned long usable_startpfn;
5492 	unsigned long kernelcore_node, kernelcore_remaining;
5493 	/* save the state before borrow the nodemask */
5494 	nodemask_t saved_node_state = node_states[N_MEMORY];
5495 	unsigned long totalpages = early_calculate_totalpages();
5496 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5497 	struct memblock_region *r;
5498 
5499 	/* Need to find movable_zone earlier when movable_node is specified. */
5500 	find_usable_zone_for_movable();
5501 
5502 	/*
5503 	 * If movable_node is specified, ignore kernelcore and movablecore
5504 	 * options.
5505 	 */
5506 	if (movable_node_is_enabled()) {
5507 		for_each_memblock(memory, r) {
5508 			if (!memblock_is_hotpluggable(r))
5509 				continue;
5510 
5511 			nid = r->nid;
5512 
5513 			usable_startpfn = PFN_DOWN(r->base);
5514 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5515 				min(usable_startpfn, zone_movable_pfn[nid]) :
5516 				usable_startpfn;
5517 		}
5518 
5519 		goto out2;
5520 	}
5521 
5522 	/*
5523 	 * If movablecore=nn[KMG] was specified, calculate what size of
5524 	 * kernelcore that corresponds so that memory usable for
5525 	 * any allocation type is evenly spread. If both kernelcore
5526 	 * and movablecore are specified, then the value of kernelcore
5527 	 * will be used for required_kernelcore if it's greater than
5528 	 * what movablecore would have allowed.
5529 	 */
5530 	if (required_movablecore) {
5531 		unsigned long corepages;
5532 
5533 		/*
5534 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5535 		 * was requested by the user
5536 		 */
5537 		required_movablecore =
5538 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5539 		required_movablecore = min(totalpages, required_movablecore);
5540 		corepages = totalpages - required_movablecore;
5541 
5542 		required_kernelcore = max(required_kernelcore, corepages);
5543 	}
5544 
5545 	/*
5546 	 * If kernelcore was not specified or kernelcore size is larger
5547 	 * than totalpages, there is no ZONE_MOVABLE.
5548 	 */
5549 	if (!required_kernelcore || required_kernelcore >= totalpages)
5550 		goto out;
5551 
5552 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5553 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5554 
5555 restart:
5556 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5557 	kernelcore_node = required_kernelcore / usable_nodes;
5558 	for_each_node_state(nid, N_MEMORY) {
5559 		unsigned long start_pfn, end_pfn;
5560 
5561 		/*
5562 		 * Recalculate kernelcore_node if the division per node
5563 		 * now exceeds what is necessary to satisfy the requested
5564 		 * amount of memory for the kernel
5565 		 */
5566 		if (required_kernelcore < kernelcore_node)
5567 			kernelcore_node = required_kernelcore / usable_nodes;
5568 
5569 		/*
5570 		 * As the map is walked, we track how much memory is usable
5571 		 * by the kernel using kernelcore_remaining. When it is
5572 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5573 		 */
5574 		kernelcore_remaining = kernelcore_node;
5575 
5576 		/* Go through each range of PFNs within this node */
5577 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5578 			unsigned long size_pages;
5579 
5580 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5581 			if (start_pfn >= end_pfn)
5582 				continue;
5583 
5584 			/* Account for what is only usable for kernelcore */
5585 			if (start_pfn < usable_startpfn) {
5586 				unsigned long kernel_pages;
5587 				kernel_pages = min(end_pfn, usable_startpfn)
5588 								- start_pfn;
5589 
5590 				kernelcore_remaining -= min(kernel_pages,
5591 							kernelcore_remaining);
5592 				required_kernelcore -= min(kernel_pages,
5593 							required_kernelcore);
5594 
5595 				/* Continue if range is now fully accounted */
5596 				if (end_pfn <= usable_startpfn) {
5597 
5598 					/*
5599 					 * Push zone_movable_pfn to the end so
5600 					 * that if we have to rebalance
5601 					 * kernelcore across nodes, we will
5602 					 * not double account here
5603 					 */
5604 					zone_movable_pfn[nid] = end_pfn;
5605 					continue;
5606 				}
5607 				start_pfn = usable_startpfn;
5608 			}
5609 
5610 			/*
5611 			 * The usable PFN range for ZONE_MOVABLE is from
5612 			 * start_pfn->end_pfn. Calculate size_pages as the
5613 			 * number of pages used as kernelcore
5614 			 */
5615 			size_pages = end_pfn - start_pfn;
5616 			if (size_pages > kernelcore_remaining)
5617 				size_pages = kernelcore_remaining;
5618 			zone_movable_pfn[nid] = start_pfn + size_pages;
5619 
5620 			/*
5621 			 * Some kernelcore has been met, update counts and
5622 			 * break if the kernelcore for this node has been
5623 			 * satisfied
5624 			 */
5625 			required_kernelcore -= min(required_kernelcore,
5626 								size_pages);
5627 			kernelcore_remaining -= size_pages;
5628 			if (!kernelcore_remaining)
5629 				break;
5630 		}
5631 	}
5632 
5633 	/*
5634 	 * If there is still required_kernelcore, we do another pass with one
5635 	 * less node in the count. This will push zone_movable_pfn[nid] further
5636 	 * along on the nodes that still have memory until kernelcore is
5637 	 * satisfied
5638 	 */
5639 	usable_nodes--;
5640 	if (usable_nodes && required_kernelcore > usable_nodes)
5641 		goto restart;
5642 
5643 out2:
5644 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5645 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5646 		zone_movable_pfn[nid] =
5647 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5648 
5649 out:
5650 	/* restore the node_state */
5651 	node_states[N_MEMORY] = saved_node_state;
5652 }
5653 
5654 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)5655 static void check_for_memory(pg_data_t *pgdat, int nid)
5656 {
5657 	enum zone_type zone_type;
5658 
5659 	if (N_MEMORY == N_NORMAL_MEMORY)
5660 		return;
5661 
5662 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5663 		struct zone *zone = &pgdat->node_zones[zone_type];
5664 		if (populated_zone(zone)) {
5665 			node_set_state(nid, N_HIGH_MEMORY);
5666 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5667 			    zone_type <= ZONE_NORMAL)
5668 				node_set_state(nid, N_NORMAL_MEMORY);
5669 			break;
5670 		}
5671 	}
5672 }
5673 
5674 /**
5675  * free_area_init_nodes - Initialise all pg_data_t and zone data
5676  * @max_zone_pfn: an array of max PFNs for each zone
5677  *
5678  * This will call free_area_init_node() for each active node in the system.
5679  * Using the page ranges provided by memblock_set_node(), the size of each
5680  * zone in each node and their holes is calculated. If the maximum PFN
5681  * between two adjacent zones match, it is assumed that the zone is empty.
5682  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5683  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5684  * starts where the previous one ended. For example, ZONE_DMA32 starts
5685  * at arch_max_dma_pfn.
5686  */
free_area_init_nodes(unsigned long * max_zone_pfn)5687 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5688 {
5689 	unsigned long start_pfn, end_pfn;
5690 	int i, nid;
5691 
5692 	/* Record where the zone boundaries are */
5693 	memset(arch_zone_lowest_possible_pfn, 0,
5694 				sizeof(arch_zone_lowest_possible_pfn));
5695 	memset(arch_zone_highest_possible_pfn, 0,
5696 				sizeof(arch_zone_highest_possible_pfn));
5697 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5698 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5699 	for (i = 1; i < MAX_NR_ZONES; i++) {
5700 		if (i == ZONE_MOVABLE)
5701 			continue;
5702 		arch_zone_lowest_possible_pfn[i] =
5703 			arch_zone_highest_possible_pfn[i-1];
5704 		arch_zone_highest_possible_pfn[i] =
5705 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5706 	}
5707 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5708 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5709 
5710 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5711 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5712 	find_zone_movable_pfns_for_nodes();
5713 
5714 	/* Print out the zone ranges */
5715 	pr_info("Zone ranges:\n");
5716 	for (i = 0; i < MAX_NR_ZONES; i++) {
5717 		if (i == ZONE_MOVABLE)
5718 			continue;
5719 		pr_info("  %-8s ", zone_names[i]);
5720 		if (arch_zone_lowest_possible_pfn[i] ==
5721 				arch_zone_highest_possible_pfn[i])
5722 			pr_cont("empty\n");
5723 		else
5724 			pr_cont("[mem %#018Lx-%#018Lx]\n",
5725 				(u64)arch_zone_lowest_possible_pfn[i]
5726 					<< PAGE_SHIFT,
5727 				((u64)arch_zone_highest_possible_pfn[i]
5728 					<< PAGE_SHIFT) - 1);
5729 	}
5730 
5731 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5732 	pr_info("Movable zone start for each node\n");
5733 	for (i = 0; i < MAX_NUMNODES; i++) {
5734 		if (zone_movable_pfn[i])
5735 			pr_info("  Node %d: %#018Lx\n", i,
5736 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5737 	}
5738 
5739 	/* Print out the early node map */
5740 	pr_info("Early memory node ranges\n");
5741 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5742 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5743 			(u64)start_pfn << PAGE_SHIFT,
5744 			((u64)end_pfn << PAGE_SHIFT) - 1);
5745 
5746 	/* Initialise every node */
5747 	mminit_verify_pageflags_layout();
5748 	setup_nr_node_ids();
5749 	for_each_online_node(nid) {
5750 		pg_data_t *pgdat = NODE_DATA(nid);
5751 		free_area_init_node(nid, NULL,
5752 				find_min_pfn_for_node(nid), NULL);
5753 
5754 		/* Any memory on that node */
5755 		if (pgdat->node_present_pages)
5756 			node_set_state(nid, N_MEMORY);
5757 		check_for_memory(pgdat, nid);
5758 	}
5759 }
5760 
cmdline_parse_core(char * p,unsigned long * core)5761 static int __init cmdline_parse_core(char *p, unsigned long *core)
5762 {
5763 	unsigned long long coremem;
5764 	if (!p)
5765 		return -EINVAL;
5766 
5767 	coremem = memparse(p, &p);
5768 	*core = coremem >> PAGE_SHIFT;
5769 
5770 	/* Paranoid check that UL is enough for the coremem value */
5771 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5772 
5773 	return 0;
5774 }
5775 
5776 /*
5777  * kernelcore=size sets the amount of memory for use for allocations that
5778  * cannot be reclaimed or migrated.
5779  */
cmdline_parse_kernelcore(char * p)5780 static int __init cmdline_parse_kernelcore(char *p)
5781 {
5782 	return cmdline_parse_core(p, &required_kernelcore);
5783 }
5784 
5785 /*
5786  * movablecore=size sets the amount of memory for use for allocations that
5787  * can be reclaimed or migrated.
5788  */
cmdline_parse_movablecore(char * p)5789 static int __init cmdline_parse_movablecore(char *p)
5790 {
5791 	return cmdline_parse_core(p, &required_movablecore);
5792 }
5793 
5794 early_param("kernelcore", cmdline_parse_kernelcore);
5795 early_param("movablecore", cmdline_parse_movablecore);
5796 
5797 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5798 
adjust_managed_page_count(struct page * page,long count)5799 void adjust_managed_page_count(struct page *page, long count)
5800 {
5801 	spin_lock(&managed_page_count_lock);
5802 	page_zone(page)->managed_pages += count;
5803 	totalram_pages += count;
5804 #ifdef CONFIG_HIGHMEM
5805 	if (PageHighMem(page))
5806 		totalhigh_pages += count;
5807 #endif
5808 	spin_unlock(&managed_page_count_lock);
5809 }
5810 EXPORT_SYMBOL(adjust_managed_page_count);
5811 
free_reserved_area(void * start,void * end,int poison,char * s)5812 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5813 {
5814 	void *pos;
5815 	unsigned long pages = 0;
5816 
5817 	start = (void *)PAGE_ALIGN((unsigned long)start);
5818 	end = (void *)((unsigned long)end & PAGE_MASK);
5819 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5820 		if ((unsigned int)poison <= 0xFF)
5821 			memset(pos, poison, PAGE_SIZE);
5822 		free_reserved_page(virt_to_page(pos));
5823 	}
5824 
5825 	if (pages && s)
5826 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5827 			s, pages << (PAGE_SHIFT - 10), start, end);
5828 
5829 	return pages;
5830 }
5831 EXPORT_SYMBOL(free_reserved_area);
5832 
5833 #ifdef	CONFIG_HIGHMEM
free_highmem_page(struct page * page)5834 void free_highmem_page(struct page *page)
5835 {
5836 	__free_reserved_page(page);
5837 	totalram_pages++;
5838 	page_zone(page)->managed_pages++;
5839 	totalhigh_pages++;
5840 }
5841 #endif
5842 
5843 
mem_init_print_info(const char * str)5844 void __init mem_init_print_info(const char *str)
5845 {
5846 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5847 	unsigned long init_code_size, init_data_size;
5848 
5849 	physpages = get_num_physpages();
5850 	codesize = _etext - _stext;
5851 	datasize = _edata - _sdata;
5852 	rosize = __end_rodata - __start_rodata;
5853 	bss_size = __bss_stop - __bss_start;
5854 	init_data_size = __init_end - __init_begin;
5855 	init_code_size = _einittext - _sinittext;
5856 
5857 	/*
5858 	 * Detect special cases and adjust section sizes accordingly:
5859 	 * 1) .init.* may be embedded into .data sections
5860 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5861 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5862 	 * 3) .rodata.* may be embedded into .text or .data sections.
5863 	 */
5864 #define adj_init_size(start, end, size, pos, adj) \
5865 	do { \
5866 		if (start <= pos && pos < end && size > adj) \
5867 			size -= adj; \
5868 	} while (0)
5869 
5870 	adj_init_size(__init_begin, __init_end, init_data_size,
5871 		     _sinittext, init_code_size);
5872 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5873 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5874 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5875 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5876 
5877 #undef	adj_init_size
5878 
5879 	pr_info("Memory: %luK/%luK available "
5880 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5881 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5882 #ifdef	CONFIG_HIGHMEM
5883 	       ", %luK highmem"
5884 #endif
5885 	       "%s%s)\n",
5886 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5887 	       codesize >> 10, datasize >> 10, rosize >> 10,
5888 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5889 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5890 	       totalcma_pages << (PAGE_SHIFT-10),
5891 #ifdef	CONFIG_HIGHMEM
5892 	       totalhigh_pages << (PAGE_SHIFT-10),
5893 #endif
5894 	       str ? ", " : "", str ? str : "");
5895 }
5896 
5897 /**
5898  * set_dma_reserve - set the specified number of pages reserved in the first zone
5899  * @new_dma_reserve: The number of pages to mark reserved
5900  *
5901  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5902  * In the DMA zone, a significant percentage may be consumed by kernel image
5903  * and other unfreeable allocations which can skew the watermarks badly. This
5904  * function may optionally be used to account for unfreeable pages in the
5905  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5906  * smaller per-cpu batchsize.
5907  */
set_dma_reserve(unsigned long new_dma_reserve)5908 void __init set_dma_reserve(unsigned long new_dma_reserve)
5909 {
5910 	dma_reserve = new_dma_reserve;
5911 }
5912 
free_area_init(unsigned long * zones_size)5913 void __init free_area_init(unsigned long *zones_size)
5914 {
5915 	free_area_init_node(0, zones_size,
5916 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5917 }
5918 
page_alloc_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)5919 static int page_alloc_cpu_notify(struct notifier_block *self,
5920 				 unsigned long action, void *hcpu)
5921 {
5922 	int cpu = (unsigned long)hcpu;
5923 
5924 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5925 		lru_add_drain_cpu(cpu);
5926 		drain_pages(cpu);
5927 
5928 		/*
5929 		 * Spill the event counters of the dead processor
5930 		 * into the current processors event counters.
5931 		 * This artificially elevates the count of the current
5932 		 * processor.
5933 		 */
5934 		vm_events_fold_cpu(cpu);
5935 
5936 		/*
5937 		 * Zero the differential counters of the dead processor
5938 		 * so that the vm statistics are consistent.
5939 		 *
5940 		 * This is only okay since the processor is dead and cannot
5941 		 * race with what we are doing.
5942 		 */
5943 		cpu_vm_stats_fold(cpu);
5944 	}
5945 	return NOTIFY_OK;
5946 }
5947 
page_alloc_init(void)5948 void __init page_alloc_init(void)
5949 {
5950 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5951 }
5952 
5953 /*
5954  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5955  *	or min_free_kbytes changes.
5956  */
calculate_totalreserve_pages(void)5957 static void calculate_totalreserve_pages(void)
5958 {
5959 	struct pglist_data *pgdat;
5960 	unsigned long reserve_pages = 0;
5961 	enum zone_type i, j;
5962 
5963 	for_each_online_pgdat(pgdat) {
5964 		for (i = 0; i < MAX_NR_ZONES; i++) {
5965 			struct zone *zone = pgdat->node_zones + i;
5966 			long max = 0;
5967 
5968 			/* Find valid and maximum lowmem_reserve in the zone */
5969 			for (j = i; j < MAX_NR_ZONES; j++) {
5970 				if (zone->lowmem_reserve[j] > max)
5971 					max = zone->lowmem_reserve[j];
5972 			}
5973 
5974 			/* we treat the high watermark as reserved pages. */
5975 			max += high_wmark_pages(zone);
5976 
5977 			if (max > zone->managed_pages)
5978 				max = zone->managed_pages;
5979 			reserve_pages += max;
5980 			/*
5981 			 * Lowmem reserves are not available to
5982 			 * GFP_HIGHUSER page cache allocations and
5983 			 * kswapd tries to balance zones to their high
5984 			 * watermark.  As a result, neither should be
5985 			 * regarded as dirtyable memory, to prevent a
5986 			 * situation where reclaim has to clean pages
5987 			 * in order to balance the zones.
5988 			 */
5989 			zone->dirty_balance_reserve = max;
5990 		}
5991 	}
5992 	dirty_balance_reserve = reserve_pages;
5993 	totalreserve_pages = reserve_pages;
5994 }
5995 
5996 /*
5997  * setup_per_zone_lowmem_reserve - called whenever
5998  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5999  *	has a correct pages reserved value, so an adequate number of
6000  *	pages are left in the zone after a successful __alloc_pages().
6001  */
setup_per_zone_lowmem_reserve(void)6002 static void setup_per_zone_lowmem_reserve(void)
6003 {
6004 	struct pglist_data *pgdat;
6005 	enum zone_type j, idx;
6006 
6007 	for_each_online_pgdat(pgdat) {
6008 		for (j = 0; j < MAX_NR_ZONES; j++) {
6009 			struct zone *zone = pgdat->node_zones + j;
6010 			unsigned long managed_pages = zone->managed_pages;
6011 
6012 			zone->lowmem_reserve[j] = 0;
6013 
6014 			idx = j;
6015 			while (idx) {
6016 				struct zone *lower_zone;
6017 
6018 				idx--;
6019 
6020 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6021 					sysctl_lowmem_reserve_ratio[idx] = 1;
6022 
6023 				lower_zone = pgdat->node_zones + idx;
6024 				lower_zone->lowmem_reserve[j] = managed_pages /
6025 					sysctl_lowmem_reserve_ratio[idx];
6026 				managed_pages += lower_zone->managed_pages;
6027 			}
6028 		}
6029 	}
6030 
6031 	/* update totalreserve_pages */
6032 	calculate_totalreserve_pages();
6033 }
6034 
__setup_per_zone_wmarks(void)6035 static void __setup_per_zone_wmarks(void)
6036 {
6037 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6038 	unsigned long lowmem_pages = 0;
6039 	struct zone *zone;
6040 	unsigned long flags;
6041 
6042 	/* Calculate total number of !ZONE_HIGHMEM pages */
6043 	for_each_zone(zone) {
6044 		if (!is_highmem(zone))
6045 			lowmem_pages += zone->managed_pages;
6046 	}
6047 
6048 	for_each_zone(zone) {
6049 		u64 tmp;
6050 
6051 		spin_lock_irqsave(&zone->lock, flags);
6052 		tmp = (u64)pages_min * zone->managed_pages;
6053 		do_div(tmp, lowmem_pages);
6054 		if (is_highmem(zone)) {
6055 			/*
6056 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6057 			 * need highmem pages, so cap pages_min to a small
6058 			 * value here.
6059 			 *
6060 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6061 			 * deltas control asynch page reclaim, and so should
6062 			 * not be capped for highmem.
6063 			 */
6064 			unsigned long min_pages;
6065 
6066 			min_pages = zone->managed_pages / 1024;
6067 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6068 			zone->watermark[WMARK_MIN] = min_pages;
6069 		} else {
6070 			/*
6071 			 * If it's a lowmem zone, reserve a number of pages
6072 			 * proportionate to the zone's size.
6073 			 */
6074 			zone->watermark[WMARK_MIN] = tmp;
6075 		}
6076 
6077 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
6078 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6079 
6080 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6081 			high_wmark_pages(zone) - low_wmark_pages(zone) -
6082 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6083 
6084 		spin_unlock_irqrestore(&zone->lock, flags);
6085 	}
6086 
6087 	/* update totalreserve_pages */
6088 	calculate_totalreserve_pages();
6089 }
6090 
6091 /**
6092  * setup_per_zone_wmarks - called when min_free_kbytes changes
6093  * or when memory is hot-{added|removed}
6094  *
6095  * Ensures that the watermark[min,low,high] values for each zone are set
6096  * correctly with respect to min_free_kbytes.
6097  */
setup_per_zone_wmarks(void)6098 void setup_per_zone_wmarks(void)
6099 {
6100 	mutex_lock(&zonelists_mutex);
6101 	__setup_per_zone_wmarks();
6102 	mutex_unlock(&zonelists_mutex);
6103 }
6104 
6105 /*
6106  * The inactive anon list should be small enough that the VM never has to
6107  * do too much work, but large enough that each inactive page has a chance
6108  * to be referenced again before it is swapped out.
6109  *
6110  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6111  * INACTIVE_ANON pages on this zone's LRU, maintained by the
6112  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6113  * the anonymous pages are kept on the inactive list.
6114  *
6115  * total     target    max
6116  * memory    ratio     inactive anon
6117  * -------------------------------------
6118  *   10MB       1         5MB
6119  *  100MB       1        50MB
6120  *    1GB       3       250MB
6121  *   10GB      10       0.9GB
6122  *  100GB      31         3GB
6123  *    1TB     101        10GB
6124  *   10TB     320        32GB
6125  */
calculate_zone_inactive_ratio(struct zone * zone)6126 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6127 {
6128 	unsigned int gb, ratio;
6129 
6130 	/* Zone size in gigabytes */
6131 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6132 	if (gb)
6133 		ratio = int_sqrt(10 * gb);
6134 	else
6135 		ratio = 1;
6136 
6137 	zone->inactive_ratio = ratio;
6138 }
6139 
setup_per_zone_inactive_ratio(void)6140 static void __meminit setup_per_zone_inactive_ratio(void)
6141 {
6142 	struct zone *zone;
6143 
6144 	for_each_zone(zone)
6145 		calculate_zone_inactive_ratio(zone);
6146 }
6147 
6148 /*
6149  * Initialise min_free_kbytes.
6150  *
6151  * For small machines we want it small (128k min).  For large machines
6152  * we want it large (64MB max).  But it is not linear, because network
6153  * bandwidth does not increase linearly with machine size.  We use
6154  *
6155  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6156  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6157  *
6158  * which yields
6159  *
6160  * 16MB:	512k
6161  * 32MB:	724k
6162  * 64MB:	1024k
6163  * 128MB:	1448k
6164  * 256MB:	2048k
6165  * 512MB:	2896k
6166  * 1024MB:	4096k
6167  * 2048MB:	5792k
6168  * 4096MB:	8192k
6169  * 8192MB:	11584k
6170  * 16384MB:	16384k
6171  */
init_per_zone_wmark_min(void)6172 int __meminit init_per_zone_wmark_min(void)
6173 {
6174 	unsigned long lowmem_kbytes;
6175 	int new_min_free_kbytes;
6176 
6177 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6178 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6179 
6180 	if (new_min_free_kbytes > user_min_free_kbytes) {
6181 		min_free_kbytes = new_min_free_kbytes;
6182 		if (min_free_kbytes < 128)
6183 			min_free_kbytes = 128;
6184 		if (min_free_kbytes > 65536)
6185 			min_free_kbytes = 65536;
6186 	} else {
6187 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6188 				new_min_free_kbytes, user_min_free_kbytes);
6189 	}
6190 	setup_per_zone_wmarks();
6191 	refresh_zone_stat_thresholds();
6192 	setup_per_zone_lowmem_reserve();
6193 	setup_per_zone_inactive_ratio();
6194 	return 0;
6195 }
core_initcall(init_per_zone_wmark_min)6196 core_initcall(init_per_zone_wmark_min)
6197 
6198 /*
6199  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6200  *	that we can call two helper functions whenever min_free_kbytes
6201  *	changes.
6202  */
6203 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6204 	void __user *buffer, size_t *length, loff_t *ppos)
6205 {
6206 	int rc;
6207 
6208 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6209 	if (rc)
6210 		return rc;
6211 
6212 	if (write) {
6213 		user_min_free_kbytes = min_free_kbytes;
6214 		setup_per_zone_wmarks();
6215 	}
6216 	return 0;
6217 }
6218 
6219 #ifdef CONFIG_NUMA
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6220 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6221 	void __user *buffer, size_t *length, loff_t *ppos)
6222 {
6223 	struct zone *zone;
6224 	int rc;
6225 
6226 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6227 	if (rc)
6228 		return rc;
6229 
6230 	for_each_zone(zone)
6231 		zone->min_unmapped_pages = (zone->managed_pages *
6232 				sysctl_min_unmapped_ratio) / 100;
6233 	return 0;
6234 }
6235 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6236 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6237 	void __user *buffer, size_t *length, loff_t *ppos)
6238 {
6239 	struct zone *zone;
6240 	int rc;
6241 
6242 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6243 	if (rc)
6244 		return rc;
6245 
6246 	for_each_zone(zone)
6247 		zone->min_slab_pages = (zone->managed_pages *
6248 				sysctl_min_slab_ratio) / 100;
6249 	return 0;
6250 }
6251 #endif
6252 
6253 /*
6254  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6255  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6256  *	whenever sysctl_lowmem_reserve_ratio changes.
6257  *
6258  * The reserve ratio obviously has absolutely no relation with the
6259  * minimum watermarks. The lowmem reserve ratio can only make sense
6260  * if in function of the boot time zone sizes.
6261  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6262 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6263 	void __user *buffer, size_t *length, loff_t *ppos)
6264 {
6265 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6266 	setup_per_zone_lowmem_reserve();
6267 	return 0;
6268 }
6269 
6270 /*
6271  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6272  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6273  * pagelist can have before it gets flushed back to buddy allocator.
6274  */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6275 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6276 	void __user *buffer, size_t *length, loff_t *ppos)
6277 {
6278 	struct zone *zone;
6279 	int old_percpu_pagelist_fraction;
6280 	int ret;
6281 
6282 	mutex_lock(&pcp_batch_high_lock);
6283 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6284 
6285 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6286 	if (!write || ret < 0)
6287 		goto out;
6288 
6289 	/* Sanity checking to avoid pcp imbalance */
6290 	if (percpu_pagelist_fraction &&
6291 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6292 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6293 		ret = -EINVAL;
6294 		goto out;
6295 	}
6296 
6297 	/* No change? */
6298 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6299 		goto out;
6300 
6301 	for_each_populated_zone(zone) {
6302 		unsigned int cpu;
6303 
6304 		for_each_possible_cpu(cpu)
6305 			pageset_set_high_and_batch(zone,
6306 					per_cpu_ptr(zone->pageset, cpu));
6307 	}
6308 out:
6309 	mutex_unlock(&pcp_batch_high_lock);
6310 	return ret;
6311 }
6312 
6313 #ifdef CONFIG_NUMA
6314 int hashdist = HASHDIST_DEFAULT;
6315 
set_hashdist(char * str)6316 static int __init set_hashdist(char *str)
6317 {
6318 	if (!str)
6319 		return 0;
6320 	hashdist = simple_strtoul(str, &str, 0);
6321 	return 1;
6322 }
6323 __setup("hashdist=", set_hashdist);
6324 #endif
6325 
6326 /*
6327  * allocate a large system hash table from bootmem
6328  * - it is assumed that the hash table must contain an exact power-of-2
6329  *   quantity of entries
6330  * - limit is the number of hash buckets, not the total allocation size
6331  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)6332 void *__init alloc_large_system_hash(const char *tablename,
6333 				     unsigned long bucketsize,
6334 				     unsigned long numentries,
6335 				     int scale,
6336 				     int flags,
6337 				     unsigned int *_hash_shift,
6338 				     unsigned int *_hash_mask,
6339 				     unsigned long low_limit,
6340 				     unsigned long high_limit)
6341 {
6342 	unsigned long long max = high_limit;
6343 	unsigned long log2qty, size;
6344 	void *table = NULL;
6345 
6346 	/* allow the kernel cmdline to have a say */
6347 	if (!numentries) {
6348 		/* round applicable memory size up to nearest megabyte */
6349 		numentries = nr_kernel_pages;
6350 
6351 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6352 		if (PAGE_SHIFT < 20)
6353 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6354 
6355 		/* limit to 1 bucket per 2^scale bytes of low memory */
6356 		if (scale > PAGE_SHIFT)
6357 			numentries >>= (scale - PAGE_SHIFT);
6358 		else
6359 			numentries <<= (PAGE_SHIFT - scale);
6360 
6361 		/* Make sure we've got at least a 0-order allocation.. */
6362 		if (unlikely(flags & HASH_SMALL)) {
6363 			/* Makes no sense without HASH_EARLY */
6364 			WARN_ON(!(flags & HASH_EARLY));
6365 			if (!(numentries >> *_hash_shift)) {
6366 				numentries = 1UL << *_hash_shift;
6367 				BUG_ON(!numentries);
6368 			}
6369 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6370 			numentries = PAGE_SIZE / bucketsize;
6371 	}
6372 	numentries = roundup_pow_of_two(numentries);
6373 
6374 	/* limit allocation size to 1/16 total memory by default */
6375 	if (max == 0) {
6376 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6377 		do_div(max, bucketsize);
6378 	}
6379 	max = min(max, 0x80000000ULL);
6380 
6381 	if (numentries < low_limit)
6382 		numentries = low_limit;
6383 	if (numentries > max)
6384 		numentries = max;
6385 
6386 	log2qty = ilog2(numentries);
6387 
6388 	do {
6389 		size = bucketsize << log2qty;
6390 		if (flags & HASH_EARLY)
6391 			table = memblock_virt_alloc_nopanic(size, 0);
6392 		else if (hashdist)
6393 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6394 		else {
6395 			/*
6396 			 * If bucketsize is not a power-of-two, we may free
6397 			 * some pages at the end of hash table which
6398 			 * alloc_pages_exact() automatically does
6399 			 */
6400 			if (get_order(size) < MAX_ORDER) {
6401 				table = alloc_pages_exact(size, GFP_ATOMIC);
6402 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6403 			}
6404 		}
6405 	} while (!table && size > PAGE_SIZE && --log2qty);
6406 
6407 	if (!table)
6408 		panic("Failed to allocate %s hash table\n", tablename);
6409 
6410 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6411 	       tablename,
6412 	       (1UL << log2qty),
6413 	       ilog2(size) - PAGE_SHIFT,
6414 	       size);
6415 
6416 	if (_hash_shift)
6417 		*_hash_shift = log2qty;
6418 	if (_hash_mask)
6419 		*_hash_mask = (1 << log2qty) - 1;
6420 
6421 	return table;
6422 }
6423 
6424 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct zone * zone,unsigned long pfn)6425 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6426 							unsigned long pfn)
6427 {
6428 #ifdef CONFIG_SPARSEMEM
6429 	return __pfn_to_section(pfn)->pageblock_flags;
6430 #else
6431 	return zone->pageblock_flags;
6432 #endif /* CONFIG_SPARSEMEM */
6433 }
6434 
pfn_to_bitidx(struct zone * zone,unsigned long pfn)6435 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6436 {
6437 #ifdef CONFIG_SPARSEMEM
6438 	pfn &= (PAGES_PER_SECTION-1);
6439 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6440 #else
6441 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6442 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6443 #endif /* CONFIG_SPARSEMEM */
6444 }
6445 
6446 /**
6447  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6448  * @page: The page within the block of interest
6449  * @pfn: The target page frame number
6450  * @end_bitidx: The last bit of interest to retrieve
6451  * @mask: mask of bits that the caller is interested in
6452  *
6453  * Return: pageblock_bits flags
6454  */
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)6455 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6456 					unsigned long end_bitidx,
6457 					unsigned long mask)
6458 {
6459 	struct zone *zone;
6460 	unsigned long *bitmap;
6461 	unsigned long bitidx, word_bitidx;
6462 	unsigned long word;
6463 
6464 	zone = page_zone(page);
6465 	bitmap = get_pageblock_bitmap(zone, pfn);
6466 	bitidx = pfn_to_bitidx(zone, pfn);
6467 	word_bitidx = bitidx / BITS_PER_LONG;
6468 	bitidx &= (BITS_PER_LONG-1);
6469 
6470 	word = bitmap[word_bitidx];
6471 	bitidx += end_bitidx;
6472 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6473 }
6474 
6475 /**
6476  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6477  * @page: The page within the block of interest
6478  * @flags: The flags to set
6479  * @pfn: The target page frame number
6480  * @end_bitidx: The last bit of interest
6481  * @mask: mask of bits that the caller is interested in
6482  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)6483 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6484 					unsigned long pfn,
6485 					unsigned long end_bitidx,
6486 					unsigned long mask)
6487 {
6488 	struct zone *zone;
6489 	unsigned long *bitmap;
6490 	unsigned long bitidx, word_bitidx;
6491 	unsigned long old_word, word;
6492 
6493 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6494 
6495 	zone = page_zone(page);
6496 	bitmap = get_pageblock_bitmap(zone, pfn);
6497 	bitidx = pfn_to_bitidx(zone, pfn);
6498 	word_bitidx = bitidx / BITS_PER_LONG;
6499 	bitidx &= (BITS_PER_LONG-1);
6500 
6501 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6502 
6503 	bitidx += end_bitidx;
6504 	mask <<= (BITS_PER_LONG - bitidx - 1);
6505 	flags <<= (BITS_PER_LONG - bitidx - 1);
6506 
6507 	word = READ_ONCE(bitmap[word_bitidx]);
6508 	for (;;) {
6509 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6510 		if (word == old_word)
6511 			break;
6512 		word = old_word;
6513 	}
6514 }
6515 
6516 /*
6517  * This function checks whether pageblock includes unmovable pages or not.
6518  * If @count is not zero, it is okay to include less @count unmovable pages
6519  *
6520  * PageLRU check without isolation or lru_lock could race so that
6521  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6522  * expect this function should be exact.
6523  */
has_unmovable_pages(struct zone * zone,struct page * page,int count,bool skip_hwpoisoned_pages)6524 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6525 			 bool skip_hwpoisoned_pages)
6526 {
6527 	unsigned long pfn, iter, found;
6528 	int mt;
6529 
6530 	/*
6531 	 * For avoiding noise data, lru_add_drain_all() should be called
6532 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6533 	 */
6534 	if (zone_idx(zone) == ZONE_MOVABLE)
6535 		return false;
6536 	mt = get_pageblock_migratetype(page);
6537 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6538 		return false;
6539 
6540 	pfn = page_to_pfn(page);
6541 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6542 		unsigned long check = pfn + iter;
6543 
6544 		if (!pfn_valid_within(check))
6545 			continue;
6546 
6547 		page = pfn_to_page(check);
6548 
6549 		/*
6550 		 * Hugepages are not in LRU lists, but they're movable.
6551 		 * We need not scan over tail pages bacause we don't
6552 		 * handle each tail page individually in migration.
6553 		 */
6554 		if (PageHuge(page)) {
6555 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6556 			continue;
6557 		}
6558 
6559 		/*
6560 		 * We can't use page_count without pin a page
6561 		 * because another CPU can free compound page.
6562 		 * This check already skips compound tails of THP
6563 		 * because their page->_count is zero at all time.
6564 		 */
6565 		if (!atomic_read(&page->_count)) {
6566 			if (PageBuddy(page))
6567 				iter += (1 << page_order(page)) - 1;
6568 			continue;
6569 		}
6570 
6571 		/*
6572 		 * The HWPoisoned page may be not in buddy system, and
6573 		 * page_count() is not 0.
6574 		 */
6575 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6576 			continue;
6577 
6578 		if (!PageLRU(page))
6579 			found++;
6580 		/*
6581 		 * If there are RECLAIMABLE pages, we need to check
6582 		 * it.  But now, memory offline itself doesn't call
6583 		 * shrink_node_slabs() and it still to be fixed.
6584 		 */
6585 		/*
6586 		 * If the page is not RAM, page_count()should be 0.
6587 		 * we don't need more check. This is an _used_ not-movable page.
6588 		 *
6589 		 * The problematic thing here is PG_reserved pages. PG_reserved
6590 		 * is set to both of a memory hole page and a _used_ kernel
6591 		 * page at boot.
6592 		 */
6593 		if (found > count)
6594 			return true;
6595 	}
6596 	return false;
6597 }
6598 
is_pageblock_removable_nolock(struct page * page)6599 bool is_pageblock_removable_nolock(struct page *page)
6600 {
6601 	struct zone *zone;
6602 	unsigned long pfn;
6603 
6604 	/*
6605 	 * We have to be careful here because we are iterating over memory
6606 	 * sections which are not zone aware so we might end up outside of
6607 	 * the zone but still within the section.
6608 	 * We have to take care about the node as well. If the node is offline
6609 	 * its NODE_DATA will be NULL - see page_zone.
6610 	 */
6611 	if (!node_online(page_to_nid(page)))
6612 		return false;
6613 
6614 	zone = page_zone(page);
6615 	pfn = page_to_pfn(page);
6616 	if (!zone_spans_pfn(zone, pfn))
6617 		return false;
6618 
6619 	return !has_unmovable_pages(zone, page, 0, true);
6620 }
6621 
6622 #ifdef CONFIG_CMA
6623 
pfn_max_align_down(unsigned long pfn)6624 static unsigned long pfn_max_align_down(unsigned long pfn)
6625 {
6626 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6627 			     pageblock_nr_pages) - 1);
6628 }
6629 
pfn_max_align_up(unsigned long pfn)6630 static unsigned long pfn_max_align_up(unsigned long pfn)
6631 {
6632 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6633 				pageblock_nr_pages));
6634 }
6635 
6636 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6637 static int __alloc_contig_migrate_range(struct compact_control *cc,
6638 					unsigned long start, unsigned long end)
6639 {
6640 	/* This function is based on compact_zone() from compaction.c. */
6641 	unsigned long nr_reclaimed;
6642 	unsigned long pfn = start;
6643 	unsigned int tries = 0;
6644 	int ret = 0;
6645 
6646 	migrate_prep();
6647 
6648 	while (pfn < end || !list_empty(&cc->migratepages)) {
6649 		if (fatal_signal_pending(current)) {
6650 			ret = -EINTR;
6651 			break;
6652 		}
6653 
6654 		if (list_empty(&cc->migratepages)) {
6655 			cc->nr_migratepages = 0;
6656 			pfn = isolate_migratepages_range(cc, pfn, end);
6657 			if (!pfn) {
6658 				ret = -EINTR;
6659 				break;
6660 			}
6661 			tries = 0;
6662 		} else if (++tries == 5) {
6663 			ret = ret < 0 ? ret : -EBUSY;
6664 			break;
6665 		}
6666 
6667 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6668 							&cc->migratepages);
6669 		cc->nr_migratepages -= nr_reclaimed;
6670 
6671 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6672 				    NULL, 0, cc->mode, MR_CMA);
6673 	}
6674 	if (ret < 0) {
6675 		putback_movable_pages(&cc->migratepages);
6676 		return ret;
6677 	}
6678 	return 0;
6679 }
6680 
6681 /**
6682  * alloc_contig_range() -- tries to allocate given range of pages
6683  * @start:	start PFN to allocate
6684  * @end:	one-past-the-last PFN to allocate
6685  * @migratetype:	migratetype of the underlaying pageblocks (either
6686  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6687  *			in range must have the same migratetype and it must
6688  *			be either of the two.
6689  *
6690  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6691  * aligned, however it's the caller's responsibility to guarantee that
6692  * we are the only thread that changes migrate type of pageblocks the
6693  * pages fall in.
6694  *
6695  * The PFN range must belong to a single zone.
6696  *
6697  * Returns zero on success or negative error code.  On success all
6698  * pages which PFN is in [start, end) are allocated for the caller and
6699  * need to be freed with free_contig_range().
6700  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype)6701 int alloc_contig_range(unsigned long start, unsigned long end,
6702 		       unsigned migratetype)
6703 {
6704 	unsigned long outer_start, outer_end;
6705 	unsigned int order;
6706 	int ret = 0;
6707 
6708 	struct compact_control cc = {
6709 		.nr_migratepages = 0,
6710 		.order = -1,
6711 		.zone = page_zone(pfn_to_page(start)),
6712 		.mode = MIGRATE_SYNC,
6713 		.ignore_skip_hint = true,
6714 	};
6715 	INIT_LIST_HEAD(&cc.migratepages);
6716 
6717 	/*
6718 	 * What we do here is we mark all pageblocks in range as
6719 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6720 	 * have different sizes, and due to the way page allocator
6721 	 * work, we align the range to biggest of the two pages so
6722 	 * that page allocator won't try to merge buddies from
6723 	 * different pageblocks and change MIGRATE_ISOLATE to some
6724 	 * other migration type.
6725 	 *
6726 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6727 	 * migrate the pages from an unaligned range (ie. pages that
6728 	 * we are interested in).  This will put all the pages in
6729 	 * range back to page allocator as MIGRATE_ISOLATE.
6730 	 *
6731 	 * When this is done, we take the pages in range from page
6732 	 * allocator removing them from the buddy system.  This way
6733 	 * page allocator will never consider using them.
6734 	 *
6735 	 * This lets us mark the pageblocks back as
6736 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6737 	 * aligned range but not in the unaligned, original range are
6738 	 * put back to page allocator so that buddy can use them.
6739 	 */
6740 
6741 	ret = start_isolate_page_range(pfn_max_align_down(start),
6742 				       pfn_max_align_up(end), migratetype,
6743 				       false);
6744 	if (ret)
6745 		return ret;
6746 
6747 	ret = __alloc_contig_migrate_range(&cc, start, end);
6748 	if (ret)
6749 		goto done;
6750 
6751 	/*
6752 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6753 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6754 	 * more, all pages in [start, end) are free in page allocator.
6755 	 * What we are going to do is to allocate all pages from
6756 	 * [start, end) (that is remove them from page allocator).
6757 	 *
6758 	 * The only problem is that pages at the beginning and at the
6759 	 * end of interesting range may be not aligned with pages that
6760 	 * page allocator holds, ie. they can be part of higher order
6761 	 * pages.  Because of this, we reserve the bigger range and
6762 	 * once this is done free the pages we are not interested in.
6763 	 *
6764 	 * We don't have to hold zone->lock here because the pages are
6765 	 * isolated thus they won't get removed from buddy.
6766 	 */
6767 
6768 	lru_add_drain_all();
6769 	drain_all_pages(cc.zone);
6770 
6771 	order = 0;
6772 	outer_start = start;
6773 	while (!PageBuddy(pfn_to_page(outer_start))) {
6774 		if (++order >= MAX_ORDER) {
6775 			ret = -EBUSY;
6776 			goto done;
6777 		}
6778 		outer_start &= ~0UL << order;
6779 	}
6780 
6781 	/* Make sure the range is really isolated. */
6782 	if (test_pages_isolated(outer_start, end, false)) {
6783 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6784 			__func__, outer_start, end);
6785 		ret = -EBUSY;
6786 		goto done;
6787 	}
6788 
6789 	/* Grab isolated pages from freelists. */
6790 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6791 	if (!outer_end) {
6792 		ret = -EBUSY;
6793 		goto done;
6794 	}
6795 
6796 	/* Free head and tail (if any) */
6797 	if (start != outer_start)
6798 		free_contig_range(outer_start, start - outer_start);
6799 	if (end != outer_end)
6800 		free_contig_range(end, outer_end - end);
6801 
6802 done:
6803 	undo_isolate_page_range(pfn_max_align_down(start),
6804 				pfn_max_align_up(end), migratetype);
6805 	return ret;
6806 }
6807 
free_contig_range(unsigned long pfn,unsigned nr_pages)6808 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6809 {
6810 	unsigned int count = 0;
6811 
6812 	for (; nr_pages--; pfn++) {
6813 		struct page *page = pfn_to_page(pfn);
6814 
6815 		count += page_count(page) != 1;
6816 		__free_page(page);
6817 	}
6818 	WARN(count != 0, "%d pages are still in use!\n", count);
6819 }
6820 #endif
6821 
6822 #ifdef CONFIG_MEMORY_HOTPLUG
6823 /*
6824  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6825  * page high values need to be recalulated.
6826  */
zone_pcp_update(struct zone * zone)6827 void __meminit zone_pcp_update(struct zone *zone)
6828 {
6829 	unsigned cpu;
6830 	mutex_lock(&pcp_batch_high_lock);
6831 	for_each_possible_cpu(cpu)
6832 		pageset_set_high_and_batch(zone,
6833 				per_cpu_ptr(zone->pageset, cpu));
6834 	mutex_unlock(&pcp_batch_high_lock);
6835 }
6836 #endif
6837 
zone_pcp_reset(struct zone * zone)6838 void zone_pcp_reset(struct zone *zone)
6839 {
6840 	unsigned long flags;
6841 	int cpu;
6842 	struct per_cpu_pageset *pset;
6843 
6844 	/* avoid races with drain_pages()  */
6845 	local_irq_save(flags);
6846 	if (zone->pageset != &boot_pageset) {
6847 		for_each_online_cpu(cpu) {
6848 			pset = per_cpu_ptr(zone->pageset, cpu);
6849 			drain_zonestat(zone, pset);
6850 		}
6851 		free_percpu(zone->pageset);
6852 		zone->pageset = &boot_pageset;
6853 	}
6854 	local_irq_restore(flags);
6855 }
6856 
6857 #ifdef CONFIG_MEMORY_HOTREMOVE
6858 /*
6859  * All pages in the range must be isolated before calling this.
6860  */
6861 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6862 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6863 {
6864 	struct page *page;
6865 	struct zone *zone;
6866 	unsigned int order, i;
6867 	unsigned long pfn;
6868 	unsigned long flags;
6869 	/* find the first valid pfn */
6870 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6871 		if (pfn_valid(pfn))
6872 			break;
6873 	if (pfn == end_pfn)
6874 		return;
6875 	zone = page_zone(pfn_to_page(pfn));
6876 	spin_lock_irqsave(&zone->lock, flags);
6877 	pfn = start_pfn;
6878 	while (pfn < end_pfn) {
6879 		if (!pfn_valid(pfn)) {
6880 			pfn++;
6881 			continue;
6882 		}
6883 		page = pfn_to_page(pfn);
6884 		/*
6885 		 * The HWPoisoned page may be not in buddy system, and
6886 		 * page_count() is not 0.
6887 		 */
6888 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6889 			pfn++;
6890 			SetPageReserved(page);
6891 			continue;
6892 		}
6893 
6894 		BUG_ON(page_count(page));
6895 		BUG_ON(!PageBuddy(page));
6896 		order = page_order(page);
6897 #ifdef CONFIG_DEBUG_VM
6898 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6899 		       pfn, 1 << order, end_pfn);
6900 #endif
6901 		list_del(&page->lru);
6902 		rmv_page_order(page);
6903 		zone->free_area[order].nr_free--;
6904 		for (i = 0; i < (1 << order); i++)
6905 			SetPageReserved((page+i));
6906 		pfn += (1 << order);
6907 	}
6908 	spin_unlock_irqrestore(&zone->lock, flags);
6909 }
6910 #endif
6911 
6912 #ifdef CONFIG_MEMORY_FAILURE
is_free_buddy_page(struct page * page)6913 bool is_free_buddy_page(struct page *page)
6914 {
6915 	struct zone *zone = page_zone(page);
6916 	unsigned long pfn = page_to_pfn(page);
6917 	unsigned long flags;
6918 	unsigned int order;
6919 
6920 	spin_lock_irqsave(&zone->lock, flags);
6921 	for (order = 0; order < MAX_ORDER; order++) {
6922 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6923 
6924 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6925 			break;
6926 	}
6927 	spin_unlock_irqrestore(&zone->lock, flags);
6928 
6929 	return order < MAX_ORDER;
6930 }
6931 #endif
6932