1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/export.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36#include <linux/pagevec.h>
37#include <linux/timer.h>
38#include <linux/sched/rt.h>
39#include <linux/mm_inline.h>
40#include <trace/events/writeback.h>
41
42#include "internal.h"
43
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE		max(HZ/5, 1)
48
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59
60#define RATELIMIT_CALC_SHIFT	10
61
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
71 * Start background writeback (via writeback threads) at this percentage
72 */
73int dirty_background_ratio = 10;
74
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
90int vm_dirty_ratio = 20;
91
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
98/*
99 * The interval between `kupdate'-style writebacks
100 */
101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105/*
106 * The longest time for which data is allowed to remain dirty
107 */
108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
125struct wb_domain global_wb_domain;
126
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
129#ifdef CONFIG_CGROUP_WRITEBACK
130	struct wb_domain	*dom;
131	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132#endif
133	struct bdi_writeback	*wb;
134	struct fprop_local_percpu *wb_completions;
135
136	unsigned long		avail;		/* dirtyable */
137	unsigned long		dirty;		/* file_dirty + write + nfs */
138	unsigned long		thresh;		/* dirty threshold */
139	unsigned long		bg_thresh;	/* dirty background threshold */
140
141	unsigned long		wb_dirty;	/* per-wb counterparts */
142	unsigned long		wb_thresh;
143	unsigned long		wb_bg_thresh;
144
145	unsigned long		pos_ratio;
146};
147
148/*
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
152 */
153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155#ifdef CONFIG_CGROUP_WRITEBACK
156
157#define GDTC_INIT(__wb)		.wb = (__wb),				\
158				.dom = &global_wb_domain,		\
159				.wb_completions = &(__wb)->completions
160
161#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162
163#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
164				.dom = mem_cgroup_wb_domain(__wb),	\
165				.wb_completions = &(__wb)->memcg_completions, \
166				.gdtc = __gdtc
167
168static bool mdtc_valid(struct dirty_throttle_control *dtc)
169{
170	return dtc->dom;
171}
172
173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174{
175	return dtc->dom;
176}
177
178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179{
180	return mdtc->gdtc;
181}
182
183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184{
185	return &wb->memcg_completions;
186}
187
188static void wb_min_max_ratio(struct bdi_writeback *wb,
189			     unsigned long *minp, unsigned long *maxp)
190{
191	unsigned long this_bw = wb->avg_write_bandwidth;
192	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193	unsigned long long min = wb->bdi->min_ratio;
194	unsigned long long max = wb->bdi->max_ratio;
195
196	/*
197	 * @wb may already be clean by the time control reaches here and
198	 * the total may not include its bw.
199	 */
200	if (this_bw < tot_bw) {
201		if (min) {
202			min *= this_bw;
203			do_div(min, tot_bw);
204		}
205		if (max < 100) {
206			max *= this_bw;
207			do_div(max, tot_bw);
208		}
209	}
210
211	*minp = min;
212	*maxp = max;
213}
214
215#else	/* CONFIG_CGROUP_WRITEBACK */
216
217#define GDTC_INIT(__wb)		.wb = (__wb),                           \
218				.wb_completions = &(__wb)->completions
219#define GDTC_INIT_NO_WB
220#define MDTC_INIT(__wb, __gdtc)
221
222static bool mdtc_valid(struct dirty_throttle_control *dtc)
223{
224	return false;
225}
226
227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228{
229	return &global_wb_domain;
230}
231
232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233{
234	return NULL;
235}
236
237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238{
239	return NULL;
240}
241
242static void wb_min_max_ratio(struct bdi_writeback *wb,
243			     unsigned long *minp, unsigned long *maxp)
244{
245	*minp = wb->bdi->min_ratio;
246	*maxp = wb->bdi->max_ratio;
247}
248
249#endif	/* CONFIG_CGROUP_WRITEBACK */
250
251/*
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
257 *
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied.  Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
262 *
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
267 */
268
269/**
270 * zone_dirtyable_memory - number of dirtyable pages in a zone
271 * @zone: the zone
272 *
273 * Returns the zone's number of pages potentially available for dirty
274 * page cache.  This is the base value for the per-zone dirty limits.
275 */
276static unsigned long zone_dirtyable_memory(struct zone *zone)
277{
278	unsigned long nr_pages;
279
280	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
282
283	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
284	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
285
286	return nr_pages;
287}
288
289static unsigned long highmem_dirtyable_memory(unsigned long total)
290{
291#ifdef CONFIG_HIGHMEM
292	int node;
293	unsigned long x = 0;
294
295	for_each_node_state(node, N_HIGH_MEMORY) {
296		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
297
298		x += zone_dirtyable_memory(z);
299	}
300	/*
301	 * Unreclaimable memory (kernel memory or anonymous memory
302	 * without swap) can bring down the dirtyable pages below
303	 * the zone's dirty balance reserve and the above calculation
304	 * will underflow.  However we still want to add in nodes
305	 * which are below threshold (negative values) to get a more
306	 * accurate calculation but make sure that the total never
307	 * underflows.
308	 */
309	if ((long)x < 0)
310		x = 0;
311
312	/*
313	 * Make sure that the number of highmem pages is never larger
314	 * than the number of the total dirtyable memory. This can only
315	 * occur in very strange VM situations but we want to make sure
316	 * that this does not occur.
317	 */
318	return min(x, total);
319#else
320	return 0;
321#endif
322}
323
324/**
325 * global_dirtyable_memory - number of globally dirtyable pages
326 *
327 * Returns the global number of pages potentially available for dirty
328 * page cache.  This is the base value for the global dirty limits.
329 */
330static unsigned long global_dirtyable_memory(void)
331{
332	unsigned long x;
333
334	x = global_page_state(NR_FREE_PAGES);
335	x -= min(x, dirty_balance_reserve);
336
337	x += global_page_state(NR_INACTIVE_FILE);
338	x += global_page_state(NR_ACTIVE_FILE);
339
340	if (!vm_highmem_is_dirtyable)
341		x -= highmem_dirtyable_memory(x);
342
343	return x + 1;	/* Ensure that we never return 0 */
344}
345
346/**
347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348 * @dtc: dirty_throttle_control of interest
349 *
350 * Calculate @dtc->thresh and ->bg_thresh considering
351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
352 * must ensure that @dtc->avail is set before calling this function.  The
353 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
354 * real-time tasks.
355 */
356static void domain_dirty_limits(struct dirty_throttle_control *dtc)
357{
358	const unsigned long available_memory = dtc->avail;
359	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
360	unsigned long bytes = vm_dirty_bytes;
361	unsigned long bg_bytes = dirty_background_bytes;
362	unsigned long ratio = vm_dirty_ratio;
363	unsigned long bg_ratio = dirty_background_ratio;
364	unsigned long thresh;
365	unsigned long bg_thresh;
366	struct task_struct *tsk;
367
368	/* gdtc is !NULL iff @dtc is for memcg domain */
369	if (gdtc) {
370		unsigned long global_avail = gdtc->avail;
371
372		/*
373		 * The byte settings can't be applied directly to memcg
374		 * domains.  Convert them to ratios by scaling against
375		 * globally available memory.
376		 */
377		if (bytes)
378			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
379				    global_avail, 100UL);
380		if (bg_bytes)
381			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
382				       global_avail, 100UL);
383		bytes = bg_bytes = 0;
384	}
385
386	if (bytes)
387		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
388	else
389		thresh = (ratio * available_memory) / 100;
390
391	if (bg_bytes)
392		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
393	else
394		bg_thresh = (bg_ratio * available_memory) / 100;
395
396	if (bg_thresh >= thresh)
397		bg_thresh = thresh / 2;
398	tsk = current;
399	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
400		bg_thresh += bg_thresh / 4;
401		thresh += thresh / 4;
402	}
403	dtc->thresh = thresh;
404	dtc->bg_thresh = bg_thresh;
405
406	/* we should eventually report the domain in the TP */
407	if (!gdtc)
408		trace_global_dirty_state(bg_thresh, thresh);
409}
410
411/**
412 * global_dirty_limits - background-writeback and dirty-throttling thresholds
413 * @pbackground: out parameter for bg_thresh
414 * @pdirty: out parameter for thresh
415 *
416 * Calculate bg_thresh and thresh for global_wb_domain.  See
417 * domain_dirty_limits() for details.
418 */
419void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
420{
421	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
422
423	gdtc.avail = global_dirtyable_memory();
424	domain_dirty_limits(&gdtc);
425
426	*pbackground = gdtc.bg_thresh;
427	*pdirty = gdtc.thresh;
428}
429
430/**
431 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
432 * @zone: the zone
433 *
434 * Returns the maximum number of dirty pages allowed in a zone, based
435 * on the zone's dirtyable memory.
436 */
437static unsigned long zone_dirty_limit(struct zone *zone)
438{
439	unsigned long zone_memory = zone_dirtyable_memory(zone);
440	struct task_struct *tsk = current;
441	unsigned long dirty;
442
443	if (vm_dirty_bytes)
444		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
445			zone_memory / global_dirtyable_memory();
446	else
447		dirty = vm_dirty_ratio * zone_memory / 100;
448
449	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
450		dirty += dirty / 4;
451
452	return dirty;
453}
454
455/**
456 * zone_dirty_ok - tells whether a zone is within its dirty limits
457 * @zone: the zone to check
458 *
459 * Returns %true when the dirty pages in @zone are within the zone's
460 * dirty limit, %false if the limit is exceeded.
461 */
462bool zone_dirty_ok(struct zone *zone)
463{
464	unsigned long limit = zone_dirty_limit(zone);
465
466	return zone_page_state(zone, NR_FILE_DIRTY) +
467	       zone_page_state(zone, NR_UNSTABLE_NFS) +
468	       zone_page_state(zone, NR_WRITEBACK) <= limit;
469}
470
471int dirty_background_ratio_handler(struct ctl_table *table, int write,
472		void __user *buffer, size_t *lenp,
473		loff_t *ppos)
474{
475	int ret;
476
477	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
478	if (ret == 0 && write)
479		dirty_background_bytes = 0;
480	return ret;
481}
482
483int dirty_background_bytes_handler(struct ctl_table *table, int write,
484		void __user *buffer, size_t *lenp,
485		loff_t *ppos)
486{
487	int ret;
488
489	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
490	if (ret == 0 && write)
491		dirty_background_ratio = 0;
492	return ret;
493}
494
495int dirty_ratio_handler(struct ctl_table *table, int write,
496		void __user *buffer, size_t *lenp,
497		loff_t *ppos)
498{
499	int old_ratio = vm_dirty_ratio;
500	int ret;
501
502	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
503	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
504		writeback_set_ratelimit();
505		vm_dirty_bytes = 0;
506	}
507	return ret;
508}
509
510int dirty_bytes_handler(struct ctl_table *table, int write,
511		void __user *buffer, size_t *lenp,
512		loff_t *ppos)
513{
514	unsigned long old_bytes = vm_dirty_bytes;
515	int ret;
516
517	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
518	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
519		writeback_set_ratelimit();
520		vm_dirty_ratio = 0;
521	}
522	return ret;
523}
524
525static unsigned long wp_next_time(unsigned long cur_time)
526{
527	cur_time += VM_COMPLETIONS_PERIOD_LEN;
528	/* 0 has a special meaning... */
529	if (!cur_time)
530		return 1;
531	return cur_time;
532}
533
534static void wb_domain_writeout_inc(struct wb_domain *dom,
535				   struct fprop_local_percpu *completions,
536				   unsigned int max_prop_frac)
537{
538	__fprop_inc_percpu_max(&dom->completions, completions,
539			       max_prop_frac);
540	/* First event after period switching was turned off? */
541	if (!unlikely(dom->period_time)) {
542		/*
543		 * We can race with other __bdi_writeout_inc calls here but
544		 * it does not cause any harm since the resulting time when
545		 * timer will fire and what is in writeout_period_time will be
546		 * roughly the same.
547		 */
548		dom->period_time = wp_next_time(jiffies);
549		mod_timer(&dom->period_timer, dom->period_time);
550	}
551}
552
553/*
554 * Increment @wb's writeout completion count and the global writeout
555 * completion count. Called from test_clear_page_writeback().
556 */
557static inline void __wb_writeout_inc(struct bdi_writeback *wb)
558{
559	struct wb_domain *cgdom;
560
561	__inc_wb_stat(wb, WB_WRITTEN);
562	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
563			       wb->bdi->max_prop_frac);
564
565	cgdom = mem_cgroup_wb_domain(wb);
566	if (cgdom)
567		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
568				       wb->bdi->max_prop_frac);
569}
570
571void wb_writeout_inc(struct bdi_writeback *wb)
572{
573	unsigned long flags;
574
575	local_irq_save(flags);
576	__wb_writeout_inc(wb);
577	local_irq_restore(flags);
578}
579EXPORT_SYMBOL_GPL(wb_writeout_inc);
580
581/*
582 * On idle system, we can be called long after we scheduled because we use
583 * deferred timers so count with missed periods.
584 */
585static void writeout_period(unsigned long t)
586{
587	struct wb_domain *dom = (void *)t;
588	int miss_periods = (jiffies - dom->period_time) /
589						 VM_COMPLETIONS_PERIOD_LEN;
590
591	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
592		dom->period_time = wp_next_time(dom->period_time +
593				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
594		mod_timer(&dom->period_timer, dom->period_time);
595	} else {
596		/*
597		 * Aging has zeroed all fractions. Stop wasting CPU on period
598		 * updates.
599		 */
600		dom->period_time = 0;
601	}
602}
603
604int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
605{
606	memset(dom, 0, sizeof(*dom));
607
608	spin_lock_init(&dom->lock);
609
610	init_timer_deferrable(&dom->period_timer);
611	dom->period_timer.function = writeout_period;
612	dom->period_timer.data = (unsigned long)dom;
613
614	dom->dirty_limit_tstamp = jiffies;
615
616	return fprop_global_init(&dom->completions, gfp);
617}
618
619#ifdef CONFIG_CGROUP_WRITEBACK
620void wb_domain_exit(struct wb_domain *dom)
621{
622	del_timer_sync(&dom->period_timer);
623	fprop_global_destroy(&dom->completions);
624}
625#endif
626
627/*
628 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
629 * registered backing devices, which, for obvious reasons, can not
630 * exceed 100%.
631 */
632static unsigned int bdi_min_ratio;
633
634int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
635{
636	int ret = 0;
637
638	spin_lock_bh(&bdi_lock);
639	if (min_ratio > bdi->max_ratio) {
640		ret = -EINVAL;
641	} else {
642		min_ratio -= bdi->min_ratio;
643		if (bdi_min_ratio + min_ratio < 100) {
644			bdi_min_ratio += min_ratio;
645			bdi->min_ratio += min_ratio;
646		} else {
647			ret = -EINVAL;
648		}
649	}
650	spin_unlock_bh(&bdi_lock);
651
652	return ret;
653}
654
655int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
656{
657	int ret = 0;
658
659	if (max_ratio > 100)
660		return -EINVAL;
661
662	spin_lock_bh(&bdi_lock);
663	if (bdi->min_ratio > max_ratio) {
664		ret = -EINVAL;
665	} else {
666		bdi->max_ratio = max_ratio;
667		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
668	}
669	spin_unlock_bh(&bdi_lock);
670
671	return ret;
672}
673EXPORT_SYMBOL(bdi_set_max_ratio);
674
675static unsigned long dirty_freerun_ceiling(unsigned long thresh,
676					   unsigned long bg_thresh)
677{
678	return (thresh + bg_thresh) / 2;
679}
680
681static unsigned long hard_dirty_limit(struct wb_domain *dom,
682				      unsigned long thresh)
683{
684	return max(thresh, dom->dirty_limit);
685}
686
687/*
688 * Memory which can be further allocated to a memcg domain is capped by
689 * system-wide clean memory excluding the amount being used in the domain.
690 */
691static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
692			    unsigned long filepages, unsigned long headroom)
693{
694	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
695	unsigned long clean = filepages - min(filepages, mdtc->dirty);
696	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
697	unsigned long other_clean = global_clean - min(global_clean, clean);
698
699	mdtc->avail = filepages + min(headroom, other_clean);
700}
701
702/**
703 * __wb_calc_thresh - @wb's share of dirty throttling threshold
704 * @dtc: dirty_throttle_context of interest
705 *
706 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
707 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
708 *
709 * Note that balance_dirty_pages() will only seriously take it as a hard limit
710 * when sleeping max_pause per page is not enough to keep the dirty pages under
711 * control. For example, when the device is completely stalled due to some error
712 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
713 * In the other normal situations, it acts more gently by throttling the tasks
714 * more (rather than completely block them) when the wb dirty pages go high.
715 *
716 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
717 * - starving fast devices
718 * - piling up dirty pages (that will take long time to sync) on slow devices
719 *
720 * The wb's share of dirty limit will be adapting to its throughput and
721 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
722 */
723static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
724{
725	struct wb_domain *dom = dtc_dom(dtc);
726	unsigned long thresh = dtc->thresh;
727	u64 wb_thresh;
728	long numerator, denominator;
729	unsigned long wb_min_ratio, wb_max_ratio;
730
731	/*
732	 * Calculate this BDI's share of the thresh ratio.
733	 */
734	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
735			      &numerator, &denominator);
736
737	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
738	wb_thresh *= numerator;
739	do_div(wb_thresh, denominator);
740
741	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
742
743	wb_thresh += (thresh * wb_min_ratio) / 100;
744	if (wb_thresh > (thresh * wb_max_ratio) / 100)
745		wb_thresh = thresh * wb_max_ratio / 100;
746
747	return wb_thresh;
748}
749
750unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
751{
752	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
753					       .thresh = thresh };
754	return __wb_calc_thresh(&gdtc);
755}
756
757/*
758 *                           setpoint - dirty 3
759 *        f(dirty) := 1.0 + (----------------)
760 *                           limit - setpoint
761 *
762 * it's a 3rd order polynomial that subjects to
763 *
764 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
765 * (2) f(setpoint) = 1.0 => the balance point
766 * (3) f(limit)    = 0   => the hard limit
767 * (4) df/dx      <= 0	 => negative feedback control
768 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
769 *     => fast response on large errors; small oscillation near setpoint
770 */
771static long long pos_ratio_polynom(unsigned long setpoint,
772					  unsigned long dirty,
773					  unsigned long limit)
774{
775	long long pos_ratio;
776	long x;
777
778	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
779		      (limit - setpoint) | 1);
780	pos_ratio = x;
781	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
782	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
783	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
784
785	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
786}
787
788/*
789 * Dirty position control.
790 *
791 * (o) global/bdi setpoints
792 *
793 * We want the dirty pages be balanced around the global/wb setpoints.
794 * When the number of dirty pages is higher/lower than the setpoint, the
795 * dirty position control ratio (and hence task dirty ratelimit) will be
796 * decreased/increased to bring the dirty pages back to the setpoint.
797 *
798 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
799 *
800 *     if (dirty < setpoint) scale up   pos_ratio
801 *     if (dirty > setpoint) scale down pos_ratio
802 *
803 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
804 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
805 *
806 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
807 *
808 * (o) global control line
809 *
810 *     ^ pos_ratio
811 *     |
812 *     |            |<===== global dirty control scope ======>|
813 * 2.0 .............*
814 *     |            .*
815 *     |            . *
816 *     |            .   *
817 *     |            .     *
818 *     |            .        *
819 *     |            .            *
820 * 1.0 ................................*
821 *     |            .                  .     *
822 *     |            .                  .          *
823 *     |            .                  .              *
824 *     |            .                  .                 *
825 *     |            .                  .                    *
826 *   0 +------------.------------------.----------------------*------------->
827 *           freerun^          setpoint^                 limit^   dirty pages
828 *
829 * (o) wb control line
830 *
831 *     ^ pos_ratio
832 *     |
833 *     |            *
834 *     |              *
835 *     |                *
836 *     |                  *
837 *     |                    * |<=========== span ============>|
838 * 1.0 .......................*
839 *     |                      . *
840 *     |                      .   *
841 *     |                      .     *
842 *     |                      .       *
843 *     |                      .         *
844 *     |                      .           *
845 *     |                      .             *
846 *     |                      .               *
847 *     |                      .                 *
848 *     |                      .                   *
849 *     |                      .                     *
850 * 1/4 ...............................................* * * * * * * * * * * *
851 *     |                      .                         .
852 *     |                      .                           .
853 *     |                      .                             .
854 *   0 +----------------------.-------------------------------.------------->
855 *                wb_setpoint^                    x_intercept^
856 *
857 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
858 * be smoothly throttled down to normal if it starts high in situations like
859 * - start writing to a slow SD card and a fast disk at the same time. The SD
860 *   card's wb_dirty may rush to many times higher than wb_setpoint.
861 * - the wb dirty thresh drops quickly due to change of JBOD workload
862 */
863static void wb_position_ratio(struct dirty_throttle_control *dtc)
864{
865	struct bdi_writeback *wb = dtc->wb;
866	unsigned long write_bw = wb->avg_write_bandwidth;
867	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
868	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
869	unsigned long wb_thresh = dtc->wb_thresh;
870	unsigned long x_intercept;
871	unsigned long setpoint;		/* dirty pages' target balance point */
872	unsigned long wb_setpoint;
873	unsigned long span;
874	long long pos_ratio;		/* for scaling up/down the rate limit */
875	long x;
876
877	dtc->pos_ratio = 0;
878
879	if (unlikely(dtc->dirty >= limit))
880		return;
881
882	/*
883	 * global setpoint
884	 *
885	 * See comment for pos_ratio_polynom().
886	 */
887	setpoint = (freerun + limit) / 2;
888	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
889
890	/*
891	 * The strictlimit feature is a tool preventing mistrusted filesystems
892	 * from growing a large number of dirty pages before throttling. For
893	 * such filesystems balance_dirty_pages always checks wb counters
894	 * against wb limits. Even if global "nr_dirty" is under "freerun".
895	 * This is especially important for fuse which sets bdi->max_ratio to
896	 * 1% by default. Without strictlimit feature, fuse writeback may
897	 * consume arbitrary amount of RAM because it is accounted in
898	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
899	 *
900	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
901	 * two values: wb_dirty and wb_thresh. Let's consider an example:
902	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
903	 * limits are set by default to 10% and 20% (background and throttle).
904	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
905	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
906	 * about ~6K pages (as the average of background and throttle wb
907	 * limits). The 3rd order polynomial will provide positive feedback if
908	 * wb_dirty is under wb_setpoint and vice versa.
909	 *
910	 * Note, that we cannot use global counters in these calculations
911	 * because we want to throttle process writing to a strictlimit wb
912	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
913	 * in the example above).
914	 */
915	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
916		long long wb_pos_ratio;
917
918		if (dtc->wb_dirty < 8) {
919			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
920					   2 << RATELIMIT_CALC_SHIFT);
921			return;
922		}
923
924		if (dtc->wb_dirty >= wb_thresh)
925			return;
926
927		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
928						    dtc->wb_bg_thresh);
929
930		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
931			return;
932
933		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
934						 wb_thresh);
935
936		/*
937		 * Typically, for strictlimit case, wb_setpoint << setpoint
938		 * and pos_ratio >> wb_pos_ratio. In the other words global
939		 * state ("dirty") is not limiting factor and we have to
940		 * make decision based on wb counters. But there is an
941		 * important case when global pos_ratio should get precedence:
942		 * global limits are exceeded (e.g. due to activities on other
943		 * wb's) while given strictlimit wb is below limit.
944		 *
945		 * "pos_ratio * wb_pos_ratio" would work for the case above,
946		 * but it would look too non-natural for the case of all
947		 * activity in the system coming from a single strictlimit wb
948		 * with bdi->max_ratio == 100%.
949		 *
950		 * Note that min() below somewhat changes the dynamics of the
951		 * control system. Normally, pos_ratio value can be well over 3
952		 * (when globally we are at freerun and wb is well below wb
953		 * setpoint). Now the maximum pos_ratio in the same situation
954		 * is 2. We might want to tweak this if we observe the control
955		 * system is too slow to adapt.
956		 */
957		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
958		return;
959	}
960
961	/*
962	 * We have computed basic pos_ratio above based on global situation. If
963	 * the wb is over/under its share of dirty pages, we want to scale
964	 * pos_ratio further down/up. That is done by the following mechanism.
965	 */
966
967	/*
968	 * wb setpoint
969	 *
970	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
971	 *
972	 *                        x_intercept - wb_dirty
973	 *                     := --------------------------
974	 *                        x_intercept - wb_setpoint
975	 *
976	 * The main wb control line is a linear function that subjects to
977	 *
978	 * (1) f(wb_setpoint) = 1.0
979	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
980	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
981	 *
982	 * For single wb case, the dirty pages are observed to fluctuate
983	 * regularly within range
984	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
985	 * for various filesystems, where (2) can yield in a reasonable 12.5%
986	 * fluctuation range for pos_ratio.
987	 *
988	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
989	 * own size, so move the slope over accordingly and choose a slope that
990	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
991	 */
992	if (unlikely(wb_thresh > dtc->thresh))
993		wb_thresh = dtc->thresh;
994	/*
995	 * It's very possible that wb_thresh is close to 0 not because the
996	 * device is slow, but that it has remained inactive for long time.
997	 * Honour such devices a reasonable good (hopefully IO efficient)
998	 * threshold, so that the occasional writes won't be blocked and active
999	 * writes can rampup the threshold quickly.
1000	 */
1001	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1002	/*
1003	 * scale global setpoint to wb's:
1004	 *	wb_setpoint = setpoint * wb_thresh / thresh
1005	 */
1006	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1007	wb_setpoint = setpoint * (u64)x >> 16;
1008	/*
1009	 * Use span=(8*write_bw) in single wb case as indicated by
1010	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1011	 *
1012	 *        wb_thresh                    thresh - wb_thresh
1013	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1014	 *         thresh                           thresh
1015	 */
1016	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1017	x_intercept = wb_setpoint + span;
1018
1019	if (dtc->wb_dirty < x_intercept - span / 4) {
1020		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1021				      (x_intercept - wb_setpoint) | 1);
1022	} else
1023		pos_ratio /= 4;
1024
1025	/*
1026	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1027	 * It may push the desired control point of global dirty pages higher
1028	 * than setpoint.
1029	 */
1030	x_intercept = wb_thresh / 2;
1031	if (dtc->wb_dirty < x_intercept) {
1032		if (dtc->wb_dirty > x_intercept / 8)
1033			pos_ratio = div_u64(pos_ratio * x_intercept,
1034					    dtc->wb_dirty);
1035		else
1036			pos_ratio *= 8;
1037	}
1038
1039	dtc->pos_ratio = pos_ratio;
1040}
1041
1042static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1043				      unsigned long elapsed,
1044				      unsigned long written)
1045{
1046	const unsigned long period = roundup_pow_of_two(3 * HZ);
1047	unsigned long avg = wb->avg_write_bandwidth;
1048	unsigned long old = wb->write_bandwidth;
1049	u64 bw;
1050
1051	/*
1052	 * bw = written * HZ / elapsed
1053	 *
1054	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1055	 * write_bandwidth = ---------------------------------------------------
1056	 *                                          period
1057	 *
1058	 * @written may have decreased due to account_page_redirty().
1059	 * Avoid underflowing @bw calculation.
1060	 */
1061	bw = written - min(written, wb->written_stamp);
1062	bw *= HZ;
1063	if (unlikely(elapsed > period)) {
1064		do_div(bw, elapsed);
1065		avg = bw;
1066		goto out;
1067	}
1068	bw += (u64)wb->write_bandwidth * (period - elapsed);
1069	bw >>= ilog2(period);
1070
1071	/*
1072	 * one more level of smoothing, for filtering out sudden spikes
1073	 */
1074	if (avg > old && old >= (unsigned long)bw)
1075		avg -= (avg - old) >> 3;
1076
1077	if (avg < old && old <= (unsigned long)bw)
1078		avg += (old - avg) >> 3;
1079
1080out:
1081	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1082	avg = max(avg, 1LU);
1083	if (wb_has_dirty_io(wb)) {
1084		long delta = avg - wb->avg_write_bandwidth;
1085		WARN_ON_ONCE(atomic_long_add_return(delta,
1086					&wb->bdi->tot_write_bandwidth) <= 0);
1087	}
1088	wb->write_bandwidth = bw;
1089	wb->avg_write_bandwidth = avg;
1090}
1091
1092static void update_dirty_limit(struct dirty_throttle_control *dtc)
1093{
1094	struct wb_domain *dom = dtc_dom(dtc);
1095	unsigned long thresh = dtc->thresh;
1096	unsigned long limit = dom->dirty_limit;
1097
1098	/*
1099	 * Follow up in one step.
1100	 */
1101	if (limit < thresh) {
1102		limit = thresh;
1103		goto update;
1104	}
1105
1106	/*
1107	 * Follow down slowly. Use the higher one as the target, because thresh
1108	 * may drop below dirty. This is exactly the reason to introduce
1109	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1110	 */
1111	thresh = max(thresh, dtc->dirty);
1112	if (limit > thresh) {
1113		limit -= (limit - thresh) >> 5;
1114		goto update;
1115	}
1116	return;
1117update:
1118	dom->dirty_limit = limit;
1119}
1120
1121static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1122				    unsigned long now)
1123{
1124	struct wb_domain *dom = dtc_dom(dtc);
1125
1126	/*
1127	 * check locklessly first to optimize away locking for the most time
1128	 */
1129	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1130		return;
1131
1132	spin_lock(&dom->lock);
1133	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1134		update_dirty_limit(dtc);
1135		dom->dirty_limit_tstamp = now;
1136	}
1137	spin_unlock(&dom->lock);
1138}
1139
1140/*
1141 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1142 *
1143 * Normal wb tasks will be curbed at or below it in long term.
1144 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1145 */
1146static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1147				      unsigned long dirtied,
1148				      unsigned long elapsed)
1149{
1150	struct bdi_writeback *wb = dtc->wb;
1151	unsigned long dirty = dtc->dirty;
1152	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1153	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1154	unsigned long setpoint = (freerun + limit) / 2;
1155	unsigned long write_bw = wb->avg_write_bandwidth;
1156	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1157	unsigned long dirty_rate;
1158	unsigned long task_ratelimit;
1159	unsigned long balanced_dirty_ratelimit;
1160	unsigned long step;
1161	unsigned long x;
1162
1163	/*
1164	 * The dirty rate will match the writeout rate in long term, except
1165	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1166	 */
1167	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1168
1169	/*
1170	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1171	 */
1172	task_ratelimit = (u64)dirty_ratelimit *
1173					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1174	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1175
1176	/*
1177	 * A linear estimation of the "balanced" throttle rate. The theory is,
1178	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1179	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1180	 * formula will yield the balanced rate limit (write_bw / N).
1181	 *
1182	 * Note that the expanded form is not a pure rate feedback:
1183	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1184	 * but also takes pos_ratio into account:
1185	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1186	 *
1187	 * (1) is not realistic because pos_ratio also takes part in balancing
1188	 * the dirty rate.  Consider the state
1189	 *	pos_ratio = 0.5						     (3)
1190	 *	rate = 2 * (write_bw / N)				     (4)
1191	 * If (1) is used, it will stuck in that state! Because each dd will
1192	 * be throttled at
1193	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1194	 * yielding
1195	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1196	 * put (6) into (1) we get
1197	 *	rate_(i+1) = rate_(i)					     (7)
1198	 *
1199	 * So we end up using (2) to always keep
1200	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1201	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1202	 * pos_ratio is able to drive itself to 1.0, which is not only where
1203	 * the dirty count meet the setpoint, but also where the slope of
1204	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1205	 */
1206	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1207					   dirty_rate | 1);
1208	/*
1209	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1210	 */
1211	if (unlikely(balanced_dirty_ratelimit > write_bw))
1212		balanced_dirty_ratelimit = write_bw;
1213
1214	/*
1215	 * We could safely do this and return immediately:
1216	 *
1217	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1218	 *
1219	 * However to get a more stable dirty_ratelimit, the below elaborated
1220	 * code makes use of task_ratelimit to filter out singular points and
1221	 * limit the step size.
1222	 *
1223	 * The below code essentially only uses the relative value of
1224	 *
1225	 *	task_ratelimit - dirty_ratelimit
1226	 *	= (pos_ratio - 1) * dirty_ratelimit
1227	 *
1228	 * which reflects the direction and size of dirty position error.
1229	 */
1230
1231	/*
1232	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1233	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1234	 * For example, when
1235	 * - dirty_ratelimit > balanced_dirty_ratelimit
1236	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1237	 * lowering dirty_ratelimit will help meet both the position and rate
1238	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1239	 * only help meet the rate target. After all, what the users ultimately
1240	 * feel and care are stable dirty rate and small position error.
1241	 *
1242	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1243	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1244	 * keeps jumping around randomly and can even leap far away at times
1245	 * due to the small 200ms estimation period of dirty_rate (we want to
1246	 * keep that period small to reduce time lags).
1247	 */
1248	step = 0;
1249
1250	/*
1251	 * For strictlimit case, calculations above were based on wb counters
1252	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1253	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1254	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1255	 * "dirty" and wb_setpoint as "setpoint".
1256	 *
1257	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1258	 * it's possible that wb_thresh is close to zero due to inactivity
1259	 * of backing device.
1260	 */
1261	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1262		dirty = dtc->wb_dirty;
1263		if (dtc->wb_dirty < 8)
1264			setpoint = dtc->wb_dirty + 1;
1265		else
1266			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1267	}
1268
1269	if (dirty < setpoint) {
1270		x = min3(wb->balanced_dirty_ratelimit,
1271			 balanced_dirty_ratelimit, task_ratelimit);
1272		if (dirty_ratelimit < x)
1273			step = x - dirty_ratelimit;
1274	} else {
1275		x = max3(wb->balanced_dirty_ratelimit,
1276			 balanced_dirty_ratelimit, task_ratelimit);
1277		if (dirty_ratelimit > x)
1278			step = dirty_ratelimit - x;
1279	}
1280
1281	/*
1282	 * Don't pursue 100% rate matching. It's impossible since the balanced
1283	 * rate itself is constantly fluctuating. So decrease the track speed
1284	 * when it gets close to the target. Helps eliminate pointless tremors.
1285	 */
1286	step >>= dirty_ratelimit / (2 * step + 1);
1287	/*
1288	 * Limit the tracking speed to avoid overshooting.
1289	 */
1290	step = (step + 7) / 8;
1291
1292	if (dirty_ratelimit < balanced_dirty_ratelimit)
1293		dirty_ratelimit += step;
1294	else
1295		dirty_ratelimit -= step;
1296
1297	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1298	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1299
1300	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1301}
1302
1303static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1304				  struct dirty_throttle_control *mdtc,
1305				  unsigned long start_time,
1306				  bool update_ratelimit)
1307{
1308	struct bdi_writeback *wb = gdtc->wb;
1309	unsigned long now = jiffies;
1310	unsigned long elapsed = now - wb->bw_time_stamp;
1311	unsigned long dirtied;
1312	unsigned long written;
1313
1314	lockdep_assert_held(&wb->list_lock);
1315
1316	/*
1317	 * rate-limit, only update once every 200ms.
1318	 */
1319	if (elapsed < BANDWIDTH_INTERVAL)
1320		return;
1321
1322	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1323	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1324
1325	/*
1326	 * Skip quiet periods when disk bandwidth is under-utilized.
1327	 * (at least 1s idle time between two flusher runs)
1328	 */
1329	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1330		goto snapshot;
1331
1332	if (update_ratelimit) {
1333		domain_update_bandwidth(gdtc, now);
1334		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1335
1336		/*
1337		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1338		 * compiler has no way to figure that out.  Help it.
1339		 */
1340		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1341			domain_update_bandwidth(mdtc, now);
1342			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1343		}
1344	}
1345	wb_update_write_bandwidth(wb, elapsed, written);
1346
1347snapshot:
1348	wb->dirtied_stamp = dirtied;
1349	wb->written_stamp = written;
1350	wb->bw_time_stamp = now;
1351}
1352
1353void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1354{
1355	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1356
1357	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1358}
1359
1360/*
1361 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1362 * will look to see if it needs to start dirty throttling.
1363 *
1364 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1365 * global_page_state() too often. So scale it near-sqrt to the safety margin
1366 * (the number of pages we may dirty without exceeding the dirty limits).
1367 */
1368static unsigned long dirty_poll_interval(unsigned long dirty,
1369					 unsigned long thresh)
1370{
1371	if (thresh > dirty)
1372		return 1UL << (ilog2(thresh - dirty) >> 1);
1373
1374	return 1;
1375}
1376
1377static unsigned long wb_max_pause(struct bdi_writeback *wb,
1378				  unsigned long wb_dirty)
1379{
1380	unsigned long bw = wb->avg_write_bandwidth;
1381	unsigned long t;
1382
1383	/*
1384	 * Limit pause time for small memory systems. If sleeping for too long
1385	 * time, a small pool of dirty/writeback pages may go empty and disk go
1386	 * idle.
1387	 *
1388	 * 8 serves as the safety ratio.
1389	 */
1390	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1391	t++;
1392
1393	return min_t(unsigned long, t, MAX_PAUSE);
1394}
1395
1396static long wb_min_pause(struct bdi_writeback *wb,
1397			 long max_pause,
1398			 unsigned long task_ratelimit,
1399			 unsigned long dirty_ratelimit,
1400			 int *nr_dirtied_pause)
1401{
1402	long hi = ilog2(wb->avg_write_bandwidth);
1403	long lo = ilog2(wb->dirty_ratelimit);
1404	long t;		/* target pause */
1405	long pause;	/* estimated next pause */
1406	int pages;	/* target nr_dirtied_pause */
1407
1408	/* target for 10ms pause on 1-dd case */
1409	t = max(1, HZ / 100);
1410
1411	/*
1412	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1413	 * overheads.
1414	 *
1415	 * (N * 10ms) on 2^N concurrent tasks.
1416	 */
1417	if (hi > lo)
1418		t += (hi - lo) * (10 * HZ) / 1024;
1419
1420	/*
1421	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1422	 * on the much more stable dirty_ratelimit. However the next pause time
1423	 * will be computed based on task_ratelimit and the two rate limits may
1424	 * depart considerably at some time. Especially if task_ratelimit goes
1425	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1426	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1427	 * result task_ratelimit won't be executed faithfully, which could
1428	 * eventually bring down dirty_ratelimit.
1429	 *
1430	 * We apply two rules to fix it up:
1431	 * 1) try to estimate the next pause time and if necessary, use a lower
1432	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1433	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1434	 * 2) limit the target pause time to max_pause/2, so that the normal
1435	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1436	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1437	 */
1438	t = min(t, 1 + max_pause / 2);
1439	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1440
1441	/*
1442	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1443	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1444	 * When the 16 consecutive reads are often interrupted by some dirty
1445	 * throttling pause during the async writes, cfq will go into idles
1446	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1447	 * until reaches DIRTY_POLL_THRESH=32 pages.
1448	 */
1449	if (pages < DIRTY_POLL_THRESH) {
1450		t = max_pause;
1451		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1452		if (pages > DIRTY_POLL_THRESH) {
1453			pages = DIRTY_POLL_THRESH;
1454			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1455		}
1456	}
1457
1458	pause = HZ * pages / (task_ratelimit + 1);
1459	if (pause > max_pause) {
1460		t = max_pause;
1461		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1462	}
1463
1464	*nr_dirtied_pause = pages;
1465	/*
1466	 * The minimal pause time will normally be half the target pause time.
1467	 */
1468	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1469}
1470
1471static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1472{
1473	struct bdi_writeback *wb = dtc->wb;
1474	unsigned long wb_reclaimable;
1475
1476	/*
1477	 * wb_thresh is not treated as some limiting factor as
1478	 * dirty_thresh, due to reasons
1479	 * - in JBOD setup, wb_thresh can fluctuate a lot
1480	 * - in a system with HDD and USB key, the USB key may somehow
1481	 *   go into state (wb_dirty >> wb_thresh) either because
1482	 *   wb_dirty starts high, or because wb_thresh drops low.
1483	 *   In this case we don't want to hard throttle the USB key
1484	 *   dirtiers for 100 seconds until wb_dirty drops under
1485	 *   wb_thresh. Instead the auxiliary wb control line in
1486	 *   wb_position_ratio() will let the dirtier task progress
1487	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1488	 */
1489	dtc->wb_thresh = __wb_calc_thresh(dtc);
1490	dtc->wb_bg_thresh = dtc->thresh ?
1491		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1492
1493	/*
1494	 * In order to avoid the stacked BDI deadlock we need
1495	 * to ensure we accurately count the 'dirty' pages when
1496	 * the threshold is low.
1497	 *
1498	 * Otherwise it would be possible to get thresh+n pages
1499	 * reported dirty, even though there are thresh-m pages
1500	 * actually dirty; with m+n sitting in the percpu
1501	 * deltas.
1502	 */
1503	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1504		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1505		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1506	} else {
1507		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1508		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1509	}
1510}
1511
1512/*
1513 * balance_dirty_pages() must be called by processes which are generating dirty
1514 * data.  It looks at the number of dirty pages in the machine and will force
1515 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1516 * If we're over `background_thresh' then the writeback threads are woken to
1517 * perform some writeout.
1518 */
1519static void balance_dirty_pages(struct address_space *mapping,
1520				struct bdi_writeback *wb,
1521				unsigned long pages_dirtied)
1522{
1523	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1524	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1525	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1526	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1527						     &mdtc_stor : NULL;
1528	struct dirty_throttle_control *sdtc;
1529	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1530	long period;
1531	long pause;
1532	long max_pause;
1533	long min_pause;
1534	int nr_dirtied_pause;
1535	bool dirty_exceeded = false;
1536	unsigned long task_ratelimit;
1537	unsigned long dirty_ratelimit;
1538	struct backing_dev_info *bdi = wb->bdi;
1539	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1540	unsigned long start_time = jiffies;
1541
1542	for (;;) {
1543		unsigned long now = jiffies;
1544		unsigned long dirty, thresh, bg_thresh;
1545		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1546		unsigned long m_thresh = 0;
1547		unsigned long m_bg_thresh = 0;
1548
1549		/*
1550		 * Unstable writes are a feature of certain networked
1551		 * filesystems (i.e. NFS) in which data may have been
1552		 * written to the server's write cache, but has not yet
1553		 * been flushed to permanent storage.
1554		 */
1555		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1556					global_page_state(NR_UNSTABLE_NFS);
1557		gdtc->avail = global_dirtyable_memory();
1558		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1559
1560		domain_dirty_limits(gdtc);
1561
1562		if (unlikely(strictlimit)) {
1563			wb_dirty_limits(gdtc);
1564
1565			dirty = gdtc->wb_dirty;
1566			thresh = gdtc->wb_thresh;
1567			bg_thresh = gdtc->wb_bg_thresh;
1568		} else {
1569			dirty = gdtc->dirty;
1570			thresh = gdtc->thresh;
1571			bg_thresh = gdtc->bg_thresh;
1572		}
1573
1574		if (mdtc) {
1575			unsigned long filepages, headroom, writeback;
1576
1577			/*
1578			 * If @wb belongs to !root memcg, repeat the same
1579			 * basic calculations for the memcg domain.
1580			 */
1581			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1582					    &mdtc->dirty, &writeback);
1583			mdtc->dirty += writeback;
1584			mdtc_calc_avail(mdtc, filepages, headroom);
1585
1586			domain_dirty_limits(mdtc);
1587
1588			if (unlikely(strictlimit)) {
1589				wb_dirty_limits(mdtc);
1590				m_dirty = mdtc->wb_dirty;
1591				m_thresh = mdtc->wb_thresh;
1592				m_bg_thresh = mdtc->wb_bg_thresh;
1593			} else {
1594				m_dirty = mdtc->dirty;
1595				m_thresh = mdtc->thresh;
1596				m_bg_thresh = mdtc->bg_thresh;
1597			}
1598		}
1599
1600		/*
1601		 * Throttle it only when the background writeback cannot
1602		 * catch-up. This avoids (excessively) small writeouts
1603		 * when the wb limits are ramping up in case of !strictlimit.
1604		 *
1605		 * In strictlimit case make decision based on the wb counters
1606		 * and limits. Small writeouts when the wb limits are ramping
1607		 * up are the price we consciously pay for strictlimit-ing.
1608		 *
1609		 * If memcg domain is in effect, @dirty should be under
1610		 * both global and memcg freerun ceilings.
1611		 */
1612		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1613		    (!mdtc ||
1614		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1615			unsigned long intv = dirty_poll_interval(dirty, thresh);
1616			unsigned long m_intv = ULONG_MAX;
1617
1618			current->dirty_paused_when = now;
1619			current->nr_dirtied = 0;
1620			if (mdtc)
1621				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1622			current->nr_dirtied_pause = min(intv, m_intv);
1623			break;
1624		}
1625
1626		if (unlikely(!writeback_in_progress(wb)))
1627			wb_start_background_writeback(wb);
1628
1629		/*
1630		 * Calculate global domain's pos_ratio and select the
1631		 * global dtc by default.
1632		 */
1633		if (!strictlimit)
1634			wb_dirty_limits(gdtc);
1635
1636		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1637			((gdtc->dirty > gdtc->thresh) || strictlimit);
1638
1639		wb_position_ratio(gdtc);
1640		sdtc = gdtc;
1641
1642		if (mdtc) {
1643			/*
1644			 * If memcg domain is in effect, calculate its
1645			 * pos_ratio.  @wb should satisfy constraints from
1646			 * both global and memcg domains.  Choose the one
1647			 * w/ lower pos_ratio.
1648			 */
1649			if (!strictlimit)
1650				wb_dirty_limits(mdtc);
1651
1652			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1653				((mdtc->dirty > mdtc->thresh) || strictlimit);
1654
1655			wb_position_ratio(mdtc);
1656			if (mdtc->pos_ratio < gdtc->pos_ratio)
1657				sdtc = mdtc;
1658		}
1659
1660		if (dirty_exceeded && !wb->dirty_exceeded)
1661			wb->dirty_exceeded = 1;
1662
1663		if (time_is_before_jiffies(wb->bw_time_stamp +
1664					   BANDWIDTH_INTERVAL)) {
1665			spin_lock(&wb->list_lock);
1666			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1667			spin_unlock(&wb->list_lock);
1668		}
1669
1670		/* throttle according to the chosen dtc */
1671		dirty_ratelimit = wb->dirty_ratelimit;
1672		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1673							RATELIMIT_CALC_SHIFT;
1674		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1675		min_pause = wb_min_pause(wb, max_pause,
1676					 task_ratelimit, dirty_ratelimit,
1677					 &nr_dirtied_pause);
1678
1679		if (unlikely(task_ratelimit == 0)) {
1680			period = max_pause;
1681			pause = max_pause;
1682			goto pause;
1683		}
1684		period = HZ * pages_dirtied / task_ratelimit;
1685		pause = period;
1686		if (current->dirty_paused_when)
1687			pause -= now - current->dirty_paused_when;
1688		/*
1689		 * For less than 1s think time (ext3/4 may block the dirtier
1690		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1691		 * however at much less frequency), try to compensate it in
1692		 * future periods by updating the virtual time; otherwise just
1693		 * do a reset, as it may be a light dirtier.
1694		 */
1695		if (pause < min_pause) {
1696			trace_balance_dirty_pages(wb,
1697						  sdtc->thresh,
1698						  sdtc->bg_thresh,
1699						  sdtc->dirty,
1700						  sdtc->wb_thresh,
1701						  sdtc->wb_dirty,
1702						  dirty_ratelimit,
1703						  task_ratelimit,
1704						  pages_dirtied,
1705						  period,
1706						  min(pause, 0L),
1707						  start_time);
1708			if (pause < -HZ) {
1709				current->dirty_paused_when = now;
1710				current->nr_dirtied = 0;
1711			} else if (period) {
1712				current->dirty_paused_when += period;
1713				current->nr_dirtied = 0;
1714			} else if (current->nr_dirtied_pause <= pages_dirtied)
1715				current->nr_dirtied_pause += pages_dirtied;
1716			break;
1717		}
1718		if (unlikely(pause > max_pause)) {
1719			/* for occasional dropped task_ratelimit */
1720			now += min(pause - max_pause, max_pause);
1721			pause = max_pause;
1722		}
1723
1724pause:
1725		trace_balance_dirty_pages(wb,
1726					  sdtc->thresh,
1727					  sdtc->bg_thresh,
1728					  sdtc->dirty,
1729					  sdtc->wb_thresh,
1730					  sdtc->wb_dirty,
1731					  dirty_ratelimit,
1732					  task_ratelimit,
1733					  pages_dirtied,
1734					  period,
1735					  pause,
1736					  start_time);
1737		__set_current_state(TASK_KILLABLE);
1738		io_schedule_timeout(pause);
1739
1740		current->dirty_paused_when = now + pause;
1741		current->nr_dirtied = 0;
1742		current->nr_dirtied_pause = nr_dirtied_pause;
1743
1744		/*
1745		 * This is typically equal to (dirty < thresh) and can also
1746		 * keep "1000+ dd on a slow USB stick" under control.
1747		 */
1748		if (task_ratelimit)
1749			break;
1750
1751		/*
1752		 * In the case of an unresponding NFS server and the NFS dirty
1753		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1754		 * to go through, so that tasks on them still remain responsive.
1755		 *
1756		 * In theory 1 page is enough to keep the comsumer-producer
1757		 * pipe going: the flusher cleans 1 page => the task dirties 1
1758		 * more page. However wb_dirty has accounting errors.  So use
1759		 * the larger and more IO friendly wb_stat_error.
1760		 */
1761		if (sdtc->wb_dirty <= wb_stat_error(wb))
1762			break;
1763
1764		if (fatal_signal_pending(current))
1765			break;
1766	}
1767
1768	if (!dirty_exceeded && wb->dirty_exceeded)
1769		wb->dirty_exceeded = 0;
1770
1771	if (writeback_in_progress(wb))
1772		return;
1773
1774	/*
1775	 * In laptop mode, we wait until hitting the higher threshold before
1776	 * starting background writeout, and then write out all the way down
1777	 * to the lower threshold.  So slow writers cause minimal disk activity.
1778	 *
1779	 * In normal mode, we start background writeout at the lower
1780	 * background_thresh, to keep the amount of dirty memory low.
1781	 */
1782	if (laptop_mode)
1783		return;
1784
1785	if (nr_reclaimable > gdtc->bg_thresh)
1786		wb_start_background_writeback(wb);
1787}
1788
1789static DEFINE_PER_CPU(int, bdp_ratelimits);
1790
1791/*
1792 * Normal tasks are throttled by
1793 *	loop {
1794 *		dirty tsk->nr_dirtied_pause pages;
1795 *		take a snap in balance_dirty_pages();
1796 *	}
1797 * However there is a worst case. If every task exit immediately when dirtied
1798 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1799 * called to throttle the page dirties. The solution is to save the not yet
1800 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1801 * randomly into the running tasks. This works well for the above worst case,
1802 * as the new task will pick up and accumulate the old task's leaked dirty
1803 * count and eventually get throttled.
1804 */
1805DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1806
1807/**
1808 * balance_dirty_pages_ratelimited - balance dirty memory state
1809 * @mapping: address_space which was dirtied
1810 *
1811 * Processes which are dirtying memory should call in here once for each page
1812 * which was newly dirtied.  The function will periodically check the system's
1813 * dirty state and will initiate writeback if needed.
1814 *
1815 * On really big machines, get_writeback_state is expensive, so try to avoid
1816 * calling it too often (ratelimiting).  But once we're over the dirty memory
1817 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1818 * from overshooting the limit by (ratelimit_pages) each.
1819 */
1820void balance_dirty_pages_ratelimited(struct address_space *mapping)
1821{
1822	struct inode *inode = mapping->host;
1823	struct backing_dev_info *bdi = inode_to_bdi(inode);
1824	struct bdi_writeback *wb = NULL;
1825	int ratelimit;
1826	int *p;
1827
1828	if (!bdi_cap_account_dirty(bdi))
1829		return;
1830
1831	if (inode_cgwb_enabled(inode))
1832		wb = wb_get_create_current(bdi, GFP_KERNEL);
1833	if (!wb)
1834		wb = &bdi->wb;
1835
1836	ratelimit = current->nr_dirtied_pause;
1837	if (wb->dirty_exceeded)
1838		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1839
1840	preempt_disable();
1841	/*
1842	 * This prevents one CPU to accumulate too many dirtied pages without
1843	 * calling into balance_dirty_pages(), which can happen when there are
1844	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1845	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1846	 */
1847	p =  this_cpu_ptr(&bdp_ratelimits);
1848	if (unlikely(current->nr_dirtied >= ratelimit))
1849		*p = 0;
1850	else if (unlikely(*p >= ratelimit_pages)) {
1851		*p = 0;
1852		ratelimit = 0;
1853	}
1854	/*
1855	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1856	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1857	 * the dirty throttling and livelock other long-run dirtiers.
1858	 */
1859	p = this_cpu_ptr(&dirty_throttle_leaks);
1860	if (*p > 0 && current->nr_dirtied < ratelimit) {
1861		unsigned long nr_pages_dirtied;
1862		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1863		*p -= nr_pages_dirtied;
1864		current->nr_dirtied += nr_pages_dirtied;
1865	}
1866	preempt_enable();
1867
1868	if (unlikely(current->nr_dirtied >= ratelimit))
1869		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1870
1871	wb_put(wb);
1872}
1873EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1874
1875/**
1876 * wb_over_bg_thresh - does @wb need to be written back?
1877 * @wb: bdi_writeback of interest
1878 *
1879 * Determines whether background writeback should keep writing @wb or it's
1880 * clean enough.  Returns %true if writeback should continue.
1881 */
1882bool wb_over_bg_thresh(struct bdi_writeback *wb)
1883{
1884	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1885	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1886	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1887	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1888						     &mdtc_stor : NULL;
1889
1890	/*
1891	 * Similar to balance_dirty_pages() but ignores pages being written
1892	 * as we're trying to decide whether to put more under writeback.
1893	 */
1894	gdtc->avail = global_dirtyable_memory();
1895	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1896		      global_page_state(NR_UNSTABLE_NFS);
1897	domain_dirty_limits(gdtc);
1898
1899	if (gdtc->dirty > gdtc->bg_thresh)
1900		return true;
1901
1902	if (wb_stat(wb, WB_RECLAIMABLE) >
1903	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1904		return true;
1905
1906	if (mdtc) {
1907		unsigned long filepages, headroom, writeback;
1908
1909		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1910				    &writeback);
1911		mdtc_calc_avail(mdtc, filepages, headroom);
1912		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1913
1914		if (mdtc->dirty > mdtc->bg_thresh)
1915			return true;
1916
1917		if (wb_stat(wb, WB_RECLAIMABLE) >
1918		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1919			return true;
1920	}
1921
1922	return false;
1923}
1924
1925void throttle_vm_writeout(gfp_t gfp_mask)
1926{
1927	unsigned long background_thresh;
1928	unsigned long dirty_thresh;
1929
1930        for ( ; ; ) {
1931		global_dirty_limits(&background_thresh, &dirty_thresh);
1932		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1933
1934                /*
1935                 * Boost the allowable dirty threshold a bit for page
1936                 * allocators so they don't get DoS'ed by heavy writers
1937                 */
1938                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1939
1940                if (global_page_state(NR_UNSTABLE_NFS) +
1941			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1942                        	break;
1943                congestion_wait(BLK_RW_ASYNC, HZ/10);
1944
1945		/*
1946		 * The caller might hold locks which can prevent IO completion
1947		 * or progress in the filesystem.  So we cannot just sit here
1948		 * waiting for IO to complete.
1949		 */
1950		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1951			break;
1952        }
1953}
1954
1955/*
1956 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1957 */
1958int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1959	void __user *buffer, size_t *length, loff_t *ppos)
1960{
1961	proc_dointvec(table, write, buffer, length, ppos);
1962	return 0;
1963}
1964
1965#ifdef CONFIG_BLOCK
1966void laptop_mode_timer_fn(unsigned long data)
1967{
1968	struct request_queue *q = (struct request_queue *)data;
1969	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1970		global_page_state(NR_UNSTABLE_NFS);
1971	struct bdi_writeback *wb;
1972
1973	/*
1974	 * We want to write everything out, not just down to the dirty
1975	 * threshold
1976	 */
1977	if (!bdi_has_dirty_io(&q->backing_dev_info))
1978		return;
1979
1980	rcu_read_lock();
1981	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1982		if (wb_has_dirty_io(wb))
1983			wb_start_writeback(wb, nr_pages, true,
1984					   WB_REASON_LAPTOP_TIMER);
1985	rcu_read_unlock();
1986}
1987
1988/*
1989 * We've spun up the disk and we're in laptop mode: schedule writeback
1990 * of all dirty data a few seconds from now.  If the flush is already scheduled
1991 * then push it back - the user is still using the disk.
1992 */
1993void laptop_io_completion(struct backing_dev_info *info)
1994{
1995	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1996}
1997
1998/*
1999 * We're in laptop mode and we've just synced. The sync's writes will have
2000 * caused another writeback to be scheduled by laptop_io_completion.
2001 * Nothing needs to be written back anymore, so we unschedule the writeback.
2002 */
2003void laptop_sync_completion(void)
2004{
2005	struct backing_dev_info *bdi;
2006
2007	rcu_read_lock();
2008
2009	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2010		del_timer(&bdi->laptop_mode_wb_timer);
2011
2012	rcu_read_unlock();
2013}
2014#endif
2015
2016/*
2017 * If ratelimit_pages is too high then we can get into dirty-data overload
2018 * if a large number of processes all perform writes at the same time.
2019 * If it is too low then SMP machines will call the (expensive)
2020 * get_writeback_state too often.
2021 *
2022 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2023 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2024 * thresholds.
2025 */
2026
2027void writeback_set_ratelimit(void)
2028{
2029	struct wb_domain *dom = &global_wb_domain;
2030	unsigned long background_thresh;
2031	unsigned long dirty_thresh;
2032
2033	global_dirty_limits(&background_thresh, &dirty_thresh);
2034	dom->dirty_limit = dirty_thresh;
2035	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2036	if (ratelimit_pages < 16)
2037		ratelimit_pages = 16;
2038}
2039
2040static int
2041ratelimit_handler(struct notifier_block *self, unsigned long action,
2042		  void *hcpu)
2043{
2044
2045	switch (action & ~CPU_TASKS_FROZEN) {
2046	case CPU_ONLINE:
2047	case CPU_DEAD:
2048		writeback_set_ratelimit();
2049		return NOTIFY_OK;
2050	default:
2051		return NOTIFY_DONE;
2052	}
2053}
2054
2055static struct notifier_block ratelimit_nb = {
2056	.notifier_call	= ratelimit_handler,
2057	.next		= NULL,
2058};
2059
2060/*
2061 * Called early on to tune the page writeback dirty limits.
2062 *
2063 * We used to scale dirty pages according to how total memory
2064 * related to pages that could be allocated for buffers (by
2065 * comparing nr_free_buffer_pages() to vm_total_pages.
2066 *
2067 * However, that was when we used "dirty_ratio" to scale with
2068 * all memory, and we don't do that any more. "dirty_ratio"
2069 * is now applied to total non-HIGHPAGE memory (by subtracting
2070 * totalhigh_pages from vm_total_pages), and as such we can't
2071 * get into the old insane situation any more where we had
2072 * large amounts of dirty pages compared to a small amount of
2073 * non-HIGHMEM memory.
2074 *
2075 * But we might still want to scale the dirty_ratio by how
2076 * much memory the box has..
2077 */
2078void __init page_writeback_init(void)
2079{
2080	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2081
2082	writeback_set_ratelimit();
2083	register_cpu_notifier(&ratelimit_nb);
2084}
2085
2086/**
2087 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2088 * @mapping: address space structure to write
2089 * @start: starting page index
2090 * @end: ending page index (inclusive)
2091 *
2092 * This function scans the page range from @start to @end (inclusive) and tags
2093 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2094 * that write_cache_pages (or whoever calls this function) will then use
2095 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2096 * used to avoid livelocking of writeback by a process steadily creating new
2097 * dirty pages in the file (thus it is important for this function to be quick
2098 * so that it can tag pages faster than a dirtying process can create them).
2099 */
2100/*
2101 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2102 */
2103void tag_pages_for_writeback(struct address_space *mapping,
2104			     pgoff_t start, pgoff_t end)
2105{
2106#define WRITEBACK_TAG_BATCH 4096
2107	unsigned long tagged;
2108
2109	do {
2110		spin_lock_irq(&mapping->tree_lock);
2111		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2112				&start, end, WRITEBACK_TAG_BATCH,
2113				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2114		spin_unlock_irq(&mapping->tree_lock);
2115		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2116		cond_resched();
2117		/* We check 'start' to handle wrapping when end == ~0UL */
2118	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2119}
2120EXPORT_SYMBOL(tag_pages_for_writeback);
2121
2122/**
2123 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2124 * @mapping: address space structure to write
2125 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2126 * @writepage: function called for each page
2127 * @data: data passed to writepage function
2128 *
2129 * If a page is already under I/O, write_cache_pages() skips it, even
2130 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2131 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2132 * and msync() need to guarantee that all the data which was dirty at the time
2133 * the call was made get new I/O started against them.  If wbc->sync_mode is
2134 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2135 * existing IO to complete.
2136 *
2137 * To avoid livelocks (when other process dirties new pages), we first tag
2138 * pages which should be written back with TOWRITE tag and only then start
2139 * writing them. For data-integrity sync we have to be careful so that we do
2140 * not miss some pages (e.g., because some other process has cleared TOWRITE
2141 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2142 * by the process clearing the DIRTY tag (and submitting the page for IO).
2143 */
2144int write_cache_pages(struct address_space *mapping,
2145		      struct writeback_control *wbc, writepage_t writepage,
2146		      void *data)
2147{
2148	int ret = 0;
2149	int done = 0;
2150	struct pagevec pvec;
2151	int nr_pages;
2152	pgoff_t uninitialized_var(writeback_index);
2153	pgoff_t index;
2154	pgoff_t end;		/* Inclusive */
2155	pgoff_t done_index;
2156	int cycled;
2157	int range_whole = 0;
2158	int tag;
2159
2160	pagevec_init(&pvec, 0);
2161	if (wbc->range_cyclic) {
2162		writeback_index = mapping->writeback_index; /* prev offset */
2163		index = writeback_index;
2164		if (index == 0)
2165			cycled = 1;
2166		else
2167			cycled = 0;
2168		end = -1;
2169	} else {
2170		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2171		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2172		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2173			range_whole = 1;
2174		cycled = 1; /* ignore range_cyclic tests */
2175	}
2176	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2177		tag = PAGECACHE_TAG_TOWRITE;
2178	else
2179		tag = PAGECACHE_TAG_DIRTY;
2180retry:
2181	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2182		tag_pages_for_writeback(mapping, index, end);
2183	done_index = index;
2184	while (!done && (index <= end)) {
2185		int i;
2186
2187		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2188			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2189		if (nr_pages == 0)
2190			break;
2191
2192		for (i = 0; i < nr_pages; i++) {
2193			struct page *page = pvec.pages[i];
2194
2195			/*
2196			 * At this point, the page may be truncated or
2197			 * invalidated (changing page->mapping to NULL), or
2198			 * even swizzled back from swapper_space to tmpfs file
2199			 * mapping. However, page->index will not change
2200			 * because we have a reference on the page.
2201			 */
2202			if (page->index > end) {
2203				/*
2204				 * can't be range_cyclic (1st pass) because
2205				 * end == -1 in that case.
2206				 */
2207				done = 1;
2208				break;
2209			}
2210
2211			done_index = page->index;
2212
2213			lock_page(page);
2214
2215			/*
2216			 * Page truncated or invalidated. We can freely skip it
2217			 * then, even for data integrity operations: the page
2218			 * has disappeared concurrently, so there could be no
2219			 * real expectation of this data interity operation
2220			 * even if there is now a new, dirty page at the same
2221			 * pagecache address.
2222			 */
2223			if (unlikely(page->mapping != mapping)) {
2224continue_unlock:
2225				unlock_page(page);
2226				continue;
2227			}
2228
2229			if (!PageDirty(page)) {
2230				/* someone wrote it for us */
2231				goto continue_unlock;
2232			}
2233
2234			if (PageWriteback(page)) {
2235				if (wbc->sync_mode != WB_SYNC_NONE)
2236					wait_on_page_writeback(page);
2237				else
2238					goto continue_unlock;
2239			}
2240
2241			BUG_ON(PageWriteback(page));
2242			if (!clear_page_dirty_for_io(page))
2243				goto continue_unlock;
2244
2245			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2246			ret = (*writepage)(page, wbc, data);
2247			if (unlikely(ret)) {
2248				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2249					unlock_page(page);
2250					ret = 0;
2251				} else {
2252					/*
2253					 * done_index is set past this page,
2254					 * so media errors will not choke
2255					 * background writeout for the entire
2256					 * file. This has consequences for
2257					 * range_cyclic semantics (ie. it may
2258					 * not be suitable for data integrity
2259					 * writeout).
2260					 */
2261					done_index = page->index + 1;
2262					done = 1;
2263					break;
2264				}
2265			}
2266
2267			/*
2268			 * We stop writing back only if we are not doing
2269			 * integrity sync. In case of integrity sync we have to
2270			 * keep going until we have written all the pages
2271			 * we tagged for writeback prior to entering this loop.
2272			 */
2273			if (--wbc->nr_to_write <= 0 &&
2274			    wbc->sync_mode == WB_SYNC_NONE) {
2275				done = 1;
2276				break;
2277			}
2278		}
2279		pagevec_release(&pvec);
2280		cond_resched();
2281	}
2282	if (!cycled && !done) {
2283		/*
2284		 * range_cyclic:
2285		 * We hit the last page and there is more work to be done: wrap
2286		 * back to the start of the file
2287		 */
2288		cycled = 1;
2289		index = 0;
2290		end = writeback_index - 1;
2291		goto retry;
2292	}
2293	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2294		mapping->writeback_index = done_index;
2295
2296	return ret;
2297}
2298EXPORT_SYMBOL(write_cache_pages);
2299
2300/*
2301 * Function used by generic_writepages to call the real writepage
2302 * function and set the mapping flags on error
2303 */
2304static int __writepage(struct page *page, struct writeback_control *wbc,
2305		       void *data)
2306{
2307	struct address_space *mapping = data;
2308	int ret = mapping->a_ops->writepage(page, wbc);
2309	mapping_set_error(mapping, ret);
2310	return ret;
2311}
2312
2313/**
2314 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2315 * @mapping: address space structure to write
2316 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2317 *
2318 * This is a library function, which implements the writepages()
2319 * address_space_operation.
2320 */
2321int generic_writepages(struct address_space *mapping,
2322		       struct writeback_control *wbc)
2323{
2324	struct blk_plug plug;
2325	int ret;
2326
2327	/* deal with chardevs and other special file */
2328	if (!mapping->a_ops->writepage)
2329		return 0;
2330
2331	blk_start_plug(&plug);
2332	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2333	blk_finish_plug(&plug);
2334	return ret;
2335}
2336
2337EXPORT_SYMBOL(generic_writepages);
2338
2339int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2340{
2341	int ret;
2342
2343	if (wbc->nr_to_write <= 0)
2344		return 0;
2345	if (mapping->a_ops->writepages)
2346		ret = mapping->a_ops->writepages(mapping, wbc);
2347	else
2348		ret = generic_writepages(mapping, wbc);
2349	return ret;
2350}
2351
2352/**
2353 * write_one_page - write out a single page and optionally wait on I/O
2354 * @page: the page to write
2355 * @wait: if true, wait on writeout
2356 *
2357 * The page must be locked by the caller and will be unlocked upon return.
2358 *
2359 * write_one_page() returns a negative error code if I/O failed.
2360 */
2361int write_one_page(struct page *page, int wait)
2362{
2363	struct address_space *mapping = page->mapping;
2364	int ret = 0;
2365	struct writeback_control wbc = {
2366		.sync_mode = WB_SYNC_ALL,
2367		.nr_to_write = 1,
2368	};
2369
2370	BUG_ON(!PageLocked(page));
2371
2372	if (wait)
2373		wait_on_page_writeback(page);
2374
2375	if (clear_page_dirty_for_io(page)) {
2376		page_cache_get(page);
2377		ret = mapping->a_ops->writepage(page, &wbc);
2378		if (ret == 0 && wait) {
2379			wait_on_page_writeback(page);
2380			if (PageError(page))
2381				ret = -EIO;
2382		}
2383		page_cache_release(page);
2384	} else {
2385		unlock_page(page);
2386	}
2387	return ret;
2388}
2389EXPORT_SYMBOL(write_one_page);
2390
2391/*
2392 * For address_spaces which do not use buffers nor write back.
2393 */
2394int __set_page_dirty_no_writeback(struct page *page)
2395{
2396	if (!PageDirty(page))
2397		return !TestSetPageDirty(page);
2398	return 0;
2399}
2400
2401/*
2402 * Helper function for set_page_dirty family.
2403 *
2404 * Caller must hold mem_cgroup_begin_page_stat().
2405 *
2406 * NOTE: This relies on being atomic wrt interrupts.
2407 */
2408void account_page_dirtied(struct page *page, struct address_space *mapping,
2409			  struct mem_cgroup *memcg)
2410{
2411	struct inode *inode = mapping->host;
2412
2413	trace_writeback_dirty_page(page, mapping);
2414
2415	if (mapping_cap_account_dirty(mapping)) {
2416		struct bdi_writeback *wb;
2417
2418		inode_attach_wb(inode, page);
2419		wb = inode_to_wb(inode);
2420
2421		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2422		__inc_zone_page_state(page, NR_FILE_DIRTY);
2423		__inc_zone_page_state(page, NR_DIRTIED);
2424		__inc_wb_stat(wb, WB_RECLAIMABLE);
2425		__inc_wb_stat(wb, WB_DIRTIED);
2426		task_io_account_write(PAGE_CACHE_SIZE);
2427		current->nr_dirtied++;
2428		this_cpu_inc(bdp_ratelimits);
2429	}
2430}
2431EXPORT_SYMBOL(account_page_dirtied);
2432
2433/*
2434 * Helper function for deaccounting dirty page without writeback.
2435 *
2436 * Caller must hold mem_cgroup_begin_page_stat().
2437 */
2438void account_page_cleaned(struct page *page, struct address_space *mapping,
2439			  struct mem_cgroup *memcg, struct bdi_writeback *wb)
2440{
2441	if (mapping_cap_account_dirty(mapping)) {
2442		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2443		dec_zone_page_state(page, NR_FILE_DIRTY);
2444		dec_wb_stat(wb, WB_RECLAIMABLE);
2445		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2446	}
2447}
2448
2449/*
2450 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2451 * its radix tree.
2452 *
2453 * This is also used when a single buffer is being dirtied: we want to set the
2454 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2455 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2456 *
2457 * The caller must ensure this doesn't race with truncation.  Most will simply
2458 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2459 * the pte lock held, which also locks out truncation.
2460 */
2461int __set_page_dirty_nobuffers(struct page *page)
2462{
2463	struct mem_cgroup *memcg;
2464
2465	memcg = mem_cgroup_begin_page_stat(page);
2466	if (!TestSetPageDirty(page)) {
2467		struct address_space *mapping = page_mapping(page);
2468		unsigned long flags;
2469
2470		if (!mapping) {
2471			mem_cgroup_end_page_stat(memcg);
2472			return 1;
2473		}
2474
2475		spin_lock_irqsave(&mapping->tree_lock, flags);
2476		BUG_ON(page_mapping(page) != mapping);
2477		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2478		account_page_dirtied(page, mapping, memcg);
2479		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2480				   PAGECACHE_TAG_DIRTY);
2481		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2482		mem_cgroup_end_page_stat(memcg);
2483
2484		if (mapping->host) {
2485			/* !PageAnon && !swapper_space */
2486			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2487		}
2488		return 1;
2489	}
2490	mem_cgroup_end_page_stat(memcg);
2491	return 0;
2492}
2493EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2494
2495/*
2496 * Call this whenever redirtying a page, to de-account the dirty counters
2497 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2498 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2499 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2500 * control.
2501 */
2502void account_page_redirty(struct page *page)
2503{
2504	struct address_space *mapping = page->mapping;
2505
2506	if (mapping && mapping_cap_account_dirty(mapping)) {
2507		struct inode *inode = mapping->host;
2508		struct bdi_writeback *wb;
2509		bool locked;
2510
2511		wb = unlocked_inode_to_wb_begin(inode, &locked);
2512		current->nr_dirtied--;
2513		dec_zone_page_state(page, NR_DIRTIED);
2514		dec_wb_stat(wb, WB_DIRTIED);
2515		unlocked_inode_to_wb_end(inode, locked);
2516	}
2517}
2518EXPORT_SYMBOL(account_page_redirty);
2519
2520/*
2521 * When a writepage implementation decides that it doesn't want to write this
2522 * page for some reason, it should redirty the locked page via
2523 * redirty_page_for_writepage() and it should then unlock the page and return 0
2524 */
2525int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2526{
2527	int ret;
2528
2529	wbc->pages_skipped++;
2530	ret = __set_page_dirty_nobuffers(page);
2531	account_page_redirty(page);
2532	return ret;
2533}
2534EXPORT_SYMBOL(redirty_page_for_writepage);
2535
2536/*
2537 * Dirty a page.
2538 *
2539 * For pages with a mapping this should be done under the page lock
2540 * for the benefit of asynchronous memory errors who prefer a consistent
2541 * dirty state. This rule can be broken in some special cases,
2542 * but should be better not to.
2543 *
2544 * If the mapping doesn't provide a set_page_dirty a_op, then
2545 * just fall through and assume that it wants buffer_heads.
2546 */
2547int set_page_dirty(struct page *page)
2548{
2549	struct address_space *mapping = page_mapping(page);
2550
2551	if (likely(mapping)) {
2552		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2553		/*
2554		 * readahead/lru_deactivate_page could remain
2555		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2556		 * About readahead, if the page is written, the flags would be
2557		 * reset. So no problem.
2558		 * About lru_deactivate_page, if the page is redirty, the flag
2559		 * will be reset. So no problem. but if the page is used by readahead
2560		 * it will confuse readahead and make it restart the size rampup
2561		 * process. But it's a trivial problem.
2562		 */
2563		if (PageReclaim(page))
2564			ClearPageReclaim(page);
2565#ifdef CONFIG_BLOCK
2566		if (!spd)
2567			spd = __set_page_dirty_buffers;
2568#endif
2569		return (*spd)(page);
2570	}
2571	if (!PageDirty(page)) {
2572		if (!TestSetPageDirty(page))
2573			return 1;
2574	}
2575	return 0;
2576}
2577EXPORT_SYMBOL(set_page_dirty);
2578
2579/*
2580 * set_page_dirty() is racy if the caller has no reference against
2581 * page->mapping->host, and if the page is unlocked.  This is because another
2582 * CPU could truncate the page off the mapping and then free the mapping.
2583 *
2584 * Usually, the page _is_ locked, or the caller is a user-space process which
2585 * holds a reference on the inode by having an open file.
2586 *
2587 * In other cases, the page should be locked before running set_page_dirty().
2588 */
2589int set_page_dirty_lock(struct page *page)
2590{
2591	int ret;
2592
2593	lock_page(page);
2594	ret = set_page_dirty(page);
2595	unlock_page(page);
2596	return ret;
2597}
2598EXPORT_SYMBOL(set_page_dirty_lock);
2599
2600/*
2601 * This cancels just the dirty bit on the kernel page itself, it does NOT
2602 * actually remove dirty bits on any mmap's that may be around. It also
2603 * leaves the page tagged dirty, so any sync activity will still find it on
2604 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2605 * look at the dirty bits in the VM.
2606 *
2607 * Doing this should *normally* only ever be done when a page is truncated,
2608 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2609 * this when it notices that somebody has cleaned out all the buffers on a
2610 * page without actually doing it through the VM. Can you say "ext3 is
2611 * horribly ugly"? Thought you could.
2612 */
2613void cancel_dirty_page(struct page *page)
2614{
2615	struct address_space *mapping = page_mapping(page);
2616
2617	if (mapping_cap_account_dirty(mapping)) {
2618		struct inode *inode = mapping->host;
2619		struct bdi_writeback *wb;
2620		struct mem_cgroup *memcg;
2621		bool locked;
2622
2623		memcg = mem_cgroup_begin_page_stat(page);
2624		wb = unlocked_inode_to_wb_begin(inode, &locked);
2625
2626		if (TestClearPageDirty(page))
2627			account_page_cleaned(page, mapping, memcg, wb);
2628
2629		unlocked_inode_to_wb_end(inode, locked);
2630		mem_cgroup_end_page_stat(memcg);
2631	} else {
2632		ClearPageDirty(page);
2633	}
2634}
2635EXPORT_SYMBOL(cancel_dirty_page);
2636
2637/*
2638 * Clear a page's dirty flag, while caring for dirty memory accounting.
2639 * Returns true if the page was previously dirty.
2640 *
2641 * This is for preparing to put the page under writeout.  We leave the page
2642 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2643 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2644 * implementation will run either set_page_writeback() or set_page_dirty(),
2645 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2646 * back into sync.
2647 *
2648 * This incoherency between the page's dirty flag and radix-tree tag is
2649 * unfortunate, but it only exists while the page is locked.
2650 */
2651int clear_page_dirty_for_io(struct page *page)
2652{
2653	struct address_space *mapping = page_mapping(page);
2654	int ret = 0;
2655
2656	BUG_ON(!PageLocked(page));
2657
2658	if (mapping && mapping_cap_account_dirty(mapping)) {
2659		struct inode *inode = mapping->host;
2660		struct bdi_writeback *wb;
2661		struct mem_cgroup *memcg;
2662		bool locked;
2663
2664		/*
2665		 * Yes, Virginia, this is indeed insane.
2666		 *
2667		 * We use this sequence to make sure that
2668		 *  (a) we account for dirty stats properly
2669		 *  (b) we tell the low-level filesystem to
2670		 *      mark the whole page dirty if it was
2671		 *      dirty in a pagetable. Only to then
2672		 *  (c) clean the page again and return 1 to
2673		 *      cause the writeback.
2674		 *
2675		 * This way we avoid all nasty races with the
2676		 * dirty bit in multiple places and clearing
2677		 * them concurrently from different threads.
2678		 *
2679		 * Note! Normally the "set_page_dirty(page)"
2680		 * has no effect on the actual dirty bit - since
2681		 * that will already usually be set. But we
2682		 * need the side effects, and it can help us
2683		 * avoid races.
2684		 *
2685		 * We basically use the page "master dirty bit"
2686		 * as a serialization point for all the different
2687		 * threads doing their things.
2688		 */
2689		if (page_mkclean(page))
2690			set_page_dirty(page);
2691		/*
2692		 * We carefully synchronise fault handlers against
2693		 * installing a dirty pte and marking the page dirty
2694		 * at this point.  We do this by having them hold the
2695		 * page lock while dirtying the page, and pages are
2696		 * always locked coming in here, so we get the desired
2697		 * exclusion.
2698		 */
2699		memcg = mem_cgroup_begin_page_stat(page);
2700		wb = unlocked_inode_to_wb_begin(inode, &locked);
2701		if (TestClearPageDirty(page)) {
2702			mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2703			dec_zone_page_state(page, NR_FILE_DIRTY);
2704			dec_wb_stat(wb, WB_RECLAIMABLE);
2705			ret = 1;
2706		}
2707		unlocked_inode_to_wb_end(inode, locked);
2708		mem_cgroup_end_page_stat(memcg);
2709		return ret;
2710	}
2711	return TestClearPageDirty(page);
2712}
2713EXPORT_SYMBOL(clear_page_dirty_for_io);
2714
2715int test_clear_page_writeback(struct page *page)
2716{
2717	struct address_space *mapping = page_mapping(page);
2718	struct mem_cgroup *memcg;
2719	int ret;
2720
2721	memcg = mem_cgroup_begin_page_stat(page);
2722	if (mapping) {
2723		struct inode *inode = mapping->host;
2724		struct backing_dev_info *bdi = inode_to_bdi(inode);
2725		unsigned long flags;
2726
2727		spin_lock_irqsave(&mapping->tree_lock, flags);
2728		ret = TestClearPageWriteback(page);
2729		if (ret) {
2730			radix_tree_tag_clear(&mapping->page_tree,
2731						page_index(page),
2732						PAGECACHE_TAG_WRITEBACK);
2733			if (bdi_cap_account_writeback(bdi)) {
2734				struct bdi_writeback *wb = inode_to_wb(inode);
2735
2736				__dec_wb_stat(wb, WB_WRITEBACK);
2737				__wb_writeout_inc(wb);
2738			}
2739		}
2740		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2741	} else {
2742		ret = TestClearPageWriteback(page);
2743	}
2744	if (ret) {
2745		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2746		dec_zone_page_state(page, NR_WRITEBACK);
2747		inc_zone_page_state(page, NR_WRITTEN);
2748	}
2749	mem_cgroup_end_page_stat(memcg);
2750	return ret;
2751}
2752
2753int __test_set_page_writeback(struct page *page, bool keep_write)
2754{
2755	struct address_space *mapping = page_mapping(page);
2756	struct mem_cgroup *memcg;
2757	int ret;
2758
2759	memcg = mem_cgroup_begin_page_stat(page);
2760	if (mapping) {
2761		struct inode *inode = mapping->host;
2762		struct backing_dev_info *bdi = inode_to_bdi(inode);
2763		unsigned long flags;
2764
2765		spin_lock_irqsave(&mapping->tree_lock, flags);
2766		ret = TestSetPageWriteback(page);
2767		if (!ret) {
2768			radix_tree_tag_set(&mapping->page_tree,
2769						page_index(page),
2770						PAGECACHE_TAG_WRITEBACK);
2771			if (bdi_cap_account_writeback(bdi))
2772				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2773		}
2774		if (!PageDirty(page))
2775			radix_tree_tag_clear(&mapping->page_tree,
2776						page_index(page),
2777						PAGECACHE_TAG_DIRTY);
2778		if (!keep_write)
2779			radix_tree_tag_clear(&mapping->page_tree,
2780						page_index(page),
2781						PAGECACHE_TAG_TOWRITE);
2782		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2783	} else {
2784		ret = TestSetPageWriteback(page);
2785	}
2786	if (!ret) {
2787		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2788		inc_zone_page_state(page, NR_WRITEBACK);
2789	}
2790	mem_cgroup_end_page_stat(memcg);
2791	return ret;
2792
2793}
2794EXPORT_SYMBOL(__test_set_page_writeback);
2795
2796/*
2797 * Return true if any of the pages in the mapping are marked with the
2798 * passed tag.
2799 */
2800int mapping_tagged(struct address_space *mapping, int tag)
2801{
2802	return radix_tree_tagged(&mapping->page_tree, tag);
2803}
2804EXPORT_SYMBOL(mapping_tagged);
2805
2806/**
2807 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2808 * @page:	The page to wait on.
2809 *
2810 * This function determines if the given page is related to a backing device
2811 * that requires page contents to be held stable during writeback.  If so, then
2812 * it will wait for any pending writeback to complete.
2813 */
2814void wait_for_stable_page(struct page *page)
2815{
2816	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2817		wait_on_page_writeback(page);
2818}
2819EXPORT_SYMBOL_GPL(wait_for_stable_page);
2820