1/*
2 *  linux/kernel/timer.c
3 *
4 *  Kernel internal timers
5 *
6 *  Copyright (C) 1991, 1992  Linus Torvalds
7 *
8 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 *              serialize accesses to xtime/lost_ticks).
14 *                              Copyright (C) 1998  Andrea Arcangeli
15 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/export.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/pid_namespace.h>
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
37#include <linux/delay.h>
38#include <linux/tick.h>
39#include <linux/kallsyms.h>
40#include <linux/irq_work.h>
41#include <linux/sched.h>
42#include <linux/sched/sysctl.h>
43#include <linux/slab.h>
44#include <linux/compat.h>
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
52#include "tick-internal.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/timer.h>
56
57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
58
59EXPORT_SYMBOL(jiffies_64);
60
61/*
62 * per-CPU timer vector definitions:
63 */
64#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66#define TVN_SIZE (1 << TVN_BITS)
67#define TVR_SIZE (1 << TVR_BITS)
68#define TVN_MASK (TVN_SIZE - 1)
69#define TVR_MASK (TVR_SIZE - 1)
70#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
71
72struct tvec {
73	struct hlist_head vec[TVN_SIZE];
74};
75
76struct tvec_root {
77	struct hlist_head vec[TVR_SIZE];
78};
79
80struct tvec_base {
81	spinlock_t lock;
82	struct timer_list *running_timer;
83	unsigned long timer_jiffies;
84	unsigned long next_timer;
85	unsigned long active_timers;
86	unsigned long all_timers;
87	int cpu;
88	bool migration_enabled;
89	bool nohz_active;
90	struct tvec_root tv1;
91	struct tvec tv2;
92	struct tvec tv3;
93	struct tvec tv4;
94	struct tvec tv5;
95} ____cacheline_aligned;
96
97
98static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
99
100#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
101unsigned int sysctl_timer_migration = 1;
102
103void timers_update_migration(bool update_nohz)
104{
105	bool on = sysctl_timer_migration && tick_nohz_active;
106	unsigned int cpu;
107
108	/* Avoid the loop, if nothing to update */
109	if (this_cpu_read(tvec_bases.migration_enabled) == on)
110		return;
111
112	for_each_possible_cpu(cpu) {
113		per_cpu(tvec_bases.migration_enabled, cpu) = on;
114		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
115		if (!update_nohz)
116			continue;
117		per_cpu(tvec_bases.nohz_active, cpu) = true;
118		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
119	}
120}
121
122int timer_migration_handler(struct ctl_table *table, int write,
123			    void __user *buffer, size_t *lenp,
124			    loff_t *ppos)
125{
126	static DEFINE_MUTEX(mutex);
127	int ret;
128
129	mutex_lock(&mutex);
130	ret = proc_dointvec(table, write, buffer, lenp, ppos);
131	if (!ret && write)
132		timers_update_migration(false);
133	mutex_unlock(&mutex);
134	return ret;
135}
136
137static inline struct tvec_base *get_target_base(struct tvec_base *base,
138						int pinned)
139{
140	if (pinned || !base->migration_enabled)
141		return this_cpu_ptr(&tvec_bases);
142	return per_cpu_ptr(&tvec_bases, get_nohz_timer_target());
143}
144#else
145static inline struct tvec_base *get_target_base(struct tvec_base *base,
146						int pinned)
147{
148	return this_cpu_ptr(&tvec_bases);
149}
150#endif
151
152static unsigned long round_jiffies_common(unsigned long j, int cpu,
153		bool force_up)
154{
155	int rem;
156	unsigned long original = j;
157
158	/*
159	 * We don't want all cpus firing their timers at once hitting the
160	 * same lock or cachelines, so we skew each extra cpu with an extra
161	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
162	 * already did this.
163	 * The skew is done by adding 3*cpunr, then round, then subtract this
164	 * extra offset again.
165	 */
166	j += cpu * 3;
167
168	rem = j % HZ;
169
170	/*
171	 * If the target jiffie is just after a whole second (which can happen
172	 * due to delays of the timer irq, long irq off times etc etc) then
173	 * we should round down to the whole second, not up. Use 1/4th second
174	 * as cutoff for this rounding as an extreme upper bound for this.
175	 * But never round down if @force_up is set.
176	 */
177	if (rem < HZ/4 && !force_up) /* round down */
178		j = j - rem;
179	else /* round up */
180		j = j - rem + HZ;
181
182	/* now that we have rounded, subtract the extra skew again */
183	j -= cpu * 3;
184
185	/*
186	 * Make sure j is still in the future. Otherwise return the
187	 * unmodified value.
188	 */
189	return time_is_after_jiffies(j) ? j : original;
190}
191
192/**
193 * __round_jiffies - function to round jiffies to a full second
194 * @j: the time in (absolute) jiffies that should be rounded
195 * @cpu: the processor number on which the timeout will happen
196 *
197 * __round_jiffies() rounds an absolute time in the future (in jiffies)
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
201 *
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
205 *
206 * The exact rounding is skewed for each processor to avoid all
207 * processors firing at the exact same time, which could lead
208 * to lock contention or spurious cache line bouncing.
209 *
210 * The return value is the rounded version of the @j parameter.
211 */
212unsigned long __round_jiffies(unsigned long j, int cpu)
213{
214	return round_jiffies_common(j, cpu, false);
215}
216EXPORT_SYMBOL_GPL(__round_jiffies);
217
218/**
219 * __round_jiffies_relative - function to round jiffies to a full second
220 * @j: the time in (relative) jiffies that should be rounded
221 * @cpu: the processor number on which the timeout will happen
222 *
223 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
224 * up or down to (approximately) full seconds. This is useful for timers
225 * for which the exact time they fire does not matter too much, as long as
226 * they fire approximately every X seconds.
227 *
228 * By rounding these timers to whole seconds, all such timers will fire
229 * at the same time, rather than at various times spread out. The goal
230 * of this is to have the CPU wake up less, which saves power.
231 *
232 * The exact rounding is skewed for each processor to avoid all
233 * processors firing at the exact same time, which could lead
234 * to lock contention or spurious cache line bouncing.
235 *
236 * The return value is the rounded version of the @j parameter.
237 */
238unsigned long __round_jiffies_relative(unsigned long j, int cpu)
239{
240	unsigned long j0 = jiffies;
241
242	/* Use j0 because jiffies might change while we run */
243	return round_jiffies_common(j + j0, cpu, false) - j0;
244}
245EXPORT_SYMBOL_GPL(__round_jiffies_relative);
246
247/**
248 * round_jiffies - function to round jiffies to a full second
249 * @j: the time in (absolute) jiffies that should be rounded
250 *
251 * round_jiffies() rounds an absolute time in the future (in jiffies)
252 * up or down to (approximately) full seconds. This is useful for timers
253 * for which the exact time they fire does not matter too much, as long as
254 * they fire approximately every X seconds.
255 *
256 * By rounding these timers to whole seconds, all such timers will fire
257 * at the same time, rather than at various times spread out. The goal
258 * of this is to have the CPU wake up less, which saves power.
259 *
260 * The return value is the rounded version of the @j parameter.
261 */
262unsigned long round_jiffies(unsigned long j)
263{
264	return round_jiffies_common(j, raw_smp_processor_id(), false);
265}
266EXPORT_SYMBOL_GPL(round_jiffies);
267
268/**
269 * round_jiffies_relative - function to round jiffies to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 *
272 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
273 * up or down to (approximately) full seconds. This is useful for timers
274 * for which the exact time they fire does not matter too much, as long as
275 * they fire approximately every X seconds.
276 *
277 * By rounding these timers to whole seconds, all such timers will fire
278 * at the same time, rather than at various times spread out. The goal
279 * of this is to have the CPU wake up less, which saves power.
280 *
281 * The return value is the rounded version of the @j parameter.
282 */
283unsigned long round_jiffies_relative(unsigned long j)
284{
285	return __round_jiffies_relative(j, raw_smp_processor_id());
286}
287EXPORT_SYMBOL_GPL(round_jiffies_relative);
288
289/**
290 * __round_jiffies_up - function to round jiffies up to a full second
291 * @j: the time in (absolute) jiffies that should be rounded
292 * @cpu: the processor number on which the timeout will happen
293 *
294 * This is the same as __round_jiffies() except that it will never
295 * round down.  This is useful for timeouts for which the exact time
296 * of firing does not matter too much, as long as they don't fire too
297 * early.
298 */
299unsigned long __round_jiffies_up(unsigned long j, int cpu)
300{
301	return round_jiffies_common(j, cpu, true);
302}
303EXPORT_SYMBOL_GPL(__round_jiffies_up);
304
305/**
306 * __round_jiffies_up_relative - function to round jiffies up to a full second
307 * @j: the time in (relative) jiffies that should be rounded
308 * @cpu: the processor number on which the timeout will happen
309 *
310 * This is the same as __round_jiffies_relative() except that it will never
311 * round down.  This is useful for timeouts for which the exact time
312 * of firing does not matter too much, as long as they don't fire too
313 * early.
314 */
315unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
316{
317	unsigned long j0 = jiffies;
318
319	/* Use j0 because jiffies might change while we run */
320	return round_jiffies_common(j + j0, cpu, true) - j0;
321}
322EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
323
324/**
325 * round_jiffies_up - function to round jiffies up to a full second
326 * @j: the time in (absolute) jiffies that should be rounded
327 *
328 * This is the same as round_jiffies() except that it will never
329 * round down.  This is useful for timeouts for which the exact time
330 * of firing does not matter too much, as long as they don't fire too
331 * early.
332 */
333unsigned long round_jiffies_up(unsigned long j)
334{
335	return round_jiffies_common(j, raw_smp_processor_id(), true);
336}
337EXPORT_SYMBOL_GPL(round_jiffies_up);
338
339/**
340 * round_jiffies_up_relative - function to round jiffies up to a full second
341 * @j: the time in (relative) jiffies that should be rounded
342 *
343 * This is the same as round_jiffies_relative() except that it will never
344 * round down.  This is useful for timeouts for which the exact time
345 * of firing does not matter too much, as long as they don't fire too
346 * early.
347 */
348unsigned long round_jiffies_up_relative(unsigned long j)
349{
350	return __round_jiffies_up_relative(j, raw_smp_processor_id());
351}
352EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
353
354/**
355 * set_timer_slack - set the allowed slack for a timer
356 * @timer: the timer to be modified
357 * @slack_hz: the amount of time (in jiffies) allowed for rounding
358 *
359 * Set the amount of time, in jiffies, that a certain timer has
360 * in terms of slack. By setting this value, the timer subsystem
361 * will schedule the actual timer somewhere between
362 * the time mod_timer() asks for, and that time plus the slack.
363 *
364 * By setting the slack to -1, a percentage of the delay is used
365 * instead.
366 */
367void set_timer_slack(struct timer_list *timer, int slack_hz)
368{
369	timer->slack = slack_hz;
370}
371EXPORT_SYMBOL_GPL(set_timer_slack);
372
373static void
374__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
375{
376	unsigned long expires = timer->expires;
377	unsigned long idx = expires - base->timer_jiffies;
378	struct hlist_head *vec;
379
380	if (idx < TVR_SIZE) {
381		int i = expires & TVR_MASK;
382		vec = base->tv1.vec + i;
383	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
384		int i = (expires >> TVR_BITS) & TVN_MASK;
385		vec = base->tv2.vec + i;
386	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
387		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
388		vec = base->tv3.vec + i;
389	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
390		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
391		vec = base->tv4.vec + i;
392	} else if ((signed long) idx < 0) {
393		/*
394		 * Can happen if you add a timer with expires == jiffies,
395		 * or you set a timer to go off in the past
396		 */
397		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
398	} else {
399		int i;
400		/* If the timeout is larger than MAX_TVAL (on 64-bit
401		 * architectures or with CONFIG_BASE_SMALL=1) then we
402		 * use the maximum timeout.
403		 */
404		if (idx > MAX_TVAL) {
405			idx = MAX_TVAL;
406			expires = idx + base->timer_jiffies;
407		}
408		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
409		vec = base->tv5.vec + i;
410	}
411
412	hlist_add_head(&timer->entry, vec);
413}
414
415static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
416{
417	/* Advance base->jiffies, if the base is empty */
418	if (!base->all_timers++)
419		base->timer_jiffies = jiffies;
420
421	__internal_add_timer(base, timer);
422	/*
423	 * Update base->active_timers and base->next_timer
424	 */
425	if (!(timer->flags & TIMER_DEFERRABLE)) {
426		if (!base->active_timers++ ||
427		    time_before(timer->expires, base->next_timer))
428			base->next_timer = timer->expires;
429	}
430
431	/*
432	 * Check whether the other CPU is in dynticks mode and needs
433	 * to be triggered to reevaluate the timer wheel.
434	 * We are protected against the other CPU fiddling
435	 * with the timer by holding the timer base lock. This also
436	 * makes sure that a CPU on the way to stop its tick can not
437	 * evaluate the timer wheel.
438	 *
439	 * Spare the IPI for deferrable timers on idle targets though.
440	 * The next busy ticks will take care of it. Except full dynticks
441	 * require special care against races with idle_cpu(), lets deal
442	 * with that later.
443	 */
444	if (base->nohz_active) {
445		if (!(timer->flags & TIMER_DEFERRABLE) ||
446		    tick_nohz_full_cpu(base->cpu))
447			wake_up_nohz_cpu(base->cpu);
448	}
449}
450
451#ifdef CONFIG_TIMER_STATS
452void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
453{
454	if (timer->start_site)
455		return;
456
457	timer->start_site = addr;
458	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
459	timer->start_pid = current->pid;
460}
461
462static void timer_stats_account_timer(struct timer_list *timer)
463{
464	void *site;
465
466	/*
467	 * start_site can be concurrently reset by
468	 * timer_stats_timer_clear_start_info()
469	 */
470	site = READ_ONCE(timer->start_site);
471	if (likely(!site))
472		return;
473
474	timer_stats_update_stats(timer, timer->start_pid, site,
475				 timer->function, timer->start_comm,
476				 timer->flags);
477}
478
479#else
480static void timer_stats_account_timer(struct timer_list *timer) {}
481#endif
482
483#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
484
485static struct debug_obj_descr timer_debug_descr;
486
487static void *timer_debug_hint(void *addr)
488{
489	return ((struct timer_list *) addr)->function;
490}
491
492/*
493 * fixup_init is called when:
494 * - an active object is initialized
495 */
496static int timer_fixup_init(void *addr, enum debug_obj_state state)
497{
498	struct timer_list *timer = addr;
499
500	switch (state) {
501	case ODEBUG_STATE_ACTIVE:
502		del_timer_sync(timer);
503		debug_object_init(timer, &timer_debug_descr);
504		return 1;
505	default:
506		return 0;
507	}
508}
509
510/* Stub timer callback for improperly used timers. */
511static void stub_timer(unsigned long data)
512{
513	WARN_ON(1);
514}
515
516/*
517 * fixup_activate is called when:
518 * - an active object is activated
519 * - an unknown object is activated (might be a statically initialized object)
520 */
521static int timer_fixup_activate(void *addr, enum debug_obj_state state)
522{
523	struct timer_list *timer = addr;
524
525	switch (state) {
526
527	case ODEBUG_STATE_NOTAVAILABLE:
528		/*
529		 * This is not really a fixup. The timer was
530		 * statically initialized. We just make sure that it
531		 * is tracked in the object tracker.
532		 */
533		if (timer->entry.pprev == NULL &&
534		    timer->entry.next == TIMER_ENTRY_STATIC) {
535			debug_object_init(timer, &timer_debug_descr);
536			debug_object_activate(timer, &timer_debug_descr);
537			return 0;
538		} else {
539			setup_timer(timer, stub_timer, 0);
540			return 1;
541		}
542		return 0;
543
544	case ODEBUG_STATE_ACTIVE:
545		WARN_ON(1);
546
547	default:
548		return 0;
549	}
550}
551
552/*
553 * fixup_free is called when:
554 * - an active object is freed
555 */
556static int timer_fixup_free(void *addr, enum debug_obj_state state)
557{
558	struct timer_list *timer = addr;
559
560	switch (state) {
561	case ODEBUG_STATE_ACTIVE:
562		del_timer_sync(timer);
563		debug_object_free(timer, &timer_debug_descr);
564		return 1;
565	default:
566		return 0;
567	}
568}
569
570/*
571 * fixup_assert_init is called when:
572 * - an untracked/uninit-ed object is found
573 */
574static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
575{
576	struct timer_list *timer = addr;
577
578	switch (state) {
579	case ODEBUG_STATE_NOTAVAILABLE:
580		if (timer->entry.next == TIMER_ENTRY_STATIC) {
581			/*
582			 * This is not really a fixup. The timer was
583			 * statically initialized. We just make sure that it
584			 * is tracked in the object tracker.
585			 */
586			debug_object_init(timer, &timer_debug_descr);
587			return 0;
588		} else {
589			setup_timer(timer, stub_timer, 0);
590			return 1;
591		}
592	default:
593		return 0;
594	}
595}
596
597static struct debug_obj_descr timer_debug_descr = {
598	.name			= "timer_list",
599	.debug_hint		= timer_debug_hint,
600	.fixup_init		= timer_fixup_init,
601	.fixup_activate		= timer_fixup_activate,
602	.fixup_free		= timer_fixup_free,
603	.fixup_assert_init	= timer_fixup_assert_init,
604};
605
606static inline void debug_timer_init(struct timer_list *timer)
607{
608	debug_object_init(timer, &timer_debug_descr);
609}
610
611static inline void debug_timer_activate(struct timer_list *timer)
612{
613	debug_object_activate(timer, &timer_debug_descr);
614}
615
616static inline void debug_timer_deactivate(struct timer_list *timer)
617{
618	debug_object_deactivate(timer, &timer_debug_descr);
619}
620
621static inline void debug_timer_free(struct timer_list *timer)
622{
623	debug_object_free(timer, &timer_debug_descr);
624}
625
626static inline void debug_timer_assert_init(struct timer_list *timer)
627{
628	debug_object_assert_init(timer, &timer_debug_descr);
629}
630
631static void do_init_timer(struct timer_list *timer, unsigned int flags,
632			  const char *name, struct lock_class_key *key);
633
634void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
635			     const char *name, struct lock_class_key *key)
636{
637	debug_object_init_on_stack(timer, &timer_debug_descr);
638	do_init_timer(timer, flags, name, key);
639}
640EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
641
642void destroy_timer_on_stack(struct timer_list *timer)
643{
644	debug_object_free(timer, &timer_debug_descr);
645}
646EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
647
648#else
649static inline void debug_timer_init(struct timer_list *timer) { }
650static inline void debug_timer_activate(struct timer_list *timer) { }
651static inline void debug_timer_deactivate(struct timer_list *timer) { }
652static inline void debug_timer_assert_init(struct timer_list *timer) { }
653#endif
654
655static inline void debug_init(struct timer_list *timer)
656{
657	debug_timer_init(timer);
658	trace_timer_init(timer);
659}
660
661static inline void
662debug_activate(struct timer_list *timer, unsigned long expires)
663{
664	debug_timer_activate(timer);
665	trace_timer_start(timer, expires, timer->flags);
666}
667
668static inline void debug_deactivate(struct timer_list *timer)
669{
670	debug_timer_deactivate(timer);
671	trace_timer_cancel(timer);
672}
673
674static inline void debug_assert_init(struct timer_list *timer)
675{
676	debug_timer_assert_init(timer);
677}
678
679static void do_init_timer(struct timer_list *timer, unsigned int flags,
680			  const char *name, struct lock_class_key *key)
681{
682	timer->entry.pprev = NULL;
683	timer->flags = flags | raw_smp_processor_id();
684	timer->slack = -1;
685#ifdef CONFIG_TIMER_STATS
686	timer->start_site = NULL;
687	timer->start_pid = -1;
688	memset(timer->start_comm, 0, TASK_COMM_LEN);
689#endif
690	lockdep_init_map(&timer->lockdep_map, name, key, 0);
691}
692
693/**
694 * init_timer_key - initialize a timer
695 * @timer: the timer to be initialized
696 * @flags: timer flags
697 * @name: name of the timer
698 * @key: lockdep class key of the fake lock used for tracking timer
699 *       sync lock dependencies
700 *
701 * init_timer_key() must be done to a timer prior calling *any* of the
702 * other timer functions.
703 */
704void init_timer_key(struct timer_list *timer, unsigned int flags,
705		    const char *name, struct lock_class_key *key)
706{
707	debug_init(timer);
708	do_init_timer(timer, flags, name, key);
709}
710EXPORT_SYMBOL(init_timer_key);
711
712static inline void detach_timer(struct timer_list *timer, bool clear_pending)
713{
714	struct hlist_node *entry = &timer->entry;
715
716	debug_deactivate(timer);
717
718	__hlist_del(entry);
719	if (clear_pending)
720		entry->pprev = NULL;
721	entry->next = LIST_POISON2;
722}
723
724static inline void
725detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
726{
727	detach_timer(timer, true);
728	if (!(timer->flags & TIMER_DEFERRABLE))
729		base->active_timers--;
730	base->all_timers--;
731}
732
733static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
734			     bool clear_pending)
735{
736	if (!timer_pending(timer))
737		return 0;
738
739	detach_timer(timer, clear_pending);
740	if (!(timer->flags & TIMER_DEFERRABLE)) {
741		base->active_timers--;
742		if (timer->expires == base->next_timer)
743			base->next_timer = base->timer_jiffies;
744	}
745	/* If this was the last timer, advance base->jiffies */
746	if (!--base->all_timers)
747		base->timer_jiffies = jiffies;
748	return 1;
749}
750
751/*
752 * We are using hashed locking: holding per_cpu(tvec_bases).lock
753 * means that all timers which are tied to this base via timer->base are
754 * locked, and the base itself is locked too.
755 *
756 * So __run_timers/migrate_timers can safely modify all timers which could
757 * be found on ->tvX lists.
758 *
759 * When the timer's base is locked and removed from the list, the
760 * TIMER_MIGRATING flag is set, FIXME
761 */
762static struct tvec_base *lock_timer_base(struct timer_list *timer,
763					unsigned long *flags)
764	__acquires(timer->base->lock)
765{
766	for (;;) {
767		u32 tf = timer->flags;
768		struct tvec_base *base;
769
770		if (!(tf & TIMER_MIGRATING)) {
771			base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
772			spin_lock_irqsave(&base->lock, *flags);
773			if (timer->flags == tf)
774				return base;
775			spin_unlock_irqrestore(&base->lock, *flags);
776		}
777		cpu_relax();
778	}
779}
780
781static inline int
782__mod_timer(struct timer_list *timer, unsigned long expires,
783	    bool pending_only, int pinned)
784{
785	struct tvec_base *base, *new_base;
786	unsigned long flags;
787	int ret = 0;
788
789	timer_stats_timer_set_start_info(timer);
790	BUG_ON(!timer->function);
791
792	base = lock_timer_base(timer, &flags);
793
794	ret = detach_if_pending(timer, base, false);
795	if (!ret && pending_only)
796		goto out_unlock;
797
798	debug_activate(timer, expires);
799
800	new_base = get_target_base(base, pinned);
801
802	if (base != new_base) {
803		/*
804		 * We are trying to schedule the timer on the local CPU.
805		 * However we can't change timer's base while it is running,
806		 * otherwise del_timer_sync() can't detect that the timer's
807		 * handler yet has not finished. This also guarantees that
808		 * the timer is serialized wrt itself.
809		 */
810		if (likely(base->running_timer != timer)) {
811			/* See the comment in lock_timer_base() */
812			timer->flags |= TIMER_MIGRATING;
813
814			spin_unlock(&base->lock);
815			base = new_base;
816			spin_lock(&base->lock);
817			WRITE_ONCE(timer->flags,
818				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
819		}
820	}
821
822	timer->expires = expires;
823	internal_add_timer(base, timer);
824
825out_unlock:
826	spin_unlock_irqrestore(&base->lock, flags);
827
828	return ret;
829}
830
831/**
832 * mod_timer_pending - modify a pending timer's timeout
833 * @timer: the pending timer to be modified
834 * @expires: new timeout in jiffies
835 *
836 * mod_timer_pending() is the same for pending timers as mod_timer(),
837 * but will not re-activate and modify already deleted timers.
838 *
839 * It is useful for unserialized use of timers.
840 */
841int mod_timer_pending(struct timer_list *timer, unsigned long expires)
842{
843	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
844}
845EXPORT_SYMBOL(mod_timer_pending);
846
847/*
848 * Decide where to put the timer while taking the slack into account
849 *
850 * Algorithm:
851 *   1) calculate the maximum (absolute) time
852 *   2) calculate the highest bit where the expires and new max are different
853 *   3) use this bit to make a mask
854 *   4) use the bitmask to round down the maximum time, so that all last
855 *      bits are zeros
856 */
857static inline
858unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
859{
860	unsigned long expires_limit, mask;
861	int bit;
862
863	if (timer->slack >= 0) {
864		expires_limit = expires + timer->slack;
865	} else {
866		long delta = expires - jiffies;
867
868		if (delta < 256)
869			return expires;
870
871		expires_limit = expires + delta / 256;
872	}
873	mask = expires ^ expires_limit;
874	if (mask == 0)
875		return expires;
876
877	bit = __fls(mask);
878
879	mask = (1UL << bit) - 1;
880
881	expires_limit = expires_limit & ~(mask);
882
883	return expires_limit;
884}
885
886/**
887 * mod_timer - modify a timer's timeout
888 * @timer: the timer to be modified
889 * @expires: new timeout in jiffies
890 *
891 * mod_timer() is a more efficient way to update the expire field of an
892 * active timer (if the timer is inactive it will be activated)
893 *
894 * mod_timer(timer, expires) is equivalent to:
895 *
896 *     del_timer(timer); timer->expires = expires; add_timer(timer);
897 *
898 * Note that if there are multiple unserialized concurrent users of the
899 * same timer, then mod_timer() is the only safe way to modify the timeout,
900 * since add_timer() cannot modify an already running timer.
901 *
902 * The function returns whether it has modified a pending timer or not.
903 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
904 * active timer returns 1.)
905 */
906int mod_timer(struct timer_list *timer, unsigned long expires)
907{
908	expires = apply_slack(timer, expires);
909
910	/*
911	 * This is a common optimization triggered by the
912	 * networking code - if the timer is re-modified
913	 * to be the same thing then just return:
914	 */
915	if (timer_pending(timer) && timer->expires == expires)
916		return 1;
917
918	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
919}
920EXPORT_SYMBOL(mod_timer);
921
922/**
923 * mod_timer_pinned - modify a timer's timeout
924 * @timer: the timer to be modified
925 * @expires: new timeout in jiffies
926 *
927 * mod_timer_pinned() is a way to update the expire field of an
928 * active timer (if the timer is inactive it will be activated)
929 * and to ensure that the timer is scheduled on the current CPU.
930 *
931 * Note that this does not prevent the timer from being migrated
932 * when the current CPU goes offline.  If this is a problem for
933 * you, use CPU-hotplug notifiers to handle it correctly, for
934 * example, cancelling the timer when the corresponding CPU goes
935 * offline.
936 *
937 * mod_timer_pinned(timer, expires) is equivalent to:
938 *
939 *     del_timer(timer); timer->expires = expires; add_timer(timer);
940 */
941int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
942{
943	if (timer->expires == expires && timer_pending(timer))
944		return 1;
945
946	return __mod_timer(timer, expires, false, TIMER_PINNED);
947}
948EXPORT_SYMBOL(mod_timer_pinned);
949
950/**
951 * add_timer - start a timer
952 * @timer: the timer to be added
953 *
954 * The kernel will do a ->function(->data) callback from the
955 * timer interrupt at the ->expires point in the future. The
956 * current time is 'jiffies'.
957 *
958 * The timer's ->expires, ->function (and if the handler uses it, ->data)
959 * fields must be set prior calling this function.
960 *
961 * Timers with an ->expires field in the past will be executed in the next
962 * timer tick.
963 */
964void add_timer(struct timer_list *timer)
965{
966	BUG_ON(timer_pending(timer));
967	mod_timer(timer, timer->expires);
968}
969EXPORT_SYMBOL(add_timer);
970
971/**
972 * add_timer_on - start a timer on a particular CPU
973 * @timer: the timer to be added
974 * @cpu: the CPU to start it on
975 *
976 * This is not very scalable on SMP. Double adds are not possible.
977 */
978void add_timer_on(struct timer_list *timer, int cpu)
979{
980	struct tvec_base *new_base = per_cpu_ptr(&tvec_bases, cpu);
981	struct tvec_base *base;
982	unsigned long flags;
983
984	timer_stats_timer_set_start_info(timer);
985	BUG_ON(timer_pending(timer) || !timer->function);
986
987	/*
988	 * If @timer was on a different CPU, it should be migrated with the
989	 * old base locked to prevent other operations proceeding with the
990	 * wrong base locked.  See lock_timer_base().
991	 */
992	base = lock_timer_base(timer, &flags);
993	if (base != new_base) {
994		timer->flags |= TIMER_MIGRATING;
995
996		spin_unlock(&base->lock);
997		base = new_base;
998		spin_lock(&base->lock);
999		WRITE_ONCE(timer->flags,
1000			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1001	}
1002
1003	debug_activate(timer, timer->expires);
1004	internal_add_timer(base, timer);
1005	spin_unlock_irqrestore(&base->lock, flags);
1006}
1007EXPORT_SYMBOL_GPL(add_timer_on);
1008
1009/**
1010 * del_timer - deactive a timer.
1011 * @timer: the timer to be deactivated
1012 *
1013 * del_timer() deactivates a timer - this works on both active and inactive
1014 * timers.
1015 *
1016 * The function returns whether it has deactivated a pending timer or not.
1017 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1018 * active timer returns 1.)
1019 */
1020int del_timer(struct timer_list *timer)
1021{
1022	struct tvec_base *base;
1023	unsigned long flags;
1024	int ret = 0;
1025
1026	debug_assert_init(timer);
1027
1028	timer_stats_timer_clear_start_info(timer);
1029	if (timer_pending(timer)) {
1030		base = lock_timer_base(timer, &flags);
1031		ret = detach_if_pending(timer, base, true);
1032		spin_unlock_irqrestore(&base->lock, flags);
1033	}
1034
1035	return ret;
1036}
1037EXPORT_SYMBOL(del_timer);
1038
1039/**
1040 * try_to_del_timer_sync - Try to deactivate a timer
1041 * @timer: timer do del
1042 *
1043 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1044 * exit the timer is not queued and the handler is not running on any CPU.
1045 */
1046int try_to_del_timer_sync(struct timer_list *timer)
1047{
1048	struct tvec_base *base;
1049	unsigned long flags;
1050	int ret = -1;
1051
1052	debug_assert_init(timer);
1053
1054	base = lock_timer_base(timer, &flags);
1055
1056	if (base->running_timer != timer) {
1057		timer_stats_timer_clear_start_info(timer);
1058		ret = detach_if_pending(timer, base, true);
1059	}
1060	spin_unlock_irqrestore(&base->lock, flags);
1061
1062	return ret;
1063}
1064EXPORT_SYMBOL(try_to_del_timer_sync);
1065
1066#ifdef CONFIG_SMP
1067/**
1068 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1069 * @timer: the timer to be deactivated
1070 *
1071 * This function only differs from del_timer() on SMP: besides deactivating
1072 * the timer it also makes sure the handler has finished executing on other
1073 * CPUs.
1074 *
1075 * Synchronization rules: Callers must prevent restarting of the timer,
1076 * otherwise this function is meaningless. It must not be called from
1077 * interrupt contexts unless the timer is an irqsafe one. The caller must
1078 * not hold locks which would prevent completion of the timer's
1079 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1080 * timer is not queued and the handler is not running on any CPU.
1081 *
1082 * Note: For !irqsafe timers, you must not hold locks that are held in
1083 *   interrupt context while calling this function. Even if the lock has
1084 *   nothing to do with the timer in question.  Here's why:
1085 *
1086 *    CPU0                             CPU1
1087 *    ----                             ----
1088 *                                   <SOFTIRQ>
1089 *                                   call_timer_fn();
1090 *                                     base->running_timer = mytimer;
1091 *  spin_lock_irq(somelock);
1092 *                                     <IRQ>
1093 *                                        spin_lock(somelock);
1094 *  del_timer_sync(mytimer);
1095 *   while (base->running_timer == mytimer);
1096 *
1097 * Now del_timer_sync() will never return and never release somelock.
1098 * The interrupt on the other CPU is waiting to grab somelock but
1099 * it has interrupted the softirq that CPU0 is waiting to finish.
1100 *
1101 * The function returns whether it has deactivated a pending timer or not.
1102 */
1103int del_timer_sync(struct timer_list *timer)
1104{
1105#ifdef CONFIG_LOCKDEP
1106	unsigned long flags;
1107
1108	/*
1109	 * If lockdep gives a backtrace here, please reference
1110	 * the synchronization rules above.
1111	 */
1112	local_irq_save(flags);
1113	lock_map_acquire(&timer->lockdep_map);
1114	lock_map_release(&timer->lockdep_map);
1115	local_irq_restore(flags);
1116#endif
1117	/*
1118	 * don't use it in hardirq context, because it
1119	 * could lead to deadlock.
1120	 */
1121	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1122	for (;;) {
1123		int ret = try_to_del_timer_sync(timer);
1124		if (ret >= 0)
1125			return ret;
1126		cpu_relax();
1127	}
1128}
1129EXPORT_SYMBOL(del_timer_sync);
1130#endif
1131
1132static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1133{
1134	/* cascade all the timers from tv up one level */
1135	struct timer_list *timer;
1136	struct hlist_node *tmp;
1137	struct hlist_head tv_list;
1138
1139	hlist_move_list(tv->vec + index, &tv_list);
1140
1141	/*
1142	 * We are removing _all_ timers from the list, so we
1143	 * don't have to detach them individually.
1144	 */
1145	hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1146		/* No accounting, while moving them */
1147		__internal_add_timer(base, timer);
1148	}
1149
1150	return index;
1151}
1152
1153static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1154			  unsigned long data)
1155{
1156	int count = preempt_count();
1157
1158#ifdef CONFIG_LOCKDEP
1159	/*
1160	 * It is permissible to free the timer from inside the
1161	 * function that is called from it, this we need to take into
1162	 * account for lockdep too. To avoid bogus "held lock freed"
1163	 * warnings as well as problems when looking into
1164	 * timer->lockdep_map, make a copy and use that here.
1165	 */
1166	struct lockdep_map lockdep_map;
1167
1168	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1169#endif
1170	/*
1171	 * Couple the lock chain with the lock chain at
1172	 * del_timer_sync() by acquiring the lock_map around the fn()
1173	 * call here and in del_timer_sync().
1174	 */
1175	lock_map_acquire(&lockdep_map);
1176
1177	trace_timer_expire_entry(timer);
1178	fn(data);
1179	trace_timer_expire_exit(timer);
1180
1181	lock_map_release(&lockdep_map);
1182
1183	if (count != preempt_count()) {
1184		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1185			  fn, count, preempt_count());
1186		/*
1187		 * Restore the preempt count. That gives us a decent
1188		 * chance to survive and extract information. If the
1189		 * callback kept a lock held, bad luck, but not worse
1190		 * than the BUG() we had.
1191		 */
1192		preempt_count_set(count);
1193	}
1194}
1195
1196#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1197
1198/**
1199 * __run_timers - run all expired timers (if any) on this CPU.
1200 * @base: the timer vector to be processed.
1201 *
1202 * This function cascades all vectors and executes all expired timer
1203 * vectors.
1204 */
1205static inline void __run_timers(struct tvec_base *base)
1206{
1207	struct timer_list *timer;
1208
1209	spin_lock_irq(&base->lock);
1210
1211	while (time_after_eq(jiffies, base->timer_jiffies)) {
1212		struct hlist_head work_list;
1213		struct hlist_head *head = &work_list;
1214		int index;
1215
1216		if (!base->all_timers) {
1217			base->timer_jiffies = jiffies;
1218			break;
1219		}
1220
1221		index = base->timer_jiffies & TVR_MASK;
1222
1223		/*
1224		 * Cascade timers:
1225		 */
1226		if (!index &&
1227			(!cascade(base, &base->tv2, INDEX(0))) &&
1228				(!cascade(base, &base->tv3, INDEX(1))) &&
1229					!cascade(base, &base->tv4, INDEX(2)))
1230			cascade(base, &base->tv5, INDEX(3));
1231		++base->timer_jiffies;
1232		hlist_move_list(base->tv1.vec + index, head);
1233		while (!hlist_empty(head)) {
1234			void (*fn)(unsigned long);
1235			unsigned long data;
1236			bool irqsafe;
1237
1238			timer = hlist_entry(head->first, struct timer_list, entry);
1239			fn = timer->function;
1240			data = timer->data;
1241			irqsafe = timer->flags & TIMER_IRQSAFE;
1242
1243			timer_stats_account_timer(timer);
1244
1245			base->running_timer = timer;
1246			detach_expired_timer(timer, base);
1247
1248			if (irqsafe) {
1249				spin_unlock(&base->lock);
1250				call_timer_fn(timer, fn, data);
1251				spin_lock(&base->lock);
1252			} else {
1253				spin_unlock_irq(&base->lock);
1254				call_timer_fn(timer, fn, data);
1255				spin_lock_irq(&base->lock);
1256			}
1257		}
1258	}
1259	base->running_timer = NULL;
1260	spin_unlock_irq(&base->lock);
1261}
1262
1263#ifdef CONFIG_NO_HZ_COMMON
1264/*
1265 * Find out when the next timer event is due to happen. This
1266 * is used on S/390 to stop all activity when a CPU is idle.
1267 * This function needs to be called with interrupts disabled.
1268 */
1269static unsigned long __next_timer_interrupt(struct tvec_base *base)
1270{
1271	unsigned long timer_jiffies = base->timer_jiffies;
1272	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1273	int index, slot, array, found = 0;
1274	struct timer_list *nte;
1275	struct tvec *varray[4];
1276
1277	/* Look for timer events in tv1. */
1278	index = slot = timer_jiffies & TVR_MASK;
1279	do {
1280		hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
1281			if (nte->flags & TIMER_DEFERRABLE)
1282				continue;
1283
1284			found = 1;
1285			expires = nte->expires;
1286			/* Look at the cascade bucket(s)? */
1287			if (!index || slot < index)
1288				goto cascade;
1289			return expires;
1290		}
1291		slot = (slot + 1) & TVR_MASK;
1292	} while (slot != index);
1293
1294cascade:
1295	/* Calculate the next cascade event */
1296	if (index)
1297		timer_jiffies += TVR_SIZE - index;
1298	timer_jiffies >>= TVR_BITS;
1299
1300	/* Check tv2-tv5. */
1301	varray[0] = &base->tv2;
1302	varray[1] = &base->tv3;
1303	varray[2] = &base->tv4;
1304	varray[3] = &base->tv5;
1305
1306	for (array = 0; array < 4; array++) {
1307		struct tvec *varp = varray[array];
1308
1309		index = slot = timer_jiffies & TVN_MASK;
1310		do {
1311			hlist_for_each_entry(nte, varp->vec + slot, entry) {
1312				if (nte->flags & TIMER_DEFERRABLE)
1313					continue;
1314
1315				found = 1;
1316				if (time_before(nte->expires, expires))
1317					expires = nte->expires;
1318			}
1319			/*
1320			 * Do we still search for the first timer or are
1321			 * we looking up the cascade buckets ?
1322			 */
1323			if (found) {
1324				/* Look at the cascade bucket(s)? */
1325				if (!index || slot < index)
1326					break;
1327				return expires;
1328			}
1329			slot = (slot + 1) & TVN_MASK;
1330		} while (slot != index);
1331
1332		if (index)
1333			timer_jiffies += TVN_SIZE - index;
1334		timer_jiffies >>= TVN_BITS;
1335	}
1336	return expires;
1337}
1338
1339/*
1340 * Check, if the next hrtimer event is before the next timer wheel
1341 * event:
1342 */
1343static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1344{
1345	u64 nextevt = hrtimer_get_next_event();
1346
1347	/*
1348	 * If high resolution timers are enabled
1349	 * hrtimer_get_next_event() returns KTIME_MAX.
1350	 */
1351	if (expires <= nextevt)
1352		return expires;
1353
1354	/*
1355	 * If the next timer is already expired, return the tick base
1356	 * time so the tick is fired immediately.
1357	 */
1358	if (nextevt <= basem)
1359		return basem;
1360
1361	/*
1362	 * Round up to the next jiffie. High resolution timers are
1363	 * off, so the hrtimers are expired in the tick and we need to
1364	 * make sure that this tick really expires the timer to avoid
1365	 * a ping pong of the nohz stop code.
1366	 *
1367	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1368	 */
1369	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1370}
1371
1372/**
1373 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1374 * @basej:	base time jiffies
1375 * @basem:	base time clock monotonic
1376 *
1377 * Returns the tick aligned clock monotonic time of the next pending
1378 * timer or KTIME_MAX if no timer is pending.
1379 */
1380u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1381{
1382	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1383	u64 expires = KTIME_MAX;
1384	unsigned long nextevt;
1385
1386	/*
1387	 * Pretend that there is no timer pending if the cpu is offline.
1388	 * Possible pending timers will be migrated later to an active cpu.
1389	 */
1390	if (cpu_is_offline(smp_processor_id()))
1391		return expires;
1392
1393	spin_lock(&base->lock);
1394	if (base->active_timers) {
1395		if (time_before_eq(base->next_timer, base->timer_jiffies))
1396			base->next_timer = __next_timer_interrupt(base);
1397		nextevt = base->next_timer;
1398		if (time_before_eq(nextevt, basej))
1399			expires = basem;
1400		else
1401			expires = basem + (nextevt - basej) * TICK_NSEC;
1402	}
1403	spin_unlock(&base->lock);
1404
1405	return cmp_next_hrtimer_event(basem, expires);
1406}
1407#endif
1408
1409/*
1410 * Called from the timer interrupt handler to charge one tick to the current
1411 * process.  user_tick is 1 if the tick is user time, 0 for system.
1412 */
1413void update_process_times(int user_tick)
1414{
1415	struct task_struct *p = current;
1416
1417	/* Note: this timer irq context must be accounted for as well. */
1418	account_process_tick(p, user_tick);
1419	run_local_timers();
1420	rcu_check_callbacks(user_tick);
1421#ifdef CONFIG_IRQ_WORK
1422	if (in_irq())
1423		irq_work_tick();
1424#endif
1425	scheduler_tick();
1426	run_posix_cpu_timers(p);
1427}
1428
1429/*
1430 * This function runs timers and the timer-tq in bottom half context.
1431 */
1432static void run_timer_softirq(struct softirq_action *h)
1433{
1434	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1435
1436	if (time_after_eq(jiffies, base->timer_jiffies))
1437		__run_timers(base);
1438}
1439
1440/*
1441 * Called by the local, per-CPU timer interrupt on SMP.
1442 */
1443void run_local_timers(void)
1444{
1445	hrtimer_run_queues();
1446	raise_softirq(TIMER_SOFTIRQ);
1447}
1448
1449#ifdef __ARCH_WANT_SYS_ALARM
1450
1451/*
1452 * For backwards compatibility?  This can be done in libc so Alpha
1453 * and all newer ports shouldn't need it.
1454 */
1455SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1456{
1457	return alarm_setitimer(seconds);
1458}
1459
1460#endif
1461
1462static void process_timeout(unsigned long __data)
1463{
1464	wake_up_process((struct task_struct *)__data);
1465}
1466
1467/**
1468 * schedule_timeout - sleep until timeout
1469 * @timeout: timeout value in jiffies
1470 *
1471 * Make the current task sleep until @timeout jiffies have
1472 * elapsed. The routine will return immediately unless
1473 * the current task state has been set (see set_current_state()).
1474 *
1475 * You can set the task state as follows -
1476 *
1477 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1478 * pass before the routine returns. The routine will return 0
1479 *
1480 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1481 * delivered to the current task. In this case the remaining time
1482 * in jiffies will be returned, or 0 if the timer expired in time
1483 *
1484 * The current task state is guaranteed to be TASK_RUNNING when this
1485 * routine returns.
1486 *
1487 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1488 * the CPU away without a bound on the timeout. In this case the return
1489 * value will be %MAX_SCHEDULE_TIMEOUT.
1490 *
1491 * In all cases the return value is guaranteed to be non-negative.
1492 */
1493signed long __sched schedule_timeout(signed long timeout)
1494{
1495	struct timer_list timer;
1496	unsigned long expire;
1497
1498	switch (timeout)
1499	{
1500	case MAX_SCHEDULE_TIMEOUT:
1501		/*
1502		 * These two special cases are useful to be comfortable
1503		 * in the caller. Nothing more. We could take
1504		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1505		 * but I' d like to return a valid offset (>=0) to allow
1506		 * the caller to do everything it want with the retval.
1507		 */
1508		schedule();
1509		goto out;
1510	default:
1511		/*
1512		 * Another bit of PARANOID. Note that the retval will be
1513		 * 0 since no piece of kernel is supposed to do a check
1514		 * for a negative retval of schedule_timeout() (since it
1515		 * should never happens anyway). You just have the printk()
1516		 * that will tell you if something is gone wrong and where.
1517		 */
1518		if (timeout < 0) {
1519			printk(KERN_ERR "schedule_timeout: wrong timeout "
1520				"value %lx\n", timeout);
1521			dump_stack();
1522			current->state = TASK_RUNNING;
1523			goto out;
1524		}
1525	}
1526
1527	expire = timeout + jiffies;
1528
1529	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1530	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1531	schedule();
1532	del_singleshot_timer_sync(&timer);
1533
1534	/* Remove the timer from the object tracker */
1535	destroy_timer_on_stack(&timer);
1536
1537	timeout = expire - jiffies;
1538
1539 out:
1540	return timeout < 0 ? 0 : timeout;
1541}
1542EXPORT_SYMBOL(schedule_timeout);
1543
1544/*
1545 * We can use __set_current_state() here because schedule_timeout() calls
1546 * schedule() unconditionally.
1547 */
1548signed long __sched schedule_timeout_interruptible(signed long timeout)
1549{
1550	__set_current_state(TASK_INTERRUPTIBLE);
1551	return schedule_timeout(timeout);
1552}
1553EXPORT_SYMBOL(schedule_timeout_interruptible);
1554
1555signed long __sched schedule_timeout_killable(signed long timeout)
1556{
1557	__set_current_state(TASK_KILLABLE);
1558	return schedule_timeout(timeout);
1559}
1560EXPORT_SYMBOL(schedule_timeout_killable);
1561
1562signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1563{
1564	__set_current_state(TASK_UNINTERRUPTIBLE);
1565	return schedule_timeout(timeout);
1566}
1567EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1568
1569#ifdef CONFIG_HOTPLUG_CPU
1570static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
1571{
1572	struct timer_list *timer;
1573	int cpu = new_base->cpu;
1574
1575	while (!hlist_empty(head)) {
1576		timer = hlist_entry(head->first, struct timer_list, entry);
1577		/* We ignore the accounting on the dying cpu */
1578		detach_timer(timer, false);
1579		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1580		internal_add_timer(new_base, timer);
1581	}
1582}
1583
1584static void migrate_timers(int cpu)
1585{
1586	struct tvec_base *old_base;
1587	struct tvec_base *new_base;
1588	int i;
1589
1590	BUG_ON(cpu_online(cpu));
1591	old_base = per_cpu_ptr(&tvec_bases, cpu);
1592	new_base = get_cpu_ptr(&tvec_bases);
1593	/*
1594	 * The caller is globally serialized and nobody else
1595	 * takes two locks at once, deadlock is not possible.
1596	 */
1597	spin_lock_irq(&new_base->lock);
1598	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1599
1600	BUG_ON(old_base->running_timer);
1601
1602	for (i = 0; i < TVR_SIZE; i++)
1603		migrate_timer_list(new_base, old_base->tv1.vec + i);
1604	for (i = 0; i < TVN_SIZE; i++) {
1605		migrate_timer_list(new_base, old_base->tv2.vec + i);
1606		migrate_timer_list(new_base, old_base->tv3.vec + i);
1607		migrate_timer_list(new_base, old_base->tv4.vec + i);
1608		migrate_timer_list(new_base, old_base->tv5.vec + i);
1609	}
1610
1611	old_base->active_timers = 0;
1612	old_base->all_timers = 0;
1613
1614	spin_unlock(&old_base->lock);
1615	spin_unlock_irq(&new_base->lock);
1616	put_cpu_ptr(&tvec_bases);
1617}
1618
1619static int timer_cpu_notify(struct notifier_block *self,
1620				unsigned long action, void *hcpu)
1621{
1622	switch (action) {
1623	case CPU_DEAD:
1624	case CPU_DEAD_FROZEN:
1625		migrate_timers((long)hcpu);
1626		break;
1627	default:
1628		break;
1629	}
1630
1631	return NOTIFY_OK;
1632}
1633
1634static inline void timer_register_cpu_notifier(void)
1635{
1636	cpu_notifier(timer_cpu_notify, 0);
1637}
1638#else
1639static inline void timer_register_cpu_notifier(void) { }
1640#endif /* CONFIG_HOTPLUG_CPU */
1641
1642static void __init init_timer_cpu(int cpu)
1643{
1644	struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
1645
1646	base->cpu = cpu;
1647	spin_lock_init(&base->lock);
1648
1649	base->timer_jiffies = jiffies;
1650	base->next_timer = base->timer_jiffies;
1651}
1652
1653static void __init init_timer_cpus(void)
1654{
1655	int cpu;
1656
1657	for_each_possible_cpu(cpu)
1658		init_timer_cpu(cpu);
1659}
1660
1661void __init init_timers(void)
1662{
1663	init_timer_cpus();
1664	init_timer_stats();
1665	timer_register_cpu_notifier();
1666	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1667}
1668
1669/**
1670 * msleep - sleep safely even with waitqueue interruptions
1671 * @msecs: Time in milliseconds to sleep for
1672 */
1673void msleep(unsigned int msecs)
1674{
1675	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1676
1677	while (timeout)
1678		timeout = schedule_timeout_uninterruptible(timeout);
1679}
1680
1681EXPORT_SYMBOL(msleep);
1682
1683/**
1684 * msleep_interruptible - sleep waiting for signals
1685 * @msecs: Time in milliseconds to sleep for
1686 */
1687unsigned long msleep_interruptible(unsigned int msecs)
1688{
1689	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1690
1691	while (timeout && !signal_pending(current))
1692		timeout = schedule_timeout_interruptible(timeout);
1693	return jiffies_to_msecs(timeout);
1694}
1695
1696EXPORT_SYMBOL(msleep_interruptible);
1697
1698static void __sched do_usleep_range(unsigned long min, unsigned long max)
1699{
1700	ktime_t kmin;
1701	unsigned long delta;
1702
1703	kmin = ktime_set(0, min * NSEC_PER_USEC);
1704	delta = (max - min) * NSEC_PER_USEC;
1705	schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1706}
1707
1708/**
1709 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1710 * @min: Minimum time in usecs to sleep
1711 * @max: Maximum time in usecs to sleep
1712 */
1713void __sched usleep_range(unsigned long min, unsigned long max)
1714{
1715	__set_current_state(TASK_UNINTERRUPTIBLE);
1716	do_usleep_range(min, max);
1717}
1718EXPORT_SYMBOL(usleep_range);
1719