1/*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 *	Izik Eidus
10 *	Andrea Arcangeli
11 *	Chris Wright
12 *	Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/memory.h>
33#include <linux/mmu_notifier.h>
34#include <linux/swap.h>
35#include <linux/ksm.h>
36#include <linux/hashtable.h>
37#include <linux/freezer.h>
38#include <linux/oom.h>
39#include <linux/numa.h>
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44#ifdef CONFIG_NUMA
45#define NUMA(x)		(x)
46#define DO_NUMA(x)	do { (x); } while (0)
47#else
48#define NUMA(x)		(0)
49#define DO_NUMA(x)	do { } while (0)
50#endif
51
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents.  Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time".  The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 *    memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 *    has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 *    colors of the nodes and not on their contents, assuring that even when
83 *    the tree gets "corrupted" it won't get out of balance, so scanning time
84 *    remains the same (also, searching and inserting nodes in an rbtree uses
85 *    the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 *    take 10 attempts to find a page in the unstable tree, once it is found,
88 *    it is secured in the stable tree.  (When we scan a new page, we first
89 *    compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103	struct hlist_node link;
104	struct list_head mm_list;
105	struct rmap_item *rmap_list;
106	struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119	struct mm_slot *mm_slot;
120	unsigned long address;
121	struct rmap_item **rmap_list;
122	unsigned long seqnr;
123};
124
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134struct stable_node {
135	union {
136		struct rb_node node;	/* when node of stable tree */
137		struct {		/* when listed for migration */
138			struct list_head *head;
139			struct list_head list;
140		};
141	};
142	struct hlist_head hlist;
143	unsigned long kpfn;
144#ifdef CONFIG_NUMA
145	int nid;
146#endif
147};
148
149/**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161struct rmap_item {
162	struct rmap_item *rmap_list;
163	union {
164		struct anon_vma *anon_vma;	/* when stable */
165#ifdef CONFIG_NUMA
166		int nid;		/* when node of unstable tree */
167#endif
168	};
169	struct mm_struct *mm;
170	unsigned long address;		/* + low bits used for flags below */
171	unsigned int oldchecksum;	/* when unstable */
172	union {
173		struct rb_node node;	/* when node of unstable tree */
174		struct {		/* when listed from stable tree */
175			struct stable_node *head;
176			struct hlist_node hlist;
177		};
178	};
179};
180
181#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183#define STABLE_FLAG	0x200	/* is listed from the stable tree */
184
185/* The stable and unstable tree heads */
186static struct rb_root one_stable_tree[1] = { RB_ROOT };
187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188static struct rb_root *root_stable_tree = one_stable_tree;
189static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191/* Recently migrated nodes of stable tree, pending proper placement */
192static LIST_HEAD(migrate_nodes);
193
194#define MM_SLOTS_HASH_BITS 10
195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197static struct mm_slot ksm_mm_head = {
198	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199};
200static struct ksm_scan ksm_scan = {
201	.mm_slot = &ksm_mm_head,
202};
203
204static struct kmem_cache *rmap_item_cache;
205static struct kmem_cache *stable_node_cache;
206static struct kmem_cache *mm_slot_cache;
207
208/* The number of nodes in the stable tree */
209static unsigned long ksm_pages_shared;
210
211/* The number of page slots additionally sharing those nodes */
212static unsigned long ksm_pages_sharing;
213
214/* The number of nodes in the unstable tree */
215static unsigned long ksm_pages_unshared;
216
217/* The number of rmap_items in use: to calculate pages_volatile */
218static unsigned long ksm_rmap_items;
219
220/* Number of pages ksmd should scan in one batch */
221static unsigned int ksm_thread_pages_to_scan = 100;
222
223/* Milliseconds ksmd should sleep between batches */
224static unsigned int ksm_thread_sleep_millisecs = 20;
225
226#ifdef CONFIG_NUMA
227/* Zeroed when merging across nodes is not allowed */
228static unsigned int ksm_merge_across_nodes = 1;
229static int ksm_nr_node_ids = 1;
230#else
231#define ksm_merge_across_nodes	1U
232#define ksm_nr_node_ids		1
233#endif
234
235#define KSM_RUN_STOP	0
236#define KSM_RUN_MERGE	1
237#define KSM_RUN_UNMERGE	2
238#define KSM_RUN_OFFLINE	4
239static unsigned long ksm_run = KSM_RUN_STOP;
240static void wait_while_offlining(void);
241
242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243static DEFINE_MUTEX(ksm_thread_mutex);
244static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247		sizeof(struct __struct), __alignof__(struct __struct),\
248		(__flags), NULL)
249
250static int __init ksm_slab_init(void)
251{
252	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253	if (!rmap_item_cache)
254		goto out;
255
256	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257	if (!stable_node_cache)
258		goto out_free1;
259
260	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261	if (!mm_slot_cache)
262		goto out_free2;
263
264	return 0;
265
266out_free2:
267	kmem_cache_destroy(stable_node_cache);
268out_free1:
269	kmem_cache_destroy(rmap_item_cache);
270out:
271	return -ENOMEM;
272}
273
274static void __init ksm_slab_free(void)
275{
276	kmem_cache_destroy(mm_slot_cache);
277	kmem_cache_destroy(stable_node_cache);
278	kmem_cache_destroy(rmap_item_cache);
279	mm_slot_cache = NULL;
280}
281
282static inline struct rmap_item *alloc_rmap_item(void)
283{
284	struct rmap_item *rmap_item;
285
286	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287	if (rmap_item)
288		ksm_rmap_items++;
289	return rmap_item;
290}
291
292static inline void free_rmap_item(struct rmap_item *rmap_item)
293{
294	ksm_rmap_items--;
295	rmap_item->mm = NULL;	/* debug safety */
296	kmem_cache_free(rmap_item_cache, rmap_item);
297}
298
299static inline struct stable_node *alloc_stable_node(void)
300{
301	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302}
303
304static inline void free_stable_node(struct stable_node *stable_node)
305{
306	kmem_cache_free(stable_node_cache, stable_node);
307}
308
309static inline struct mm_slot *alloc_mm_slot(void)
310{
311	if (!mm_slot_cache)	/* initialization failed */
312		return NULL;
313	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314}
315
316static inline void free_mm_slot(struct mm_slot *mm_slot)
317{
318	kmem_cache_free(mm_slot_cache, mm_slot);
319}
320
321static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322{
323	struct mm_slot *slot;
324
325	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326		if (slot->mm == mm)
327			return slot;
328
329	return NULL;
330}
331
332static void insert_to_mm_slots_hash(struct mm_struct *mm,
333				    struct mm_slot *mm_slot)
334{
335	mm_slot->mm = mm;
336	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337}
338
339/*
340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341 * page tables after it has passed through ksm_exit() - which, if necessary,
342 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343 * a special flag: they can just back out as soon as mm_users goes to zero.
344 * ksm_test_exit() is used throughout to make this test for exit: in some
345 * places for correctness, in some places just to avoid unnecessary work.
346 */
347static inline bool ksm_test_exit(struct mm_struct *mm)
348{
349	return atomic_read(&mm->mm_users) == 0;
350}
351
352/*
353 * We use break_ksm to break COW on a ksm page: it's a stripped down
354 *
355 *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356 *		put_page(page);
357 *
358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359 * in case the application has unmapped and remapped mm,addr meanwhile.
360 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362 */
363static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
364{
365	struct page *page;
366	int ret = 0;
367
368	do {
369		cond_resched();
370		page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
371		if (IS_ERR_OR_NULL(page))
372			break;
373		if (PageKsm(page))
374			ret = handle_mm_fault(vma->vm_mm, vma, addr,
375							FAULT_FLAG_WRITE);
376		else
377			ret = VM_FAULT_WRITE;
378		put_page(page);
379	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
380	/*
381	 * We must loop because handle_mm_fault() may back out if there's
382	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
383	 *
384	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385	 * COW has been broken, even if the vma does not permit VM_WRITE;
386	 * but note that a concurrent fault might break PageKsm for us.
387	 *
388	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389	 * backing file, which also invalidates anonymous pages: that's
390	 * okay, that truncation will have unmapped the PageKsm for us.
391	 *
392	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394	 * current task has TIF_MEMDIE set, and will be OOM killed on return
395	 * to user; and ksmd, having no mm, would never be chosen for that.
396	 *
397	 * But if the mm is in a limited mem_cgroup, then the fault may fail
398	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399	 * even ksmd can fail in this way - though it's usually breaking ksm
400	 * just to undo a merge it made a moment before, so unlikely to oom.
401	 *
402	 * That's a pity: we might therefore have more kernel pages allocated
403	 * than we're counting as nodes in the stable tree; but ksm_do_scan
404	 * will retry to break_cow on each pass, so should recover the page
405	 * in due course.  The important thing is to not let VM_MERGEABLE
406	 * be cleared while any such pages might remain in the area.
407	 */
408	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
409}
410
411static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412		unsigned long addr)
413{
414	struct vm_area_struct *vma;
415	if (ksm_test_exit(mm))
416		return NULL;
417	vma = find_vma(mm, addr);
418	if (!vma || vma->vm_start > addr)
419		return NULL;
420	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421		return NULL;
422	return vma;
423}
424
425static void break_cow(struct rmap_item *rmap_item)
426{
427	struct mm_struct *mm = rmap_item->mm;
428	unsigned long addr = rmap_item->address;
429	struct vm_area_struct *vma;
430
431	/*
432	 * It is not an accident that whenever we want to break COW
433	 * to undo, we also need to drop a reference to the anon_vma.
434	 */
435	put_anon_vma(rmap_item->anon_vma);
436
437	down_read(&mm->mmap_sem);
438	vma = find_mergeable_vma(mm, addr);
439	if (vma)
440		break_ksm(vma, addr);
441	up_read(&mm->mmap_sem);
442}
443
444static struct page *page_trans_compound_anon(struct page *page)
445{
446	if (PageTransCompound(page)) {
447		struct page *head = compound_head(page);
448		/*
449		 * head may actually be splitted and freed from under
450		 * us but it's ok here.
451		 */
452		if (PageAnon(head))
453			return head;
454	}
455	return NULL;
456}
457
458static struct page *get_mergeable_page(struct rmap_item *rmap_item)
459{
460	struct mm_struct *mm = rmap_item->mm;
461	unsigned long addr = rmap_item->address;
462	struct vm_area_struct *vma;
463	struct page *page;
464
465	down_read(&mm->mmap_sem);
466	vma = find_mergeable_vma(mm, addr);
467	if (!vma)
468		goto out;
469
470	page = follow_page(vma, addr, FOLL_GET);
471	if (IS_ERR_OR_NULL(page))
472		goto out;
473	if (PageAnon(page) || page_trans_compound_anon(page)) {
474		flush_anon_page(vma, page, addr);
475		flush_dcache_page(page);
476	} else {
477		put_page(page);
478out:
479		page = NULL;
480	}
481	up_read(&mm->mmap_sem);
482	return page;
483}
484
485/*
486 * This helper is used for getting right index into array of tree roots.
487 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
488 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
489 * every node has its own stable and unstable tree.
490 */
491static inline int get_kpfn_nid(unsigned long kpfn)
492{
493	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
494}
495
496static void remove_node_from_stable_tree(struct stable_node *stable_node)
497{
498	struct rmap_item *rmap_item;
499
500	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
501		if (rmap_item->hlist.next)
502			ksm_pages_sharing--;
503		else
504			ksm_pages_shared--;
505		put_anon_vma(rmap_item->anon_vma);
506		rmap_item->address &= PAGE_MASK;
507		cond_resched();
508	}
509
510	if (stable_node->head == &migrate_nodes)
511		list_del(&stable_node->list);
512	else
513		rb_erase(&stable_node->node,
514			 root_stable_tree + NUMA(stable_node->nid));
515	free_stable_node(stable_node);
516}
517
518/*
519 * get_ksm_page: checks if the page indicated by the stable node
520 * is still its ksm page, despite having held no reference to it.
521 * In which case we can trust the content of the page, and it
522 * returns the gotten page; but if the page has now been zapped,
523 * remove the stale node from the stable tree and return NULL.
524 * But beware, the stable node's page might be being migrated.
525 *
526 * You would expect the stable_node to hold a reference to the ksm page.
527 * But if it increments the page's count, swapping out has to wait for
528 * ksmd to come around again before it can free the page, which may take
529 * seconds or even minutes: much too unresponsive.  So instead we use a
530 * "keyhole reference": access to the ksm page from the stable node peeps
531 * out through its keyhole to see if that page still holds the right key,
532 * pointing back to this stable node.  This relies on freeing a PageAnon
533 * page to reset its page->mapping to NULL, and relies on no other use of
534 * a page to put something that might look like our key in page->mapping.
535 * is on its way to being freed; but it is an anomaly to bear in mind.
536 */
537static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
538{
539	struct page *page;
540	void *expected_mapping;
541	unsigned long kpfn;
542
543	expected_mapping = (void *)stable_node +
544				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
545again:
546	kpfn = READ_ONCE(stable_node->kpfn);
547	page = pfn_to_page(kpfn);
548
549	/*
550	 * page is computed from kpfn, so on most architectures reading
551	 * page->mapping is naturally ordered after reading node->kpfn,
552	 * but on Alpha we need to be more careful.
553	 */
554	smp_read_barrier_depends();
555	if (READ_ONCE(page->mapping) != expected_mapping)
556		goto stale;
557
558	/*
559	 * We cannot do anything with the page while its refcount is 0.
560	 * Usually 0 means free, or tail of a higher-order page: in which
561	 * case this node is no longer referenced, and should be freed;
562	 * however, it might mean that the page is under page_freeze_refs().
563	 * The __remove_mapping() case is easy, again the node is now stale;
564	 * but if page is swapcache in migrate_page_move_mapping(), it might
565	 * still be our page, in which case it's essential to keep the node.
566	 */
567	while (!get_page_unless_zero(page)) {
568		/*
569		 * Another check for page->mapping != expected_mapping would
570		 * work here too.  We have chosen the !PageSwapCache test to
571		 * optimize the common case, when the page is or is about to
572		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
573		 * in the freeze_refs section of __remove_mapping(); but Anon
574		 * page->mapping reset to NULL later, in free_pages_prepare().
575		 */
576		if (!PageSwapCache(page))
577			goto stale;
578		cpu_relax();
579	}
580
581	if (READ_ONCE(page->mapping) != expected_mapping) {
582		put_page(page);
583		goto stale;
584	}
585
586	if (lock_it) {
587		lock_page(page);
588		if (READ_ONCE(page->mapping) != expected_mapping) {
589			unlock_page(page);
590			put_page(page);
591			goto stale;
592		}
593	}
594	return page;
595
596stale:
597	/*
598	 * We come here from above when page->mapping or !PageSwapCache
599	 * suggests that the node is stale; but it might be under migration.
600	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
601	 * before checking whether node->kpfn has been changed.
602	 */
603	smp_rmb();
604	if (READ_ONCE(stable_node->kpfn) != kpfn)
605		goto again;
606	remove_node_from_stable_tree(stable_node);
607	return NULL;
608}
609
610/*
611 * Removing rmap_item from stable or unstable tree.
612 * This function will clean the information from the stable/unstable tree.
613 */
614static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
615{
616	if (rmap_item->address & STABLE_FLAG) {
617		struct stable_node *stable_node;
618		struct page *page;
619
620		stable_node = rmap_item->head;
621		page = get_ksm_page(stable_node, true);
622		if (!page)
623			goto out;
624
625		hlist_del(&rmap_item->hlist);
626		unlock_page(page);
627		put_page(page);
628
629		if (!hlist_empty(&stable_node->hlist))
630			ksm_pages_sharing--;
631		else
632			ksm_pages_shared--;
633
634		put_anon_vma(rmap_item->anon_vma);
635		rmap_item->address &= PAGE_MASK;
636
637	} else if (rmap_item->address & UNSTABLE_FLAG) {
638		unsigned char age;
639		/*
640		 * Usually ksmd can and must skip the rb_erase, because
641		 * root_unstable_tree was already reset to RB_ROOT.
642		 * But be careful when an mm is exiting: do the rb_erase
643		 * if this rmap_item was inserted by this scan, rather
644		 * than left over from before.
645		 */
646		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
647		BUG_ON(age > 1);
648		if (!age)
649			rb_erase(&rmap_item->node,
650				 root_unstable_tree + NUMA(rmap_item->nid));
651		ksm_pages_unshared--;
652		rmap_item->address &= PAGE_MASK;
653	}
654out:
655	cond_resched();		/* we're called from many long loops */
656}
657
658static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
659				       struct rmap_item **rmap_list)
660{
661	while (*rmap_list) {
662		struct rmap_item *rmap_item = *rmap_list;
663		*rmap_list = rmap_item->rmap_list;
664		remove_rmap_item_from_tree(rmap_item);
665		free_rmap_item(rmap_item);
666	}
667}
668
669/*
670 * Though it's very tempting to unmerge rmap_items from stable tree rather
671 * than check every pte of a given vma, the locking doesn't quite work for
672 * that - an rmap_item is assigned to the stable tree after inserting ksm
673 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
674 * rmap_items from parent to child at fork time (so as not to waste time
675 * if exit comes before the next scan reaches it).
676 *
677 * Similarly, although we'd like to remove rmap_items (so updating counts
678 * and freeing memory) when unmerging an area, it's easier to leave that
679 * to the next pass of ksmd - consider, for example, how ksmd might be
680 * in cmp_and_merge_page on one of the rmap_items we would be removing.
681 */
682static int unmerge_ksm_pages(struct vm_area_struct *vma,
683			     unsigned long start, unsigned long end)
684{
685	unsigned long addr;
686	int err = 0;
687
688	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
689		if (ksm_test_exit(vma->vm_mm))
690			break;
691		if (signal_pending(current))
692			err = -ERESTARTSYS;
693		else
694			err = break_ksm(vma, addr);
695	}
696	return err;
697}
698
699#ifdef CONFIG_SYSFS
700/*
701 * Only called through the sysfs control interface:
702 */
703static int remove_stable_node(struct stable_node *stable_node)
704{
705	struct page *page;
706	int err;
707
708	page = get_ksm_page(stable_node, true);
709	if (!page) {
710		/*
711		 * get_ksm_page did remove_node_from_stable_tree itself.
712		 */
713		return 0;
714	}
715
716	if (WARN_ON_ONCE(page_mapped(page))) {
717		/*
718		 * This should not happen: but if it does, just refuse to let
719		 * merge_across_nodes be switched - there is no need to panic.
720		 */
721		err = -EBUSY;
722	} else {
723		/*
724		 * The stable node did not yet appear stale to get_ksm_page(),
725		 * since that allows for an unmapped ksm page to be recognized
726		 * right up until it is freed; but the node is safe to remove.
727		 * This page might be in a pagevec waiting to be freed,
728		 * or it might be PageSwapCache (perhaps under writeback),
729		 * or it might have been removed from swapcache a moment ago.
730		 */
731		set_page_stable_node(page, NULL);
732		remove_node_from_stable_tree(stable_node);
733		err = 0;
734	}
735
736	unlock_page(page);
737	put_page(page);
738	return err;
739}
740
741static int remove_all_stable_nodes(void)
742{
743	struct stable_node *stable_node;
744	struct list_head *this, *next;
745	int nid;
746	int err = 0;
747
748	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
749		while (root_stable_tree[nid].rb_node) {
750			stable_node = rb_entry(root_stable_tree[nid].rb_node,
751						struct stable_node, node);
752			if (remove_stable_node(stable_node)) {
753				err = -EBUSY;
754				break;	/* proceed to next nid */
755			}
756			cond_resched();
757		}
758	}
759	list_for_each_safe(this, next, &migrate_nodes) {
760		stable_node = list_entry(this, struct stable_node, list);
761		if (remove_stable_node(stable_node))
762			err = -EBUSY;
763		cond_resched();
764	}
765	return err;
766}
767
768static int unmerge_and_remove_all_rmap_items(void)
769{
770	struct mm_slot *mm_slot;
771	struct mm_struct *mm;
772	struct vm_area_struct *vma;
773	int err = 0;
774
775	spin_lock(&ksm_mmlist_lock);
776	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
777						struct mm_slot, mm_list);
778	spin_unlock(&ksm_mmlist_lock);
779
780	for (mm_slot = ksm_scan.mm_slot;
781			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
782		mm = mm_slot->mm;
783		down_read(&mm->mmap_sem);
784		for (vma = mm->mmap; vma; vma = vma->vm_next) {
785			if (ksm_test_exit(mm))
786				break;
787			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
788				continue;
789			err = unmerge_ksm_pages(vma,
790						vma->vm_start, vma->vm_end);
791			if (err)
792				goto error;
793		}
794
795		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
796
797		spin_lock(&ksm_mmlist_lock);
798		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
799						struct mm_slot, mm_list);
800		if (ksm_test_exit(mm)) {
801			hash_del(&mm_slot->link);
802			list_del(&mm_slot->mm_list);
803			spin_unlock(&ksm_mmlist_lock);
804
805			free_mm_slot(mm_slot);
806			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
807			up_read(&mm->mmap_sem);
808			mmdrop(mm);
809		} else {
810			spin_unlock(&ksm_mmlist_lock);
811			up_read(&mm->mmap_sem);
812		}
813	}
814
815	/* Clean up stable nodes, but don't worry if some are still busy */
816	remove_all_stable_nodes();
817	ksm_scan.seqnr = 0;
818	return 0;
819
820error:
821	up_read(&mm->mmap_sem);
822	spin_lock(&ksm_mmlist_lock);
823	ksm_scan.mm_slot = &ksm_mm_head;
824	spin_unlock(&ksm_mmlist_lock);
825	return err;
826}
827#endif /* CONFIG_SYSFS */
828
829static u32 calc_checksum(struct page *page)
830{
831	u32 checksum;
832	void *addr = kmap_atomic(page);
833	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
834	kunmap_atomic(addr);
835	return checksum;
836}
837
838static int memcmp_pages(struct page *page1, struct page *page2)
839{
840	char *addr1, *addr2;
841	int ret;
842
843	addr1 = kmap_atomic(page1);
844	addr2 = kmap_atomic(page2);
845	ret = memcmp(addr1, addr2, PAGE_SIZE);
846	kunmap_atomic(addr2);
847	kunmap_atomic(addr1);
848	return ret;
849}
850
851static inline int pages_identical(struct page *page1, struct page *page2)
852{
853	return !memcmp_pages(page1, page2);
854}
855
856static int write_protect_page(struct vm_area_struct *vma, struct page *page,
857			      pte_t *orig_pte)
858{
859	struct mm_struct *mm = vma->vm_mm;
860	unsigned long addr;
861	pte_t *ptep;
862	spinlock_t *ptl;
863	int swapped;
864	int err = -EFAULT;
865	unsigned long mmun_start;	/* For mmu_notifiers */
866	unsigned long mmun_end;		/* For mmu_notifiers */
867
868	addr = page_address_in_vma(page, vma);
869	if (addr == -EFAULT)
870		goto out;
871
872	BUG_ON(PageTransCompound(page));
873
874	mmun_start = addr;
875	mmun_end   = addr + PAGE_SIZE;
876	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
877
878	ptep = page_check_address(page, mm, addr, &ptl, 0);
879	if (!ptep)
880		goto out_mn;
881
882	if (pte_write(*ptep) || pte_dirty(*ptep)) {
883		pte_t entry;
884
885		swapped = PageSwapCache(page);
886		flush_cache_page(vma, addr, page_to_pfn(page));
887		/*
888		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
889		 * take any lock, therefore the check that we are going to make
890		 * with the pagecount against the mapcount is racey and
891		 * O_DIRECT can happen right after the check.
892		 * So we clear the pte and flush the tlb before the check
893		 * this assure us that no O_DIRECT can happen after the check
894		 * or in the middle of the check.
895		 */
896		entry = ptep_clear_flush_notify(vma, addr, ptep);
897		/*
898		 * Check that no O_DIRECT or similar I/O is in progress on the
899		 * page
900		 */
901		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
902			set_pte_at(mm, addr, ptep, entry);
903			goto out_unlock;
904		}
905		if (pte_dirty(entry))
906			set_page_dirty(page);
907		entry = pte_mkclean(pte_wrprotect(entry));
908		set_pte_at_notify(mm, addr, ptep, entry);
909	}
910	*orig_pte = *ptep;
911	err = 0;
912
913out_unlock:
914	pte_unmap_unlock(ptep, ptl);
915out_mn:
916	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
917out:
918	return err;
919}
920
921/**
922 * replace_page - replace page in vma by new ksm page
923 * @vma:      vma that holds the pte pointing to page
924 * @page:     the page we are replacing by kpage
925 * @kpage:    the ksm page we replace page by
926 * @orig_pte: the original value of the pte
927 *
928 * Returns 0 on success, -EFAULT on failure.
929 */
930static int replace_page(struct vm_area_struct *vma, struct page *page,
931			struct page *kpage, pte_t orig_pte)
932{
933	struct mm_struct *mm = vma->vm_mm;
934	pmd_t *pmd;
935	pte_t *ptep;
936	spinlock_t *ptl;
937	unsigned long addr;
938	int err = -EFAULT;
939	unsigned long mmun_start;	/* For mmu_notifiers */
940	unsigned long mmun_end;		/* For mmu_notifiers */
941
942	addr = page_address_in_vma(page, vma);
943	if (addr == -EFAULT)
944		goto out;
945
946	pmd = mm_find_pmd(mm, addr);
947	if (!pmd)
948		goto out;
949
950	mmun_start = addr;
951	mmun_end   = addr + PAGE_SIZE;
952	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
953
954	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
955	if (!pte_same(*ptep, orig_pte)) {
956		pte_unmap_unlock(ptep, ptl);
957		goto out_mn;
958	}
959
960	get_page(kpage);
961	page_add_anon_rmap(kpage, vma, addr);
962
963	flush_cache_page(vma, addr, pte_pfn(*ptep));
964	ptep_clear_flush_notify(vma, addr, ptep);
965	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
966
967	page_remove_rmap(page);
968	if (!page_mapped(page))
969		try_to_free_swap(page);
970	put_page(page);
971
972	pte_unmap_unlock(ptep, ptl);
973	err = 0;
974out_mn:
975	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
976out:
977	return err;
978}
979
980static int page_trans_compound_anon_split(struct page *page)
981{
982	int ret = 0;
983	struct page *transhuge_head = page_trans_compound_anon(page);
984	if (transhuge_head) {
985		/* Get the reference on the head to split it. */
986		if (get_page_unless_zero(transhuge_head)) {
987			/*
988			 * Recheck we got the reference while the head
989			 * was still anonymous.
990			 */
991			if (PageAnon(transhuge_head))
992				ret = split_huge_page(transhuge_head);
993			else
994				/*
995				 * Retry later if split_huge_page run
996				 * from under us.
997				 */
998				ret = 1;
999			put_page(transhuge_head);
1000		} else
1001			/* Retry later if split_huge_page run from under us. */
1002			ret = 1;
1003	}
1004	return ret;
1005}
1006
1007/*
1008 * try_to_merge_one_page - take two pages and merge them into one
1009 * @vma: the vma that holds the pte pointing to page
1010 * @page: the PageAnon page that we want to replace with kpage
1011 * @kpage: the PageKsm page that we want to map instead of page,
1012 *         or NULL the first time when we want to use page as kpage.
1013 *
1014 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1015 */
1016static int try_to_merge_one_page(struct vm_area_struct *vma,
1017				 struct page *page, struct page *kpage)
1018{
1019	pte_t orig_pte = __pte(0);
1020	int err = -EFAULT;
1021
1022	if (page == kpage)			/* ksm page forked */
1023		return 0;
1024
1025	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1026		goto out;
1027	BUG_ON(PageTransCompound(page));
1028	if (!PageAnon(page))
1029		goto out;
1030
1031	/*
1032	 * We need the page lock to read a stable PageSwapCache in
1033	 * write_protect_page().  We use trylock_page() instead of
1034	 * lock_page() because we don't want to wait here - we
1035	 * prefer to continue scanning and merging different pages,
1036	 * then come back to this page when it is unlocked.
1037	 */
1038	if (!trylock_page(page))
1039		goto out;
1040	/*
1041	 * If this anonymous page is mapped only here, its pte may need
1042	 * to be write-protected.  If it's mapped elsewhere, all of its
1043	 * ptes are necessarily already write-protected.  But in either
1044	 * case, we need to lock and check page_count is not raised.
1045	 */
1046	if (write_protect_page(vma, page, &orig_pte) == 0) {
1047		if (!kpage) {
1048			/*
1049			 * While we hold page lock, upgrade page from
1050			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1051			 * stable_tree_insert() will update stable_node.
1052			 */
1053			set_page_stable_node(page, NULL);
1054			mark_page_accessed(page);
1055			err = 0;
1056		} else if (pages_identical(page, kpage))
1057			err = replace_page(vma, page, kpage, orig_pte);
1058	}
1059
1060	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1061		munlock_vma_page(page);
1062		if (!PageMlocked(kpage)) {
1063			unlock_page(page);
1064			lock_page(kpage);
1065			mlock_vma_page(kpage);
1066			page = kpage;		/* for final unlock */
1067		}
1068	}
1069
1070	unlock_page(page);
1071out:
1072	return err;
1073}
1074
1075/*
1076 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1077 * but no new kernel page is allocated: kpage must already be a ksm page.
1078 *
1079 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1080 */
1081static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1082				      struct page *page, struct page *kpage)
1083{
1084	struct mm_struct *mm = rmap_item->mm;
1085	struct vm_area_struct *vma;
1086	int err = -EFAULT;
1087
1088	down_read(&mm->mmap_sem);
1089	vma = find_mergeable_vma(mm, rmap_item->address);
1090	if (!vma)
1091		goto out;
1092
1093	err = try_to_merge_one_page(vma, page, kpage);
1094	if (err)
1095		goto out;
1096
1097	/* Unstable nid is in union with stable anon_vma: remove first */
1098	remove_rmap_item_from_tree(rmap_item);
1099
1100	/* Must get reference to anon_vma while still holding mmap_sem */
1101	rmap_item->anon_vma = vma->anon_vma;
1102	get_anon_vma(vma->anon_vma);
1103out:
1104	up_read(&mm->mmap_sem);
1105	return err;
1106}
1107
1108/*
1109 * try_to_merge_two_pages - take two identical pages and prepare them
1110 * to be merged into one page.
1111 *
1112 * This function returns the kpage if we successfully merged two identical
1113 * pages into one ksm page, NULL otherwise.
1114 *
1115 * Note that this function upgrades page to ksm page: if one of the pages
1116 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1117 */
1118static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1119					   struct page *page,
1120					   struct rmap_item *tree_rmap_item,
1121					   struct page *tree_page)
1122{
1123	int err;
1124
1125	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1126	if (!err) {
1127		err = try_to_merge_with_ksm_page(tree_rmap_item,
1128							tree_page, page);
1129		/*
1130		 * If that fails, we have a ksm page with only one pte
1131		 * pointing to it: so break it.
1132		 */
1133		if (err)
1134			break_cow(rmap_item);
1135	}
1136	return err ? NULL : page;
1137}
1138
1139/*
1140 * stable_tree_search - search for page inside the stable tree
1141 *
1142 * This function checks if there is a page inside the stable tree
1143 * with identical content to the page that we are scanning right now.
1144 *
1145 * This function returns the stable tree node of identical content if found,
1146 * NULL otherwise.
1147 */
1148static struct page *stable_tree_search(struct page *page)
1149{
1150	int nid;
1151	struct rb_root *root;
1152	struct rb_node **new;
1153	struct rb_node *parent;
1154	struct stable_node *stable_node;
1155	struct stable_node *page_node;
1156
1157	page_node = page_stable_node(page);
1158	if (page_node && page_node->head != &migrate_nodes) {
1159		/* ksm page forked */
1160		get_page(page);
1161		return page;
1162	}
1163
1164	nid = get_kpfn_nid(page_to_pfn(page));
1165	root = root_stable_tree + nid;
1166again:
1167	new = &root->rb_node;
1168	parent = NULL;
1169
1170	while (*new) {
1171		struct page *tree_page;
1172		int ret;
1173
1174		cond_resched();
1175		stable_node = rb_entry(*new, struct stable_node, node);
1176		tree_page = get_ksm_page(stable_node, false);
1177		if (!tree_page) {
1178			/*
1179			 * If we walked over a stale stable_node,
1180			 * get_ksm_page() will call rb_erase() and it
1181			 * may rebalance the tree from under us. So
1182			 * restart the search from scratch. Returning
1183			 * NULL would be safe too, but we'd generate
1184			 * false negative insertions just because some
1185			 * stable_node was stale.
1186			 */
1187			goto again;
1188		}
1189
1190		ret = memcmp_pages(page, tree_page);
1191		put_page(tree_page);
1192
1193		parent = *new;
1194		if (ret < 0)
1195			new = &parent->rb_left;
1196		else if (ret > 0)
1197			new = &parent->rb_right;
1198		else {
1199			/*
1200			 * Lock and unlock the stable_node's page (which
1201			 * might already have been migrated) so that page
1202			 * migration is sure to notice its raised count.
1203			 * It would be more elegant to return stable_node
1204			 * than kpage, but that involves more changes.
1205			 */
1206			tree_page = get_ksm_page(stable_node, true);
1207			if (tree_page) {
1208				unlock_page(tree_page);
1209				if (get_kpfn_nid(stable_node->kpfn) !=
1210						NUMA(stable_node->nid)) {
1211					put_page(tree_page);
1212					goto replace;
1213				}
1214				return tree_page;
1215			}
1216			/*
1217			 * There is now a place for page_node, but the tree may
1218			 * have been rebalanced, so re-evaluate parent and new.
1219			 */
1220			if (page_node)
1221				goto again;
1222			return NULL;
1223		}
1224	}
1225
1226	if (!page_node)
1227		return NULL;
1228
1229	list_del(&page_node->list);
1230	DO_NUMA(page_node->nid = nid);
1231	rb_link_node(&page_node->node, parent, new);
1232	rb_insert_color(&page_node->node, root);
1233	get_page(page);
1234	return page;
1235
1236replace:
1237	if (page_node) {
1238		list_del(&page_node->list);
1239		DO_NUMA(page_node->nid = nid);
1240		rb_replace_node(&stable_node->node, &page_node->node, root);
1241		get_page(page);
1242	} else {
1243		rb_erase(&stable_node->node, root);
1244		page = NULL;
1245	}
1246	stable_node->head = &migrate_nodes;
1247	list_add(&stable_node->list, stable_node->head);
1248	return page;
1249}
1250
1251/*
1252 * stable_tree_insert - insert stable tree node pointing to new ksm page
1253 * into the stable tree.
1254 *
1255 * This function returns the stable tree node just allocated on success,
1256 * NULL otherwise.
1257 */
1258static struct stable_node *stable_tree_insert(struct page *kpage)
1259{
1260	int nid;
1261	unsigned long kpfn;
1262	struct rb_root *root;
1263	struct rb_node **new;
1264	struct rb_node *parent;
1265	struct stable_node *stable_node;
1266
1267	kpfn = page_to_pfn(kpage);
1268	nid = get_kpfn_nid(kpfn);
1269	root = root_stable_tree + nid;
1270again:
1271	parent = NULL;
1272	new = &root->rb_node;
1273
1274	while (*new) {
1275		struct page *tree_page;
1276		int ret;
1277
1278		cond_resched();
1279		stable_node = rb_entry(*new, struct stable_node, node);
1280		tree_page = get_ksm_page(stable_node, false);
1281		if (!tree_page) {
1282			/*
1283			 * If we walked over a stale stable_node,
1284			 * get_ksm_page() will call rb_erase() and it
1285			 * may rebalance the tree from under us. So
1286			 * restart the search from scratch. Returning
1287			 * NULL would be safe too, but we'd generate
1288			 * false negative insertions just because some
1289			 * stable_node was stale.
1290			 */
1291			goto again;
1292		}
1293
1294		ret = memcmp_pages(kpage, tree_page);
1295		put_page(tree_page);
1296
1297		parent = *new;
1298		if (ret < 0)
1299			new = &parent->rb_left;
1300		else if (ret > 0)
1301			new = &parent->rb_right;
1302		else {
1303			/*
1304			 * It is not a bug that stable_tree_search() didn't
1305			 * find this node: because at that time our page was
1306			 * not yet write-protected, so may have changed since.
1307			 */
1308			return NULL;
1309		}
1310	}
1311
1312	stable_node = alloc_stable_node();
1313	if (!stable_node)
1314		return NULL;
1315
1316	INIT_HLIST_HEAD(&stable_node->hlist);
1317	stable_node->kpfn = kpfn;
1318	set_page_stable_node(kpage, stable_node);
1319	DO_NUMA(stable_node->nid = nid);
1320	rb_link_node(&stable_node->node, parent, new);
1321	rb_insert_color(&stable_node->node, root);
1322
1323	return stable_node;
1324}
1325
1326/*
1327 * unstable_tree_search_insert - search for identical page,
1328 * else insert rmap_item into the unstable tree.
1329 *
1330 * This function searches for a page in the unstable tree identical to the
1331 * page currently being scanned; and if no identical page is found in the
1332 * tree, we insert rmap_item as a new object into the unstable tree.
1333 *
1334 * This function returns pointer to rmap_item found to be identical
1335 * to the currently scanned page, NULL otherwise.
1336 *
1337 * This function does both searching and inserting, because they share
1338 * the same walking algorithm in an rbtree.
1339 */
1340static
1341struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1342					      struct page *page,
1343					      struct page **tree_pagep)
1344{
1345	struct rb_node **new;
1346	struct rb_root *root;
1347	struct rb_node *parent = NULL;
1348	int nid;
1349
1350	nid = get_kpfn_nid(page_to_pfn(page));
1351	root = root_unstable_tree + nid;
1352	new = &root->rb_node;
1353
1354	while (*new) {
1355		struct rmap_item *tree_rmap_item;
1356		struct page *tree_page;
1357		int ret;
1358
1359		cond_resched();
1360		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1361		tree_page = get_mergeable_page(tree_rmap_item);
1362		if (!tree_page)
1363			return NULL;
1364
1365		/*
1366		 * Don't substitute a ksm page for a forked page.
1367		 */
1368		if (page == tree_page) {
1369			put_page(tree_page);
1370			return NULL;
1371		}
1372
1373		ret = memcmp_pages(page, tree_page);
1374
1375		parent = *new;
1376		if (ret < 0) {
1377			put_page(tree_page);
1378			new = &parent->rb_left;
1379		} else if (ret > 0) {
1380			put_page(tree_page);
1381			new = &parent->rb_right;
1382		} else if (!ksm_merge_across_nodes &&
1383			   page_to_nid(tree_page) != nid) {
1384			/*
1385			 * If tree_page has been migrated to another NUMA node,
1386			 * it will be flushed out and put in the right unstable
1387			 * tree next time: only merge with it when across_nodes.
1388			 */
1389			put_page(tree_page);
1390			return NULL;
1391		} else {
1392			*tree_pagep = tree_page;
1393			return tree_rmap_item;
1394		}
1395	}
1396
1397	rmap_item->address |= UNSTABLE_FLAG;
1398	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1399	DO_NUMA(rmap_item->nid = nid);
1400	rb_link_node(&rmap_item->node, parent, new);
1401	rb_insert_color(&rmap_item->node, root);
1402
1403	ksm_pages_unshared++;
1404	return NULL;
1405}
1406
1407/*
1408 * stable_tree_append - add another rmap_item to the linked list of
1409 * rmap_items hanging off a given node of the stable tree, all sharing
1410 * the same ksm page.
1411 */
1412static void stable_tree_append(struct rmap_item *rmap_item,
1413			       struct stable_node *stable_node)
1414{
1415	rmap_item->head = stable_node;
1416	rmap_item->address |= STABLE_FLAG;
1417	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1418
1419	if (rmap_item->hlist.next)
1420		ksm_pages_sharing++;
1421	else
1422		ksm_pages_shared++;
1423}
1424
1425/*
1426 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1427 * if not, compare checksum to previous and if it's the same, see if page can
1428 * be inserted into the unstable tree, or merged with a page already there and
1429 * both transferred to the stable tree.
1430 *
1431 * @page: the page that we are searching identical page to.
1432 * @rmap_item: the reverse mapping into the virtual address of this page
1433 */
1434static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1435{
1436	struct rmap_item *tree_rmap_item;
1437	struct page *tree_page = NULL;
1438	struct stable_node *stable_node;
1439	struct page *kpage;
1440	unsigned int checksum;
1441	int err;
1442
1443	stable_node = page_stable_node(page);
1444	if (stable_node) {
1445		if (stable_node->head != &migrate_nodes &&
1446		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1447			rb_erase(&stable_node->node,
1448				 root_stable_tree + NUMA(stable_node->nid));
1449			stable_node->head = &migrate_nodes;
1450			list_add(&stable_node->list, stable_node->head);
1451		}
1452		if (stable_node->head != &migrate_nodes &&
1453		    rmap_item->head == stable_node)
1454			return;
1455	}
1456
1457	/* We first start with searching the page inside the stable tree */
1458	kpage = stable_tree_search(page);
1459	if (kpage == page && rmap_item->head == stable_node) {
1460		put_page(kpage);
1461		return;
1462	}
1463
1464	remove_rmap_item_from_tree(rmap_item);
1465
1466	if (kpage) {
1467		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1468		if (!err) {
1469			/*
1470			 * The page was successfully merged:
1471			 * add its rmap_item to the stable tree.
1472			 */
1473			lock_page(kpage);
1474			stable_tree_append(rmap_item, page_stable_node(kpage));
1475			unlock_page(kpage);
1476		}
1477		put_page(kpage);
1478		return;
1479	}
1480
1481	/*
1482	 * If the hash value of the page has changed from the last time
1483	 * we calculated it, this page is changing frequently: therefore we
1484	 * don't want to insert it in the unstable tree, and we don't want
1485	 * to waste our time searching for something identical to it there.
1486	 */
1487	checksum = calc_checksum(page);
1488	if (rmap_item->oldchecksum != checksum) {
1489		rmap_item->oldchecksum = checksum;
1490		return;
1491	}
1492
1493	tree_rmap_item =
1494		unstable_tree_search_insert(rmap_item, page, &tree_page);
1495	if (tree_rmap_item) {
1496		kpage = try_to_merge_two_pages(rmap_item, page,
1497						tree_rmap_item, tree_page);
1498		put_page(tree_page);
1499		if (kpage) {
1500			/*
1501			 * The pages were successfully merged: insert new
1502			 * node in the stable tree and add both rmap_items.
1503			 */
1504			lock_page(kpage);
1505			stable_node = stable_tree_insert(kpage);
1506			if (stable_node) {
1507				stable_tree_append(tree_rmap_item, stable_node);
1508				stable_tree_append(rmap_item, stable_node);
1509			}
1510			unlock_page(kpage);
1511
1512			/*
1513			 * If we fail to insert the page into the stable tree,
1514			 * we will have 2 virtual addresses that are pointing
1515			 * to a ksm page left outside the stable tree,
1516			 * in which case we need to break_cow on both.
1517			 */
1518			if (!stable_node) {
1519				break_cow(tree_rmap_item);
1520				break_cow(rmap_item);
1521			}
1522		}
1523	}
1524}
1525
1526static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1527					    struct rmap_item **rmap_list,
1528					    unsigned long addr)
1529{
1530	struct rmap_item *rmap_item;
1531
1532	while (*rmap_list) {
1533		rmap_item = *rmap_list;
1534		if ((rmap_item->address & PAGE_MASK) == addr)
1535			return rmap_item;
1536		if (rmap_item->address > addr)
1537			break;
1538		*rmap_list = rmap_item->rmap_list;
1539		remove_rmap_item_from_tree(rmap_item);
1540		free_rmap_item(rmap_item);
1541	}
1542
1543	rmap_item = alloc_rmap_item();
1544	if (rmap_item) {
1545		/* It has already been zeroed */
1546		rmap_item->mm = mm_slot->mm;
1547		rmap_item->address = addr;
1548		rmap_item->rmap_list = *rmap_list;
1549		*rmap_list = rmap_item;
1550	}
1551	return rmap_item;
1552}
1553
1554static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1555{
1556	struct mm_struct *mm;
1557	struct mm_slot *slot;
1558	struct vm_area_struct *vma;
1559	struct rmap_item *rmap_item;
1560	int nid;
1561
1562	if (list_empty(&ksm_mm_head.mm_list))
1563		return NULL;
1564
1565	slot = ksm_scan.mm_slot;
1566	if (slot == &ksm_mm_head) {
1567		/*
1568		 * A number of pages can hang around indefinitely on per-cpu
1569		 * pagevecs, raised page count preventing write_protect_page
1570		 * from merging them.  Though it doesn't really matter much,
1571		 * it is puzzling to see some stuck in pages_volatile until
1572		 * other activity jostles them out, and they also prevented
1573		 * LTP's KSM test from succeeding deterministically; so drain
1574		 * them here (here rather than on entry to ksm_do_scan(),
1575		 * so we don't IPI too often when pages_to_scan is set low).
1576		 */
1577		lru_add_drain_all();
1578
1579		/*
1580		 * Whereas stale stable_nodes on the stable_tree itself
1581		 * get pruned in the regular course of stable_tree_search(),
1582		 * those moved out to the migrate_nodes list can accumulate:
1583		 * so prune them once before each full scan.
1584		 */
1585		if (!ksm_merge_across_nodes) {
1586			struct stable_node *stable_node;
1587			struct list_head *this, *next;
1588			struct page *page;
1589
1590			list_for_each_safe(this, next, &migrate_nodes) {
1591				stable_node = list_entry(this,
1592						struct stable_node, list);
1593				page = get_ksm_page(stable_node, false);
1594				if (page)
1595					put_page(page);
1596				cond_resched();
1597			}
1598		}
1599
1600		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1601			root_unstable_tree[nid] = RB_ROOT;
1602
1603		spin_lock(&ksm_mmlist_lock);
1604		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1605		ksm_scan.mm_slot = slot;
1606		spin_unlock(&ksm_mmlist_lock);
1607		/*
1608		 * Although we tested list_empty() above, a racing __ksm_exit
1609		 * of the last mm on the list may have removed it since then.
1610		 */
1611		if (slot == &ksm_mm_head)
1612			return NULL;
1613next_mm:
1614		ksm_scan.address = 0;
1615		ksm_scan.rmap_list = &slot->rmap_list;
1616	}
1617
1618	mm = slot->mm;
1619	down_read(&mm->mmap_sem);
1620	if (ksm_test_exit(mm))
1621		vma = NULL;
1622	else
1623		vma = find_vma(mm, ksm_scan.address);
1624
1625	for (; vma; vma = vma->vm_next) {
1626		if (!(vma->vm_flags & VM_MERGEABLE))
1627			continue;
1628		if (ksm_scan.address < vma->vm_start)
1629			ksm_scan.address = vma->vm_start;
1630		if (!vma->anon_vma)
1631			ksm_scan.address = vma->vm_end;
1632
1633		while (ksm_scan.address < vma->vm_end) {
1634			if (ksm_test_exit(mm))
1635				break;
1636			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1637			if (IS_ERR_OR_NULL(*page)) {
1638				ksm_scan.address += PAGE_SIZE;
1639				cond_resched();
1640				continue;
1641			}
1642			if (PageAnon(*page) ||
1643			    page_trans_compound_anon(*page)) {
1644				flush_anon_page(vma, *page, ksm_scan.address);
1645				flush_dcache_page(*page);
1646				rmap_item = get_next_rmap_item(slot,
1647					ksm_scan.rmap_list, ksm_scan.address);
1648				if (rmap_item) {
1649					ksm_scan.rmap_list =
1650							&rmap_item->rmap_list;
1651					ksm_scan.address += PAGE_SIZE;
1652				} else
1653					put_page(*page);
1654				up_read(&mm->mmap_sem);
1655				return rmap_item;
1656			}
1657			put_page(*page);
1658			ksm_scan.address += PAGE_SIZE;
1659			cond_resched();
1660		}
1661	}
1662
1663	if (ksm_test_exit(mm)) {
1664		ksm_scan.address = 0;
1665		ksm_scan.rmap_list = &slot->rmap_list;
1666	}
1667	/*
1668	 * Nuke all the rmap_items that are above this current rmap:
1669	 * because there were no VM_MERGEABLE vmas with such addresses.
1670	 */
1671	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1672
1673	spin_lock(&ksm_mmlist_lock);
1674	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1675						struct mm_slot, mm_list);
1676	if (ksm_scan.address == 0) {
1677		/*
1678		 * We've completed a full scan of all vmas, holding mmap_sem
1679		 * throughout, and found no VM_MERGEABLE: so do the same as
1680		 * __ksm_exit does to remove this mm from all our lists now.
1681		 * This applies either when cleaning up after __ksm_exit
1682		 * (but beware: we can reach here even before __ksm_exit),
1683		 * or when all VM_MERGEABLE areas have been unmapped (and
1684		 * mmap_sem then protects against race with MADV_MERGEABLE).
1685		 */
1686		hash_del(&slot->link);
1687		list_del(&slot->mm_list);
1688		spin_unlock(&ksm_mmlist_lock);
1689
1690		free_mm_slot(slot);
1691		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1692		up_read(&mm->mmap_sem);
1693		mmdrop(mm);
1694	} else {
1695		spin_unlock(&ksm_mmlist_lock);
1696		up_read(&mm->mmap_sem);
1697	}
1698
1699	/* Repeat until we've completed scanning the whole list */
1700	slot = ksm_scan.mm_slot;
1701	if (slot != &ksm_mm_head)
1702		goto next_mm;
1703
1704	ksm_scan.seqnr++;
1705	return NULL;
1706}
1707
1708/**
1709 * ksm_do_scan  - the ksm scanner main worker function.
1710 * @scan_npages - number of pages we want to scan before we return.
1711 */
1712static void ksm_do_scan(unsigned int scan_npages)
1713{
1714	struct rmap_item *rmap_item;
1715	struct page *uninitialized_var(page);
1716
1717	while (scan_npages-- && likely(!freezing(current))) {
1718		cond_resched();
1719		rmap_item = scan_get_next_rmap_item(&page);
1720		if (!rmap_item)
1721			return;
1722		cmp_and_merge_page(page, rmap_item);
1723		put_page(page);
1724	}
1725}
1726
1727static int ksmd_should_run(void)
1728{
1729	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1730}
1731
1732static int ksm_scan_thread(void *nothing)
1733{
1734	set_freezable();
1735	set_user_nice(current, 5);
1736
1737	while (!kthread_should_stop()) {
1738		mutex_lock(&ksm_thread_mutex);
1739		wait_while_offlining();
1740		if (ksmd_should_run())
1741			ksm_do_scan(ksm_thread_pages_to_scan);
1742		mutex_unlock(&ksm_thread_mutex);
1743
1744		try_to_freeze();
1745
1746		if (ksmd_should_run()) {
1747			schedule_timeout_interruptible(
1748				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1749		} else {
1750			wait_event_freezable(ksm_thread_wait,
1751				ksmd_should_run() || kthread_should_stop());
1752		}
1753	}
1754	return 0;
1755}
1756
1757int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1758		unsigned long end, int advice, unsigned long *vm_flags)
1759{
1760	struct mm_struct *mm = vma->vm_mm;
1761	int err;
1762
1763	switch (advice) {
1764	case MADV_MERGEABLE:
1765		/*
1766		 * Be somewhat over-protective for now!
1767		 */
1768		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1769				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1770				 VM_HUGETLB | VM_MIXEDMAP))
1771			return 0;		/* just ignore the advice */
1772
1773#ifdef VM_SAO
1774		if (*vm_flags & VM_SAO)
1775			return 0;
1776#endif
1777
1778		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1779			err = __ksm_enter(mm);
1780			if (err)
1781				return err;
1782		}
1783
1784		*vm_flags |= VM_MERGEABLE;
1785		break;
1786
1787	case MADV_UNMERGEABLE:
1788		if (!(*vm_flags & VM_MERGEABLE))
1789			return 0;		/* just ignore the advice */
1790
1791		if (vma->anon_vma) {
1792			err = unmerge_ksm_pages(vma, start, end);
1793			if (err)
1794				return err;
1795		}
1796
1797		*vm_flags &= ~VM_MERGEABLE;
1798		break;
1799	}
1800
1801	return 0;
1802}
1803
1804int __ksm_enter(struct mm_struct *mm)
1805{
1806	struct mm_slot *mm_slot;
1807	int needs_wakeup;
1808
1809	mm_slot = alloc_mm_slot();
1810	if (!mm_slot)
1811		return -ENOMEM;
1812
1813	/* Check ksm_run too?  Would need tighter locking */
1814	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1815
1816	spin_lock(&ksm_mmlist_lock);
1817	insert_to_mm_slots_hash(mm, mm_slot);
1818	/*
1819	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1820	 * insert just behind the scanning cursor, to let the area settle
1821	 * down a little; when fork is followed by immediate exec, we don't
1822	 * want ksmd to waste time setting up and tearing down an rmap_list.
1823	 *
1824	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1825	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1826	 * missed: then we might as well insert at the end of the list.
1827	 */
1828	if (ksm_run & KSM_RUN_UNMERGE)
1829		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1830	else
1831		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1832	spin_unlock(&ksm_mmlist_lock);
1833
1834	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1835	atomic_inc(&mm->mm_count);
1836
1837	if (needs_wakeup)
1838		wake_up_interruptible(&ksm_thread_wait);
1839
1840	return 0;
1841}
1842
1843void __ksm_exit(struct mm_struct *mm)
1844{
1845	struct mm_slot *mm_slot;
1846	int easy_to_free = 0;
1847
1848	/*
1849	 * This process is exiting: if it's straightforward (as is the
1850	 * case when ksmd was never running), free mm_slot immediately.
1851	 * But if it's at the cursor or has rmap_items linked to it, use
1852	 * mmap_sem to synchronize with any break_cows before pagetables
1853	 * are freed, and leave the mm_slot on the list for ksmd to free.
1854	 * Beware: ksm may already have noticed it exiting and freed the slot.
1855	 */
1856
1857	spin_lock(&ksm_mmlist_lock);
1858	mm_slot = get_mm_slot(mm);
1859	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1860		if (!mm_slot->rmap_list) {
1861			hash_del(&mm_slot->link);
1862			list_del(&mm_slot->mm_list);
1863			easy_to_free = 1;
1864		} else {
1865			list_move(&mm_slot->mm_list,
1866				  &ksm_scan.mm_slot->mm_list);
1867		}
1868	}
1869	spin_unlock(&ksm_mmlist_lock);
1870
1871	if (easy_to_free) {
1872		free_mm_slot(mm_slot);
1873		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1874		mmdrop(mm);
1875	} else if (mm_slot) {
1876		down_write(&mm->mmap_sem);
1877		up_write(&mm->mmap_sem);
1878	}
1879}
1880
1881struct page *ksm_might_need_to_copy(struct page *page,
1882			struct vm_area_struct *vma, unsigned long address)
1883{
1884	struct anon_vma *anon_vma = page_anon_vma(page);
1885	struct page *new_page;
1886
1887	if (PageKsm(page)) {
1888		if (page_stable_node(page) &&
1889		    !(ksm_run & KSM_RUN_UNMERGE))
1890			return page;	/* no need to copy it */
1891	} else if (!anon_vma) {
1892		return page;		/* no need to copy it */
1893	} else if (anon_vma->root == vma->anon_vma->root &&
1894		 page->index == linear_page_index(vma, address)) {
1895		return page;		/* still no need to copy it */
1896	}
1897	if (!PageUptodate(page))
1898		return page;		/* let do_swap_page report the error */
1899
1900	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1901	if (new_page) {
1902		copy_user_highpage(new_page, page, address, vma);
1903
1904		SetPageDirty(new_page);
1905		__SetPageUptodate(new_page);
1906		__set_page_locked(new_page);
1907	}
1908
1909	return new_page;
1910}
1911
1912int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1913{
1914	struct stable_node *stable_node;
1915	struct rmap_item *rmap_item;
1916	int ret = SWAP_AGAIN;
1917	int search_new_forks = 0;
1918
1919	VM_BUG_ON_PAGE(!PageKsm(page), page);
1920
1921	/*
1922	 * Rely on the page lock to protect against concurrent modifications
1923	 * to that page's node of the stable tree.
1924	 */
1925	VM_BUG_ON_PAGE(!PageLocked(page), page);
1926
1927	stable_node = page_stable_node(page);
1928	if (!stable_node)
1929		return ret;
1930again:
1931	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1932		struct anon_vma *anon_vma = rmap_item->anon_vma;
1933		struct anon_vma_chain *vmac;
1934		struct vm_area_struct *vma;
1935
1936		cond_resched();
1937		anon_vma_lock_read(anon_vma);
1938		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1939					       0, ULONG_MAX) {
1940			cond_resched();
1941			vma = vmac->vma;
1942			if (rmap_item->address < vma->vm_start ||
1943			    rmap_item->address >= vma->vm_end)
1944				continue;
1945			/*
1946			 * Initially we examine only the vma which covers this
1947			 * rmap_item; but later, if there is still work to do,
1948			 * we examine covering vmas in other mms: in case they
1949			 * were forked from the original since ksmd passed.
1950			 */
1951			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1952				continue;
1953
1954			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1955				continue;
1956
1957			ret = rwc->rmap_one(page, vma,
1958					rmap_item->address, rwc->arg);
1959			if (ret != SWAP_AGAIN) {
1960				anon_vma_unlock_read(anon_vma);
1961				goto out;
1962			}
1963			if (rwc->done && rwc->done(page)) {
1964				anon_vma_unlock_read(anon_vma);
1965				goto out;
1966			}
1967		}
1968		anon_vma_unlock_read(anon_vma);
1969	}
1970	if (!search_new_forks++)
1971		goto again;
1972out:
1973	return ret;
1974}
1975
1976#ifdef CONFIG_MIGRATION
1977void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1978{
1979	struct stable_node *stable_node;
1980
1981	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1982	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1983	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1984
1985	stable_node = page_stable_node(newpage);
1986	if (stable_node) {
1987		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1988		stable_node->kpfn = page_to_pfn(newpage);
1989		/*
1990		 * newpage->mapping was set in advance; now we need smp_wmb()
1991		 * to make sure that the new stable_node->kpfn is visible
1992		 * to get_ksm_page() before it can see that oldpage->mapping
1993		 * has gone stale (or that PageSwapCache has been cleared).
1994		 */
1995		smp_wmb();
1996		set_page_stable_node(oldpage, NULL);
1997	}
1998}
1999#endif /* CONFIG_MIGRATION */
2000
2001#ifdef CONFIG_MEMORY_HOTREMOVE
2002static void wait_while_offlining(void)
2003{
2004	while (ksm_run & KSM_RUN_OFFLINE) {
2005		mutex_unlock(&ksm_thread_mutex);
2006		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2007			    TASK_UNINTERRUPTIBLE);
2008		mutex_lock(&ksm_thread_mutex);
2009	}
2010}
2011
2012static void ksm_check_stable_tree(unsigned long start_pfn,
2013				  unsigned long end_pfn)
2014{
2015	struct stable_node *stable_node;
2016	struct list_head *this, *next;
2017	struct rb_node *node;
2018	int nid;
2019
2020	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2021		node = rb_first(root_stable_tree + nid);
2022		while (node) {
2023			stable_node = rb_entry(node, struct stable_node, node);
2024			if (stable_node->kpfn >= start_pfn &&
2025			    stable_node->kpfn < end_pfn) {
2026				/*
2027				 * Don't get_ksm_page, page has already gone:
2028				 * which is why we keep kpfn instead of page*
2029				 */
2030				remove_node_from_stable_tree(stable_node);
2031				node = rb_first(root_stable_tree + nid);
2032			} else
2033				node = rb_next(node);
2034			cond_resched();
2035		}
2036	}
2037	list_for_each_safe(this, next, &migrate_nodes) {
2038		stable_node = list_entry(this, struct stable_node, list);
2039		if (stable_node->kpfn >= start_pfn &&
2040		    stable_node->kpfn < end_pfn)
2041			remove_node_from_stable_tree(stable_node);
2042		cond_resched();
2043	}
2044}
2045
2046static int ksm_memory_callback(struct notifier_block *self,
2047			       unsigned long action, void *arg)
2048{
2049	struct memory_notify *mn = arg;
2050
2051	switch (action) {
2052	case MEM_GOING_OFFLINE:
2053		/*
2054		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2055		 * and remove_all_stable_nodes() while memory is going offline:
2056		 * it is unsafe for them to touch the stable tree at this time.
2057		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2058		 * which do not need the ksm_thread_mutex are all safe.
2059		 */
2060		mutex_lock(&ksm_thread_mutex);
2061		ksm_run |= KSM_RUN_OFFLINE;
2062		mutex_unlock(&ksm_thread_mutex);
2063		break;
2064
2065	case MEM_OFFLINE:
2066		/*
2067		 * Most of the work is done by page migration; but there might
2068		 * be a few stable_nodes left over, still pointing to struct
2069		 * pages which have been offlined: prune those from the tree,
2070		 * otherwise get_ksm_page() might later try to access a
2071		 * non-existent struct page.
2072		 */
2073		ksm_check_stable_tree(mn->start_pfn,
2074				      mn->start_pfn + mn->nr_pages);
2075		/* fallthrough */
2076
2077	case MEM_CANCEL_OFFLINE:
2078		mutex_lock(&ksm_thread_mutex);
2079		ksm_run &= ~KSM_RUN_OFFLINE;
2080		mutex_unlock(&ksm_thread_mutex);
2081
2082		smp_mb();	/* wake_up_bit advises this */
2083		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2084		break;
2085	}
2086	return NOTIFY_OK;
2087}
2088#else
2089static void wait_while_offlining(void)
2090{
2091}
2092#endif /* CONFIG_MEMORY_HOTREMOVE */
2093
2094#ifdef CONFIG_SYSFS
2095/*
2096 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2097 */
2098
2099#define KSM_ATTR_RO(_name) \
2100	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2101#define KSM_ATTR(_name) \
2102	static struct kobj_attribute _name##_attr = \
2103		__ATTR(_name, 0644, _name##_show, _name##_store)
2104
2105static ssize_t sleep_millisecs_show(struct kobject *kobj,
2106				    struct kobj_attribute *attr, char *buf)
2107{
2108	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2109}
2110
2111static ssize_t sleep_millisecs_store(struct kobject *kobj,
2112				     struct kobj_attribute *attr,
2113				     const char *buf, size_t count)
2114{
2115	unsigned long msecs;
2116	int err;
2117
2118	err = kstrtoul(buf, 10, &msecs);
2119	if (err || msecs > UINT_MAX)
2120		return -EINVAL;
2121
2122	ksm_thread_sleep_millisecs = msecs;
2123
2124	return count;
2125}
2126KSM_ATTR(sleep_millisecs);
2127
2128static ssize_t pages_to_scan_show(struct kobject *kobj,
2129				  struct kobj_attribute *attr, char *buf)
2130{
2131	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2132}
2133
2134static ssize_t pages_to_scan_store(struct kobject *kobj,
2135				   struct kobj_attribute *attr,
2136				   const char *buf, size_t count)
2137{
2138	int err;
2139	unsigned long nr_pages;
2140
2141	err = kstrtoul(buf, 10, &nr_pages);
2142	if (err || nr_pages > UINT_MAX)
2143		return -EINVAL;
2144
2145	ksm_thread_pages_to_scan = nr_pages;
2146
2147	return count;
2148}
2149KSM_ATTR(pages_to_scan);
2150
2151static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2152			char *buf)
2153{
2154	return sprintf(buf, "%lu\n", ksm_run);
2155}
2156
2157static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2158			 const char *buf, size_t count)
2159{
2160	int err;
2161	unsigned long flags;
2162
2163	err = kstrtoul(buf, 10, &flags);
2164	if (err || flags > UINT_MAX)
2165		return -EINVAL;
2166	if (flags > KSM_RUN_UNMERGE)
2167		return -EINVAL;
2168
2169	/*
2170	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2171	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2172	 * breaking COW to free the pages_shared (but leaves mm_slots
2173	 * on the list for when ksmd may be set running again).
2174	 */
2175
2176	mutex_lock(&ksm_thread_mutex);
2177	wait_while_offlining();
2178	if (ksm_run != flags) {
2179		ksm_run = flags;
2180		if (flags & KSM_RUN_UNMERGE) {
2181			set_current_oom_origin();
2182			err = unmerge_and_remove_all_rmap_items();
2183			clear_current_oom_origin();
2184			if (err) {
2185				ksm_run = KSM_RUN_STOP;
2186				count = err;
2187			}
2188		}
2189	}
2190	mutex_unlock(&ksm_thread_mutex);
2191
2192	if (flags & KSM_RUN_MERGE)
2193		wake_up_interruptible(&ksm_thread_wait);
2194
2195	return count;
2196}
2197KSM_ATTR(run);
2198
2199#ifdef CONFIG_NUMA
2200static ssize_t merge_across_nodes_show(struct kobject *kobj,
2201				struct kobj_attribute *attr, char *buf)
2202{
2203	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2204}
2205
2206static ssize_t merge_across_nodes_store(struct kobject *kobj,
2207				   struct kobj_attribute *attr,
2208				   const char *buf, size_t count)
2209{
2210	int err;
2211	unsigned long knob;
2212
2213	err = kstrtoul(buf, 10, &knob);
2214	if (err)
2215		return err;
2216	if (knob > 1)
2217		return -EINVAL;
2218
2219	mutex_lock(&ksm_thread_mutex);
2220	wait_while_offlining();
2221	if (ksm_merge_across_nodes != knob) {
2222		if (ksm_pages_shared || remove_all_stable_nodes())
2223			err = -EBUSY;
2224		else if (root_stable_tree == one_stable_tree) {
2225			struct rb_root *buf;
2226			/*
2227			 * This is the first time that we switch away from the
2228			 * default of merging across nodes: must now allocate
2229			 * a buffer to hold as many roots as may be needed.
2230			 * Allocate stable and unstable together:
2231			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2232			 */
2233			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2234				      GFP_KERNEL);
2235			/* Let us assume that RB_ROOT is NULL is zero */
2236			if (!buf)
2237				err = -ENOMEM;
2238			else {
2239				root_stable_tree = buf;
2240				root_unstable_tree = buf + nr_node_ids;
2241				/* Stable tree is empty but not the unstable */
2242				root_unstable_tree[0] = one_unstable_tree[0];
2243			}
2244		}
2245		if (!err) {
2246			ksm_merge_across_nodes = knob;
2247			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2248		}
2249	}
2250	mutex_unlock(&ksm_thread_mutex);
2251
2252	return err ? err : count;
2253}
2254KSM_ATTR(merge_across_nodes);
2255#endif
2256
2257static ssize_t pages_shared_show(struct kobject *kobj,
2258				 struct kobj_attribute *attr, char *buf)
2259{
2260	return sprintf(buf, "%lu\n", ksm_pages_shared);
2261}
2262KSM_ATTR_RO(pages_shared);
2263
2264static ssize_t pages_sharing_show(struct kobject *kobj,
2265				  struct kobj_attribute *attr, char *buf)
2266{
2267	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2268}
2269KSM_ATTR_RO(pages_sharing);
2270
2271static ssize_t pages_unshared_show(struct kobject *kobj,
2272				   struct kobj_attribute *attr, char *buf)
2273{
2274	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2275}
2276KSM_ATTR_RO(pages_unshared);
2277
2278static ssize_t pages_volatile_show(struct kobject *kobj,
2279				   struct kobj_attribute *attr, char *buf)
2280{
2281	long ksm_pages_volatile;
2282
2283	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2284				- ksm_pages_sharing - ksm_pages_unshared;
2285	/*
2286	 * It was not worth any locking to calculate that statistic,
2287	 * but it might therefore sometimes be negative: conceal that.
2288	 */
2289	if (ksm_pages_volatile < 0)
2290		ksm_pages_volatile = 0;
2291	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2292}
2293KSM_ATTR_RO(pages_volatile);
2294
2295static ssize_t full_scans_show(struct kobject *kobj,
2296			       struct kobj_attribute *attr, char *buf)
2297{
2298	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2299}
2300KSM_ATTR_RO(full_scans);
2301
2302static struct attribute *ksm_attrs[] = {
2303	&sleep_millisecs_attr.attr,
2304	&pages_to_scan_attr.attr,
2305	&run_attr.attr,
2306	&pages_shared_attr.attr,
2307	&pages_sharing_attr.attr,
2308	&pages_unshared_attr.attr,
2309	&pages_volatile_attr.attr,
2310	&full_scans_attr.attr,
2311#ifdef CONFIG_NUMA
2312	&merge_across_nodes_attr.attr,
2313#endif
2314	NULL,
2315};
2316
2317static struct attribute_group ksm_attr_group = {
2318	.attrs = ksm_attrs,
2319	.name = "ksm",
2320};
2321#endif /* CONFIG_SYSFS */
2322
2323static int __init ksm_init(void)
2324{
2325	struct task_struct *ksm_thread;
2326	int err;
2327
2328	err = ksm_slab_init();
2329	if (err)
2330		goto out;
2331
2332	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2333	if (IS_ERR(ksm_thread)) {
2334		pr_err("ksm: creating kthread failed\n");
2335		err = PTR_ERR(ksm_thread);
2336		goto out_free;
2337	}
2338
2339#ifdef CONFIG_SYSFS
2340	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2341	if (err) {
2342		pr_err("ksm: register sysfs failed\n");
2343		kthread_stop(ksm_thread);
2344		goto out_free;
2345	}
2346#else
2347	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2348
2349#endif /* CONFIG_SYSFS */
2350
2351#ifdef CONFIG_MEMORY_HOTREMOVE
2352	/* There is no significance to this priority 100 */
2353	hotplug_memory_notifier(ksm_memory_callback, 100);
2354#endif
2355	return 0;
2356
2357out_free:
2358	ksm_slab_free();
2359out:
2360	return err;
2361}
2362subsys_initcall(ksm_init);
2363