1/* mpihelp-mul.c  -  MPI helper functions
2 * Copyright (C) 1994, 1996, 1998, 1999,
3 *               2000 Free Software Foundation, Inc.
4 *
5 * This file is part of GnuPG.
6 *
7 * GnuPG is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * GnuPG is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
20 *
21 * Note: This code is heavily based on the GNU MP Library.
22 *	 Actually it's the same code with only minor changes in the
23 *	 way the data is stored; this is to support the abstraction
24 *	 of an optional secure memory allocation which may be used
25 *	 to avoid revealing of sensitive data due to paging etc.
26 *	 The GNU MP Library itself is published under the LGPL;
27 *	 however I decided to publish this code under the plain GPL.
28 */
29
30#include <linux/string.h>
31#include "mpi-internal.h"
32#include "longlong.h"
33
34#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace)		\
35	do {							\
36		if ((size) < KARATSUBA_THRESHOLD)		\
37			mul_n_basecase(prodp, up, vp, size);	\
38		else						\
39			mul_n(prodp, up, vp, size, tspace);	\
40	} while (0);
41
42#define MPN_SQR_N_RECURSE(prodp, up, size, tspace)		\
43	do {							\
44		if ((size) < KARATSUBA_THRESHOLD)		\
45			mpih_sqr_n_basecase(prodp, up, size);	\
46		else						\
47			mpih_sqr_n(prodp, up, size, tspace);	\
48	} while (0);
49
50/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
51 * both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
52 * always stored.  Return the most significant limb.
53 *
54 * Argument constraints:
55 * 1. PRODP != UP and PRODP != VP, i.e. the destination
56 *    must be distinct from the multiplier and the multiplicand.
57 *
58 *
59 * Handle simple cases with traditional multiplication.
60 *
61 * This is the most critical code of multiplication.  All multiplies rely
62 * on this, both small and huge.  Small ones arrive here immediately.  Huge
63 * ones arrive here as this is the base case for Karatsuba's recursive
64 * algorithm below.
65 */
66
67static mpi_limb_t
68mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
69{
70	mpi_size_t i;
71	mpi_limb_t cy;
72	mpi_limb_t v_limb;
73
74	/* Multiply by the first limb in V separately, as the result can be
75	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
76	v_limb = vp[0];
77	if (v_limb <= 1) {
78		if (v_limb == 1)
79			MPN_COPY(prodp, up, size);
80		else
81			MPN_ZERO(prodp, size);
82		cy = 0;
83	} else
84		cy = mpihelp_mul_1(prodp, up, size, v_limb);
85
86	prodp[size] = cy;
87	prodp++;
88
89	/* For each iteration in the outer loop, multiply one limb from
90	 * U with one limb from V, and add it to PROD.  */
91	for (i = 1; i < size; i++) {
92		v_limb = vp[i];
93		if (v_limb <= 1) {
94			cy = 0;
95			if (v_limb == 1)
96				cy = mpihelp_add_n(prodp, prodp, up, size);
97		} else
98			cy = mpihelp_addmul_1(prodp, up, size, v_limb);
99
100		prodp[size] = cy;
101		prodp++;
102	}
103
104	return cy;
105}
106
107static void
108mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
109		mpi_size_t size, mpi_ptr_t tspace)
110{
111	if (size & 1) {
112		/* The size is odd, and the code below doesn't handle that.
113		 * Multiply the least significant (size - 1) limbs with a recursive
114		 * call, and handle the most significant limb of S1 and S2
115		 * separately.
116		 * A slightly faster way to do this would be to make the Karatsuba
117		 * code below behave as if the size were even, and let it check for
118		 * odd size in the end.  I.e., in essence move this code to the end.
119		 * Doing so would save us a recursive call, and potentially make the
120		 * stack grow a lot less.
121		 */
122		mpi_size_t esize = size - 1;	/* even size */
123		mpi_limb_t cy_limb;
124
125		MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace);
126		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]);
127		prodp[esize + esize] = cy_limb;
128		cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]);
129		prodp[esize + size] = cy_limb;
130	} else {
131		/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
132		 *
133		 * Split U in two pieces, U1 and U0, such that
134		 * U = U0 + U1*(B**n),
135		 * and V in V1 and V0, such that
136		 * V = V0 + V1*(B**n).
137		 *
138		 * UV is then computed recursively using the identity
139		 *
140		 *        2n   n          n                     n
141		 * UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
142		 *                1 1        1  0   0  1              0 0
143		 *
144		 * Where B = 2**BITS_PER_MP_LIMB.
145		 */
146		mpi_size_t hsize = size >> 1;
147		mpi_limb_t cy;
148		int negflg;
149
150		/* Product H.      ________________  ________________
151		 *                |_____U1 x V1____||____U0 x V0_____|
152		 * Put result in upper part of PROD and pass low part of TSPACE
153		 * as new TSPACE.
154		 */
155		MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize,
156				  tspace);
157
158		/* Product M.      ________________
159		 *                |_(U1-U0)(V0-V1)_|
160		 */
161		if (mpihelp_cmp(up + hsize, up, hsize) >= 0) {
162			mpihelp_sub_n(prodp, up + hsize, up, hsize);
163			negflg = 0;
164		} else {
165			mpihelp_sub_n(prodp, up, up + hsize, hsize);
166			negflg = 1;
167		}
168		if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) {
169			mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
170			negflg ^= 1;
171		} else {
172			mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
173			/* No change of NEGFLG.  */
174		}
175		/* Read temporary operands from low part of PROD.
176		 * Put result in low part of TSPACE using upper part of TSPACE
177		 * as new TSPACE.
178		 */
179		MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize,
180				  tspace + size);
181
182		/* Add/copy product H. */
183		MPN_COPY(prodp + hsize, prodp + size, hsize);
184		cy = mpihelp_add_n(prodp + size, prodp + size,
185				   prodp + size + hsize, hsize);
186
187		/* Add product M (if NEGFLG M is a negative number) */
188		if (negflg)
189			cy -=
190			    mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace,
191					  size);
192		else
193			cy +=
194			    mpihelp_add_n(prodp + hsize, prodp + hsize, tspace,
195					  size);
196
197		/* Product L.      ________________  ________________
198		 *                |________________||____U0 x V0_____|
199		 * Read temporary operands from low part of PROD.
200		 * Put result in low part of TSPACE using upper part of TSPACE
201		 * as new TSPACE.
202		 */
203		MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
204
205		/* Add/copy Product L (twice) */
206
207		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
208		if (cy)
209			mpihelp_add_1(prodp + hsize + size,
210				      prodp + hsize + size, hsize, cy);
211
212		MPN_COPY(prodp, tspace, hsize);
213		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
214				   hsize);
215		if (cy)
216			mpihelp_add_1(prodp + size, prodp + size, size, 1);
217	}
218}
219
220void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size)
221{
222	mpi_size_t i;
223	mpi_limb_t cy_limb;
224	mpi_limb_t v_limb;
225
226	/* Multiply by the first limb in V separately, as the result can be
227	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
228	v_limb = up[0];
229	if (v_limb <= 1) {
230		if (v_limb == 1)
231			MPN_COPY(prodp, up, size);
232		else
233			MPN_ZERO(prodp, size);
234		cy_limb = 0;
235	} else
236		cy_limb = mpihelp_mul_1(prodp, up, size, v_limb);
237
238	prodp[size] = cy_limb;
239	prodp++;
240
241	/* For each iteration in the outer loop, multiply one limb from
242	 * U with one limb from V, and add it to PROD.  */
243	for (i = 1; i < size; i++) {
244		v_limb = up[i];
245		if (v_limb <= 1) {
246			cy_limb = 0;
247			if (v_limb == 1)
248				cy_limb = mpihelp_add_n(prodp, prodp, up, size);
249		} else
250			cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
251
252		prodp[size] = cy_limb;
253		prodp++;
254	}
255}
256
257void
258mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
259{
260	if (size & 1) {
261		/* The size is odd, and the code below doesn't handle that.
262		 * Multiply the least significant (size - 1) limbs with a recursive
263		 * call, and handle the most significant limb of S1 and S2
264		 * separately.
265		 * A slightly faster way to do this would be to make the Karatsuba
266		 * code below behave as if the size were even, and let it check for
267		 * odd size in the end.  I.e., in essence move this code to the end.
268		 * Doing so would save us a recursive call, and potentially make the
269		 * stack grow a lot less.
270		 */
271		mpi_size_t esize = size - 1;	/* even size */
272		mpi_limb_t cy_limb;
273
274		MPN_SQR_N_RECURSE(prodp, up, esize, tspace);
275		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]);
276		prodp[esize + esize] = cy_limb;
277		cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]);
278
279		prodp[esize + size] = cy_limb;
280	} else {
281		mpi_size_t hsize = size >> 1;
282		mpi_limb_t cy;
283
284		/* Product H.      ________________  ________________
285		 *                |_____U1 x U1____||____U0 x U0_____|
286		 * Put result in upper part of PROD and pass low part of TSPACE
287		 * as new TSPACE.
288		 */
289		MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
290
291		/* Product M.      ________________
292		 *                |_(U1-U0)(U0-U1)_|
293		 */
294		if (mpihelp_cmp(up + hsize, up, hsize) >= 0)
295			mpihelp_sub_n(prodp, up + hsize, up, hsize);
296		else
297			mpihelp_sub_n(prodp, up, up + hsize, hsize);
298
299		/* Read temporary operands from low part of PROD.
300		 * Put result in low part of TSPACE using upper part of TSPACE
301		 * as new TSPACE.  */
302		MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
303
304		/* Add/copy product H  */
305		MPN_COPY(prodp + hsize, prodp + size, hsize);
306		cy = mpihelp_add_n(prodp + size, prodp + size,
307				   prodp + size + hsize, hsize);
308
309		/* Add product M (if NEGFLG M is a negative number).  */
310		cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
311
312		/* Product L.      ________________  ________________
313		 *                |________________||____U0 x U0_____|
314		 * Read temporary operands from low part of PROD.
315		 * Put result in low part of TSPACE using upper part of TSPACE
316		 * as new TSPACE.  */
317		MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size);
318
319		/* Add/copy Product L (twice).  */
320		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
321		if (cy)
322			mpihelp_add_1(prodp + hsize + size,
323				      prodp + hsize + size, hsize, cy);
324
325		MPN_COPY(prodp, tspace, hsize);
326		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
327				   hsize);
328		if (cy)
329			mpihelp_add_1(prodp + size, prodp + size, size, 1);
330	}
331}
332
333int
334mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
335			   mpi_ptr_t up, mpi_size_t usize,
336			   mpi_ptr_t vp, mpi_size_t vsize,
337			   struct karatsuba_ctx *ctx)
338{
339	mpi_limb_t cy;
340
341	if (!ctx->tspace || ctx->tspace_size < vsize) {
342		if (ctx->tspace)
343			mpi_free_limb_space(ctx->tspace);
344		ctx->tspace = mpi_alloc_limb_space(2 * vsize);
345		if (!ctx->tspace)
346			return -ENOMEM;
347		ctx->tspace_size = vsize;
348	}
349
350	MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace);
351
352	prodp += vsize;
353	up += vsize;
354	usize -= vsize;
355	if (usize >= vsize) {
356		if (!ctx->tp || ctx->tp_size < vsize) {
357			if (ctx->tp)
358				mpi_free_limb_space(ctx->tp);
359			ctx->tp = mpi_alloc_limb_space(2 * vsize);
360			if (!ctx->tp) {
361				if (ctx->tspace)
362					mpi_free_limb_space(ctx->tspace);
363				ctx->tspace = NULL;
364				return -ENOMEM;
365			}
366			ctx->tp_size = vsize;
367		}
368
369		do {
370			MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace);
371			cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize);
372			mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize,
373				      cy);
374			prodp += vsize;
375			up += vsize;
376			usize -= vsize;
377		} while (usize >= vsize);
378	}
379
380	if (usize) {
381		if (usize < KARATSUBA_THRESHOLD) {
382			mpi_limb_t tmp;
383			if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp)
384			    < 0)
385				return -ENOMEM;
386		} else {
387			if (!ctx->next) {
388				ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL);
389				if (!ctx->next)
390					return -ENOMEM;
391			}
392			if (mpihelp_mul_karatsuba_case(ctx->tspace,
393						       vp, vsize,
394						       up, usize,
395						       ctx->next) < 0)
396				return -ENOMEM;
397		}
398
399		cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize);
400		mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy);
401	}
402
403	return 0;
404}
405
406void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx)
407{
408	struct karatsuba_ctx *ctx2;
409
410	if (ctx->tp)
411		mpi_free_limb_space(ctx->tp);
412	if (ctx->tspace)
413		mpi_free_limb_space(ctx->tspace);
414	for (ctx = ctx->next; ctx; ctx = ctx2) {
415		ctx2 = ctx->next;
416		if (ctx->tp)
417			mpi_free_limb_space(ctx->tp);
418		if (ctx->tspace)
419			mpi_free_limb_space(ctx->tspace);
420		kfree(ctx);
421	}
422}
423
424/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
425 * and v (pointed to by VP, with VSIZE limbs), and store the result at
426 * PRODP.  USIZE + VSIZE limbs are always stored, but if the input
427 * operands are normalized.  Return the most significant limb of the
428 * result.
429 *
430 * NOTE: The space pointed to by PRODP is overwritten before finished
431 * with U and V, so overlap is an error.
432 *
433 * Argument constraints:
434 * 1. USIZE >= VSIZE.
435 * 2. PRODP != UP and PRODP != VP, i.e. the destination
436 *    must be distinct from the multiplier and the multiplicand.
437 */
438
439int
440mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
441	    mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result)
442{
443	mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
444	mpi_limb_t cy;
445	struct karatsuba_ctx ctx;
446
447	if (vsize < KARATSUBA_THRESHOLD) {
448		mpi_size_t i;
449		mpi_limb_t v_limb;
450
451		if (!vsize) {
452			*_result = 0;
453			return 0;
454		}
455
456		/* Multiply by the first limb in V separately, as the result can be
457		 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
458		v_limb = vp[0];
459		if (v_limb <= 1) {
460			if (v_limb == 1)
461				MPN_COPY(prodp, up, usize);
462			else
463				MPN_ZERO(prodp, usize);
464			cy = 0;
465		} else
466			cy = mpihelp_mul_1(prodp, up, usize, v_limb);
467
468		prodp[usize] = cy;
469		prodp++;
470
471		/* For each iteration in the outer loop, multiply one limb from
472		 * U with one limb from V, and add it to PROD.  */
473		for (i = 1; i < vsize; i++) {
474			v_limb = vp[i];
475			if (v_limb <= 1) {
476				cy = 0;
477				if (v_limb == 1)
478					cy = mpihelp_add_n(prodp, prodp, up,
479							   usize);
480			} else
481				cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
482
483			prodp[usize] = cy;
484			prodp++;
485		}
486
487		*_result = cy;
488		return 0;
489	}
490
491	memset(&ctx, 0, sizeof ctx);
492	if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0)
493		return -ENOMEM;
494	mpihelp_release_karatsuba_ctx(&ctx);
495	*_result = *prod_endp;
496	return 0;
497}
498