1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
update_rq_clock(struct rq * rq)98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
130
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134
135 #undef SCHED_FEAT
136
sched_feat_show(struct seq_file * m,void * v)137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149 }
150
151 #ifdef HAVE_JUMP_LABEL
152
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162
163 #undef SCHED_FEAT
164
sched_feat_disable(int i)165 static void sched_feat_disable(int i)
166 {
167 static_key_disable(&sched_feat_keys[i]);
168 }
169
sched_feat_enable(int i)170 static void sched_feat_enable(int i)
171 {
172 static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
sched_feat_disable(int i)175 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178
sched_feat_set(char * cmp)179 static int sched_feat_set(char *cmp)
180 {
181 int i;
182 int neg = 0;
183
184 if (strncmp(cmp, "NO_", 3) == 0) {
185 neg = 1;
186 cmp += 3;
187 }
188
189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 if (neg) {
192 sysctl_sched_features &= ~(1UL << i);
193 sched_feat_disable(i);
194 } else {
195 sysctl_sched_features |= (1UL << i);
196 sched_feat_enable(i);
197 }
198 break;
199 }
200 }
201
202 return i;
203 }
204
205 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208 {
209 char buf[64];
210 char *cmp;
211 int i;
212 struct inode *inode;
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
226 i = sched_feat_set(cmp);
227 mutex_unlock(&inode->i_mutex);
228 if (i == __SCHED_FEAT_NR)
229 return -EINVAL;
230
231 *ppos += cnt;
232
233 return cnt;
234 }
235
sched_feat_open(struct inode * inode,struct file * filp)236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 return single_open(filp, sched_feat_show, NULL);
239 }
240
241 static const struct file_operations sched_feat_fops = {
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
247 };
248
sched_init_debug(void)249 static __init int sched_init_debug(void)
250 {
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258
259 /*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
265 /*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
273 /*
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
276 */
277 unsigned int sysctl_sched_rt_period = 1000000;
278
279 __read_mostly int scheduler_running;
280
281 /*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285 int sysctl_sched_rt_runtime = 950000;
286
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289
290 /*
291 * this_rq_lock - lock this runqueue and disable interrupts.
292 */
this_rq_lock(void)293 static struct rq *this_rq_lock(void)
294 __acquires(rq->lock)
295 {
296 struct rq *rq;
297
298 local_irq_disable();
299 rq = this_rq();
300 raw_spin_lock(&rq->lock);
301
302 return rq;
303 }
304
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307 * Use HR-timers to deliver accurate preemption points.
308 */
309
hrtick_clear(struct rq * rq)310 static void hrtick_clear(struct rq *rq)
311 {
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314 }
315
316 /*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
hrtick(struct hrtimer * timer)320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
326 raw_spin_lock(&rq->lock);
327 update_rq_clock(rq);
328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 raw_spin_unlock(&rq->lock);
330
331 return HRTIMER_NORESTART;
332 }
333
334 #ifdef CONFIG_SMP
335
__hrtick_restart(struct rq * rq)336 static void __hrtick_restart(struct rq *rq)
337 {
338 struct hrtimer *timer = &rq->hrtick_timer;
339
340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342
343 /*
344 * called from hardirq (IPI) context
345 */
__hrtick_start(void * arg)346 static void __hrtick_start(void *arg)
347 {
348 struct rq *rq = arg;
349
350 raw_spin_lock(&rq->lock);
351 __hrtick_restart(rq);
352 rq->hrtick_csd_pending = 0;
353 raw_spin_unlock(&rq->lock);
354 }
355
356 /*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
hrtick_start(struct rq * rq,u64 delay)361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 struct hrtimer *timer = &rq->hrtick_timer;
364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
373
374 hrtimer_set_expires(timer, time);
375
376 if (rq == this_rq()) {
377 __hrtick_restart(rq);
378 } else if (!rq->hrtick_csd_pending) {
379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 rq->hrtick_csd_pending = 1;
381 }
382 }
383
384 static int
hotplug_hrtick(struct notifier_block * nfb,unsigned long action,void * hcpu)385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
396 hrtick_clear(cpu_rq(cpu));
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401 }
402
init_hrtick(void)403 static __init void init_hrtick(void)
404 {
405 hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
hrtick_start(struct rq * rq,u64 delay)413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
422 }
423
init_hrtick(void)424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428
init_rq_hrtick(struct rq * rq)429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
433
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437 #endif
438
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
441 }
442 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446
init_rq_hrtick(struct rq * rq)447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450
init_hrtick(void)451 static inline void init_hrtick(void)
452 {
453 }
454 #endif /* CONFIG_SCHED_HRTICK */
455
456 /*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468 })
469
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
set_nr_and_not_polling(struct task_struct * p)476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481
482 /*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
set_nr_if_polling(struct task_struct * p)488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 struct thread_info *ti = task_thread_info(p);
491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504 }
505
506 #else
set_nr_and_not_polling(struct task_struct * p)507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 set_tsk_need_resched(p);
510 return true;
511 }
512
513 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 return false;
517 }
518 #endif
519 #endif
520
wake_q_add(struct wake_q_head * head,struct task_struct * task)521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543 }
544
wake_up_q(struct wake_q_head * head)545 void wake_up_q(struct wake_q_head *head)
546 {
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565 }
566
567 /*
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
resched_curr(struct rq * rq)574 void resched_curr(struct rq *rq)
575 {
576 struct task_struct *curr = rq->curr;
577 int cpu;
578
579 lockdep_assert_held(&rq->lock);
580
581 if (test_tsk_need_resched(curr))
582 return;
583
584 cpu = cpu_of(rq);
585
586 if (cpu == smp_processor_id()) {
587 set_tsk_need_resched(curr);
588 set_preempt_need_resched();
589 return;
590 }
591
592 if (set_nr_and_not_polling(curr))
593 smp_send_reschedule(cpu);
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
596 }
597
resched_cpu(int cpu)598 void resched_cpu(int cpu)
599 {
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 return;
605 resched_curr(rq);
606 raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
get_nohz_timer_target(void)619 int get_nohz_timer_target(void)
620 {
621 int i, cpu = smp_processor_id();
622 struct sched_domain *sd;
623
624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 return cpu;
626
627 rcu_read_lock();
628 for_each_domain(cpu, sd) {
629 for_each_cpu(i, sched_domain_span(sd)) {
630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 cpu = i;
632 goto unlock;
633 }
634 }
635 }
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
639 unlock:
640 rcu_read_unlock();
641 return cpu;
642 }
643 /*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
wake_up_idle_cpu(int cpu)653 static void wake_up_idle_cpu(int cpu)
654 {
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
660 if (set_nr_and_not_polling(rq->idle))
661 smp_send_reschedule(cpu);
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
664 }
665
wake_up_full_nohz_cpu(int cpu)666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
674 if (tick_nohz_full_cpu(cpu)) {
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
677 tick_nohz_full_kick_cpu(cpu);
678 return true;
679 }
680
681 return false;
682 }
683
wake_up_nohz_cpu(int cpu)684 void wake_up_nohz_cpu(int cpu)
685 {
686 if (!wake_up_full_nohz_cpu(cpu))
687 wake_up_idle_cpu(cpu);
688 }
689
got_nohz_idle_kick(void)690 static inline bool got_nohz_idle_kick(void)
691 {
692 int cpu = smp_processor_id();
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
706 }
707
708 #else /* CONFIG_NO_HZ_COMMON */
709
got_nohz_idle_kick(void)710 static inline bool got_nohz_idle_kick(void)
711 {
712 return false;
713 }
714
715 #endif /* CONFIG_NO_HZ_COMMON */
716
717 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(void)718 bool sched_can_stop_tick(void)
719 {
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = ¤t->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
742 if (this_rq()->nr_running > 1)
743 return false;
744
745 return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748
sched_avg_update(struct rq * rq)749 void sched_avg_update(struct rq *rq)
750 {
751 s64 period = sched_avg_period();
752
753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
763 }
764
765 #endif /* CONFIG_SMP */
766
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
774 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)775 int walk_tg_tree_from(struct task_group *from,
776 tg_visitor down, tg_visitor up, void *data)
777 {
778 struct task_group *parent, *child;
779 int ret;
780
781 parent = from;
782
783 down:
784 ret = (*down)(parent, data);
785 if (ret)
786 goto out;
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791 up:
792 continue;
793 }
794 ret = (*up)(parent, data);
795 if (ret || parent == from)
796 goto out;
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
802 out:
803 return ret;
804 }
805
tg_nop(struct task_group * tg,void * data)806 int tg_nop(struct task_group *tg, void *data)
807 {
808 return 0;
809 }
810 #endif
811
set_load_weight(struct task_struct * p)812 static void set_load_weight(struct task_struct *p)
813 {
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (idle_policy(p->policy)) {
821 load->weight = scale_load(WEIGHT_IDLEPRIO);
822 load->inv_weight = WMULT_IDLEPRIO;
823 return;
824 }
825
826 load->weight = scale_load(prio_to_weight[prio]);
827 load->inv_weight = prio_to_wmult[prio];
828 }
829
enqueue_task(struct rq * rq,struct task_struct * p,int flags)830 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 update_rq_clock(rq);
833 if (!(flags & ENQUEUE_RESTORE))
834 sched_info_queued(rq, p);
835 p->sched_class->enqueue_task(rq, p, flags);
836 }
837
dequeue_task(struct rq * rq,struct task_struct * p,int flags)838 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 update_rq_clock(rq);
841 if (!(flags & DEQUEUE_SAVE))
842 sched_info_dequeued(rq, p);
843 p->sched_class->dequeue_task(rq, p, flags);
844 }
845
activate_task(struct rq * rq,struct task_struct * p,int flags)846 void activate_task(struct rq *rq, struct task_struct *p, int flags)
847 {
848 if (task_contributes_to_load(p))
849 rq->nr_uninterruptible--;
850
851 enqueue_task(rq, p, flags);
852 }
853
deactivate_task(struct rq * rq,struct task_struct * p,int flags)854 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible++;
858
859 dequeue_task(rq, p, flags);
860 }
861
update_rq_clock_task(struct rq * rq,s64 delta)862 static void update_rq_clock_task(struct rq *rq, s64 delta)
863 {
864 /*
865 * In theory, the compile should just see 0 here, and optimize out the call
866 * to sched_rt_avg_update. But I don't trust it...
867 */
868 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 s64 steal = 0, irq_delta = 0;
870 #endif
871 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
872 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873
874 /*
875 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 * this case when a previous update_rq_clock() happened inside a
877 * {soft,}irq region.
878 *
879 * When this happens, we stop ->clock_task and only update the
880 * prev_irq_time stamp to account for the part that fit, so that a next
881 * update will consume the rest. This ensures ->clock_task is
882 * monotonic.
883 *
884 * It does however cause some slight miss-attribution of {soft,}irq
885 * time, a more accurate solution would be to update the irq_time using
886 * the current rq->clock timestamp, except that would require using
887 * atomic ops.
888 */
889 if (irq_delta > delta)
890 irq_delta = delta;
891
892 rq->prev_irq_time += irq_delta;
893 delta -= irq_delta;
894 #endif
895 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896 if (static_key_false((¶virt_steal_rq_enabled))) {
897 steal = paravirt_steal_clock(cpu_of(rq));
898 steal -= rq->prev_steal_time_rq;
899
900 if (unlikely(steal > delta))
901 steal = delta;
902
903 rq->prev_steal_time_rq += steal;
904 delta -= steal;
905 }
906 #endif
907
908 rq->clock_task += delta;
909
910 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
911 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
912 sched_rt_avg_update(rq, irq_delta + steal);
913 #endif
914 }
915
sched_set_stop_task(int cpu,struct task_struct * stop)916 void sched_set_stop_task(int cpu, struct task_struct *stop)
917 {
918 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 struct task_struct *old_stop = cpu_rq(cpu)->stop;
920
921 if (stop) {
922 /*
923 * Make it appear like a SCHED_FIFO task, its something
924 * userspace knows about and won't get confused about.
925 *
926 * Also, it will make PI more or less work without too
927 * much confusion -- but then, stop work should not
928 * rely on PI working anyway.
929 */
930 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
931
932 stop->sched_class = &stop_sched_class;
933 }
934
935 cpu_rq(cpu)->stop = stop;
936
937 if (old_stop) {
938 /*
939 * Reset it back to a normal scheduling class so that
940 * it can die in pieces.
941 */
942 old_stop->sched_class = &rt_sched_class;
943 }
944 }
945
946 /*
947 * __normal_prio - return the priority that is based on the static prio
948 */
__normal_prio(struct task_struct * p)949 static inline int __normal_prio(struct task_struct *p)
950 {
951 return p->static_prio;
952 }
953
954 /*
955 * Calculate the expected normal priority: i.e. priority
956 * without taking RT-inheritance into account. Might be
957 * boosted by interactivity modifiers. Changes upon fork,
958 * setprio syscalls, and whenever the interactivity
959 * estimator recalculates.
960 */
normal_prio(struct task_struct * p)961 static inline int normal_prio(struct task_struct *p)
962 {
963 int prio;
964
965 if (task_has_dl_policy(p))
966 prio = MAX_DL_PRIO-1;
967 else if (task_has_rt_policy(p))
968 prio = MAX_RT_PRIO-1 - p->rt_priority;
969 else
970 prio = __normal_prio(p);
971 return prio;
972 }
973
974 /*
975 * Calculate the current priority, i.e. the priority
976 * taken into account by the scheduler. This value might
977 * be boosted by RT tasks, or might be boosted by
978 * interactivity modifiers. Will be RT if the task got
979 * RT-boosted. If not then it returns p->normal_prio.
980 */
effective_prio(struct task_struct * p)981 static int effective_prio(struct task_struct *p)
982 {
983 p->normal_prio = normal_prio(p);
984 /*
985 * If we are RT tasks or we were boosted to RT priority,
986 * keep the priority unchanged. Otherwise, update priority
987 * to the normal priority:
988 */
989 if (!rt_prio(p->prio))
990 return p->normal_prio;
991 return p->prio;
992 }
993
994 /**
995 * task_curr - is this task currently executing on a CPU?
996 * @p: the task in question.
997 *
998 * Return: 1 if the task is currently executing. 0 otherwise.
999 */
task_curr(const struct task_struct * p)1000 inline int task_curr(const struct task_struct *p)
1001 {
1002 return cpu_curr(task_cpu(p)) == p;
1003 }
1004
1005 /*
1006 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007 * use the balance_callback list if you want balancing.
1008 *
1009 * this means any call to check_class_changed() must be followed by a call to
1010 * balance_callback().
1011 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1012 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 const struct sched_class *prev_class,
1014 int oldprio)
1015 {
1016 if (prev_class != p->sched_class) {
1017 if (prev_class->switched_from)
1018 prev_class->switched_from(rq, p);
1019
1020 p->sched_class->switched_to(rq, p);
1021 } else if (oldprio != p->prio || dl_task(p))
1022 p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
1036 resched_curr(rq);
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
1046 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047 rq_clock_skip_update(rq, true);
1048 }
1049
1050 #ifdef CONFIG_SMP
1051 /*
1052 * This is how migration works:
1053 *
1054 * 1) we invoke migration_cpu_stop() on the target CPU using
1055 * stop_one_cpu().
1056 * 2) stopper starts to run (implicitly forcing the migrated thread
1057 * off the CPU)
1058 * 3) it checks whether the migrated task is still in the wrong runqueue.
1059 * 4) if it's in the wrong runqueue then the migration thread removes
1060 * it and puts it into the right queue.
1061 * 5) stopper completes and stop_one_cpu() returns and the migration
1062 * is done.
1063 */
1064
1065 /*
1066 * move_queued_task - move a queued task to new rq.
1067 *
1068 * Returns (locked) new rq. Old rq's lock is released.
1069 */
move_queued_task(struct rq * rq,struct task_struct * p,int new_cpu)1070 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1071 {
1072 lockdep_assert_held(&rq->lock);
1073
1074 dequeue_task(rq, p, 0);
1075 p->on_rq = TASK_ON_RQ_MIGRATING;
1076 set_task_cpu(p, new_cpu);
1077 raw_spin_unlock(&rq->lock);
1078
1079 rq = cpu_rq(new_cpu);
1080
1081 raw_spin_lock(&rq->lock);
1082 BUG_ON(task_cpu(p) != new_cpu);
1083 p->on_rq = TASK_ON_RQ_QUEUED;
1084 enqueue_task(rq, p, 0);
1085 check_preempt_curr(rq, p, 0);
1086
1087 return rq;
1088 }
1089
1090 struct migration_arg {
1091 struct task_struct *task;
1092 int dest_cpu;
1093 };
1094
1095 /*
1096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1097 * this because either it can't run here any more (set_cpus_allowed()
1098 * away from this CPU, or CPU going down), or because we're
1099 * attempting to rebalance this task on exec (sched_exec).
1100 *
1101 * So we race with normal scheduler movements, but that's OK, as long
1102 * as the task is no longer on this CPU.
1103 */
__migrate_task(struct rq * rq,struct task_struct * p,int dest_cpu)1104 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1105 {
1106 if (unlikely(!cpu_active(dest_cpu)))
1107 return rq;
1108
1109 /* Affinity changed (again). */
1110 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1111 return rq;
1112
1113 rq = move_queued_task(rq, p, dest_cpu);
1114
1115 return rq;
1116 }
1117
1118 /*
1119 * migration_cpu_stop - this will be executed by a highprio stopper thread
1120 * and performs thread migration by bumping thread off CPU then
1121 * 'pushing' onto another runqueue.
1122 */
migration_cpu_stop(void * data)1123 static int migration_cpu_stop(void *data)
1124 {
1125 struct migration_arg *arg = data;
1126 struct task_struct *p = arg->task;
1127 struct rq *rq = this_rq();
1128
1129 /*
1130 * The original target cpu might have gone down and we might
1131 * be on another cpu but it doesn't matter.
1132 */
1133 local_irq_disable();
1134 /*
1135 * We need to explicitly wake pending tasks before running
1136 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 */
1139 sched_ttwu_pending();
1140
1141 raw_spin_lock(&p->pi_lock);
1142 raw_spin_lock(&rq->lock);
1143 /*
1144 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 * we're holding p->pi_lock.
1147 */
1148 if (task_rq(p) == rq && task_on_rq_queued(p))
1149 rq = __migrate_task(rq, p, arg->dest_cpu);
1150 raw_spin_unlock(&rq->lock);
1151 raw_spin_unlock(&p->pi_lock);
1152
1153 local_irq_enable();
1154 return 0;
1155 }
1156
1157 /*
1158 * sched_class::set_cpus_allowed must do the below, but is not required to
1159 * actually call this function.
1160 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1161 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1162 {
1163 cpumask_copy(&p->cpus_allowed, new_mask);
1164 p->nr_cpus_allowed = cpumask_weight(new_mask);
1165 }
1166
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1167 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168 {
1169 struct rq *rq = task_rq(p);
1170 bool queued, running;
1171
1172 lockdep_assert_held(&p->pi_lock);
1173
1174 queued = task_on_rq_queued(p);
1175 running = task_current(rq, p);
1176
1177 if (queued) {
1178 /*
1179 * Because __kthread_bind() calls this on blocked tasks without
1180 * holding rq->lock.
1181 */
1182 lockdep_assert_held(&rq->lock);
1183 dequeue_task(rq, p, DEQUEUE_SAVE);
1184 }
1185 if (running)
1186 put_prev_task(rq, p);
1187
1188 p->sched_class->set_cpus_allowed(p, new_mask);
1189
1190 if (running)
1191 p->sched_class->set_curr_task(rq);
1192 if (queued)
1193 enqueue_task(rq, p, ENQUEUE_RESTORE);
1194 }
1195
1196 /*
1197 * Change a given task's CPU affinity. Migrate the thread to a
1198 * proper CPU and schedule it away if the CPU it's executing on
1199 * is removed from the allowed bitmask.
1200 *
1201 * NOTE: the caller must have a valid reference to the task, the
1202 * task must not exit() & deallocate itself prematurely. The
1203 * call is not atomic; no spinlocks may be held.
1204 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1205 static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 const struct cpumask *new_mask, bool check)
1207 {
1208 unsigned long flags;
1209 struct rq *rq;
1210 unsigned int dest_cpu;
1211 int ret = 0;
1212
1213 rq = task_rq_lock(p, &flags);
1214
1215 /*
1216 * Must re-check here, to close a race against __kthread_bind(),
1217 * sched_setaffinity() is not guaranteed to observe the flag.
1218 */
1219 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223
1224 if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 goto out;
1226
1227 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 ret = -EINVAL;
1229 goto out;
1230 }
1231
1232 do_set_cpus_allowed(p, new_mask);
1233
1234 /* Can the task run on the task's current CPU? If so, we're done */
1235 if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 goto out;
1237
1238 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 struct migration_arg arg = { p, dest_cpu };
1241 /* Need help from migration thread: drop lock and wait. */
1242 task_rq_unlock(rq, p, &flags);
1243 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 tlb_migrate_finish(p->mm);
1245 return 0;
1246 } else if (task_on_rq_queued(p)) {
1247 /*
1248 * OK, since we're going to drop the lock immediately
1249 * afterwards anyway.
1250 */
1251 lockdep_unpin_lock(&rq->lock);
1252 rq = move_queued_task(rq, p, dest_cpu);
1253 lockdep_pin_lock(&rq->lock);
1254 }
1255 out:
1256 task_rq_unlock(rq, p, &flags);
1257
1258 return ret;
1259 }
1260
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262 {
1263 return __set_cpus_allowed_ptr(p, new_mask, false);
1264 }
1265 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1267 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1268 {
1269 #ifdef CONFIG_SCHED_DEBUG
1270 /*
1271 * We should never call set_task_cpu() on a blocked task,
1272 * ttwu() will sort out the placement.
1273 */
1274 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1275 !p->on_rq);
1276
1277 #ifdef CONFIG_LOCKDEP
1278 /*
1279 * The caller should hold either p->pi_lock or rq->lock, when changing
1280 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1281 *
1282 * sched_move_task() holds both and thus holding either pins the cgroup,
1283 * see task_group().
1284 *
1285 * Furthermore, all task_rq users should acquire both locks, see
1286 * task_rq_lock().
1287 */
1288 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1289 lockdep_is_held(&task_rq(p)->lock)));
1290 #endif
1291 #endif
1292
1293 trace_sched_migrate_task(p, new_cpu);
1294
1295 if (task_cpu(p) != new_cpu) {
1296 if (p->sched_class->migrate_task_rq)
1297 p->sched_class->migrate_task_rq(p);
1298 p->se.nr_migrations++;
1299 perf_event_task_migrate(p);
1300 }
1301
1302 __set_task_cpu(p, new_cpu);
1303 }
1304
__migrate_swap_task(struct task_struct * p,int cpu)1305 static void __migrate_swap_task(struct task_struct *p, int cpu)
1306 {
1307 if (task_on_rq_queued(p)) {
1308 struct rq *src_rq, *dst_rq;
1309
1310 src_rq = task_rq(p);
1311 dst_rq = cpu_rq(cpu);
1312
1313 deactivate_task(src_rq, p, 0);
1314 set_task_cpu(p, cpu);
1315 activate_task(dst_rq, p, 0);
1316 check_preempt_curr(dst_rq, p, 0);
1317 } else {
1318 /*
1319 * Task isn't running anymore; make it appear like we migrated
1320 * it before it went to sleep. This means on wakeup we make the
1321 * previous cpu our targer instead of where it really is.
1322 */
1323 p->wake_cpu = cpu;
1324 }
1325 }
1326
1327 struct migration_swap_arg {
1328 struct task_struct *src_task, *dst_task;
1329 int src_cpu, dst_cpu;
1330 };
1331
migrate_swap_stop(void * data)1332 static int migrate_swap_stop(void *data)
1333 {
1334 struct migration_swap_arg *arg = data;
1335 struct rq *src_rq, *dst_rq;
1336 int ret = -EAGAIN;
1337
1338 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1339 return -EAGAIN;
1340
1341 src_rq = cpu_rq(arg->src_cpu);
1342 dst_rq = cpu_rq(arg->dst_cpu);
1343
1344 double_raw_lock(&arg->src_task->pi_lock,
1345 &arg->dst_task->pi_lock);
1346 double_rq_lock(src_rq, dst_rq);
1347
1348 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1349 goto unlock;
1350
1351 if (task_cpu(arg->src_task) != arg->src_cpu)
1352 goto unlock;
1353
1354 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1355 goto unlock;
1356
1357 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1358 goto unlock;
1359
1360 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1361 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1362
1363 ret = 0;
1364
1365 unlock:
1366 double_rq_unlock(src_rq, dst_rq);
1367 raw_spin_unlock(&arg->dst_task->pi_lock);
1368 raw_spin_unlock(&arg->src_task->pi_lock);
1369
1370 return ret;
1371 }
1372
1373 /*
1374 * Cross migrate two tasks
1375 */
migrate_swap(struct task_struct * cur,struct task_struct * p)1376 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1377 {
1378 struct migration_swap_arg arg;
1379 int ret = -EINVAL;
1380
1381 arg = (struct migration_swap_arg){
1382 .src_task = cur,
1383 .src_cpu = task_cpu(cur),
1384 .dst_task = p,
1385 .dst_cpu = task_cpu(p),
1386 };
1387
1388 if (arg.src_cpu == arg.dst_cpu)
1389 goto out;
1390
1391 /*
1392 * These three tests are all lockless; this is OK since all of them
1393 * will be re-checked with proper locks held further down the line.
1394 */
1395 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1396 goto out;
1397
1398 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1399 goto out;
1400
1401 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1402 goto out;
1403
1404 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1405 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1406
1407 out:
1408 return ret;
1409 }
1410
1411 /*
1412 * wait_task_inactive - wait for a thread to unschedule.
1413 *
1414 * If @match_state is nonzero, it's the @p->state value just checked and
1415 * not expected to change. If it changes, i.e. @p might have woken up,
1416 * then return zero. When we succeed in waiting for @p to be off its CPU,
1417 * we return a positive number (its total switch count). If a second call
1418 * a short while later returns the same number, the caller can be sure that
1419 * @p has remained unscheduled the whole time.
1420 *
1421 * The caller must ensure that the task *will* unschedule sometime soon,
1422 * else this function might spin for a *long* time. This function can't
1423 * be called with interrupts off, or it may introduce deadlock with
1424 * smp_call_function() if an IPI is sent by the same process we are
1425 * waiting to become inactive.
1426 */
wait_task_inactive(struct task_struct * p,long match_state)1427 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1428 {
1429 unsigned long flags;
1430 int running, queued;
1431 unsigned long ncsw;
1432 struct rq *rq;
1433
1434 for (;;) {
1435 /*
1436 * We do the initial early heuristics without holding
1437 * any task-queue locks at all. We'll only try to get
1438 * the runqueue lock when things look like they will
1439 * work out!
1440 */
1441 rq = task_rq(p);
1442
1443 /*
1444 * If the task is actively running on another CPU
1445 * still, just relax and busy-wait without holding
1446 * any locks.
1447 *
1448 * NOTE! Since we don't hold any locks, it's not
1449 * even sure that "rq" stays as the right runqueue!
1450 * But we don't care, since "task_running()" will
1451 * return false if the runqueue has changed and p
1452 * is actually now running somewhere else!
1453 */
1454 while (task_running(rq, p)) {
1455 if (match_state && unlikely(p->state != match_state))
1456 return 0;
1457 cpu_relax();
1458 }
1459
1460 /*
1461 * Ok, time to look more closely! We need the rq
1462 * lock now, to be *sure*. If we're wrong, we'll
1463 * just go back and repeat.
1464 */
1465 rq = task_rq_lock(p, &flags);
1466 trace_sched_wait_task(p);
1467 running = task_running(rq, p);
1468 queued = task_on_rq_queued(p);
1469 ncsw = 0;
1470 if (!match_state || p->state == match_state)
1471 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1472 task_rq_unlock(rq, p, &flags);
1473
1474 /*
1475 * If it changed from the expected state, bail out now.
1476 */
1477 if (unlikely(!ncsw))
1478 break;
1479
1480 /*
1481 * Was it really running after all now that we
1482 * checked with the proper locks actually held?
1483 *
1484 * Oops. Go back and try again..
1485 */
1486 if (unlikely(running)) {
1487 cpu_relax();
1488 continue;
1489 }
1490
1491 /*
1492 * It's not enough that it's not actively running,
1493 * it must be off the runqueue _entirely_, and not
1494 * preempted!
1495 *
1496 * So if it was still runnable (but just not actively
1497 * running right now), it's preempted, and we should
1498 * yield - it could be a while.
1499 */
1500 if (unlikely(queued)) {
1501 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1502
1503 set_current_state(TASK_UNINTERRUPTIBLE);
1504 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1505 continue;
1506 }
1507
1508 /*
1509 * Ahh, all good. It wasn't running, and it wasn't
1510 * runnable, which means that it will never become
1511 * running in the future either. We're all done!
1512 */
1513 break;
1514 }
1515
1516 return ncsw;
1517 }
1518
1519 /***
1520 * kick_process - kick a running thread to enter/exit the kernel
1521 * @p: the to-be-kicked thread
1522 *
1523 * Cause a process which is running on another CPU to enter
1524 * kernel-mode, without any delay. (to get signals handled.)
1525 *
1526 * NOTE: this function doesn't have to take the runqueue lock,
1527 * because all it wants to ensure is that the remote task enters
1528 * the kernel. If the IPI races and the task has been migrated
1529 * to another CPU then no harm is done and the purpose has been
1530 * achieved as well.
1531 */
kick_process(struct task_struct * p)1532 void kick_process(struct task_struct *p)
1533 {
1534 int cpu;
1535
1536 preempt_disable();
1537 cpu = task_cpu(p);
1538 if ((cpu != smp_processor_id()) && task_curr(p))
1539 smp_send_reschedule(cpu);
1540 preempt_enable();
1541 }
1542 EXPORT_SYMBOL_GPL(kick_process);
1543
1544 /*
1545 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1546 */
select_fallback_rq(int cpu,struct task_struct * p)1547 static int select_fallback_rq(int cpu, struct task_struct *p)
1548 {
1549 int nid = cpu_to_node(cpu);
1550 const struct cpumask *nodemask = NULL;
1551 enum { cpuset, possible, fail } state = cpuset;
1552 int dest_cpu;
1553
1554 /*
1555 * If the node that the cpu is on has been offlined, cpu_to_node()
1556 * will return -1. There is no cpu on the node, and we should
1557 * select the cpu on the other node.
1558 */
1559 if (nid != -1) {
1560 nodemask = cpumask_of_node(nid);
1561
1562 /* Look for allowed, online CPU in same node. */
1563 for_each_cpu(dest_cpu, nodemask) {
1564 if (!cpu_online(dest_cpu))
1565 continue;
1566 if (!cpu_active(dest_cpu))
1567 continue;
1568 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1569 return dest_cpu;
1570 }
1571 }
1572
1573 for (;;) {
1574 /* Any allowed, online CPU? */
1575 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1576 if (!cpu_online(dest_cpu))
1577 continue;
1578 if (!cpu_active(dest_cpu))
1579 continue;
1580 goto out;
1581 }
1582
1583 /* No more Mr. Nice Guy. */
1584 switch (state) {
1585 case cpuset:
1586 if (IS_ENABLED(CONFIG_CPUSETS)) {
1587 cpuset_cpus_allowed_fallback(p);
1588 state = possible;
1589 break;
1590 }
1591 /* fall-through */
1592 case possible:
1593 do_set_cpus_allowed(p, cpu_possible_mask);
1594 state = fail;
1595 break;
1596
1597 case fail:
1598 BUG();
1599 break;
1600 }
1601 }
1602
1603 out:
1604 if (state != cpuset) {
1605 /*
1606 * Don't tell them about moving exiting tasks or
1607 * kernel threads (both mm NULL), since they never
1608 * leave kernel.
1609 */
1610 if (p->mm && printk_ratelimit()) {
1611 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1612 task_pid_nr(p), p->comm, cpu);
1613 }
1614 }
1615
1616 return dest_cpu;
1617 }
1618
1619 /*
1620 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1621 */
1622 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)1623 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1624 {
1625 lockdep_assert_held(&p->pi_lock);
1626
1627 if (p->nr_cpus_allowed > 1)
1628 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1629
1630 /*
1631 * In order not to call set_task_cpu() on a blocking task we need
1632 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1633 * cpu.
1634 *
1635 * Since this is common to all placement strategies, this lives here.
1636 *
1637 * [ this allows ->select_task() to simply return task_cpu(p) and
1638 * not worry about this generic constraint ]
1639 */
1640 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1641 !cpu_online(cpu)))
1642 cpu = select_fallback_rq(task_cpu(p), p);
1643
1644 return cpu;
1645 }
1646
update_avg(u64 * avg,u64 sample)1647 static void update_avg(u64 *avg, u64 sample)
1648 {
1649 s64 diff = sample - *avg;
1650 *avg += diff >> 3;
1651 }
1652
1653 #else
1654
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1655 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1656 const struct cpumask *new_mask, bool check)
1657 {
1658 return set_cpus_allowed_ptr(p, new_mask);
1659 }
1660
1661 #endif /* CONFIG_SMP */
1662
1663 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)1664 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1665 {
1666 #ifdef CONFIG_SCHEDSTATS
1667 struct rq *rq = this_rq();
1668
1669 #ifdef CONFIG_SMP
1670 int this_cpu = smp_processor_id();
1671
1672 if (cpu == this_cpu) {
1673 schedstat_inc(rq, ttwu_local);
1674 schedstat_inc(p, se.statistics.nr_wakeups_local);
1675 } else {
1676 struct sched_domain *sd;
1677
1678 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1679 rcu_read_lock();
1680 for_each_domain(this_cpu, sd) {
1681 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1682 schedstat_inc(sd, ttwu_wake_remote);
1683 break;
1684 }
1685 }
1686 rcu_read_unlock();
1687 }
1688
1689 if (wake_flags & WF_MIGRATED)
1690 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1691
1692 #endif /* CONFIG_SMP */
1693
1694 schedstat_inc(rq, ttwu_count);
1695 schedstat_inc(p, se.statistics.nr_wakeups);
1696
1697 if (wake_flags & WF_SYNC)
1698 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1699
1700 #endif /* CONFIG_SCHEDSTATS */
1701 }
1702
ttwu_activate(struct rq * rq,struct task_struct * p,int en_flags)1703 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1704 {
1705 activate_task(rq, p, en_flags);
1706 p->on_rq = TASK_ON_RQ_QUEUED;
1707
1708 /* if a worker is waking up, notify workqueue */
1709 if (p->flags & PF_WQ_WORKER)
1710 wq_worker_waking_up(p, cpu_of(rq));
1711 }
1712
1713 /*
1714 * Mark the task runnable and perform wakeup-preemption.
1715 */
1716 static void
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)1717 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1718 {
1719 check_preempt_curr(rq, p, wake_flags);
1720 p->state = TASK_RUNNING;
1721 trace_sched_wakeup(p);
1722
1723 #ifdef CONFIG_SMP
1724 if (p->sched_class->task_woken) {
1725 /*
1726 * Our task @p is fully woken up and running; so its safe to
1727 * drop the rq->lock, hereafter rq is only used for statistics.
1728 */
1729 lockdep_unpin_lock(&rq->lock);
1730 p->sched_class->task_woken(rq, p);
1731 lockdep_pin_lock(&rq->lock);
1732 }
1733
1734 if (rq->idle_stamp) {
1735 u64 delta = rq_clock(rq) - rq->idle_stamp;
1736 u64 max = 2*rq->max_idle_balance_cost;
1737
1738 update_avg(&rq->avg_idle, delta);
1739
1740 if (rq->avg_idle > max)
1741 rq->avg_idle = max;
1742
1743 rq->idle_stamp = 0;
1744 }
1745 #endif
1746 }
1747
1748 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags)1749 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1750 {
1751 lockdep_assert_held(&rq->lock);
1752
1753 #ifdef CONFIG_SMP
1754 if (p->sched_contributes_to_load)
1755 rq->nr_uninterruptible--;
1756 #endif
1757
1758 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1759 ttwu_do_wakeup(rq, p, wake_flags);
1760 }
1761
1762 /*
1763 * Called in case the task @p isn't fully descheduled from its runqueue,
1764 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1765 * since all we need to do is flip p->state to TASK_RUNNING, since
1766 * the task is still ->on_rq.
1767 */
ttwu_remote(struct task_struct * p,int wake_flags)1768 static int ttwu_remote(struct task_struct *p, int wake_flags)
1769 {
1770 struct rq *rq;
1771 int ret = 0;
1772
1773 rq = __task_rq_lock(p);
1774 if (task_on_rq_queued(p)) {
1775 /* check_preempt_curr() may use rq clock */
1776 update_rq_clock(rq);
1777 ttwu_do_wakeup(rq, p, wake_flags);
1778 ret = 1;
1779 }
1780 __task_rq_unlock(rq);
1781
1782 return ret;
1783 }
1784
1785 #ifdef CONFIG_SMP
sched_ttwu_pending(void)1786 void sched_ttwu_pending(void)
1787 {
1788 struct rq *rq = this_rq();
1789 struct llist_node *llist = llist_del_all(&rq->wake_list);
1790 struct task_struct *p;
1791 unsigned long flags;
1792
1793 if (!llist)
1794 return;
1795
1796 raw_spin_lock_irqsave(&rq->lock, flags);
1797 lockdep_pin_lock(&rq->lock);
1798
1799 while (llist) {
1800 p = llist_entry(llist, struct task_struct, wake_entry);
1801 llist = llist_next(llist);
1802 ttwu_do_activate(rq, p, 0);
1803 }
1804
1805 lockdep_unpin_lock(&rq->lock);
1806 raw_spin_unlock_irqrestore(&rq->lock, flags);
1807 }
1808
scheduler_ipi(void)1809 void scheduler_ipi(void)
1810 {
1811 /*
1812 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1813 * TIF_NEED_RESCHED remotely (for the first time) will also send
1814 * this IPI.
1815 */
1816 preempt_fold_need_resched();
1817
1818 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1819 return;
1820
1821 /*
1822 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1823 * traditionally all their work was done from the interrupt return
1824 * path. Now that we actually do some work, we need to make sure
1825 * we do call them.
1826 *
1827 * Some archs already do call them, luckily irq_enter/exit nest
1828 * properly.
1829 *
1830 * Arguably we should visit all archs and update all handlers,
1831 * however a fair share of IPIs are still resched only so this would
1832 * somewhat pessimize the simple resched case.
1833 */
1834 irq_enter();
1835 sched_ttwu_pending();
1836
1837 /*
1838 * Check if someone kicked us for doing the nohz idle load balance.
1839 */
1840 if (unlikely(got_nohz_idle_kick())) {
1841 this_rq()->idle_balance = 1;
1842 raise_softirq_irqoff(SCHED_SOFTIRQ);
1843 }
1844 irq_exit();
1845 }
1846
ttwu_queue_remote(struct task_struct * p,int cpu)1847 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1848 {
1849 struct rq *rq = cpu_rq(cpu);
1850
1851 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1852 if (!set_nr_if_polling(rq->idle))
1853 smp_send_reschedule(cpu);
1854 else
1855 trace_sched_wake_idle_without_ipi(cpu);
1856 }
1857 }
1858
wake_up_if_idle(int cpu)1859 void wake_up_if_idle(int cpu)
1860 {
1861 struct rq *rq = cpu_rq(cpu);
1862 unsigned long flags;
1863
1864 rcu_read_lock();
1865
1866 if (!is_idle_task(rcu_dereference(rq->curr)))
1867 goto out;
1868
1869 if (set_nr_if_polling(rq->idle)) {
1870 trace_sched_wake_idle_without_ipi(cpu);
1871 } else {
1872 raw_spin_lock_irqsave(&rq->lock, flags);
1873 if (is_idle_task(rq->curr))
1874 smp_send_reschedule(cpu);
1875 /* Else cpu is not in idle, do nothing here */
1876 raw_spin_unlock_irqrestore(&rq->lock, flags);
1877 }
1878
1879 out:
1880 rcu_read_unlock();
1881 }
1882
cpus_share_cache(int this_cpu,int that_cpu)1883 bool cpus_share_cache(int this_cpu, int that_cpu)
1884 {
1885 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1886 }
1887 #endif /* CONFIG_SMP */
1888
ttwu_queue(struct task_struct * p,int cpu)1889 static void ttwu_queue(struct task_struct *p, int cpu)
1890 {
1891 struct rq *rq = cpu_rq(cpu);
1892
1893 #if defined(CONFIG_SMP)
1894 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1895 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1896 ttwu_queue_remote(p, cpu);
1897 return;
1898 }
1899 #endif
1900
1901 raw_spin_lock(&rq->lock);
1902 lockdep_pin_lock(&rq->lock);
1903 ttwu_do_activate(rq, p, 0);
1904 lockdep_unpin_lock(&rq->lock);
1905 raw_spin_unlock(&rq->lock);
1906 }
1907
1908 /**
1909 * try_to_wake_up - wake up a thread
1910 * @p: the thread to be awakened
1911 * @state: the mask of task states that can be woken
1912 * @wake_flags: wake modifier flags (WF_*)
1913 *
1914 * Put it on the run-queue if it's not already there. The "current"
1915 * thread is always on the run-queue (except when the actual
1916 * re-schedule is in progress), and as such you're allowed to do
1917 * the simpler "current->state = TASK_RUNNING" to mark yourself
1918 * runnable without the overhead of this.
1919 *
1920 * Return: %true if @p was woken up, %false if it was already running.
1921 * or @state didn't match @p's state.
1922 */
1923 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)1924 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1925 {
1926 unsigned long flags;
1927 int cpu, success = 0;
1928
1929 /*
1930 * If we are going to wake up a thread waiting for CONDITION we
1931 * need to ensure that CONDITION=1 done by the caller can not be
1932 * reordered with p->state check below. This pairs with mb() in
1933 * set_current_state() the waiting thread does.
1934 */
1935 smp_mb__before_spinlock();
1936 raw_spin_lock_irqsave(&p->pi_lock, flags);
1937 if (!(p->state & state))
1938 goto out;
1939
1940 trace_sched_waking(p);
1941
1942 success = 1; /* we're going to change ->state */
1943 cpu = task_cpu(p);
1944
1945 if (p->on_rq && ttwu_remote(p, wake_flags))
1946 goto stat;
1947
1948 #ifdef CONFIG_SMP
1949 /*
1950 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1951 * possible to, falsely, observe p->on_cpu == 0.
1952 *
1953 * One must be running (->on_cpu == 1) in order to remove oneself
1954 * from the runqueue.
1955 *
1956 * [S] ->on_cpu = 1; [L] ->on_rq
1957 * UNLOCK rq->lock
1958 * RMB
1959 * LOCK rq->lock
1960 * [S] ->on_rq = 0; [L] ->on_cpu
1961 *
1962 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1963 * from the consecutive calls to schedule(); the first switching to our
1964 * task, the second putting it to sleep.
1965 */
1966 smp_rmb();
1967
1968 /*
1969 * If the owning (remote) cpu is still in the middle of schedule() with
1970 * this task as prev, wait until its done referencing the task.
1971 */
1972 while (p->on_cpu)
1973 cpu_relax();
1974 /*
1975 * Combined with the control dependency above, we have an effective
1976 * smp_load_acquire() without the need for full barriers.
1977 *
1978 * Pairs with the smp_store_release() in finish_lock_switch().
1979 *
1980 * This ensures that tasks getting woken will be fully ordered against
1981 * their previous state and preserve Program Order.
1982 */
1983 smp_rmb();
1984
1985 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1986 p->state = TASK_WAKING;
1987
1988 if (p->sched_class->task_waking)
1989 p->sched_class->task_waking(p);
1990
1991 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1992 if (task_cpu(p) != cpu) {
1993 wake_flags |= WF_MIGRATED;
1994 set_task_cpu(p, cpu);
1995 }
1996 #endif /* CONFIG_SMP */
1997
1998 ttwu_queue(p, cpu);
1999 stat:
2000 ttwu_stat(p, cpu, wake_flags);
2001 out:
2002 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2003
2004 return success;
2005 }
2006
2007 /**
2008 * try_to_wake_up_local - try to wake up a local task with rq lock held
2009 * @p: the thread to be awakened
2010 *
2011 * Put @p on the run-queue if it's not already there. The caller must
2012 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2013 * the current task.
2014 */
try_to_wake_up_local(struct task_struct * p)2015 static void try_to_wake_up_local(struct task_struct *p)
2016 {
2017 struct rq *rq = task_rq(p);
2018
2019 if (WARN_ON_ONCE(rq != this_rq()) ||
2020 WARN_ON_ONCE(p == current))
2021 return;
2022
2023 lockdep_assert_held(&rq->lock);
2024
2025 if (!raw_spin_trylock(&p->pi_lock)) {
2026 /*
2027 * This is OK, because current is on_cpu, which avoids it being
2028 * picked for load-balance and preemption/IRQs are still
2029 * disabled avoiding further scheduler activity on it and we've
2030 * not yet picked a replacement task.
2031 */
2032 lockdep_unpin_lock(&rq->lock);
2033 raw_spin_unlock(&rq->lock);
2034 raw_spin_lock(&p->pi_lock);
2035 raw_spin_lock(&rq->lock);
2036 lockdep_pin_lock(&rq->lock);
2037 }
2038
2039 if (!(p->state & TASK_NORMAL))
2040 goto out;
2041
2042 trace_sched_waking(p);
2043
2044 if (!task_on_rq_queued(p))
2045 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2046
2047 ttwu_do_wakeup(rq, p, 0);
2048 ttwu_stat(p, smp_processor_id(), 0);
2049 out:
2050 raw_spin_unlock(&p->pi_lock);
2051 }
2052
2053 /**
2054 * wake_up_process - Wake up a specific process
2055 * @p: The process to be woken up.
2056 *
2057 * Attempt to wake up the nominated process and move it to the set of runnable
2058 * processes.
2059 *
2060 * Return: 1 if the process was woken up, 0 if it was already running.
2061 *
2062 * It may be assumed that this function implies a write memory barrier before
2063 * changing the task state if and only if any tasks are woken up.
2064 */
wake_up_process(struct task_struct * p)2065 int wake_up_process(struct task_struct *p)
2066 {
2067 return try_to_wake_up(p, TASK_NORMAL, 0);
2068 }
2069 EXPORT_SYMBOL(wake_up_process);
2070
wake_up_state(struct task_struct * p,unsigned int state)2071 int wake_up_state(struct task_struct *p, unsigned int state)
2072 {
2073 return try_to_wake_up(p, state, 0);
2074 }
2075
2076 /*
2077 * This function clears the sched_dl_entity static params.
2078 */
__dl_clear_params(struct task_struct * p)2079 void __dl_clear_params(struct task_struct *p)
2080 {
2081 struct sched_dl_entity *dl_se = &p->dl;
2082
2083 dl_se->dl_runtime = 0;
2084 dl_se->dl_deadline = 0;
2085 dl_se->dl_period = 0;
2086 dl_se->flags = 0;
2087 dl_se->dl_bw = 0;
2088
2089 dl_se->dl_throttled = 0;
2090 dl_se->dl_new = 1;
2091 dl_se->dl_yielded = 0;
2092 }
2093
2094 /*
2095 * Perform scheduler related setup for a newly forked process p.
2096 * p is forked by current.
2097 *
2098 * __sched_fork() is basic setup used by init_idle() too:
2099 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)2100 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2101 {
2102 p->on_rq = 0;
2103
2104 p->se.on_rq = 0;
2105 p->se.exec_start = 0;
2106 p->se.sum_exec_runtime = 0;
2107 p->se.prev_sum_exec_runtime = 0;
2108 p->se.nr_migrations = 0;
2109 p->se.vruntime = 0;
2110 INIT_LIST_HEAD(&p->se.group_node);
2111
2112 #ifdef CONFIG_SCHEDSTATS
2113 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2114 #endif
2115
2116 RB_CLEAR_NODE(&p->dl.rb_node);
2117 init_dl_task_timer(&p->dl);
2118 __dl_clear_params(p);
2119
2120 INIT_LIST_HEAD(&p->rt.run_list);
2121
2122 #ifdef CONFIG_PREEMPT_NOTIFIERS
2123 INIT_HLIST_HEAD(&p->preempt_notifiers);
2124 #endif
2125
2126 #ifdef CONFIG_NUMA_BALANCING
2127 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2128 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2129 p->mm->numa_scan_seq = 0;
2130 }
2131
2132 if (clone_flags & CLONE_VM)
2133 p->numa_preferred_nid = current->numa_preferred_nid;
2134 else
2135 p->numa_preferred_nid = -1;
2136
2137 p->node_stamp = 0ULL;
2138 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2139 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2140 p->numa_work.next = &p->numa_work;
2141 p->numa_faults = NULL;
2142 p->last_task_numa_placement = 0;
2143 p->last_sum_exec_runtime = 0;
2144
2145 p->numa_group = NULL;
2146 #endif /* CONFIG_NUMA_BALANCING */
2147 }
2148
2149 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2150
2151 #ifdef CONFIG_NUMA_BALANCING
2152
set_numabalancing_state(bool enabled)2153 void set_numabalancing_state(bool enabled)
2154 {
2155 if (enabled)
2156 static_branch_enable(&sched_numa_balancing);
2157 else
2158 static_branch_disable(&sched_numa_balancing);
2159 }
2160
2161 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2162 int sysctl_numa_balancing(struct ctl_table *table, int write,
2163 void __user *buffer, size_t *lenp, loff_t *ppos)
2164 {
2165 struct ctl_table t;
2166 int err;
2167 int state = static_branch_likely(&sched_numa_balancing);
2168
2169 if (write && !capable(CAP_SYS_ADMIN))
2170 return -EPERM;
2171
2172 t = *table;
2173 t.data = &state;
2174 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2175 if (err < 0)
2176 return err;
2177 if (write)
2178 set_numabalancing_state(state);
2179 return err;
2180 }
2181 #endif
2182 #endif
2183
2184 /*
2185 * fork()/clone()-time setup:
2186 */
sched_fork(unsigned long clone_flags,struct task_struct * p)2187 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2188 {
2189 unsigned long flags;
2190 int cpu = get_cpu();
2191
2192 __sched_fork(clone_flags, p);
2193 /*
2194 * We mark the process as running here. This guarantees that
2195 * nobody will actually run it, and a signal or other external
2196 * event cannot wake it up and insert it on the runqueue either.
2197 */
2198 p->state = TASK_RUNNING;
2199
2200 /*
2201 * Make sure we do not leak PI boosting priority to the child.
2202 */
2203 p->prio = current->normal_prio;
2204
2205 /*
2206 * Revert to default priority/policy on fork if requested.
2207 */
2208 if (unlikely(p->sched_reset_on_fork)) {
2209 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2210 p->policy = SCHED_NORMAL;
2211 p->static_prio = NICE_TO_PRIO(0);
2212 p->rt_priority = 0;
2213 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2214 p->static_prio = NICE_TO_PRIO(0);
2215
2216 p->prio = p->normal_prio = __normal_prio(p);
2217 set_load_weight(p);
2218
2219 /*
2220 * We don't need the reset flag anymore after the fork. It has
2221 * fulfilled its duty:
2222 */
2223 p->sched_reset_on_fork = 0;
2224 }
2225
2226 if (dl_prio(p->prio)) {
2227 put_cpu();
2228 return -EAGAIN;
2229 } else if (rt_prio(p->prio)) {
2230 p->sched_class = &rt_sched_class;
2231 } else {
2232 p->sched_class = &fair_sched_class;
2233 }
2234
2235 if (p->sched_class->task_fork)
2236 p->sched_class->task_fork(p);
2237
2238 /*
2239 * The child is not yet in the pid-hash so no cgroup attach races,
2240 * and the cgroup is pinned to this child due to cgroup_fork()
2241 * is ran before sched_fork().
2242 *
2243 * Silence PROVE_RCU.
2244 */
2245 raw_spin_lock_irqsave(&p->pi_lock, flags);
2246 set_task_cpu(p, cpu);
2247 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2248
2249 #ifdef CONFIG_SCHED_INFO
2250 if (likely(sched_info_on()))
2251 memset(&p->sched_info, 0, sizeof(p->sched_info));
2252 #endif
2253 #if defined(CONFIG_SMP)
2254 p->on_cpu = 0;
2255 #endif
2256 init_task_preempt_count(p);
2257 #ifdef CONFIG_SMP
2258 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2259 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2260 #endif
2261
2262 put_cpu();
2263 return 0;
2264 }
2265
to_ratio(u64 period,u64 runtime)2266 unsigned long to_ratio(u64 period, u64 runtime)
2267 {
2268 if (runtime == RUNTIME_INF)
2269 return 1ULL << 20;
2270
2271 /*
2272 * Doing this here saves a lot of checks in all
2273 * the calling paths, and returning zero seems
2274 * safe for them anyway.
2275 */
2276 if (period == 0)
2277 return 0;
2278
2279 return div64_u64(runtime << 20, period);
2280 }
2281
2282 #ifdef CONFIG_SMP
dl_bw_of(int i)2283 inline struct dl_bw *dl_bw_of(int i)
2284 {
2285 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2286 "sched RCU must be held");
2287 return &cpu_rq(i)->rd->dl_bw;
2288 }
2289
dl_bw_cpus(int i)2290 static inline int dl_bw_cpus(int i)
2291 {
2292 struct root_domain *rd = cpu_rq(i)->rd;
2293 int cpus = 0;
2294
2295 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2296 "sched RCU must be held");
2297 for_each_cpu_and(i, rd->span, cpu_active_mask)
2298 cpus++;
2299
2300 return cpus;
2301 }
2302 #else
dl_bw_of(int i)2303 inline struct dl_bw *dl_bw_of(int i)
2304 {
2305 return &cpu_rq(i)->dl.dl_bw;
2306 }
2307
dl_bw_cpus(int i)2308 static inline int dl_bw_cpus(int i)
2309 {
2310 return 1;
2311 }
2312 #endif
2313
2314 /*
2315 * We must be sure that accepting a new task (or allowing changing the
2316 * parameters of an existing one) is consistent with the bandwidth
2317 * constraints. If yes, this function also accordingly updates the currently
2318 * allocated bandwidth to reflect the new situation.
2319 *
2320 * This function is called while holding p's rq->lock.
2321 *
2322 * XXX we should delay bw change until the task's 0-lag point, see
2323 * __setparam_dl().
2324 */
dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2325 static int dl_overflow(struct task_struct *p, int policy,
2326 const struct sched_attr *attr)
2327 {
2328
2329 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2330 u64 period = attr->sched_period ?: attr->sched_deadline;
2331 u64 runtime = attr->sched_runtime;
2332 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2333 int cpus, err = -1;
2334
2335 if (new_bw == p->dl.dl_bw)
2336 return 0;
2337
2338 /*
2339 * Either if a task, enters, leave, or stays -deadline but changes
2340 * its parameters, we may need to update accordingly the total
2341 * allocated bandwidth of the container.
2342 */
2343 raw_spin_lock(&dl_b->lock);
2344 cpus = dl_bw_cpus(task_cpu(p));
2345 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2346 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2347 __dl_add(dl_b, new_bw);
2348 err = 0;
2349 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2350 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2351 __dl_clear(dl_b, p->dl.dl_bw);
2352 __dl_add(dl_b, new_bw);
2353 err = 0;
2354 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2355 __dl_clear(dl_b, p->dl.dl_bw);
2356 err = 0;
2357 }
2358 raw_spin_unlock(&dl_b->lock);
2359
2360 return err;
2361 }
2362
2363 extern void init_dl_bw(struct dl_bw *dl_b);
2364
2365 /*
2366 * wake_up_new_task - wake up a newly created task for the first time.
2367 *
2368 * This function will do some initial scheduler statistics housekeeping
2369 * that must be done for every newly created context, then puts the task
2370 * on the runqueue and wakes it.
2371 */
wake_up_new_task(struct task_struct * p)2372 void wake_up_new_task(struct task_struct *p)
2373 {
2374 unsigned long flags;
2375 struct rq *rq;
2376
2377 raw_spin_lock_irqsave(&p->pi_lock, flags);
2378 /* Initialize new task's runnable average */
2379 init_entity_runnable_average(&p->se);
2380 #ifdef CONFIG_SMP
2381 /*
2382 * Fork balancing, do it here and not earlier because:
2383 * - cpus_allowed can change in the fork path
2384 * - any previously selected cpu might disappear through hotplug
2385 */
2386 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2387 #endif
2388
2389 rq = __task_rq_lock(p);
2390 activate_task(rq, p, 0);
2391 p->on_rq = TASK_ON_RQ_QUEUED;
2392 trace_sched_wakeup_new(p);
2393 check_preempt_curr(rq, p, WF_FORK);
2394 #ifdef CONFIG_SMP
2395 if (p->sched_class->task_woken) {
2396 /*
2397 * Nothing relies on rq->lock after this, so its fine to
2398 * drop it.
2399 */
2400 lockdep_unpin_lock(&rq->lock);
2401 p->sched_class->task_woken(rq, p);
2402 lockdep_pin_lock(&rq->lock);
2403 }
2404 #endif
2405 task_rq_unlock(rq, p, &flags);
2406 }
2407
2408 #ifdef CONFIG_PREEMPT_NOTIFIERS
2409
2410 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2411
preempt_notifier_inc(void)2412 void preempt_notifier_inc(void)
2413 {
2414 static_key_slow_inc(&preempt_notifier_key);
2415 }
2416 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2417
preempt_notifier_dec(void)2418 void preempt_notifier_dec(void)
2419 {
2420 static_key_slow_dec(&preempt_notifier_key);
2421 }
2422 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2423
2424 /**
2425 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2426 * @notifier: notifier struct to register
2427 */
preempt_notifier_register(struct preempt_notifier * notifier)2428 void preempt_notifier_register(struct preempt_notifier *notifier)
2429 {
2430 if (!static_key_false(&preempt_notifier_key))
2431 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2432
2433 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2434 }
2435 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2436
2437 /**
2438 * preempt_notifier_unregister - no longer interested in preemption notifications
2439 * @notifier: notifier struct to unregister
2440 *
2441 * This is *not* safe to call from within a preemption notifier.
2442 */
preempt_notifier_unregister(struct preempt_notifier * notifier)2443 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2444 {
2445 hlist_del(¬ifier->link);
2446 }
2447 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2448
__fire_sched_in_preempt_notifiers(struct task_struct * curr)2449 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2450 {
2451 struct preempt_notifier *notifier;
2452
2453 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2454 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2455 }
2456
fire_sched_in_preempt_notifiers(struct task_struct * curr)2457 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2458 {
2459 if (static_key_false(&preempt_notifier_key))
2460 __fire_sched_in_preempt_notifiers(curr);
2461 }
2462
2463 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2464 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2465 struct task_struct *next)
2466 {
2467 struct preempt_notifier *notifier;
2468
2469 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2470 notifier->ops->sched_out(notifier, next);
2471 }
2472
2473 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2474 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2475 struct task_struct *next)
2476 {
2477 if (static_key_false(&preempt_notifier_key))
2478 __fire_sched_out_preempt_notifiers(curr, next);
2479 }
2480
2481 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2482
fire_sched_in_preempt_notifiers(struct task_struct * curr)2483 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2484 {
2485 }
2486
2487 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2488 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2489 struct task_struct *next)
2490 {
2491 }
2492
2493 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2494
2495 /**
2496 * prepare_task_switch - prepare to switch tasks
2497 * @rq: the runqueue preparing to switch
2498 * @prev: the current task that is being switched out
2499 * @next: the task we are going to switch to.
2500 *
2501 * This is called with the rq lock held and interrupts off. It must
2502 * be paired with a subsequent finish_task_switch after the context
2503 * switch.
2504 *
2505 * prepare_task_switch sets up locking and calls architecture specific
2506 * hooks.
2507 */
2508 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2509 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2510 struct task_struct *next)
2511 {
2512 sched_info_switch(rq, prev, next);
2513 perf_event_task_sched_out(prev, next);
2514 fire_sched_out_preempt_notifiers(prev, next);
2515 prepare_lock_switch(rq, next);
2516 prepare_arch_switch(next);
2517 }
2518
2519 /**
2520 * finish_task_switch - clean up after a task-switch
2521 * @prev: the thread we just switched away from.
2522 *
2523 * finish_task_switch must be called after the context switch, paired
2524 * with a prepare_task_switch call before the context switch.
2525 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2526 * and do any other architecture-specific cleanup actions.
2527 *
2528 * Note that we may have delayed dropping an mm in context_switch(). If
2529 * so, we finish that here outside of the runqueue lock. (Doing it
2530 * with the lock held can cause deadlocks; see schedule() for
2531 * details.)
2532 *
2533 * The context switch have flipped the stack from under us and restored the
2534 * local variables which were saved when this task called schedule() in the
2535 * past. prev == current is still correct but we need to recalculate this_rq
2536 * because prev may have moved to another CPU.
2537 */
finish_task_switch(struct task_struct * prev)2538 static struct rq *finish_task_switch(struct task_struct *prev)
2539 __releases(rq->lock)
2540 {
2541 struct rq *rq = this_rq();
2542 struct mm_struct *mm = rq->prev_mm;
2543 long prev_state;
2544
2545 /*
2546 * The previous task will have left us with a preempt_count of 2
2547 * because it left us after:
2548 *
2549 * schedule()
2550 * preempt_disable(); // 1
2551 * __schedule()
2552 * raw_spin_lock_irq(&rq->lock) // 2
2553 *
2554 * Also, see FORK_PREEMPT_COUNT.
2555 */
2556 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2557 "corrupted preempt_count: %s/%d/0x%x\n",
2558 current->comm, current->pid, preempt_count()))
2559 preempt_count_set(FORK_PREEMPT_COUNT);
2560
2561 rq->prev_mm = NULL;
2562
2563 /*
2564 * A task struct has one reference for the use as "current".
2565 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2566 * schedule one last time. The schedule call will never return, and
2567 * the scheduled task must drop that reference.
2568 *
2569 * We must observe prev->state before clearing prev->on_cpu (in
2570 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2571 * running on another CPU and we could rave with its RUNNING -> DEAD
2572 * transition, resulting in a double drop.
2573 */
2574 prev_state = prev->state;
2575 vtime_task_switch(prev);
2576 perf_event_task_sched_in(prev, current);
2577 finish_lock_switch(rq, prev);
2578 finish_arch_post_lock_switch();
2579
2580 fire_sched_in_preempt_notifiers(current);
2581 if (mm)
2582 mmdrop(mm);
2583 if (unlikely(prev_state == TASK_DEAD)) {
2584 if (prev->sched_class->task_dead)
2585 prev->sched_class->task_dead(prev);
2586
2587 /*
2588 * Remove function-return probe instances associated with this
2589 * task and put them back on the free list.
2590 */
2591 kprobe_flush_task(prev);
2592 put_task_struct(prev);
2593 }
2594
2595 tick_nohz_task_switch();
2596 return rq;
2597 }
2598
2599 #ifdef CONFIG_SMP
2600
2601 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)2602 static void __balance_callback(struct rq *rq)
2603 {
2604 struct callback_head *head, *next;
2605 void (*func)(struct rq *rq);
2606 unsigned long flags;
2607
2608 raw_spin_lock_irqsave(&rq->lock, flags);
2609 head = rq->balance_callback;
2610 rq->balance_callback = NULL;
2611 while (head) {
2612 func = (void (*)(struct rq *))head->func;
2613 next = head->next;
2614 head->next = NULL;
2615 head = next;
2616
2617 func(rq);
2618 }
2619 raw_spin_unlock_irqrestore(&rq->lock, flags);
2620 }
2621
balance_callback(struct rq * rq)2622 static inline void balance_callback(struct rq *rq)
2623 {
2624 if (unlikely(rq->balance_callback))
2625 __balance_callback(rq);
2626 }
2627
2628 #else
2629
balance_callback(struct rq * rq)2630 static inline void balance_callback(struct rq *rq)
2631 {
2632 }
2633
2634 #endif
2635
2636 /**
2637 * schedule_tail - first thing a freshly forked thread must call.
2638 * @prev: the thread we just switched away from.
2639 */
schedule_tail(struct task_struct * prev)2640 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2641 __releases(rq->lock)
2642 {
2643 struct rq *rq;
2644
2645 /*
2646 * New tasks start with FORK_PREEMPT_COUNT, see there and
2647 * finish_task_switch() for details.
2648 *
2649 * finish_task_switch() will drop rq->lock() and lower preempt_count
2650 * and the preempt_enable() will end up enabling preemption (on
2651 * PREEMPT_COUNT kernels).
2652 */
2653
2654 rq = finish_task_switch(prev);
2655 balance_callback(rq);
2656 preempt_enable();
2657
2658 if (current->set_child_tid)
2659 put_user(task_pid_vnr(current), current->set_child_tid);
2660 }
2661
2662 /*
2663 * context_switch - switch to the new MM and the new thread's register state.
2664 */
2665 static inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2666 context_switch(struct rq *rq, struct task_struct *prev,
2667 struct task_struct *next)
2668 {
2669 struct mm_struct *mm, *oldmm;
2670
2671 prepare_task_switch(rq, prev, next);
2672
2673 mm = next->mm;
2674 oldmm = prev->active_mm;
2675 /*
2676 * For paravirt, this is coupled with an exit in switch_to to
2677 * combine the page table reload and the switch backend into
2678 * one hypercall.
2679 */
2680 arch_start_context_switch(prev);
2681
2682 if (!mm) {
2683 next->active_mm = oldmm;
2684 atomic_inc(&oldmm->mm_count);
2685 enter_lazy_tlb(oldmm, next);
2686 } else
2687 switch_mm(oldmm, mm, next);
2688
2689 if (!prev->mm) {
2690 prev->active_mm = NULL;
2691 rq->prev_mm = oldmm;
2692 }
2693 /*
2694 * Since the runqueue lock will be released by the next
2695 * task (which is an invalid locking op but in the case
2696 * of the scheduler it's an obvious special-case), so we
2697 * do an early lockdep release here:
2698 */
2699 lockdep_unpin_lock(&rq->lock);
2700 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2701
2702 /* Here we just switch the register state and the stack. */
2703 switch_to(prev, next, prev);
2704 barrier();
2705
2706 return finish_task_switch(prev);
2707 }
2708
2709 /*
2710 * nr_running and nr_context_switches:
2711 *
2712 * externally visible scheduler statistics: current number of runnable
2713 * threads, total number of context switches performed since bootup.
2714 */
nr_running(void)2715 unsigned long nr_running(void)
2716 {
2717 unsigned long i, sum = 0;
2718
2719 for_each_online_cpu(i)
2720 sum += cpu_rq(i)->nr_running;
2721
2722 return sum;
2723 }
2724
2725 /*
2726 * Check if only the current task is running on the cpu.
2727 *
2728 * Caution: this function does not check that the caller has disabled
2729 * preemption, thus the result might have a time-of-check-to-time-of-use
2730 * race. The caller is responsible to use it correctly, for example:
2731 *
2732 * - from a non-preemptable section (of course)
2733 *
2734 * - from a thread that is bound to a single CPU
2735 *
2736 * - in a loop with very short iterations (e.g. a polling loop)
2737 */
single_task_running(void)2738 bool single_task_running(void)
2739 {
2740 return raw_rq()->nr_running == 1;
2741 }
2742 EXPORT_SYMBOL(single_task_running);
2743
nr_context_switches(void)2744 unsigned long long nr_context_switches(void)
2745 {
2746 int i;
2747 unsigned long long sum = 0;
2748
2749 for_each_possible_cpu(i)
2750 sum += cpu_rq(i)->nr_switches;
2751
2752 return sum;
2753 }
2754
nr_iowait(void)2755 unsigned long nr_iowait(void)
2756 {
2757 unsigned long i, sum = 0;
2758
2759 for_each_possible_cpu(i)
2760 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2761
2762 return sum;
2763 }
2764
nr_iowait_cpu(int cpu)2765 unsigned long nr_iowait_cpu(int cpu)
2766 {
2767 struct rq *this = cpu_rq(cpu);
2768 return atomic_read(&this->nr_iowait);
2769 }
2770
get_iowait_load(unsigned long * nr_waiters,unsigned long * load)2771 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2772 {
2773 struct rq *rq = this_rq();
2774 *nr_waiters = atomic_read(&rq->nr_iowait);
2775 *load = rq->load.weight;
2776 }
2777
2778 #ifdef CONFIG_SMP
2779
2780 /*
2781 * sched_exec - execve() is a valuable balancing opportunity, because at
2782 * this point the task has the smallest effective memory and cache footprint.
2783 */
sched_exec(void)2784 void sched_exec(void)
2785 {
2786 struct task_struct *p = current;
2787 unsigned long flags;
2788 int dest_cpu;
2789
2790 raw_spin_lock_irqsave(&p->pi_lock, flags);
2791 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2792 if (dest_cpu == smp_processor_id())
2793 goto unlock;
2794
2795 if (likely(cpu_active(dest_cpu))) {
2796 struct migration_arg arg = { p, dest_cpu };
2797
2798 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2799 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2800 return;
2801 }
2802 unlock:
2803 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2804 }
2805
2806 #endif
2807
2808 DEFINE_PER_CPU(struct kernel_stat, kstat);
2809 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2810
2811 EXPORT_PER_CPU_SYMBOL(kstat);
2812 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2813
2814 /*
2815 * Return accounted runtime for the task.
2816 * In case the task is currently running, return the runtime plus current's
2817 * pending runtime that have not been accounted yet.
2818 */
task_sched_runtime(struct task_struct * p)2819 unsigned long long task_sched_runtime(struct task_struct *p)
2820 {
2821 unsigned long flags;
2822 struct rq *rq;
2823 u64 ns;
2824
2825 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2826 /*
2827 * 64-bit doesn't need locks to atomically read a 64bit value.
2828 * So we have a optimization chance when the task's delta_exec is 0.
2829 * Reading ->on_cpu is racy, but this is ok.
2830 *
2831 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2832 * If we race with it entering cpu, unaccounted time is 0. This is
2833 * indistinguishable from the read occurring a few cycles earlier.
2834 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2835 * been accounted, so we're correct here as well.
2836 */
2837 if (!p->on_cpu || !task_on_rq_queued(p))
2838 return p->se.sum_exec_runtime;
2839 #endif
2840
2841 rq = task_rq_lock(p, &flags);
2842 /*
2843 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2844 * project cycles that may never be accounted to this
2845 * thread, breaking clock_gettime().
2846 */
2847 if (task_current(rq, p) && task_on_rq_queued(p)) {
2848 update_rq_clock(rq);
2849 p->sched_class->update_curr(rq);
2850 }
2851 ns = p->se.sum_exec_runtime;
2852 task_rq_unlock(rq, p, &flags);
2853
2854 return ns;
2855 }
2856
2857 /*
2858 * This function gets called by the timer code, with HZ frequency.
2859 * We call it with interrupts disabled.
2860 */
scheduler_tick(void)2861 void scheduler_tick(void)
2862 {
2863 int cpu = smp_processor_id();
2864 struct rq *rq = cpu_rq(cpu);
2865 struct task_struct *curr = rq->curr;
2866
2867 sched_clock_tick();
2868
2869 raw_spin_lock(&rq->lock);
2870 update_rq_clock(rq);
2871 curr->sched_class->task_tick(rq, curr, 0);
2872 update_cpu_load_active(rq);
2873 calc_global_load_tick(rq);
2874 raw_spin_unlock(&rq->lock);
2875
2876 perf_event_task_tick();
2877
2878 #ifdef CONFIG_SMP
2879 rq->idle_balance = idle_cpu(cpu);
2880 trigger_load_balance(rq);
2881 #endif
2882 rq_last_tick_reset(rq);
2883 }
2884
2885 #ifdef CONFIG_NO_HZ_FULL
2886 /**
2887 * scheduler_tick_max_deferment
2888 *
2889 * Keep at least one tick per second when a single
2890 * active task is running because the scheduler doesn't
2891 * yet completely support full dynticks environment.
2892 *
2893 * This makes sure that uptime, CFS vruntime, load
2894 * balancing, etc... continue to move forward, even
2895 * with a very low granularity.
2896 *
2897 * Return: Maximum deferment in nanoseconds.
2898 */
scheduler_tick_max_deferment(void)2899 u64 scheduler_tick_max_deferment(void)
2900 {
2901 struct rq *rq = this_rq();
2902 unsigned long next, now = READ_ONCE(jiffies);
2903
2904 next = rq->last_sched_tick + HZ;
2905
2906 if (time_before_eq(next, now))
2907 return 0;
2908
2909 return jiffies_to_nsecs(next - now);
2910 }
2911 #endif
2912
get_parent_ip(unsigned long addr)2913 notrace unsigned long get_parent_ip(unsigned long addr)
2914 {
2915 if (in_lock_functions(addr)) {
2916 addr = CALLER_ADDR2;
2917 if (in_lock_functions(addr))
2918 addr = CALLER_ADDR3;
2919 }
2920 return addr;
2921 }
2922
2923 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2924 defined(CONFIG_PREEMPT_TRACER))
2925
preempt_count_add(int val)2926 void preempt_count_add(int val)
2927 {
2928 #ifdef CONFIG_DEBUG_PREEMPT
2929 /*
2930 * Underflow?
2931 */
2932 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2933 return;
2934 #endif
2935 __preempt_count_add(val);
2936 #ifdef CONFIG_DEBUG_PREEMPT
2937 /*
2938 * Spinlock count overflowing soon?
2939 */
2940 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2941 PREEMPT_MASK - 10);
2942 #endif
2943 if (preempt_count() == val) {
2944 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2945 #ifdef CONFIG_DEBUG_PREEMPT
2946 current->preempt_disable_ip = ip;
2947 #endif
2948 trace_preempt_off(CALLER_ADDR0, ip);
2949 }
2950 }
2951 EXPORT_SYMBOL(preempt_count_add);
2952 NOKPROBE_SYMBOL(preempt_count_add);
2953
preempt_count_sub(int val)2954 void preempt_count_sub(int val)
2955 {
2956 #ifdef CONFIG_DEBUG_PREEMPT
2957 /*
2958 * Underflow?
2959 */
2960 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2961 return;
2962 /*
2963 * Is the spinlock portion underflowing?
2964 */
2965 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2966 !(preempt_count() & PREEMPT_MASK)))
2967 return;
2968 #endif
2969
2970 if (preempt_count() == val)
2971 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2972 __preempt_count_sub(val);
2973 }
2974 EXPORT_SYMBOL(preempt_count_sub);
2975 NOKPROBE_SYMBOL(preempt_count_sub);
2976
2977 #endif
2978
2979 /*
2980 * Print scheduling while atomic bug:
2981 */
__schedule_bug(struct task_struct * prev)2982 static noinline void __schedule_bug(struct task_struct *prev)
2983 {
2984 if (oops_in_progress)
2985 return;
2986
2987 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2988 prev->comm, prev->pid, preempt_count());
2989
2990 debug_show_held_locks(prev);
2991 print_modules();
2992 if (irqs_disabled())
2993 print_irqtrace_events(prev);
2994 #ifdef CONFIG_DEBUG_PREEMPT
2995 if (in_atomic_preempt_off()) {
2996 pr_err("Preemption disabled at:");
2997 print_ip_sym(current->preempt_disable_ip);
2998 pr_cont("\n");
2999 }
3000 #endif
3001 dump_stack();
3002 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3003 }
3004
3005 /*
3006 * Various schedule()-time debugging checks and statistics:
3007 */
schedule_debug(struct task_struct * prev)3008 static inline void schedule_debug(struct task_struct *prev)
3009 {
3010 #ifdef CONFIG_SCHED_STACK_END_CHECK
3011 if (task_stack_end_corrupted(prev))
3012 panic("corrupted stack end detected inside scheduler\n");
3013 #endif
3014
3015 if (unlikely(in_atomic_preempt_off())) {
3016 __schedule_bug(prev);
3017 preempt_count_set(PREEMPT_DISABLED);
3018 }
3019 rcu_sleep_check();
3020
3021 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3022
3023 schedstat_inc(this_rq(), sched_count);
3024 }
3025
3026 /*
3027 * Pick up the highest-prio task:
3028 */
3029 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev)3030 pick_next_task(struct rq *rq, struct task_struct *prev)
3031 {
3032 const struct sched_class *class = &fair_sched_class;
3033 struct task_struct *p;
3034
3035 /*
3036 * Optimization: we know that if all tasks are in
3037 * the fair class we can call that function directly:
3038 */
3039 if (likely(prev->sched_class == class &&
3040 rq->nr_running == rq->cfs.h_nr_running)) {
3041 p = fair_sched_class.pick_next_task(rq, prev);
3042 if (unlikely(p == RETRY_TASK))
3043 goto again;
3044
3045 /* assumes fair_sched_class->next == idle_sched_class */
3046 if (unlikely(!p))
3047 p = idle_sched_class.pick_next_task(rq, prev);
3048
3049 return p;
3050 }
3051
3052 again:
3053 for_each_class(class) {
3054 p = class->pick_next_task(rq, prev);
3055 if (p) {
3056 if (unlikely(p == RETRY_TASK))
3057 goto again;
3058 return p;
3059 }
3060 }
3061
3062 BUG(); /* the idle class will always have a runnable task */
3063 }
3064
3065 /*
3066 * __schedule() is the main scheduler function.
3067 *
3068 * The main means of driving the scheduler and thus entering this function are:
3069 *
3070 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3071 *
3072 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3073 * paths. For example, see arch/x86/entry_64.S.
3074 *
3075 * To drive preemption between tasks, the scheduler sets the flag in timer
3076 * interrupt handler scheduler_tick().
3077 *
3078 * 3. Wakeups don't really cause entry into schedule(). They add a
3079 * task to the run-queue and that's it.
3080 *
3081 * Now, if the new task added to the run-queue preempts the current
3082 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3083 * called on the nearest possible occasion:
3084 *
3085 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3086 *
3087 * - in syscall or exception context, at the next outmost
3088 * preempt_enable(). (this might be as soon as the wake_up()'s
3089 * spin_unlock()!)
3090 *
3091 * - in IRQ context, return from interrupt-handler to
3092 * preemptible context
3093 *
3094 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3095 * then at the next:
3096 *
3097 * - cond_resched() call
3098 * - explicit schedule() call
3099 * - return from syscall or exception to user-space
3100 * - return from interrupt-handler to user-space
3101 *
3102 * WARNING: must be called with preemption disabled!
3103 */
__schedule(bool preempt)3104 static void __sched notrace __schedule(bool preempt)
3105 {
3106 struct task_struct *prev, *next;
3107 unsigned long *switch_count;
3108 struct rq *rq;
3109 int cpu;
3110
3111 cpu = smp_processor_id();
3112 rq = cpu_rq(cpu);
3113 rcu_note_context_switch();
3114 prev = rq->curr;
3115
3116 /*
3117 * do_exit() calls schedule() with preemption disabled as an exception;
3118 * however we must fix that up, otherwise the next task will see an
3119 * inconsistent (higher) preempt count.
3120 *
3121 * It also avoids the below schedule_debug() test from complaining
3122 * about this.
3123 */
3124 if (unlikely(prev->state == TASK_DEAD))
3125 preempt_enable_no_resched_notrace();
3126
3127 schedule_debug(prev);
3128
3129 if (sched_feat(HRTICK))
3130 hrtick_clear(rq);
3131
3132 /*
3133 * Make sure that signal_pending_state()->signal_pending() below
3134 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3135 * done by the caller to avoid the race with signal_wake_up().
3136 */
3137 smp_mb__before_spinlock();
3138 raw_spin_lock_irq(&rq->lock);
3139 lockdep_pin_lock(&rq->lock);
3140
3141 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3142
3143 switch_count = &prev->nivcsw;
3144 if (!preempt && prev->state) {
3145 if (unlikely(signal_pending_state(prev->state, prev))) {
3146 prev->state = TASK_RUNNING;
3147 } else {
3148 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3149 prev->on_rq = 0;
3150
3151 /*
3152 * If a worker went to sleep, notify and ask workqueue
3153 * whether it wants to wake up a task to maintain
3154 * concurrency.
3155 */
3156 if (prev->flags & PF_WQ_WORKER) {
3157 struct task_struct *to_wakeup;
3158
3159 to_wakeup = wq_worker_sleeping(prev, cpu);
3160 if (to_wakeup)
3161 try_to_wake_up_local(to_wakeup);
3162 }
3163 }
3164 switch_count = &prev->nvcsw;
3165 }
3166
3167 if (task_on_rq_queued(prev))
3168 update_rq_clock(rq);
3169
3170 next = pick_next_task(rq, prev);
3171 clear_tsk_need_resched(prev);
3172 clear_preempt_need_resched();
3173 rq->clock_skip_update = 0;
3174
3175 if (likely(prev != next)) {
3176 rq->nr_switches++;
3177 rq->curr = next;
3178 ++*switch_count;
3179
3180 trace_sched_switch(preempt, prev, next);
3181 rq = context_switch(rq, prev, next); /* unlocks the rq */
3182 cpu = cpu_of(rq);
3183 } else {
3184 lockdep_unpin_lock(&rq->lock);
3185 raw_spin_unlock_irq(&rq->lock);
3186 }
3187
3188 balance_callback(rq);
3189 }
3190
sched_submit_work(struct task_struct * tsk)3191 static inline void sched_submit_work(struct task_struct *tsk)
3192 {
3193 if (!tsk->state || tsk_is_pi_blocked(tsk))
3194 return;
3195 /*
3196 * If we are going to sleep and we have plugged IO queued,
3197 * make sure to submit it to avoid deadlocks.
3198 */
3199 if (blk_needs_flush_plug(tsk))
3200 blk_schedule_flush_plug(tsk);
3201 }
3202
schedule(void)3203 asmlinkage __visible void __sched schedule(void)
3204 {
3205 struct task_struct *tsk = current;
3206
3207 sched_submit_work(tsk);
3208 do {
3209 preempt_disable();
3210 __schedule(false);
3211 sched_preempt_enable_no_resched();
3212 } while (need_resched());
3213 }
3214 EXPORT_SYMBOL(schedule);
3215
3216 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)3217 asmlinkage __visible void __sched schedule_user(void)
3218 {
3219 /*
3220 * If we come here after a random call to set_need_resched(),
3221 * or we have been woken up remotely but the IPI has not yet arrived,
3222 * we haven't yet exited the RCU idle mode. Do it here manually until
3223 * we find a better solution.
3224 *
3225 * NB: There are buggy callers of this function. Ideally we
3226 * should warn if prev_state != CONTEXT_USER, but that will trigger
3227 * too frequently to make sense yet.
3228 */
3229 enum ctx_state prev_state = exception_enter();
3230 schedule();
3231 exception_exit(prev_state);
3232 }
3233 #endif
3234
3235 /**
3236 * schedule_preempt_disabled - called with preemption disabled
3237 *
3238 * Returns with preemption disabled. Note: preempt_count must be 1
3239 */
schedule_preempt_disabled(void)3240 void __sched schedule_preempt_disabled(void)
3241 {
3242 sched_preempt_enable_no_resched();
3243 schedule();
3244 preempt_disable();
3245 }
3246
preempt_schedule_common(void)3247 static void __sched notrace preempt_schedule_common(void)
3248 {
3249 do {
3250 preempt_disable_notrace();
3251 __schedule(true);
3252 preempt_enable_no_resched_notrace();
3253
3254 /*
3255 * Check again in case we missed a preemption opportunity
3256 * between schedule and now.
3257 */
3258 } while (need_resched());
3259 }
3260
3261 #ifdef CONFIG_PREEMPT
3262 /*
3263 * this is the entry point to schedule() from in-kernel preemption
3264 * off of preempt_enable. Kernel preemptions off return from interrupt
3265 * occur there and call schedule directly.
3266 */
preempt_schedule(void)3267 asmlinkage __visible void __sched notrace preempt_schedule(void)
3268 {
3269 /*
3270 * If there is a non-zero preempt_count or interrupts are disabled,
3271 * we do not want to preempt the current task. Just return..
3272 */
3273 if (likely(!preemptible()))
3274 return;
3275
3276 preempt_schedule_common();
3277 }
3278 NOKPROBE_SYMBOL(preempt_schedule);
3279 EXPORT_SYMBOL(preempt_schedule);
3280
3281 /**
3282 * preempt_schedule_notrace - preempt_schedule called by tracing
3283 *
3284 * The tracing infrastructure uses preempt_enable_notrace to prevent
3285 * recursion and tracing preempt enabling caused by the tracing
3286 * infrastructure itself. But as tracing can happen in areas coming
3287 * from userspace or just about to enter userspace, a preempt enable
3288 * can occur before user_exit() is called. This will cause the scheduler
3289 * to be called when the system is still in usermode.
3290 *
3291 * To prevent this, the preempt_enable_notrace will use this function
3292 * instead of preempt_schedule() to exit user context if needed before
3293 * calling the scheduler.
3294 */
preempt_schedule_notrace(void)3295 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3296 {
3297 enum ctx_state prev_ctx;
3298
3299 if (likely(!preemptible()))
3300 return;
3301
3302 do {
3303 preempt_disable_notrace();
3304 /*
3305 * Needs preempt disabled in case user_exit() is traced
3306 * and the tracer calls preempt_enable_notrace() causing
3307 * an infinite recursion.
3308 */
3309 prev_ctx = exception_enter();
3310 __schedule(true);
3311 exception_exit(prev_ctx);
3312
3313 preempt_enable_no_resched_notrace();
3314 } while (need_resched());
3315 }
3316 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3317
3318 #endif /* CONFIG_PREEMPT */
3319
3320 /*
3321 * this is the entry point to schedule() from kernel preemption
3322 * off of irq context.
3323 * Note, that this is called and return with irqs disabled. This will
3324 * protect us against recursive calling from irq.
3325 */
preempt_schedule_irq(void)3326 asmlinkage __visible void __sched preempt_schedule_irq(void)
3327 {
3328 enum ctx_state prev_state;
3329
3330 /* Catch callers which need to be fixed */
3331 BUG_ON(preempt_count() || !irqs_disabled());
3332
3333 prev_state = exception_enter();
3334
3335 do {
3336 preempt_disable();
3337 local_irq_enable();
3338 __schedule(true);
3339 local_irq_disable();
3340 sched_preempt_enable_no_resched();
3341 } while (need_resched());
3342
3343 exception_exit(prev_state);
3344 }
3345
default_wake_function(wait_queue_t * curr,unsigned mode,int wake_flags,void * key)3346 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3347 void *key)
3348 {
3349 return try_to_wake_up(curr->private, mode, wake_flags);
3350 }
3351 EXPORT_SYMBOL(default_wake_function);
3352
3353 #ifdef CONFIG_RT_MUTEXES
3354
3355 /*
3356 * rt_mutex_setprio - set the current priority of a task
3357 * @p: task
3358 * @prio: prio value (kernel-internal form)
3359 *
3360 * This function changes the 'effective' priority of a task. It does
3361 * not touch ->normal_prio like __setscheduler().
3362 *
3363 * Used by the rt_mutex code to implement priority inheritance
3364 * logic. Call site only calls if the priority of the task changed.
3365 */
rt_mutex_setprio(struct task_struct * p,int prio)3366 void rt_mutex_setprio(struct task_struct *p, int prio)
3367 {
3368 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3369 struct rq *rq;
3370 const struct sched_class *prev_class;
3371
3372 BUG_ON(prio > MAX_PRIO);
3373
3374 rq = __task_rq_lock(p);
3375
3376 /*
3377 * Idle task boosting is a nono in general. There is one
3378 * exception, when PREEMPT_RT and NOHZ is active:
3379 *
3380 * The idle task calls get_next_timer_interrupt() and holds
3381 * the timer wheel base->lock on the CPU and another CPU wants
3382 * to access the timer (probably to cancel it). We can safely
3383 * ignore the boosting request, as the idle CPU runs this code
3384 * with interrupts disabled and will complete the lock
3385 * protected section without being interrupted. So there is no
3386 * real need to boost.
3387 */
3388 if (unlikely(p == rq->idle)) {
3389 WARN_ON(p != rq->curr);
3390 WARN_ON(p->pi_blocked_on);
3391 goto out_unlock;
3392 }
3393
3394 trace_sched_pi_setprio(p, prio);
3395 oldprio = p->prio;
3396 prev_class = p->sched_class;
3397 queued = task_on_rq_queued(p);
3398 running = task_current(rq, p);
3399 if (queued)
3400 dequeue_task(rq, p, DEQUEUE_SAVE);
3401 if (running)
3402 put_prev_task(rq, p);
3403
3404 /*
3405 * Boosting condition are:
3406 * 1. -rt task is running and holds mutex A
3407 * --> -dl task blocks on mutex A
3408 *
3409 * 2. -dl task is running and holds mutex A
3410 * --> -dl task blocks on mutex A and could preempt the
3411 * running task
3412 */
3413 if (dl_prio(prio)) {
3414 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3415 if (!dl_prio(p->normal_prio) ||
3416 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3417 p->dl.dl_boosted = 1;
3418 enqueue_flag |= ENQUEUE_REPLENISH;
3419 } else
3420 p->dl.dl_boosted = 0;
3421 p->sched_class = &dl_sched_class;
3422 } else if (rt_prio(prio)) {
3423 if (dl_prio(oldprio))
3424 p->dl.dl_boosted = 0;
3425 if (oldprio < prio)
3426 enqueue_flag |= ENQUEUE_HEAD;
3427 p->sched_class = &rt_sched_class;
3428 } else {
3429 if (dl_prio(oldprio))
3430 p->dl.dl_boosted = 0;
3431 if (rt_prio(oldprio))
3432 p->rt.timeout = 0;
3433 p->sched_class = &fair_sched_class;
3434 }
3435
3436 p->prio = prio;
3437
3438 if (running)
3439 p->sched_class->set_curr_task(rq);
3440 if (queued)
3441 enqueue_task(rq, p, enqueue_flag);
3442
3443 check_class_changed(rq, p, prev_class, oldprio);
3444 out_unlock:
3445 preempt_disable(); /* avoid rq from going away on us */
3446 __task_rq_unlock(rq);
3447
3448 balance_callback(rq);
3449 preempt_enable();
3450 }
3451 #endif
3452
set_user_nice(struct task_struct * p,long nice)3453 void set_user_nice(struct task_struct *p, long nice)
3454 {
3455 int old_prio, delta, queued;
3456 unsigned long flags;
3457 struct rq *rq;
3458
3459 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3460 return;
3461 /*
3462 * We have to be careful, if called from sys_setpriority(),
3463 * the task might be in the middle of scheduling on another CPU.
3464 */
3465 rq = task_rq_lock(p, &flags);
3466 /*
3467 * The RT priorities are set via sched_setscheduler(), but we still
3468 * allow the 'normal' nice value to be set - but as expected
3469 * it wont have any effect on scheduling until the task is
3470 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3471 */
3472 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3473 p->static_prio = NICE_TO_PRIO(nice);
3474 goto out_unlock;
3475 }
3476 queued = task_on_rq_queued(p);
3477 if (queued)
3478 dequeue_task(rq, p, DEQUEUE_SAVE);
3479
3480 p->static_prio = NICE_TO_PRIO(nice);
3481 set_load_weight(p);
3482 old_prio = p->prio;
3483 p->prio = effective_prio(p);
3484 delta = p->prio - old_prio;
3485
3486 if (queued) {
3487 enqueue_task(rq, p, ENQUEUE_RESTORE);
3488 /*
3489 * If the task increased its priority or is running and
3490 * lowered its priority, then reschedule its CPU:
3491 */
3492 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3493 resched_curr(rq);
3494 }
3495 out_unlock:
3496 task_rq_unlock(rq, p, &flags);
3497 }
3498 EXPORT_SYMBOL(set_user_nice);
3499
3500 /*
3501 * can_nice - check if a task can reduce its nice value
3502 * @p: task
3503 * @nice: nice value
3504 */
can_nice(const struct task_struct * p,const int nice)3505 int can_nice(const struct task_struct *p, const int nice)
3506 {
3507 /* convert nice value [19,-20] to rlimit style value [1,40] */
3508 int nice_rlim = nice_to_rlimit(nice);
3509
3510 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3511 capable(CAP_SYS_NICE));
3512 }
3513
3514 #ifdef __ARCH_WANT_SYS_NICE
3515
3516 /*
3517 * sys_nice - change the priority of the current process.
3518 * @increment: priority increment
3519 *
3520 * sys_setpriority is a more generic, but much slower function that
3521 * does similar things.
3522 */
SYSCALL_DEFINE1(nice,int,increment)3523 SYSCALL_DEFINE1(nice, int, increment)
3524 {
3525 long nice, retval;
3526
3527 /*
3528 * Setpriority might change our priority at the same moment.
3529 * We don't have to worry. Conceptually one call occurs first
3530 * and we have a single winner.
3531 */
3532 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3533 nice = task_nice(current) + increment;
3534
3535 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3536 if (increment < 0 && !can_nice(current, nice))
3537 return -EPERM;
3538
3539 retval = security_task_setnice(current, nice);
3540 if (retval)
3541 return retval;
3542
3543 set_user_nice(current, nice);
3544 return 0;
3545 }
3546
3547 #endif
3548
3549 /**
3550 * task_prio - return the priority value of a given task.
3551 * @p: the task in question.
3552 *
3553 * Return: The priority value as seen by users in /proc.
3554 * RT tasks are offset by -200. Normal tasks are centered
3555 * around 0, value goes from -16 to +15.
3556 */
task_prio(const struct task_struct * p)3557 int task_prio(const struct task_struct *p)
3558 {
3559 return p->prio - MAX_RT_PRIO;
3560 }
3561
3562 /**
3563 * idle_cpu - is a given cpu idle currently?
3564 * @cpu: the processor in question.
3565 *
3566 * Return: 1 if the CPU is currently idle. 0 otherwise.
3567 */
idle_cpu(int cpu)3568 int idle_cpu(int cpu)
3569 {
3570 struct rq *rq = cpu_rq(cpu);
3571
3572 if (rq->curr != rq->idle)
3573 return 0;
3574
3575 if (rq->nr_running)
3576 return 0;
3577
3578 #ifdef CONFIG_SMP
3579 if (!llist_empty(&rq->wake_list))
3580 return 0;
3581 #endif
3582
3583 return 1;
3584 }
3585
3586 /**
3587 * idle_task - return the idle task for a given cpu.
3588 * @cpu: the processor in question.
3589 *
3590 * Return: The idle task for the cpu @cpu.
3591 */
idle_task(int cpu)3592 struct task_struct *idle_task(int cpu)
3593 {
3594 return cpu_rq(cpu)->idle;
3595 }
3596
3597 /**
3598 * find_process_by_pid - find a process with a matching PID value.
3599 * @pid: the pid in question.
3600 *
3601 * The task of @pid, if found. %NULL otherwise.
3602 */
find_process_by_pid(pid_t pid)3603 static struct task_struct *find_process_by_pid(pid_t pid)
3604 {
3605 return pid ? find_task_by_vpid(pid) : current;
3606 }
3607
3608 /*
3609 * This function initializes the sched_dl_entity of a newly becoming
3610 * SCHED_DEADLINE task.
3611 *
3612 * Only the static values are considered here, the actual runtime and the
3613 * absolute deadline will be properly calculated when the task is enqueued
3614 * for the first time with its new policy.
3615 */
3616 static void
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3617 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3618 {
3619 struct sched_dl_entity *dl_se = &p->dl;
3620
3621 dl_se->dl_runtime = attr->sched_runtime;
3622 dl_se->dl_deadline = attr->sched_deadline;
3623 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3624 dl_se->flags = attr->sched_flags;
3625 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3626
3627 /*
3628 * Changing the parameters of a task is 'tricky' and we're not doing
3629 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3630 *
3631 * What we SHOULD do is delay the bandwidth release until the 0-lag
3632 * point. This would include retaining the task_struct until that time
3633 * and change dl_overflow() to not immediately decrement the current
3634 * amount.
3635 *
3636 * Instead we retain the current runtime/deadline and let the new
3637 * parameters take effect after the current reservation period lapses.
3638 * This is safe (albeit pessimistic) because the 0-lag point is always
3639 * before the current scheduling deadline.
3640 *
3641 * We can still have temporary overloads because we do not delay the
3642 * change in bandwidth until that time; so admission control is
3643 * not on the safe side. It does however guarantee tasks will never
3644 * consume more than promised.
3645 */
3646 }
3647
3648 /*
3649 * sched_setparam() passes in -1 for its policy, to let the functions
3650 * it calls know not to change it.
3651 */
3652 #define SETPARAM_POLICY -1
3653
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)3654 static void __setscheduler_params(struct task_struct *p,
3655 const struct sched_attr *attr)
3656 {
3657 int policy = attr->sched_policy;
3658
3659 if (policy == SETPARAM_POLICY)
3660 policy = p->policy;
3661
3662 p->policy = policy;
3663
3664 if (dl_policy(policy))
3665 __setparam_dl(p, attr);
3666 else if (fair_policy(policy))
3667 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3668
3669 /*
3670 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3671 * !rt_policy. Always setting this ensures that things like
3672 * getparam()/getattr() don't report silly values for !rt tasks.
3673 */
3674 p->rt_priority = attr->sched_priority;
3675 p->normal_prio = normal_prio(p);
3676 set_load_weight(p);
3677 }
3678
3679 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)3680 static void __setscheduler(struct rq *rq, struct task_struct *p,
3681 const struct sched_attr *attr, bool keep_boost)
3682 {
3683 __setscheduler_params(p, attr);
3684
3685 /*
3686 * Keep a potential priority boosting if called from
3687 * sched_setscheduler().
3688 */
3689 if (keep_boost)
3690 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3691 else
3692 p->prio = normal_prio(p);
3693
3694 if (dl_prio(p->prio))
3695 p->sched_class = &dl_sched_class;
3696 else if (rt_prio(p->prio))
3697 p->sched_class = &rt_sched_class;
3698 else
3699 p->sched_class = &fair_sched_class;
3700 }
3701
3702 static void
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3703 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3704 {
3705 struct sched_dl_entity *dl_se = &p->dl;
3706
3707 attr->sched_priority = p->rt_priority;
3708 attr->sched_runtime = dl_se->dl_runtime;
3709 attr->sched_deadline = dl_se->dl_deadline;
3710 attr->sched_period = dl_se->dl_period;
3711 attr->sched_flags = dl_se->flags;
3712 }
3713
3714 /*
3715 * This function validates the new parameters of a -deadline task.
3716 * We ask for the deadline not being zero, and greater or equal
3717 * than the runtime, as well as the period of being zero or
3718 * greater than deadline. Furthermore, we have to be sure that
3719 * user parameters are above the internal resolution of 1us (we
3720 * check sched_runtime only since it is always the smaller one) and
3721 * below 2^63 ns (we have to check both sched_deadline and
3722 * sched_period, as the latter can be zero).
3723 */
3724 static bool
__checkparam_dl(const struct sched_attr * attr)3725 __checkparam_dl(const struct sched_attr *attr)
3726 {
3727 /* deadline != 0 */
3728 if (attr->sched_deadline == 0)
3729 return false;
3730
3731 /*
3732 * Since we truncate DL_SCALE bits, make sure we're at least
3733 * that big.
3734 */
3735 if (attr->sched_runtime < (1ULL << DL_SCALE))
3736 return false;
3737
3738 /*
3739 * Since we use the MSB for wrap-around and sign issues, make
3740 * sure it's not set (mind that period can be equal to zero).
3741 */
3742 if (attr->sched_deadline & (1ULL << 63) ||
3743 attr->sched_period & (1ULL << 63))
3744 return false;
3745
3746 /* runtime <= deadline <= period (if period != 0) */
3747 if ((attr->sched_period != 0 &&
3748 attr->sched_period < attr->sched_deadline) ||
3749 attr->sched_deadline < attr->sched_runtime)
3750 return false;
3751
3752 return true;
3753 }
3754
3755 /*
3756 * check the target process has a UID that matches the current process's
3757 */
check_same_owner(struct task_struct * p)3758 static bool check_same_owner(struct task_struct *p)
3759 {
3760 const struct cred *cred = current_cred(), *pcred;
3761 bool match;
3762
3763 rcu_read_lock();
3764 pcred = __task_cred(p);
3765 match = (uid_eq(cred->euid, pcred->euid) ||
3766 uid_eq(cred->euid, pcred->uid));
3767 rcu_read_unlock();
3768 return match;
3769 }
3770
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3771 static bool dl_param_changed(struct task_struct *p,
3772 const struct sched_attr *attr)
3773 {
3774 struct sched_dl_entity *dl_se = &p->dl;
3775
3776 if (dl_se->dl_runtime != attr->sched_runtime ||
3777 dl_se->dl_deadline != attr->sched_deadline ||
3778 dl_se->dl_period != attr->sched_period ||
3779 dl_se->flags != attr->sched_flags)
3780 return true;
3781
3782 return false;
3783 }
3784
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)3785 static int __sched_setscheduler(struct task_struct *p,
3786 const struct sched_attr *attr,
3787 bool user, bool pi)
3788 {
3789 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3790 MAX_RT_PRIO - 1 - attr->sched_priority;
3791 int retval, oldprio, oldpolicy = -1, queued, running;
3792 int new_effective_prio, policy = attr->sched_policy;
3793 unsigned long flags;
3794 const struct sched_class *prev_class;
3795 struct rq *rq;
3796 int reset_on_fork;
3797
3798 /* may grab non-irq protected spin_locks */
3799 BUG_ON(in_interrupt());
3800 recheck:
3801 /* double check policy once rq lock held */
3802 if (policy < 0) {
3803 reset_on_fork = p->sched_reset_on_fork;
3804 policy = oldpolicy = p->policy;
3805 } else {
3806 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3807
3808 if (!valid_policy(policy))
3809 return -EINVAL;
3810 }
3811
3812 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3813 return -EINVAL;
3814
3815 /*
3816 * Valid priorities for SCHED_FIFO and SCHED_RR are
3817 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3818 * SCHED_BATCH and SCHED_IDLE is 0.
3819 */
3820 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3821 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3822 return -EINVAL;
3823 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3824 (rt_policy(policy) != (attr->sched_priority != 0)))
3825 return -EINVAL;
3826
3827 /*
3828 * Allow unprivileged RT tasks to decrease priority:
3829 */
3830 if (user && !capable(CAP_SYS_NICE)) {
3831 if (fair_policy(policy)) {
3832 if (attr->sched_nice < task_nice(p) &&
3833 !can_nice(p, attr->sched_nice))
3834 return -EPERM;
3835 }
3836
3837 if (rt_policy(policy)) {
3838 unsigned long rlim_rtprio =
3839 task_rlimit(p, RLIMIT_RTPRIO);
3840
3841 /* can't set/change the rt policy */
3842 if (policy != p->policy && !rlim_rtprio)
3843 return -EPERM;
3844
3845 /* can't increase priority */
3846 if (attr->sched_priority > p->rt_priority &&
3847 attr->sched_priority > rlim_rtprio)
3848 return -EPERM;
3849 }
3850
3851 /*
3852 * Can't set/change SCHED_DEADLINE policy at all for now
3853 * (safest behavior); in the future we would like to allow
3854 * unprivileged DL tasks to increase their relative deadline
3855 * or reduce their runtime (both ways reducing utilization)
3856 */
3857 if (dl_policy(policy))
3858 return -EPERM;
3859
3860 /*
3861 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3862 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3863 */
3864 if (idle_policy(p->policy) && !idle_policy(policy)) {
3865 if (!can_nice(p, task_nice(p)))
3866 return -EPERM;
3867 }
3868
3869 /* can't change other user's priorities */
3870 if (!check_same_owner(p))
3871 return -EPERM;
3872
3873 /* Normal users shall not reset the sched_reset_on_fork flag */
3874 if (p->sched_reset_on_fork && !reset_on_fork)
3875 return -EPERM;
3876 }
3877
3878 if (user) {
3879 retval = security_task_setscheduler(p);
3880 if (retval)
3881 return retval;
3882 }
3883
3884 /*
3885 * make sure no PI-waiters arrive (or leave) while we are
3886 * changing the priority of the task:
3887 *
3888 * To be able to change p->policy safely, the appropriate
3889 * runqueue lock must be held.
3890 */
3891 rq = task_rq_lock(p, &flags);
3892
3893 /*
3894 * Changing the policy of the stop threads its a very bad idea
3895 */
3896 if (p == rq->stop) {
3897 task_rq_unlock(rq, p, &flags);
3898 return -EINVAL;
3899 }
3900
3901 /*
3902 * If not changing anything there's no need to proceed further,
3903 * but store a possible modification of reset_on_fork.
3904 */
3905 if (unlikely(policy == p->policy)) {
3906 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3907 goto change;
3908 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3909 goto change;
3910 if (dl_policy(policy) && dl_param_changed(p, attr))
3911 goto change;
3912
3913 p->sched_reset_on_fork = reset_on_fork;
3914 task_rq_unlock(rq, p, &flags);
3915 return 0;
3916 }
3917 change:
3918
3919 if (user) {
3920 #ifdef CONFIG_RT_GROUP_SCHED
3921 /*
3922 * Do not allow realtime tasks into groups that have no runtime
3923 * assigned.
3924 */
3925 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3926 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3927 !task_group_is_autogroup(task_group(p))) {
3928 task_rq_unlock(rq, p, &flags);
3929 return -EPERM;
3930 }
3931 #endif
3932 #ifdef CONFIG_SMP
3933 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3934 cpumask_t *span = rq->rd->span;
3935
3936 /*
3937 * Don't allow tasks with an affinity mask smaller than
3938 * the entire root_domain to become SCHED_DEADLINE. We
3939 * will also fail if there's no bandwidth available.
3940 */
3941 if (!cpumask_subset(span, &p->cpus_allowed) ||
3942 rq->rd->dl_bw.bw == 0) {
3943 task_rq_unlock(rq, p, &flags);
3944 return -EPERM;
3945 }
3946 }
3947 #endif
3948 }
3949
3950 /* recheck policy now with rq lock held */
3951 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3952 policy = oldpolicy = -1;
3953 task_rq_unlock(rq, p, &flags);
3954 goto recheck;
3955 }
3956
3957 /*
3958 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3959 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3960 * is available.
3961 */
3962 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3963 task_rq_unlock(rq, p, &flags);
3964 return -EBUSY;
3965 }
3966
3967 p->sched_reset_on_fork = reset_on_fork;
3968 oldprio = p->prio;
3969
3970 if (pi) {
3971 /*
3972 * Take priority boosted tasks into account. If the new
3973 * effective priority is unchanged, we just store the new
3974 * normal parameters and do not touch the scheduler class and
3975 * the runqueue. This will be done when the task deboost
3976 * itself.
3977 */
3978 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3979 if (new_effective_prio == oldprio) {
3980 __setscheduler_params(p, attr);
3981 task_rq_unlock(rq, p, &flags);
3982 return 0;
3983 }
3984 }
3985
3986 queued = task_on_rq_queued(p);
3987 running = task_current(rq, p);
3988 if (queued)
3989 dequeue_task(rq, p, DEQUEUE_SAVE);
3990 if (running)
3991 put_prev_task(rq, p);
3992
3993 prev_class = p->sched_class;
3994 __setscheduler(rq, p, attr, pi);
3995
3996 if (running)
3997 p->sched_class->set_curr_task(rq);
3998 if (queued) {
3999 int enqueue_flags = ENQUEUE_RESTORE;
4000 /*
4001 * We enqueue to tail when the priority of a task is
4002 * increased (user space view).
4003 */
4004 if (oldprio <= p->prio)
4005 enqueue_flags |= ENQUEUE_HEAD;
4006
4007 enqueue_task(rq, p, enqueue_flags);
4008 }
4009
4010 check_class_changed(rq, p, prev_class, oldprio);
4011 preempt_disable(); /* avoid rq from going away on us */
4012 task_rq_unlock(rq, p, &flags);
4013
4014 if (pi)
4015 rt_mutex_adjust_pi(p);
4016
4017 /*
4018 * Run balance callbacks after we've adjusted the PI chain.
4019 */
4020 balance_callback(rq);
4021 preempt_enable();
4022
4023 return 0;
4024 }
4025
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)4026 static int _sched_setscheduler(struct task_struct *p, int policy,
4027 const struct sched_param *param, bool check)
4028 {
4029 struct sched_attr attr = {
4030 .sched_policy = policy,
4031 .sched_priority = param->sched_priority,
4032 .sched_nice = PRIO_TO_NICE(p->static_prio),
4033 };
4034
4035 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4036 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4037 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4038 policy &= ~SCHED_RESET_ON_FORK;
4039 attr.sched_policy = policy;
4040 }
4041
4042 return __sched_setscheduler(p, &attr, check, true);
4043 }
4044 /**
4045 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4046 * @p: the task in question.
4047 * @policy: new policy.
4048 * @param: structure containing the new RT priority.
4049 *
4050 * Return: 0 on success. An error code otherwise.
4051 *
4052 * NOTE that the task may be already dead.
4053 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)4054 int sched_setscheduler(struct task_struct *p, int policy,
4055 const struct sched_param *param)
4056 {
4057 return _sched_setscheduler(p, policy, param, true);
4058 }
4059 EXPORT_SYMBOL_GPL(sched_setscheduler);
4060
sched_setattr(struct task_struct * p,const struct sched_attr * attr)4061 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4062 {
4063 return __sched_setscheduler(p, attr, true, true);
4064 }
4065 EXPORT_SYMBOL_GPL(sched_setattr);
4066
4067 /**
4068 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4069 * @p: the task in question.
4070 * @policy: new policy.
4071 * @param: structure containing the new RT priority.
4072 *
4073 * Just like sched_setscheduler, only don't bother checking if the
4074 * current context has permission. For example, this is needed in
4075 * stop_machine(): we create temporary high priority worker threads,
4076 * but our caller might not have that capability.
4077 *
4078 * Return: 0 on success. An error code otherwise.
4079 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)4080 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4081 const struct sched_param *param)
4082 {
4083 return _sched_setscheduler(p, policy, param, false);
4084 }
4085 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4086
4087 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)4088 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4089 {
4090 struct sched_param lparam;
4091 struct task_struct *p;
4092 int retval;
4093
4094 if (!param || pid < 0)
4095 return -EINVAL;
4096 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4097 return -EFAULT;
4098
4099 rcu_read_lock();
4100 retval = -ESRCH;
4101 p = find_process_by_pid(pid);
4102 if (p != NULL)
4103 retval = sched_setscheduler(p, policy, &lparam);
4104 rcu_read_unlock();
4105
4106 return retval;
4107 }
4108
4109 /*
4110 * Mimics kernel/events/core.c perf_copy_attr().
4111 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)4112 static int sched_copy_attr(struct sched_attr __user *uattr,
4113 struct sched_attr *attr)
4114 {
4115 u32 size;
4116 int ret;
4117
4118 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4119 return -EFAULT;
4120
4121 /*
4122 * zero the full structure, so that a short copy will be nice.
4123 */
4124 memset(attr, 0, sizeof(*attr));
4125
4126 ret = get_user(size, &uattr->size);
4127 if (ret)
4128 return ret;
4129
4130 if (size > PAGE_SIZE) /* silly large */
4131 goto err_size;
4132
4133 if (!size) /* abi compat */
4134 size = SCHED_ATTR_SIZE_VER0;
4135
4136 if (size < SCHED_ATTR_SIZE_VER0)
4137 goto err_size;
4138
4139 /*
4140 * If we're handed a bigger struct than we know of,
4141 * ensure all the unknown bits are 0 - i.e. new
4142 * user-space does not rely on any kernel feature
4143 * extensions we dont know about yet.
4144 */
4145 if (size > sizeof(*attr)) {
4146 unsigned char __user *addr;
4147 unsigned char __user *end;
4148 unsigned char val;
4149
4150 addr = (void __user *)uattr + sizeof(*attr);
4151 end = (void __user *)uattr + size;
4152
4153 for (; addr < end; addr++) {
4154 ret = get_user(val, addr);
4155 if (ret)
4156 return ret;
4157 if (val)
4158 goto err_size;
4159 }
4160 size = sizeof(*attr);
4161 }
4162
4163 ret = copy_from_user(attr, uattr, size);
4164 if (ret)
4165 return -EFAULT;
4166
4167 /*
4168 * XXX: do we want to be lenient like existing syscalls; or do we want
4169 * to be strict and return an error on out-of-bounds values?
4170 */
4171 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4172
4173 return 0;
4174
4175 err_size:
4176 put_user(sizeof(*attr), &uattr->size);
4177 return -E2BIG;
4178 }
4179
4180 /**
4181 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4182 * @pid: the pid in question.
4183 * @policy: new policy.
4184 * @param: structure containing the new RT priority.
4185 *
4186 * Return: 0 on success. An error code otherwise.
4187 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)4188 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4189 struct sched_param __user *, param)
4190 {
4191 /* negative values for policy are not valid */
4192 if (policy < 0)
4193 return -EINVAL;
4194
4195 return do_sched_setscheduler(pid, policy, param);
4196 }
4197
4198 /**
4199 * sys_sched_setparam - set/change the RT priority of a thread
4200 * @pid: the pid in question.
4201 * @param: structure containing the new RT priority.
4202 *
4203 * Return: 0 on success. An error code otherwise.
4204 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)4205 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4206 {
4207 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4208 }
4209
4210 /**
4211 * sys_sched_setattr - same as above, but with extended sched_attr
4212 * @pid: the pid in question.
4213 * @uattr: structure containing the extended parameters.
4214 * @flags: for future extension.
4215 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)4216 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4217 unsigned int, flags)
4218 {
4219 struct sched_attr attr;
4220 struct task_struct *p;
4221 int retval;
4222
4223 if (!uattr || pid < 0 || flags)
4224 return -EINVAL;
4225
4226 retval = sched_copy_attr(uattr, &attr);
4227 if (retval)
4228 return retval;
4229
4230 if ((int)attr.sched_policy < 0)
4231 return -EINVAL;
4232
4233 rcu_read_lock();
4234 retval = -ESRCH;
4235 p = find_process_by_pid(pid);
4236 if (p != NULL)
4237 retval = sched_setattr(p, &attr);
4238 rcu_read_unlock();
4239
4240 return retval;
4241 }
4242
4243 /**
4244 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4245 * @pid: the pid in question.
4246 *
4247 * Return: On success, the policy of the thread. Otherwise, a negative error
4248 * code.
4249 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)4250 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4251 {
4252 struct task_struct *p;
4253 int retval;
4254
4255 if (pid < 0)
4256 return -EINVAL;
4257
4258 retval = -ESRCH;
4259 rcu_read_lock();
4260 p = find_process_by_pid(pid);
4261 if (p) {
4262 retval = security_task_getscheduler(p);
4263 if (!retval)
4264 retval = p->policy
4265 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4266 }
4267 rcu_read_unlock();
4268 return retval;
4269 }
4270
4271 /**
4272 * sys_sched_getparam - get the RT priority of a thread
4273 * @pid: the pid in question.
4274 * @param: structure containing the RT priority.
4275 *
4276 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4277 * code.
4278 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)4279 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4280 {
4281 struct sched_param lp = { .sched_priority = 0 };
4282 struct task_struct *p;
4283 int retval;
4284
4285 if (!param || pid < 0)
4286 return -EINVAL;
4287
4288 rcu_read_lock();
4289 p = find_process_by_pid(pid);
4290 retval = -ESRCH;
4291 if (!p)
4292 goto out_unlock;
4293
4294 retval = security_task_getscheduler(p);
4295 if (retval)
4296 goto out_unlock;
4297
4298 if (task_has_rt_policy(p))
4299 lp.sched_priority = p->rt_priority;
4300 rcu_read_unlock();
4301
4302 /*
4303 * This one might sleep, we cannot do it with a spinlock held ...
4304 */
4305 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4306
4307 return retval;
4308
4309 out_unlock:
4310 rcu_read_unlock();
4311 return retval;
4312 }
4313
sched_read_attr(struct sched_attr __user * uattr,struct sched_attr * attr,unsigned int usize)4314 static int sched_read_attr(struct sched_attr __user *uattr,
4315 struct sched_attr *attr,
4316 unsigned int usize)
4317 {
4318 int ret;
4319
4320 if (!access_ok(VERIFY_WRITE, uattr, usize))
4321 return -EFAULT;
4322
4323 /*
4324 * If we're handed a smaller struct than we know of,
4325 * ensure all the unknown bits are 0 - i.e. old
4326 * user-space does not get uncomplete information.
4327 */
4328 if (usize < sizeof(*attr)) {
4329 unsigned char *addr;
4330 unsigned char *end;
4331
4332 addr = (void *)attr + usize;
4333 end = (void *)attr + sizeof(*attr);
4334
4335 for (; addr < end; addr++) {
4336 if (*addr)
4337 return -EFBIG;
4338 }
4339
4340 attr->size = usize;
4341 }
4342
4343 ret = copy_to_user(uattr, attr, attr->size);
4344 if (ret)
4345 return -EFAULT;
4346
4347 return 0;
4348 }
4349
4350 /**
4351 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4352 * @pid: the pid in question.
4353 * @uattr: structure containing the extended parameters.
4354 * @size: sizeof(attr) for fwd/bwd comp.
4355 * @flags: for future extension.
4356 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,size,unsigned int,flags)4357 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4358 unsigned int, size, unsigned int, flags)
4359 {
4360 struct sched_attr attr = {
4361 .size = sizeof(struct sched_attr),
4362 };
4363 struct task_struct *p;
4364 int retval;
4365
4366 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4367 size < SCHED_ATTR_SIZE_VER0 || flags)
4368 return -EINVAL;
4369
4370 rcu_read_lock();
4371 p = find_process_by_pid(pid);
4372 retval = -ESRCH;
4373 if (!p)
4374 goto out_unlock;
4375
4376 retval = security_task_getscheduler(p);
4377 if (retval)
4378 goto out_unlock;
4379
4380 attr.sched_policy = p->policy;
4381 if (p->sched_reset_on_fork)
4382 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4383 if (task_has_dl_policy(p))
4384 __getparam_dl(p, &attr);
4385 else if (task_has_rt_policy(p))
4386 attr.sched_priority = p->rt_priority;
4387 else
4388 attr.sched_nice = task_nice(p);
4389
4390 rcu_read_unlock();
4391
4392 retval = sched_read_attr(uattr, &attr, size);
4393 return retval;
4394
4395 out_unlock:
4396 rcu_read_unlock();
4397 return retval;
4398 }
4399
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)4400 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4401 {
4402 cpumask_var_t cpus_allowed, new_mask;
4403 struct task_struct *p;
4404 int retval;
4405
4406 rcu_read_lock();
4407
4408 p = find_process_by_pid(pid);
4409 if (!p) {
4410 rcu_read_unlock();
4411 return -ESRCH;
4412 }
4413
4414 /* Prevent p going away */
4415 get_task_struct(p);
4416 rcu_read_unlock();
4417
4418 if (p->flags & PF_NO_SETAFFINITY) {
4419 retval = -EINVAL;
4420 goto out_put_task;
4421 }
4422 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4423 retval = -ENOMEM;
4424 goto out_put_task;
4425 }
4426 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4427 retval = -ENOMEM;
4428 goto out_free_cpus_allowed;
4429 }
4430 retval = -EPERM;
4431 if (!check_same_owner(p)) {
4432 rcu_read_lock();
4433 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4434 rcu_read_unlock();
4435 goto out_free_new_mask;
4436 }
4437 rcu_read_unlock();
4438 }
4439
4440 retval = security_task_setscheduler(p);
4441 if (retval)
4442 goto out_free_new_mask;
4443
4444
4445 cpuset_cpus_allowed(p, cpus_allowed);
4446 cpumask_and(new_mask, in_mask, cpus_allowed);
4447
4448 /*
4449 * Since bandwidth control happens on root_domain basis,
4450 * if admission test is enabled, we only admit -deadline
4451 * tasks allowed to run on all the CPUs in the task's
4452 * root_domain.
4453 */
4454 #ifdef CONFIG_SMP
4455 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4456 rcu_read_lock();
4457 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4458 retval = -EBUSY;
4459 rcu_read_unlock();
4460 goto out_free_new_mask;
4461 }
4462 rcu_read_unlock();
4463 }
4464 #endif
4465 again:
4466 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4467
4468 if (!retval) {
4469 cpuset_cpus_allowed(p, cpus_allowed);
4470 if (!cpumask_subset(new_mask, cpus_allowed)) {
4471 /*
4472 * We must have raced with a concurrent cpuset
4473 * update. Just reset the cpus_allowed to the
4474 * cpuset's cpus_allowed
4475 */
4476 cpumask_copy(new_mask, cpus_allowed);
4477 goto again;
4478 }
4479 }
4480 out_free_new_mask:
4481 free_cpumask_var(new_mask);
4482 out_free_cpus_allowed:
4483 free_cpumask_var(cpus_allowed);
4484 out_put_task:
4485 put_task_struct(p);
4486 return retval;
4487 }
4488
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)4489 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4490 struct cpumask *new_mask)
4491 {
4492 if (len < cpumask_size())
4493 cpumask_clear(new_mask);
4494 else if (len > cpumask_size())
4495 len = cpumask_size();
4496
4497 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4498 }
4499
4500 /**
4501 * sys_sched_setaffinity - set the cpu affinity of a process
4502 * @pid: pid of the process
4503 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4504 * @user_mask_ptr: user-space pointer to the new cpu mask
4505 *
4506 * Return: 0 on success. An error code otherwise.
4507 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4508 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4509 unsigned long __user *, user_mask_ptr)
4510 {
4511 cpumask_var_t new_mask;
4512 int retval;
4513
4514 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4515 return -ENOMEM;
4516
4517 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4518 if (retval == 0)
4519 retval = sched_setaffinity(pid, new_mask);
4520 free_cpumask_var(new_mask);
4521 return retval;
4522 }
4523
sched_getaffinity(pid_t pid,struct cpumask * mask)4524 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4525 {
4526 struct task_struct *p;
4527 unsigned long flags;
4528 int retval;
4529
4530 rcu_read_lock();
4531
4532 retval = -ESRCH;
4533 p = find_process_by_pid(pid);
4534 if (!p)
4535 goto out_unlock;
4536
4537 retval = security_task_getscheduler(p);
4538 if (retval)
4539 goto out_unlock;
4540
4541 raw_spin_lock_irqsave(&p->pi_lock, flags);
4542 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4543 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4544
4545 out_unlock:
4546 rcu_read_unlock();
4547
4548 return retval;
4549 }
4550
4551 /**
4552 * sys_sched_getaffinity - get the cpu affinity of a process
4553 * @pid: pid of the process
4554 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4555 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4556 *
4557 * Return: 0 on success. An error code otherwise.
4558 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4559 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4560 unsigned long __user *, user_mask_ptr)
4561 {
4562 int ret;
4563 cpumask_var_t mask;
4564
4565 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4566 return -EINVAL;
4567 if (len & (sizeof(unsigned long)-1))
4568 return -EINVAL;
4569
4570 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4571 return -ENOMEM;
4572
4573 ret = sched_getaffinity(pid, mask);
4574 if (ret == 0) {
4575 size_t retlen = min_t(size_t, len, cpumask_size());
4576
4577 if (copy_to_user(user_mask_ptr, mask, retlen))
4578 ret = -EFAULT;
4579 else
4580 ret = retlen;
4581 }
4582 free_cpumask_var(mask);
4583
4584 return ret;
4585 }
4586
4587 /**
4588 * sys_sched_yield - yield the current processor to other threads.
4589 *
4590 * This function yields the current CPU to other tasks. If there are no
4591 * other threads running on this CPU then this function will return.
4592 *
4593 * Return: 0.
4594 */
SYSCALL_DEFINE0(sched_yield)4595 SYSCALL_DEFINE0(sched_yield)
4596 {
4597 struct rq *rq = this_rq_lock();
4598
4599 schedstat_inc(rq, yld_count);
4600 current->sched_class->yield_task(rq);
4601
4602 /*
4603 * Since we are going to call schedule() anyway, there's
4604 * no need to preempt or enable interrupts:
4605 */
4606 __release(rq->lock);
4607 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4608 do_raw_spin_unlock(&rq->lock);
4609 sched_preempt_enable_no_resched();
4610
4611 schedule();
4612
4613 return 0;
4614 }
4615
_cond_resched(void)4616 int __sched _cond_resched(void)
4617 {
4618 if (should_resched(0)) {
4619 preempt_schedule_common();
4620 return 1;
4621 }
4622 return 0;
4623 }
4624 EXPORT_SYMBOL(_cond_resched);
4625
4626 /*
4627 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4628 * call schedule, and on return reacquire the lock.
4629 *
4630 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4631 * operations here to prevent schedule() from being called twice (once via
4632 * spin_unlock(), once by hand).
4633 */
__cond_resched_lock(spinlock_t * lock)4634 int __cond_resched_lock(spinlock_t *lock)
4635 {
4636 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4637 int ret = 0;
4638
4639 lockdep_assert_held(lock);
4640
4641 if (spin_needbreak(lock) || resched) {
4642 spin_unlock(lock);
4643 if (resched)
4644 preempt_schedule_common();
4645 else
4646 cpu_relax();
4647 ret = 1;
4648 spin_lock(lock);
4649 }
4650 return ret;
4651 }
4652 EXPORT_SYMBOL(__cond_resched_lock);
4653
__cond_resched_softirq(void)4654 int __sched __cond_resched_softirq(void)
4655 {
4656 BUG_ON(!in_softirq());
4657
4658 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4659 local_bh_enable();
4660 preempt_schedule_common();
4661 local_bh_disable();
4662 return 1;
4663 }
4664 return 0;
4665 }
4666 EXPORT_SYMBOL(__cond_resched_softirq);
4667
4668 /**
4669 * yield - yield the current processor to other threads.
4670 *
4671 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4672 *
4673 * The scheduler is at all times free to pick the calling task as the most
4674 * eligible task to run, if removing the yield() call from your code breaks
4675 * it, its already broken.
4676 *
4677 * Typical broken usage is:
4678 *
4679 * while (!event)
4680 * yield();
4681 *
4682 * where one assumes that yield() will let 'the other' process run that will
4683 * make event true. If the current task is a SCHED_FIFO task that will never
4684 * happen. Never use yield() as a progress guarantee!!
4685 *
4686 * If you want to use yield() to wait for something, use wait_event().
4687 * If you want to use yield() to be 'nice' for others, use cond_resched().
4688 * If you still want to use yield(), do not!
4689 */
yield(void)4690 void __sched yield(void)
4691 {
4692 set_current_state(TASK_RUNNING);
4693 sys_sched_yield();
4694 }
4695 EXPORT_SYMBOL(yield);
4696
4697 /**
4698 * yield_to - yield the current processor to another thread in
4699 * your thread group, or accelerate that thread toward the
4700 * processor it's on.
4701 * @p: target task
4702 * @preempt: whether task preemption is allowed or not
4703 *
4704 * It's the caller's job to ensure that the target task struct
4705 * can't go away on us before we can do any checks.
4706 *
4707 * Return:
4708 * true (>0) if we indeed boosted the target task.
4709 * false (0) if we failed to boost the target.
4710 * -ESRCH if there's no task to yield to.
4711 */
yield_to(struct task_struct * p,bool preempt)4712 int __sched yield_to(struct task_struct *p, bool preempt)
4713 {
4714 struct task_struct *curr = current;
4715 struct rq *rq, *p_rq;
4716 unsigned long flags;
4717 int yielded = 0;
4718
4719 local_irq_save(flags);
4720 rq = this_rq();
4721
4722 again:
4723 p_rq = task_rq(p);
4724 /*
4725 * If we're the only runnable task on the rq and target rq also
4726 * has only one task, there's absolutely no point in yielding.
4727 */
4728 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4729 yielded = -ESRCH;
4730 goto out_irq;
4731 }
4732
4733 double_rq_lock(rq, p_rq);
4734 if (task_rq(p) != p_rq) {
4735 double_rq_unlock(rq, p_rq);
4736 goto again;
4737 }
4738
4739 if (!curr->sched_class->yield_to_task)
4740 goto out_unlock;
4741
4742 if (curr->sched_class != p->sched_class)
4743 goto out_unlock;
4744
4745 if (task_running(p_rq, p) || p->state)
4746 goto out_unlock;
4747
4748 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4749 if (yielded) {
4750 schedstat_inc(rq, yld_count);
4751 /*
4752 * Make p's CPU reschedule; pick_next_entity takes care of
4753 * fairness.
4754 */
4755 if (preempt && rq != p_rq)
4756 resched_curr(p_rq);
4757 }
4758
4759 out_unlock:
4760 double_rq_unlock(rq, p_rq);
4761 out_irq:
4762 local_irq_restore(flags);
4763
4764 if (yielded > 0)
4765 schedule();
4766
4767 return yielded;
4768 }
4769 EXPORT_SYMBOL_GPL(yield_to);
4770
4771 /*
4772 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4773 * that process accounting knows that this is a task in IO wait state.
4774 */
io_schedule_timeout(long timeout)4775 long __sched io_schedule_timeout(long timeout)
4776 {
4777 int old_iowait = current->in_iowait;
4778 struct rq *rq;
4779 long ret;
4780
4781 current->in_iowait = 1;
4782 blk_schedule_flush_plug(current);
4783
4784 delayacct_blkio_start();
4785 rq = raw_rq();
4786 atomic_inc(&rq->nr_iowait);
4787 ret = schedule_timeout(timeout);
4788 current->in_iowait = old_iowait;
4789 atomic_dec(&rq->nr_iowait);
4790 delayacct_blkio_end();
4791
4792 return ret;
4793 }
4794 EXPORT_SYMBOL(io_schedule_timeout);
4795
4796 /**
4797 * sys_sched_get_priority_max - return maximum RT priority.
4798 * @policy: scheduling class.
4799 *
4800 * Return: On success, this syscall returns the maximum
4801 * rt_priority that can be used by a given scheduling class.
4802 * On failure, a negative error code is returned.
4803 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)4804 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4805 {
4806 int ret = -EINVAL;
4807
4808 switch (policy) {
4809 case SCHED_FIFO:
4810 case SCHED_RR:
4811 ret = MAX_USER_RT_PRIO-1;
4812 break;
4813 case SCHED_DEADLINE:
4814 case SCHED_NORMAL:
4815 case SCHED_BATCH:
4816 case SCHED_IDLE:
4817 ret = 0;
4818 break;
4819 }
4820 return ret;
4821 }
4822
4823 /**
4824 * sys_sched_get_priority_min - return minimum RT priority.
4825 * @policy: scheduling class.
4826 *
4827 * Return: On success, this syscall returns the minimum
4828 * rt_priority that can be used by a given scheduling class.
4829 * On failure, a negative error code is returned.
4830 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)4831 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4832 {
4833 int ret = -EINVAL;
4834
4835 switch (policy) {
4836 case SCHED_FIFO:
4837 case SCHED_RR:
4838 ret = 1;
4839 break;
4840 case SCHED_DEADLINE:
4841 case SCHED_NORMAL:
4842 case SCHED_BATCH:
4843 case SCHED_IDLE:
4844 ret = 0;
4845 }
4846 return ret;
4847 }
4848
4849 /**
4850 * sys_sched_rr_get_interval - return the default timeslice of a process.
4851 * @pid: pid of the process.
4852 * @interval: userspace pointer to the timeslice value.
4853 *
4854 * this syscall writes the default timeslice value of a given process
4855 * into the user-space timespec buffer. A value of '0' means infinity.
4856 *
4857 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4858 * an error code.
4859 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)4860 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4861 struct timespec __user *, interval)
4862 {
4863 struct task_struct *p;
4864 unsigned int time_slice;
4865 unsigned long flags;
4866 struct rq *rq;
4867 int retval;
4868 struct timespec t;
4869
4870 if (pid < 0)
4871 return -EINVAL;
4872
4873 retval = -ESRCH;
4874 rcu_read_lock();
4875 p = find_process_by_pid(pid);
4876 if (!p)
4877 goto out_unlock;
4878
4879 retval = security_task_getscheduler(p);
4880 if (retval)
4881 goto out_unlock;
4882
4883 rq = task_rq_lock(p, &flags);
4884 time_slice = 0;
4885 if (p->sched_class->get_rr_interval)
4886 time_slice = p->sched_class->get_rr_interval(rq, p);
4887 task_rq_unlock(rq, p, &flags);
4888
4889 rcu_read_unlock();
4890 jiffies_to_timespec(time_slice, &t);
4891 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4892 return retval;
4893
4894 out_unlock:
4895 rcu_read_unlock();
4896 return retval;
4897 }
4898
4899 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4900
sched_show_task(struct task_struct * p)4901 void sched_show_task(struct task_struct *p)
4902 {
4903 unsigned long free = 0;
4904 int ppid;
4905 unsigned long state = p->state;
4906
4907 if (state)
4908 state = __ffs(state) + 1;
4909 printk(KERN_INFO "%-15.15s %c", p->comm,
4910 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4911 #if BITS_PER_LONG == 32
4912 if (state == TASK_RUNNING)
4913 printk(KERN_CONT " running ");
4914 else
4915 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4916 #else
4917 if (state == TASK_RUNNING)
4918 printk(KERN_CONT " running task ");
4919 else
4920 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4921 #endif
4922 #ifdef CONFIG_DEBUG_STACK_USAGE
4923 free = stack_not_used(p);
4924 #endif
4925 ppid = 0;
4926 rcu_read_lock();
4927 if (pid_alive(p))
4928 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4929 rcu_read_unlock();
4930 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4931 task_pid_nr(p), ppid,
4932 (unsigned long)task_thread_info(p)->flags);
4933
4934 print_worker_info(KERN_INFO, p);
4935 show_stack(p, NULL);
4936 }
4937
show_state_filter(unsigned long state_filter)4938 void show_state_filter(unsigned long state_filter)
4939 {
4940 struct task_struct *g, *p;
4941
4942 #if BITS_PER_LONG == 32
4943 printk(KERN_INFO
4944 " task PC stack pid father\n");
4945 #else
4946 printk(KERN_INFO
4947 " task PC stack pid father\n");
4948 #endif
4949 rcu_read_lock();
4950 for_each_process_thread(g, p) {
4951 /*
4952 * reset the NMI-timeout, listing all files on a slow
4953 * console might take a lot of time:
4954 */
4955 touch_nmi_watchdog();
4956 if (!state_filter || (p->state & state_filter))
4957 sched_show_task(p);
4958 }
4959
4960 touch_all_softlockup_watchdogs();
4961
4962 #ifdef CONFIG_SCHED_DEBUG
4963 sysrq_sched_debug_show();
4964 #endif
4965 rcu_read_unlock();
4966 /*
4967 * Only show locks if all tasks are dumped:
4968 */
4969 if (!state_filter)
4970 debug_show_all_locks();
4971 }
4972
init_idle_bootup_task(struct task_struct * idle)4973 void init_idle_bootup_task(struct task_struct *idle)
4974 {
4975 idle->sched_class = &idle_sched_class;
4976 }
4977
4978 /**
4979 * init_idle - set up an idle thread for a given CPU
4980 * @idle: task in question
4981 * @cpu: cpu the idle task belongs to
4982 *
4983 * NOTE: this function does not set the idle thread's NEED_RESCHED
4984 * flag, to make booting more robust.
4985 */
init_idle(struct task_struct * idle,int cpu)4986 void init_idle(struct task_struct *idle, int cpu)
4987 {
4988 struct rq *rq = cpu_rq(cpu);
4989 unsigned long flags;
4990
4991 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4992 raw_spin_lock(&rq->lock);
4993
4994 __sched_fork(0, idle);
4995 idle->state = TASK_RUNNING;
4996 idle->se.exec_start = sched_clock();
4997
4998 #ifdef CONFIG_SMP
4999 /*
5000 * Its possible that init_idle() gets called multiple times on a task,
5001 * in that case do_set_cpus_allowed() will not do the right thing.
5002 *
5003 * And since this is boot we can forgo the serialization.
5004 */
5005 set_cpus_allowed_common(idle, cpumask_of(cpu));
5006 #endif
5007 /*
5008 * We're having a chicken and egg problem, even though we are
5009 * holding rq->lock, the cpu isn't yet set to this cpu so the
5010 * lockdep check in task_group() will fail.
5011 *
5012 * Similar case to sched_fork(). / Alternatively we could
5013 * use task_rq_lock() here and obtain the other rq->lock.
5014 *
5015 * Silence PROVE_RCU
5016 */
5017 rcu_read_lock();
5018 __set_task_cpu(idle, cpu);
5019 rcu_read_unlock();
5020
5021 rq->curr = rq->idle = idle;
5022 idle->on_rq = TASK_ON_RQ_QUEUED;
5023 #ifdef CONFIG_SMP
5024 idle->on_cpu = 1;
5025 #endif
5026 raw_spin_unlock(&rq->lock);
5027 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5028
5029 /* Set the preempt count _outside_ the spinlocks! */
5030 init_idle_preempt_count(idle, cpu);
5031
5032 /*
5033 * The idle tasks have their own, simple scheduling class:
5034 */
5035 idle->sched_class = &idle_sched_class;
5036 ftrace_graph_init_idle_task(idle, cpu);
5037 vtime_init_idle(idle, cpu);
5038 #ifdef CONFIG_SMP
5039 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5040 #endif
5041 }
5042
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)5043 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5044 const struct cpumask *trial)
5045 {
5046 int ret = 1, trial_cpus;
5047 struct dl_bw *cur_dl_b;
5048 unsigned long flags;
5049
5050 if (!cpumask_weight(cur))
5051 return ret;
5052
5053 rcu_read_lock_sched();
5054 cur_dl_b = dl_bw_of(cpumask_any(cur));
5055 trial_cpus = cpumask_weight(trial);
5056
5057 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5058 if (cur_dl_b->bw != -1 &&
5059 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5060 ret = 0;
5061 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5062 rcu_read_unlock_sched();
5063
5064 return ret;
5065 }
5066
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)5067 int task_can_attach(struct task_struct *p,
5068 const struct cpumask *cs_cpus_allowed)
5069 {
5070 int ret = 0;
5071
5072 /*
5073 * Kthreads which disallow setaffinity shouldn't be moved
5074 * to a new cpuset; we don't want to change their cpu
5075 * affinity and isolating such threads by their set of
5076 * allowed nodes is unnecessary. Thus, cpusets are not
5077 * applicable for such threads. This prevents checking for
5078 * success of set_cpus_allowed_ptr() on all attached tasks
5079 * before cpus_allowed may be changed.
5080 */
5081 if (p->flags & PF_NO_SETAFFINITY) {
5082 ret = -EINVAL;
5083 goto out;
5084 }
5085
5086 #ifdef CONFIG_SMP
5087 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5088 cs_cpus_allowed)) {
5089 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5090 cs_cpus_allowed);
5091 struct dl_bw *dl_b;
5092 bool overflow;
5093 int cpus;
5094 unsigned long flags;
5095
5096 rcu_read_lock_sched();
5097 dl_b = dl_bw_of(dest_cpu);
5098 raw_spin_lock_irqsave(&dl_b->lock, flags);
5099 cpus = dl_bw_cpus(dest_cpu);
5100 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5101 if (overflow)
5102 ret = -EBUSY;
5103 else {
5104 /*
5105 * We reserve space for this task in the destination
5106 * root_domain, as we can't fail after this point.
5107 * We will free resources in the source root_domain
5108 * later on (see set_cpus_allowed_dl()).
5109 */
5110 __dl_add(dl_b, p->dl.dl_bw);
5111 }
5112 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5113 rcu_read_unlock_sched();
5114
5115 }
5116 #endif
5117 out:
5118 return ret;
5119 }
5120
5121 #ifdef CONFIG_SMP
5122
5123 #ifdef CONFIG_NUMA_BALANCING
5124 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)5125 int migrate_task_to(struct task_struct *p, int target_cpu)
5126 {
5127 struct migration_arg arg = { p, target_cpu };
5128 int curr_cpu = task_cpu(p);
5129
5130 if (curr_cpu == target_cpu)
5131 return 0;
5132
5133 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5134 return -EINVAL;
5135
5136 /* TODO: This is not properly updating schedstats */
5137
5138 trace_sched_move_numa(p, curr_cpu, target_cpu);
5139 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5140 }
5141
5142 /*
5143 * Requeue a task on a given node and accurately track the number of NUMA
5144 * tasks on the runqueues
5145 */
sched_setnuma(struct task_struct * p,int nid)5146 void sched_setnuma(struct task_struct *p, int nid)
5147 {
5148 struct rq *rq;
5149 unsigned long flags;
5150 bool queued, running;
5151
5152 rq = task_rq_lock(p, &flags);
5153 queued = task_on_rq_queued(p);
5154 running = task_current(rq, p);
5155
5156 if (queued)
5157 dequeue_task(rq, p, DEQUEUE_SAVE);
5158 if (running)
5159 put_prev_task(rq, p);
5160
5161 p->numa_preferred_nid = nid;
5162
5163 if (running)
5164 p->sched_class->set_curr_task(rq);
5165 if (queued)
5166 enqueue_task(rq, p, ENQUEUE_RESTORE);
5167 task_rq_unlock(rq, p, &flags);
5168 }
5169 #endif /* CONFIG_NUMA_BALANCING */
5170
5171 #ifdef CONFIG_HOTPLUG_CPU
5172 /*
5173 * Ensures that the idle task is using init_mm right before its cpu goes
5174 * offline.
5175 */
idle_task_exit(void)5176 void idle_task_exit(void)
5177 {
5178 struct mm_struct *mm = current->active_mm;
5179
5180 BUG_ON(cpu_online(smp_processor_id()));
5181
5182 if (mm != &init_mm) {
5183 switch_mm(mm, &init_mm, current);
5184 finish_arch_post_lock_switch();
5185 }
5186 mmdrop(mm);
5187 }
5188
5189 /*
5190 * Since this CPU is going 'away' for a while, fold any nr_active delta
5191 * we might have. Assumes we're called after migrate_tasks() so that the
5192 * nr_active count is stable.
5193 *
5194 * Also see the comment "Global load-average calculations".
5195 */
calc_load_migrate(struct rq * rq)5196 static void calc_load_migrate(struct rq *rq)
5197 {
5198 long delta = calc_load_fold_active(rq);
5199 if (delta)
5200 atomic_long_add(delta, &calc_load_tasks);
5201 }
5202
put_prev_task_fake(struct rq * rq,struct task_struct * prev)5203 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5204 {
5205 }
5206
5207 static const struct sched_class fake_sched_class = {
5208 .put_prev_task = put_prev_task_fake,
5209 };
5210
5211 static struct task_struct fake_task = {
5212 /*
5213 * Avoid pull_{rt,dl}_task()
5214 */
5215 .prio = MAX_PRIO + 1,
5216 .sched_class = &fake_sched_class,
5217 };
5218
5219 /*
5220 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5221 * try_to_wake_up()->select_task_rq().
5222 *
5223 * Called with rq->lock held even though we'er in stop_machine() and
5224 * there's no concurrency possible, we hold the required locks anyway
5225 * because of lock validation efforts.
5226 */
migrate_tasks(struct rq * dead_rq)5227 static void migrate_tasks(struct rq *dead_rq)
5228 {
5229 struct rq *rq = dead_rq;
5230 struct task_struct *next, *stop = rq->stop;
5231 int dest_cpu;
5232
5233 /*
5234 * Fudge the rq selection such that the below task selection loop
5235 * doesn't get stuck on the currently eligible stop task.
5236 *
5237 * We're currently inside stop_machine() and the rq is either stuck
5238 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5239 * either way we should never end up calling schedule() until we're
5240 * done here.
5241 */
5242 rq->stop = NULL;
5243
5244 /*
5245 * put_prev_task() and pick_next_task() sched
5246 * class method both need to have an up-to-date
5247 * value of rq->clock[_task]
5248 */
5249 update_rq_clock(rq);
5250
5251 for (;;) {
5252 /*
5253 * There's this thread running, bail when that's the only
5254 * remaining thread.
5255 */
5256 if (rq->nr_running == 1)
5257 break;
5258
5259 /*
5260 * pick_next_task assumes pinned rq->lock.
5261 */
5262 lockdep_pin_lock(&rq->lock);
5263 next = pick_next_task(rq, &fake_task);
5264 BUG_ON(!next);
5265 next->sched_class->put_prev_task(rq, next);
5266
5267 /*
5268 * Rules for changing task_struct::cpus_allowed are holding
5269 * both pi_lock and rq->lock, such that holding either
5270 * stabilizes the mask.
5271 *
5272 * Drop rq->lock is not quite as disastrous as it usually is
5273 * because !cpu_active at this point, which means load-balance
5274 * will not interfere. Also, stop-machine.
5275 */
5276 lockdep_unpin_lock(&rq->lock);
5277 raw_spin_unlock(&rq->lock);
5278 raw_spin_lock(&next->pi_lock);
5279 raw_spin_lock(&rq->lock);
5280
5281 /*
5282 * Since we're inside stop-machine, _nothing_ should have
5283 * changed the task, WARN if weird stuff happened, because in
5284 * that case the above rq->lock drop is a fail too.
5285 */
5286 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5287 raw_spin_unlock(&next->pi_lock);
5288 continue;
5289 }
5290
5291 /* Find suitable destination for @next, with force if needed. */
5292 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5293
5294 rq = __migrate_task(rq, next, dest_cpu);
5295 if (rq != dead_rq) {
5296 raw_spin_unlock(&rq->lock);
5297 rq = dead_rq;
5298 raw_spin_lock(&rq->lock);
5299 }
5300 raw_spin_unlock(&next->pi_lock);
5301 }
5302
5303 rq->stop = stop;
5304 }
5305 #endif /* CONFIG_HOTPLUG_CPU */
5306
5307 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5308
5309 static struct ctl_table sd_ctl_dir[] = {
5310 {
5311 .procname = "sched_domain",
5312 .mode = 0555,
5313 },
5314 {}
5315 };
5316
5317 static struct ctl_table sd_ctl_root[] = {
5318 {
5319 .procname = "kernel",
5320 .mode = 0555,
5321 .child = sd_ctl_dir,
5322 },
5323 {}
5324 };
5325
sd_alloc_ctl_entry(int n)5326 static struct ctl_table *sd_alloc_ctl_entry(int n)
5327 {
5328 struct ctl_table *entry =
5329 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5330
5331 return entry;
5332 }
5333
sd_free_ctl_entry(struct ctl_table ** tablep)5334 static void sd_free_ctl_entry(struct ctl_table **tablep)
5335 {
5336 struct ctl_table *entry;
5337
5338 /*
5339 * In the intermediate directories, both the child directory and
5340 * procname are dynamically allocated and could fail but the mode
5341 * will always be set. In the lowest directory the names are
5342 * static strings and all have proc handlers.
5343 */
5344 for (entry = *tablep; entry->mode; entry++) {
5345 if (entry->child)
5346 sd_free_ctl_entry(&entry->child);
5347 if (entry->proc_handler == NULL)
5348 kfree(entry->procname);
5349 }
5350
5351 kfree(*tablep);
5352 *tablep = NULL;
5353 }
5354
5355 static int min_load_idx = 0;
5356 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5357
5358 static void
set_table_entry(struct ctl_table * entry,const char * procname,void * data,int maxlen,umode_t mode,proc_handler * proc_handler,bool load_idx)5359 set_table_entry(struct ctl_table *entry,
5360 const char *procname, void *data, int maxlen,
5361 umode_t mode, proc_handler *proc_handler,
5362 bool load_idx)
5363 {
5364 entry->procname = procname;
5365 entry->data = data;
5366 entry->maxlen = maxlen;
5367 entry->mode = mode;
5368 entry->proc_handler = proc_handler;
5369
5370 if (load_idx) {
5371 entry->extra1 = &min_load_idx;
5372 entry->extra2 = &max_load_idx;
5373 }
5374 }
5375
5376 static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain * sd)5377 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5378 {
5379 struct ctl_table *table = sd_alloc_ctl_entry(14);
5380
5381 if (table == NULL)
5382 return NULL;
5383
5384 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5385 sizeof(long), 0644, proc_doulongvec_minmax, false);
5386 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5387 sizeof(long), 0644, proc_doulongvec_minmax, false);
5388 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5389 sizeof(int), 0644, proc_dointvec_minmax, true);
5390 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5391 sizeof(int), 0644, proc_dointvec_minmax, true);
5392 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5393 sizeof(int), 0644, proc_dointvec_minmax, true);
5394 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5395 sizeof(int), 0644, proc_dointvec_minmax, true);
5396 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5397 sizeof(int), 0644, proc_dointvec_minmax, true);
5398 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5399 sizeof(int), 0644, proc_dointvec_minmax, false);
5400 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5401 sizeof(int), 0644, proc_dointvec_minmax, false);
5402 set_table_entry(&table[9], "cache_nice_tries",
5403 &sd->cache_nice_tries,
5404 sizeof(int), 0644, proc_dointvec_minmax, false);
5405 set_table_entry(&table[10], "flags", &sd->flags,
5406 sizeof(int), 0644, proc_dointvec_minmax, false);
5407 set_table_entry(&table[11], "max_newidle_lb_cost",
5408 &sd->max_newidle_lb_cost,
5409 sizeof(long), 0644, proc_doulongvec_minmax, false);
5410 set_table_entry(&table[12], "name", sd->name,
5411 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5412 /* &table[13] is terminator */
5413
5414 return table;
5415 }
5416
sd_alloc_ctl_cpu_table(int cpu)5417 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5418 {
5419 struct ctl_table *entry, *table;
5420 struct sched_domain *sd;
5421 int domain_num = 0, i;
5422 char buf[32];
5423
5424 for_each_domain(cpu, sd)
5425 domain_num++;
5426 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5427 if (table == NULL)
5428 return NULL;
5429
5430 i = 0;
5431 for_each_domain(cpu, sd) {
5432 snprintf(buf, 32, "domain%d", i);
5433 entry->procname = kstrdup(buf, GFP_KERNEL);
5434 entry->mode = 0555;
5435 entry->child = sd_alloc_ctl_domain_table(sd);
5436 entry++;
5437 i++;
5438 }
5439 return table;
5440 }
5441
5442 static struct ctl_table_header *sd_sysctl_header;
register_sched_domain_sysctl(void)5443 static void register_sched_domain_sysctl(void)
5444 {
5445 int i, cpu_num = num_possible_cpus();
5446 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5447 char buf[32];
5448
5449 WARN_ON(sd_ctl_dir[0].child);
5450 sd_ctl_dir[0].child = entry;
5451
5452 if (entry == NULL)
5453 return;
5454
5455 for_each_possible_cpu(i) {
5456 snprintf(buf, 32, "cpu%d", i);
5457 entry->procname = kstrdup(buf, GFP_KERNEL);
5458 entry->mode = 0555;
5459 entry->child = sd_alloc_ctl_cpu_table(i);
5460 entry++;
5461 }
5462
5463 WARN_ON(sd_sysctl_header);
5464 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5465 }
5466
5467 /* may be called multiple times per register */
unregister_sched_domain_sysctl(void)5468 static void unregister_sched_domain_sysctl(void)
5469 {
5470 unregister_sysctl_table(sd_sysctl_header);
5471 sd_sysctl_header = NULL;
5472 if (sd_ctl_dir[0].child)
5473 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5474 }
5475 #else
register_sched_domain_sysctl(void)5476 static void register_sched_domain_sysctl(void)
5477 {
5478 }
unregister_sched_domain_sysctl(void)5479 static void unregister_sched_domain_sysctl(void)
5480 {
5481 }
5482 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5483
set_rq_online(struct rq * rq)5484 static void set_rq_online(struct rq *rq)
5485 {
5486 if (!rq->online) {
5487 const struct sched_class *class;
5488
5489 cpumask_set_cpu(rq->cpu, rq->rd->online);
5490 rq->online = 1;
5491
5492 for_each_class(class) {
5493 if (class->rq_online)
5494 class->rq_online(rq);
5495 }
5496 }
5497 }
5498
set_rq_offline(struct rq * rq)5499 static void set_rq_offline(struct rq *rq)
5500 {
5501 if (rq->online) {
5502 const struct sched_class *class;
5503
5504 for_each_class(class) {
5505 if (class->rq_offline)
5506 class->rq_offline(rq);
5507 }
5508
5509 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5510 rq->online = 0;
5511 }
5512 }
5513
5514 /*
5515 * migration_call - callback that gets triggered when a CPU is added.
5516 * Here we can start up the necessary migration thread for the new CPU.
5517 */
5518 static int
migration_call(struct notifier_block * nfb,unsigned long action,void * hcpu)5519 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5520 {
5521 int cpu = (long)hcpu;
5522 unsigned long flags;
5523 struct rq *rq = cpu_rq(cpu);
5524
5525 switch (action & ~CPU_TASKS_FROZEN) {
5526
5527 case CPU_UP_PREPARE:
5528 rq->calc_load_update = calc_load_update;
5529 account_reset_rq(rq);
5530 break;
5531
5532 case CPU_ONLINE:
5533 /* Update our root-domain */
5534 raw_spin_lock_irqsave(&rq->lock, flags);
5535 if (rq->rd) {
5536 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5537
5538 set_rq_online(rq);
5539 }
5540 raw_spin_unlock_irqrestore(&rq->lock, flags);
5541 break;
5542
5543 #ifdef CONFIG_HOTPLUG_CPU
5544 case CPU_DYING:
5545 sched_ttwu_pending();
5546 /* Update our root-domain */
5547 raw_spin_lock_irqsave(&rq->lock, flags);
5548 if (rq->rd) {
5549 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5550 set_rq_offline(rq);
5551 }
5552 migrate_tasks(rq);
5553 BUG_ON(rq->nr_running != 1); /* the migration thread */
5554 raw_spin_unlock_irqrestore(&rq->lock, flags);
5555 break;
5556
5557 case CPU_DEAD:
5558 calc_load_migrate(rq);
5559 break;
5560 #endif
5561 }
5562
5563 update_max_interval();
5564
5565 return NOTIFY_OK;
5566 }
5567
5568 /*
5569 * Register at high priority so that task migration (migrate_all_tasks)
5570 * happens before everything else. This has to be lower priority than
5571 * the notifier in the perf_event subsystem, though.
5572 */
5573 static struct notifier_block migration_notifier = {
5574 .notifier_call = migration_call,
5575 .priority = CPU_PRI_MIGRATION,
5576 };
5577
set_cpu_rq_start_time(void)5578 static void set_cpu_rq_start_time(void)
5579 {
5580 int cpu = smp_processor_id();
5581 struct rq *rq = cpu_rq(cpu);
5582 rq->age_stamp = sched_clock_cpu(cpu);
5583 }
5584
sched_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)5585 static int sched_cpu_active(struct notifier_block *nfb,
5586 unsigned long action, void *hcpu)
5587 {
5588 int cpu = (long)hcpu;
5589
5590 switch (action & ~CPU_TASKS_FROZEN) {
5591 case CPU_STARTING:
5592 set_cpu_rq_start_time();
5593 return NOTIFY_OK;
5594
5595 case CPU_ONLINE:
5596 /*
5597 * At this point a starting CPU has marked itself as online via
5598 * set_cpu_online(). But it might not yet have marked itself
5599 * as active, which is essential from here on.
5600 */
5601 set_cpu_active(cpu, true);
5602 stop_machine_unpark(cpu);
5603 return NOTIFY_OK;
5604
5605 case CPU_DOWN_FAILED:
5606 set_cpu_active(cpu, true);
5607 return NOTIFY_OK;
5608
5609 default:
5610 return NOTIFY_DONE;
5611 }
5612 }
5613
sched_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)5614 static int sched_cpu_inactive(struct notifier_block *nfb,
5615 unsigned long action, void *hcpu)
5616 {
5617 switch (action & ~CPU_TASKS_FROZEN) {
5618 case CPU_DOWN_PREPARE:
5619 set_cpu_active((long)hcpu, false);
5620 return NOTIFY_OK;
5621 default:
5622 return NOTIFY_DONE;
5623 }
5624 }
5625
migration_init(void)5626 static int __init migration_init(void)
5627 {
5628 void *cpu = (void *)(long)smp_processor_id();
5629 int err;
5630
5631 /* Initialize migration for the boot CPU */
5632 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5633 BUG_ON(err == NOTIFY_BAD);
5634 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5635 register_cpu_notifier(&migration_notifier);
5636
5637 /* Register cpu active notifiers */
5638 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5639 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5640
5641 return 0;
5642 }
5643 early_initcall(migration_init);
5644
5645 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5646
5647 #ifdef CONFIG_SCHED_DEBUG
5648
5649 static __read_mostly int sched_debug_enabled;
5650
sched_debug_setup(char * str)5651 static int __init sched_debug_setup(char *str)
5652 {
5653 sched_debug_enabled = 1;
5654
5655 return 0;
5656 }
5657 early_param("sched_debug", sched_debug_setup);
5658
sched_debug(void)5659 static inline bool sched_debug(void)
5660 {
5661 return sched_debug_enabled;
5662 }
5663
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)5664 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5665 struct cpumask *groupmask)
5666 {
5667 struct sched_group *group = sd->groups;
5668
5669 cpumask_clear(groupmask);
5670
5671 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5672
5673 if (!(sd->flags & SD_LOAD_BALANCE)) {
5674 printk("does not load-balance\n");
5675 if (sd->parent)
5676 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5677 " has parent");
5678 return -1;
5679 }
5680
5681 printk(KERN_CONT "span %*pbl level %s\n",
5682 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5683
5684 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5685 printk(KERN_ERR "ERROR: domain->span does not contain "
5686 "CPU%d\n", cpu);
5687 }
5688 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5689 printk(KERN_ERR "ERROR: domain->groups does not contain"
5690 " CPU%d\n", cpu);
5691 }
5692
5693 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5694 do {
5695 if (!group) {
5696 printk("\n");
5697 printk(KERN_ERR "ERROR: group is NULL\n");
5698 break;
5699 }
5700
5701 if (!cpumask_weight(sched_group_cpus(group))) {
5702 printk(KERN_CONT "\n");
5703 printk(KERN_ERR "ERROR: empty group\n");
5704 break;
5705 }
5706
5707 if (!(sd->flags & SD_OVERLAP) &&
5708 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5709 printk(KERN_CONT "\n");
5710 printk(KERN_ERR "ERROR: repeated CPUs\n");
5711 break;
5712 }
5713
5714 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5715
5716 printk(KERN_CONT " %*pbl",
5717 cpumask_pr_args(sched_group_cpus(group)));
5718 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5719 printk(KERN_CONT " (cpu_capacity = %d)",
5720 group->sgc->capacity);
5721 }
5722
5723 group = group->next;
5724 } while (group != sd->groups);
5725 printk(KERN_CONT "\n");
5726
5727 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5728 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5729
5730 if (sd->parent &&
5731 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5732 printk(KERN_ERR "ERROR: parent span is not a superset "
5733 "of domain->span\n");
5734 return 0;
5735 }
5736
sched_domain_debug(struct sched_domain * sd,int cpu)5737 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5738 {
5739 int level = 0;
5740
5741 if (!sched_debug_enabled)
5742 return;
5743
5744 if (!sd) {
5745 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5746 return;
5747 }
5748
5749 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5750
5751 for (;;) {
5752 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5753 break;
5754 level++;
5755 sd = sd->parent;
5756 if (!sd)
5757 break;
5758 }
5759 }
5760 #else /* !CONFIG_SCHED_DEBUG */
5761 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)5762 static inline bool sched_debug(void)
5763 {
5764 return false;
5765 }
5766 #endif /* CONFIG_SCHED_DEBUG */
5767
sd_degenerate(struct sched_domain * sd)5768 static int sd_degenerate(struct sched_domain *sd)
5769 {
5770 if (cpumask_weight(sched_domain_span(sd)) == 1)
5771 return 1;
5772
5773 /* Following flags need at least 2 groups */
5774 if (sd->flags & (SD_LOAD_BALANCE |
5775 SD_BALANCE_NEWIDLE |
5776 SD_BALANCE_FORK |
5777 SD_BALANCE_EXEC |
5778 SD_SHARE_CPUCAPACITY |
5779 SD_SHARE_PKG_RESOURCES |
5780 SD_SHARE_POWERDOMAIN)) {
5781 if (sd->groups != sd->groups->next)
5782 return 0;
5783 }
5784
5785 /* Following flags don't use groups */
5786 if (sd->flags & (SD_WAKE_AFFINE))
5787 return 0;
5788
5789 return 1;
5790 }
5791
5792 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)5793 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5794 {
5795 unsigned long cflags = sd->flags, pflags = parent->flags;
5796
5797 if (sd_degenerate(parent))
5798 return 1;
5799
5800 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5801 return 0;
5802
5803 /* Flags needing groups don't count if only 1 group in parent */
5804 if (parent->groups == parent->groups->next) {
5805 pflags &= ~(SD_LOAD_BALANCE |
5806 SD_BALANCE_NEWIDLE |
5807 SD_BALANCE_FORK |
5808 SD_BALANCE_EXEC |
5809 SD_SHARE_CPUCAPACITY |
5810 SD_SHARE_PKG_RESOURCES |
5811 SD_PREFER_SIBLING |
5812 SD_SHARE_POWERDOMAIN);
5813 if (nr_node_ids == 1)
5814 pflags &= ~SD_SERIALIZE;
5815 }
5816 if (~cflags & pflags)
5817 return 0;
5818
5819 return 1;
5820 }
5821
free_rootdomain(struct rcu_head * rcu)5822 static void free_rootdomain(struct rcu_head *rcu)
5823 {
5824 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5825
5826 cpupri_cleanup(&rd->cpupri);
5827 cpudl_cleanup(&rd->cpudl);
5828 free_cpumask_var(rd->dlo_mask);
5829 free_cpumask_var(rd->rto_mask);
5830 free_cpumask_var(rd->online);
5831 free_cpumask_var(rd->span);
5832 kfree(rd);
5833 }
5834
rq_attach_root(struct rq * rq,struct root_domain * rd)5835 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5836 {
5837 struct root_domain *old_rd = NULL;
5838 unsigned long flags;
5839
5840 raw_spin_lock_irqsave(&rq->lock, flags);
5841
5842 if (rq->rd) {
5843 old_rd = rq->rd;
5844
5845 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5846 set_rq_offline(rq);
5847
5848 cpumask_clear_cpu(rq->cpu, old_rd->span);
5849
5850 /*
5851 * If we dont want to free the old_rd yet then
5852 * set old_rd to NULL to skip the freeing later
5853 * in this function:
5854 */
5855 if (!atomic_dec_and_test(&old_rd->refcount))
5856 old_rd = NULL;
5857 }
5858
5859 atomic_inc(&rd->refcount);
5860 rq->rd = rd;
5861
5862 cpumask_set_cpu(rq->cpu, rd->span);
5863 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5864 set_rq_online(rq);
5865
5866 raw_spin_unlock_irqrestore(&rq->lock, flags);
5867
5868 if (old_rd)
5869 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5870 }
5871
init_rootdomain(struct root_domain * rd)5872 static int init_rootdomain(struct root_domain *rd)
5873 {
5874 memset(rd, 0, sizeof(*rd));
5875
5876 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5877 goto out;
5878 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5879 goto free_span;
5880 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5881 goto free_online;
5882 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5883 goto free_dlo_mask;
5884
5885 init_dl_bw(&rd->dl_bw);
5886 if (cpudl_init(&rd->cpudl) != 0)
5887 goto free_dlo_mask;
5888
5889 if (cpupri_init(&rd->cpupri) != 0)
5890 goto free_rto_mask;
5891 return 0;
5892
5893 free_rto_mask:
5894 free_cpumask_var(rd->rto_mask);
5895 free_dlo_mask:
5896 free_cpumask_var(rd->dlo_mask);
5897 free_online:
5898 free_cpumask_var(rd->online);
5899 free_span:
5900 free_cpumask_var(rd->span);
5901 out:
5902 return -ENOMEM;
5903 }
5904
5905 /*
5906 * By default the system creates a single root-domain with all cpus as
5907 * members (mimicking the global state we have today).
5908 */
5909 struct root_domain def_root_domain;
5910
init_defrootdomain(void)5911 static void init_defrootdomain(void)
5912 {
5913 init_rootdomain(&def_root_domain);
5914
5915 atomic_set(&def_root_domain.refcount, 1);
5916 }
5917
alloc_rootdomain(void)5918 static struct root_domain *alloc_rootdomain(void)
5919 {
5920 struct root_domain *rd;
5921
5922 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5923 if (!rd)
5924 return NULL;
5925
5926 if (init_rootdomain(rd) != 0) {
5927 kfree(rd);
5928 return NULL;
5929 }
5930
5931 return rd;
5932 }
5933
free_sched_groups(struct sched_group * sg,int free_sgc)5934 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5935 {
5936 struct sched_group *tmp, *first;
5937
5938 if (!sg)
5939 return;
5940
5941 first = sg;
5942 do {
5943 tmp = sg->next;
5944
5945 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5946 kfree(sg->sgc);
5947
5948 kfree(sg);
5949 sg = tmp;
5950 } while (sg != first);
5951 }
5952
free_sched_domain(struct rcu_head * rcu)5953 static void free_sched_domain(struct rcu_head *rcu)
5954 {
5955 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5956
5957 /*
5958 * If its an overlapping domain it has private groups, iterate and
5959 * nuke them all.
5960 */
5961 if (sd->flags & SD_OVERLAP) {
5962 free_sched_groups(sd->groups, 1);
5963 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5964 kfree(sd->groups->sgc);
5965 kfree(sd->groups);
5966 }
5967 kfree(sd);
5968 }
5969
destroy_sched_domain(struct sched_domain * sd,int cpu)5970 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5971 {
5972 call_rcu(&sd->rcu, free_sched_domain);
5973 }
5974
destroy_sched_domains(struct sched_domain * sd,int cpu)5975 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5976 {
5977 for (; sd; sd = sd->parent)
5978 destroy_sched_domain(sd, cpu);
5979 }
5980
5981 /*
5982 * Keep a special pointer to the highest sched_domain that has
5983 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5984 * allows us to avoid some pointer chasing select_idle_sibling().
5985 *
5986 * Also keep a unique ID per domain (we use the first cpu number in
5987 * the cpumask of the domain), this allows us to quickly tell if
5988 * two cpus are in the same cache domain, see cpus_share_cache().
5989 */
5990 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5991 DEFINE_PER_CPU(int, sd_llc_size);
5992 DEFINE_PER_CPU(int, sd_llc_id);
5993 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5994 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5995 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5996
update_top_cache_domain(int cpu)5997 static void update_top_cache_domain(int cpu)
5998 {
5999 struct sched_domain *sd;
6000 struct sched_domain *busy_sd = NULL;
6001 int id = cpu;
6002 int size = 1;
6003
6004 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6005 if (sd) {
6006 id = cpumask_first(sched_domain_span(sd));
6007 size = cpumask_weight(sched_domain_span(sd));
6008 busy_sd = sd->parent; /* sd_busy */
6009 }
6010 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6011
6012 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6013 per_cpu(sd_llc_size, cpu) = size;
6014 per_cpu(sd_llc_id, cpu) = id;
6015
6016 sd = lowest_flag_domain(cpu, SD_NUMA);
6017 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6018
6019 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6020 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6021 }
6022
6023 /*
6024 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6025 * hold the hotplug lock.
6026 */
6027 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)6028 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6029 {
6030 struct rq *rq = cpu_rq(cpu);
6031 struct sched_domain *tmp;
6032
6033 /* Remove the sched domains which do not contribute to scheduling. */
6034 for (tmp = sd; tmp; ) {
6035 struct sched_domain *parent = tmp->parent;
6036 if (!parent)
6037 break;
6038
6039 if (sd_parent_degenerate(tmp, parent)) {
6040 tmp->parent = parent->parent;
6041 if (parent->parent)
6042 parent->parent->child = tmp;
6043 /*
6044 * Transfer SD_PREFER_SIBLING down in case of a
6045 * degenerate parent; the spans match for this
6046 * so the property transfers.
6047 */
6048 if (parent->flags & SD_PREFER_SIBLING)
6049 tmp->flags |= SD_PREFER_SIBLING;
6050 destroy_sched_domain(parent, cpu);
6051 } else
6052 tmp = tmp->parent;
6053 }
6054
6055 if (sd && sd_degenerate(sd)) {
6056 tmp = sd;
6057 sd = sd->parent;
6058 destroy_sched_domain(tmp, cpu);
6059 if (sd)
6060 sd->child = NULL;
6061 }
6062
6063 sched_domain_debug(sd, cpu);
6064
6065 rq_attach_root(rq, rd);
6066 tmp = rq->sd;
6067 rcu_assign_pointer(rq->sd, sd);
6068 destroy_sched_domains(tmp, cpu);
6069
6070 update_top_cache_domain(cpu);
6071 }
6072
6073 /* Setup the mask of cpus configured for isolated domains */
isolated_cpu_setup(char * str)6074 static int __init isolated_cpu_setup(char *str)
6075 {
6076 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6077 cpulist_parse(str, cpu_isolated_map);
6078 return 1;
6079 }
6080
6081 __setup("isolcpus=", isolated_cpu_setup);
6082
6083 struct s_data {
6084 struct sched_domain ** __percpu sd;
6085 struct root_domain *rd;
6086 };
6087
6088 enum s_alloc {
6089 sa_rootdomain,
6090 sa_sd,
6091 sa_sd_storage,
6092 sa_none,
6093 };
6094
6095 /*
6096 * Build an iteration mask that can exclude certain CPUs from the upwards
6097 * domain traversal.
6098 *
6099 * Asymmetric node setups can result in situations where the domain tree is of
6100 * unequal depth, make sure to skip domains that already cover the entire
6101 * range.
6102 *
6103 * In that case build_sched_domains() will have terminated the iteration early
6104 * and our sibling sd spans will be empty. Domains should always include the
6105 * cpu they're built on, so check that.
6106 *
6107 */
build_group_mask(struct sched_domain * sd,struct sched_group * sg)6108 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6109 {
6110 const struct cpumask *span = sched_domain_span(sd);
6111 struct sd_data *sdd = sd->private;
6112 struct sched_domain *sibling;
6113 int i;
6114
6115 for_each_cpu(i, span) {
6116 sibling = *per_cpu_ptr(sdd->sd, i);
6117 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6118 continue;
6119
6120 cpumask_set_cpu(i, sched_group_mask(sg));
6121 }
6122 }
6123
6124 /*
6125 * Return the canonical balance cpu for this group, this is the first cpu
6126 * of this group that's also in the iteration mask.
6127 */
group_balance_cpu(struct sched_group * sg)6128 int group_balance_cpu(struct sched_group *sg)
6129 {
6130 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6131 }
6132
6133 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)6134 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6135 {
6136 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6137 const struct cpumask *span = sched_domain_span(sd);
6138 struct cpumask *covered = sched_domains_tmpmask;
6139 struct sd_data *sdd = sd->private;
6140 struct sched_domain *sibling;
6141 int i;
6142
6143 cpumask_clear(covered);
6144
6145 for_each_cpu(i, span) {
6146 struct cpumask *sg_span;
6147
6148 if (cpumask_test_cpu(i, covered))
6149 continue;
6150
6151 sibling = *per_cpu_ptr(sdd->sd, i);
6152
6153 /* See the comment near build_group_mask(). */
6154 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6155 continue;
6156
6157 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6158 GFP_KERNEL, cpu_to_node(cpu));
6159
6160 if (!sg)
6161 goto fail;
6162
6163 sg_span = sched_group_cpus(sg);
6164 if (sibling->child)
6165 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6166 else
6167 cpumask_set_cpu(i, sg_span);
6168
6169 cpumask_or(covered, covered, sg_span);
6170
6171 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6172 if (atomic_inc_return(&sg->sgc->ref) == 1)
6173 build_group_mask(sd, sg);
6174
6175 /*
6176 * Initialize sgc->capacity such that even if we mess up the
6177 * domains and no possible iteration will get us here, we won't
6178 * die on a /0 trap.
6179 */
6180 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6181
6182 /*
6183 * Make sure the first group of this domain contains the
6184 * canonical balance cpu. Otherwise the sched_domain iteration
6185 * breaks. See update_sg_lb_stats().
6186 */
6187 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6188 group_balance_cpu(sg) == cpu)
6189 groups = sg;
6190
6191 if (!first)
6192 first = sg;
6193 if (last)
6194 last->next = sg;
6195 last = sg;
6196 last->next = first;
6197 }
6198 sd->groups = groups;
6199
6200 return 0;
6201
6202 fail:
6203 free_sched_groups(first, 0);
6204
6205 return -ENOMEM;
6206 }
6207
get_group(int cpu,struct sd_data * sdd,struct sched_group ** sg)6208 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6209 {
6210 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6211 struct sched_domain *child = sd->child;
6212
6213 if (child)
6214 cpu = cpumask_first(sched_domain_span(child));
6215
6216 if (sg) {
6217 *sg = *per_cpu_ptr(sdd->sg, cpu);
6218 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6219 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6220 }
6221
6222 return cpu;
6223 }
6224
6225 /*
6226 * build_sched_groups will build a circular linked list of the groups
6227 * covered by the given span, and will set each group's ->cpumask correctly,
6228 * and ->cpu_capacity to 0.
6229 *
6230 * Assumes the sched_domain tree is fully constructed
6231 */
6232 static int
build_sched_groups(struct sched_domain * sd,int cpu)6233 build_sched_groups(struct sched_domain *sd, int cpu)
6234 {
6235 struct sched_group *first = NULL, *last = NULL;
6236 struct sd_data *sdd = sd->private;
6237 const struct cpumask *span = sched_domain_span(sd);
6238 struct cpumask *covered;
6239 int i;
6240
6241 get_group(cpu, sdd, &sd->groups);
6242 atomic_inc(&sd->groups->ref);
6243
6244 if (cpu != cpumask_first(span))
6245 return 0;
6246
6247 lockdep_assert_held(&sched_domains_mutex);
6248 covered = sched_domains_tmpmask;
6249
6250 cpumask_clear(covered);
6251
6252 for_each_cpu(i, span) {
6253 struct sched_group *sg;
6254 int group, j;
6255
6256 if (cpumask_test_cpu(i, covered))
6257 continue;
6258
6259 group = get_group(i, sdd, &sg);
6260 cpumask_setall(sched_group_mask(sg));
6261
6262 for_each_cpu(j, span) {
6263 if (get_group(j, sdd, NULL) != group)
6264 continue;
6265
6266 cpumask_set_cpu(j, covered);
6267 cpumask_set_cpu(j, sched_group_cpus(sg));
6268 }
6269
6270 if (!first)
6271 first = sg;
6272 if (last)
6273 last->next = sg;
6274 last = sg;
6275 }
6276 last->next = first;
6277
6278 return 0;
6279 }
6280
6281 /*
6282 * Initialize sched groups cpu_capacity.
6283 *
6284 * cpu_capacity indicates the capacity of sched group, which is used while
6285 * distributing the load between different sched groups in a sched domain.
6286 * Typically cpu_capacity for all the groups in a sched domain will be same
6287 * unless there are asymmetries in the topology. If there are asymmetries,
6288 * group having more cpu_capacity will pickup more load compared to the
6289 * group having less cpu_capacity.
6290 */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)6291 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6292 {
6293 struct sched_group *sg = sd->groups;
6294
6295 WARN_ON(!sg);
6296
6297 do {
6298 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6299 sg = sg->next;
6300 } while (sg != sd->groups);
6301
6302 if (cpu != group_balance_cpu(sg))
6303 return;
6304
6305 update_group_capacity(sd, cpu);
6306 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6307 }
6308
6309 /*
6310 * Initializers for schedule domains
6311 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6312 */
6313
6314 static int default_relax_domain_level = -1;
6315 int sched_domain_level_max;
6316
setup_relax_domain_level(char * str)6317 static int __init setup_relax_domain_level(char *str)
6318 {
6319 if (kstrtoint(str, 0, &default_relax_domain_level))
6320 pr_warn("Unable to set relax_domain_level\n");
6321
6322 return 1;
6323 }
6324 __setup("relax_domain_level=", setup_relax_domain_level);
6325
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)6326 static void set_domain_attribute(struct sched_domain *sd,
6327 struct sched_domain_attr *attr)
6328 {
6329 int request;
6330
6331 if (!attr || attr->relax_domain_level < 0) {
6332 if (default_relax_domain_level < 0)
6333 return;
6334 else
6335 request = default_relax_domain_level;
6336 } else
6337 request = attr->relax_domain_level;
6338 if (request < sd->level) {
6339 /* turn off idle balance on this domain */
6340 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6341 } else {
6342 /* turn on idle balance on this domain */
6343 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6344 }
6345 }
6346
6347 static void __sdt_free(const struct cpumask *cpu_map);
6348 static int __sdt_alloc(const struct cpumask *cpu_map);
6349
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)6350 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6351 const struct cpumask *cpu_map)
6352 {
6353 switch (what) {
6354 case sa_rootdomain:
6355 if (!atomic_read(&d->rd->refcount))
6356 free_rootdomain(&d->rd->rcu); /* fall through */
6357 case sa_sd:
6358 free_percpu(d->sd); /* fall through */
6359 case sa_sd_storage:
6360 __sdt_free(cpu_map); /* fall through */
6361 case sa_none:
6362 break;
6363 }
6364 }
6365
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)6366 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6367 const struct cpumask *cpu_map)
6368 {
6369 memset(d, 0, sizeof(*d));
6370
6371 if (__sdt_alloc(cpu_map))
6372 return sa_sd_storage;
6373 d->sd = alloc_percpu(struct sched_domain *);
6374 if (!d->sd)
6375 return sa_sd_storage;
6376 d->rd = alloc_rootdomain();
6377 if (!d->rd)
6378 return sa_sd;
6379 return sa_rootdomain;
6380 }
6381
6382 /*
6383 * NULL the sd_data elements we've used to build the sched_domain and
6384 * sched_group structure so that the subsequent __free_domain_allocs()
6385 * will not free the data we're using.
6386 */
claim_allocations(int cpu,struct sched_domain * sd)6387 static void claim_allocations(int cpu, struct sched_domain *sd)
6388 {
6389 struct sd_data *sdd = sd->private;
6390
6391 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6392 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6393
6394 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6395 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6396
6397 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6398 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6399 }
6400
6401 #ifdef CONFIG_NUMA
6402 static int sched_domains_numa_levels;
6403 enum numa_topology_type sched_numa_topology_type;
6404 static int *sched_domains_numa_distance;
6405 int sched_max_numa_distance;
6406 static struct cpumask ***sched_domains_numa_masks;
6407 static int sched_domains_curr_level;
6408 #endif
6409
6410 /*
6411 * SD_flags allowed in topology descriptions.
6412 *
6413 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6414 * SD_SHARE_PKG_RESOURCES - describes shared caches
6415 * SD_NUMA - describes NUMA topologies
6416 * SD_SHARE_POWERDOMAIN - describes shared power domain
6417 *
6418 * Odd one out:
6419 * SD_ASYM_PACKING - describes SMT quirks
6420 */
6421 #define TOPOLOGY_SD_FLAGS \
6422 (SD_SHARE_CPUCAPACITY | \
6423 SD_SHARE_PKG_RESOURCES | \
6424 SD_NUMA | \
6425 SD_ASYM_PACKING | \
6426 SD_SHARE_POWERDOMAIN)
6427
6428 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,int cpu)6429 sd_init(struct sched_domain_topology_level *tl, int cpu)
6430 {
6431 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6432 int sd_weight, sd_flags = 0;
6433
6434 #ifdef CONFIG_NUMA
6435 /*
6436 * Ugly hack to pass state to sd_numa_mask()...
6437 */
6438 sched_domains_curr_level = tl->numa_level;
6439 #endif
6440
6441 sd_weight = cpumask_weight(tl->mask(cpu));
6442
6443 if (tl->sd_flags)
6444 sd_flags = (*tl->sd_flags)();
6445 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6446 "wrong sd_flags in topology description\n"))
6447 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6448
6449 *sd = (struct sched_domain){
6450 .min_interval = sd_weight,
6451 .max_interval = 2*sd_weight,
6452 .busy_factor = 32,
6453 .imbalance_pct = 125,
6454
6455 .cache_nice_tries = 0,
6456 .busy_idx = 0,
6457 .idle_idx = 0,
6458 .newidle_idx = 0,
6459 .wake_idx = 0,
6460 .forkexec_idx = 0,
6461
6462 .flags = 1*SD_LOAD_BALANCE
6463 | 1*SD_BALANCE_NEWIDLE
6464 | 1*SD_BALANCE_EXEC
6465 | 1*SD_BALANCE_FORK
6466 | 0*SD_BALANCE_WAKE
6467 | 1*SD_WAKE_AFFINE
6468 | 0*SD_SHARE_CPUCAPACITY
6469 | 0*SD_SHARE_PKG_RESOURCES
6470 | 0*SD_SERIALIZE
6471 | 0*SD_PREFER_SIBLING
6472 | 0*SD_NUMA
6473 | sd_flags
6474 ,
6475
6476 .last_balance = jiffies,
6477 .balance_interval = sd_weight,
6478 .smt_gain = 0,
6479 .max_newidle_lb_cost = 0,
6480 .next_decay_max_lb_cost = jiffies,
6481 #ifdef CONFIG_SCHED_DEBUG
6482 .name = tl->name,
6483 #endif
6484 };
6485
6486 /*
6487 * Convert topological properties into behaviour.
6488 */
6489
6490 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6491 sd->flags |= SD_PREFER_SIBLING;
6492 sd->imbalance_pct = 110;
6493 sd->smt_gain = 1178; /* ~15% */
6494
6495 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6496 sd->imbalance_pct = 117;
6497 sd->cache_nice_tries = 1;
6498 sd->busy_idx = 2;
6499
6500 #ifdef CONFIG_NUMA
6501 } else if (sd->flags & SD_NUMA) {
6502 sd->cache_nice_tries = 2;
6503 sd->busy_idx = 3;
6504 sd->idle_idx = 2;
6505
6506 sd->flags |= SD_SERIALIZE;
6507 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6508 sd->flags &= ~(SD_BALANCE_EXEC |
6509 SD_BALANCE_FORK |
6510 SD_WAKE_AFFINE);
6511 }
6512
6513 #endif
6514 } else {
6515 sd->flags |= SD_PREFER_SIBLING;
6516 sd->cache_nice_tries = 1;
6517 sd->busy_idx = 2;
6518 sd->idle_idx = 1;
6519 }
6520
6521 sd->private = &tl->data;
6522
6523 return sd;
6524 }
6525
6526 /*
6527 * Topology list, bottom-up.
6528 */
6529 static struct sched_domain_topology_level default_topology[] = {
6530 #ifdef CONFIG_SCHED_SMT
6531 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6532 #endif
6533 #ifdef CONFIG_SCHED_MC
6534 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6535 #endif
6536 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6537 { NULL, },
6538 };
6539
6540 static struct sched_domain_topology_level *sched_domain_topology =
6541 default_topology;
6542
6543 #define for_each_sd_topology(tl) \
6544 for (tl = sched_domain_topology; tl->mask; tl++)
6545
set_sched_topology(struct sched_domain_topology_level * tl)6546 void set_sched_topology(struct sched_domain_topology_level *tl)
6547 {
6548 sched_domain_topology = tl;
6549 }
6550
6551 #ifdef CONFIG_NUMA
6552
sd_numa_mask(int cpu)6553 static const struct cpumask *sd_numa_mask(int cpu)
6554 {
6555 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6556 }
6557
sched_numa_warn(const char * str)6558 static void sched_numa_warn(const char *str)
6559 {
6560 static int done = false;
6561 int i,j;
6562
6563 if (done)
6564 return;
6565
6566 done = true;
6567
6568 printk(KERN_WARNING "ERROR: %s\n\n", str);
6569
6570 for (i = 0; i < nr_node_ids; i++) {
6571 printk(KERN_WARNING " ");
6572 for (j = 0; j < nr_node_ids; j++)
6573 printk(KERN_CONT "%02d ", node_distance(i,j));
6574 printk(KERN_CONT "\n");
6575 }
6576 printk(KERN_WARNING "\n");
6577 }
6578
find_numa_distance(int distance)6579 bool find_numa_distance(int distance)
6580 {
6581 int i;
6582
6583 if (distance == node_distance(0, 0))
6584 return true;
6585
6586 for (i = 0; i < sched_domains_numa_levels; i++) {
6587 if (sched_domains_numa_distance[i] == distance)
6588 return true;
6589 }
6590
6591 return false;
6592 }
6593
6594 /*
6595 * A system can have three types of NUMA topology:
6596 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6597 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6598 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6599 *
6600 * The difference between a glueless mesh topology and a backplane
6601 * topology lies in whether communication between not directly
6602 * connected nodes goes through intermediary nodes (where programs
6603 * could run), or through backplane controllers. This affects
6604 * placement of programs.
6605 *
6606 * The type of topology can be discerned with the following tests:
6607 * - If the maximum distance between any nodes is 1 hop, the system
6608 * is directly connected.
6609 * - If for two nodes A and B, located N > 1 hops away from each other,
6610 * there is an intermediary node C, which is < N hops away from both
6611 * nodes A and B, the system is a glueless mesh.
6612 */
init_numa_topology_type(void)6613 static void init_numa_topology_type(void)
6614 {
6615 int a, b, c, n;
6616
6617 n = sched_max_numa_distance;
6618
6619 if (sched_domains_numa_levels <= 1) {
6620 sched_numa_topology_type = NUMA_DIRECT;
6621 return;
6622 }
6623
6624 for_each_online_node(a) {
6625 for_each_online_node(b) {
6626 /* Find two nodes furthest removed from each other. */
6627 if (node_distance(a, b) < n)
6628 continue;
6629
6630 /* Is there an intermediary node between a and b? */
6631 for_each_online_node(c) {
6632 if (node_distance(a, c) < n &&
6633 node_distance(b, c) < n) {
6634 sched_numa_topology_type =
6635 NUMA_GLUELESS_MESH;
6636 return;
6637 }
6638 }
6639
6640 sched_numa_topology_type = NUMA_BACKPLANE;
6641 return;
6642 }
6643 }
6644 }
6645
sched_init_numa(void)6646 static void sched_init_numa(void)
6647 {
6648 int next_distance, curr_distance = node_distance(0, 0);
6649 struct sched_domain_topology_level *tl;
6650 int level = 0;
6651 int i, j, k;
6652
6653 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6654 if (!sched_domains_numa_distance)
6655 return;
6656
6657 /*
6658 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6659 * unique distances in the node_distance() table.
6660 *
6661 * Assumes node_distance(0,j) includes all distances in
6662 * node_distance(i,j) in order to avoid cubic time.
6663 */
6664 next_distance = curr_distance;
6665 for (i = 0; i < nr_node_ids; i++) {
6666 for (j = 0; j < nr_node_ids; j++) {
6667 for (k = 0; k < nr_node_ids; k++) {
6668 int distance = node_distance(i, k);
6669
6670 if (distance > curr_distance &&
6671 (distance < next_distance ||
6672 next_distance == curr_distance))
6673 next_distance = distance;
6674
6675 /*
6676 * While not a strong assumption it would be nice to know
6677 * about cases where if node A is connected to B, B is not
6678 * equally connected to A.
6679 */
6680 if (sched_debug() && node_distance(k, i) != distance)
6681 sched_numa_warn("Node-distance not symmetric");
6682
6683 if (sched_debug() && i && !find_numa_distance(distance))
6684 sched_numa_warn("Node-0 not representative");
6685 }
6686 if (next_distance != curr_distance) {
6687 sched_domains_numa_distance[level++] = next_distance;
6688 sched_domains_numa_levels = level;
6689 curr_distance = next_distance;
6690 } else break;
6691 }
6692
6693 /*
6694 * In case of sched_debug() we verify the above assumption.
6695 */
6696 if (!sched_debug())
6697 break;
6698 }
6699
6700 if (!level)
6701 return;
6702
6703 /*
6704 * 'level' contains the number of unique distances, excluding the
6705 * identity distance node_distance(i,i).
6706 *
6707 * The sched_domains_numa_distance[] array includes the actual distance
6708 * numbers.
6709 */
6710
6711 /*
6712 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6713 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6714 * the array will contain less then 'level' members. This could be
6715 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6716 * in other functions.
6717 *
6718 * We reset it to 'level' at the end of this function.
6719 */
6720 sched_domains_numa_levels = 0;
6721
6722 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6723 if (!sched_domains_numa_masks)
6724 return;
6725
6726 /*
6727 * Now for each level, construct a mask per node which contains all
6728 * cpus of nodes that are that many hops away from us.
6729 */
6730 for (i = 0; i < level; i++) {
6731 sched_domains_numa_masks[i] =
6732 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6733 if (!sched_domains_numa_masks[i])
6734 return;
6735
6736 for (j = 0; j < nr_node_ids; j++) {
6737 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6738 if (!mask)
6739 return;
6740
6741 sched_domains_numa_masks[i][j] = mask;
6742
6743 for_each_node(k) {
6744 if (node_distance(j, k) > sched_domains_numa_distance[i])
6745 continue;
6746
6747 cpumask_or(mask, mask, cpumask_of_node(k));
6748 }
6749 }
6750 }
6751
6752 /* Compute default topology size */
6753 for (i = 0; sched_domain_topology[i].mask; i++);
6754
6755 tl = kzalloc((i + level + 1) *
6756 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6757 if (!tl)
6758 return;
6759
6760 /*
6761 * Copy the default topology bits..
6762 */
6763 for (i = 0; sched_domain_topology[i].mask; i++)
6764 tl[i] = sched_domain_topology[i];
6765
6766 /*
6767 * .. and append 'j' levels of NUMA goodness.
6768 */
6769 for (j = 0; j < level; i++, j++) {
6770 tl[i] = (struct sched_domain_topology_level){
6771 .mask = sd_numa_mask,
6772 .sd_flags = cpu_numa_flags,
6773 .flags = SDTL_OVERLAP,
6774 .numa_level = j,
6775 SD_INIT_NAME(NUMA)
6776 };
6777 }
6778
6779 sched_domain_topology = tl;
6780
6781 sched_domains_numa_levels = level;
6782 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6783
6784 init_numa_topology_type();
6785 }
6786
sched_domains_numa_masks_set(int cpu)6787 static void sched_domains_numa_masks_set(int cpu)
6788 {
6789 int i, j;
6790 int node = cpu_to_node(cpu);
6791
6792 for (i = 0; i < sched_domains_numa_levels; i++) {
6793 for (j = 0; j < nr_node_ids; j++) {
6794 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6795 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6796 }
6797 }
6798 }
6799
sched_domains_numa_masks_clear(int cpu)6800 static void sched_domains_numa_masks_clear(int cpu)
6801 {
6802 int i, j;
6803 for (i = 0; i < sched_domains_numa_levels; i++) {
6804 for (j = 0; j < nr_node_ids; j++)
6805 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6806 }
6807 }
6808
6809 /*
6810 * Update sched_domains_numa_masks[level][node] array when new cpus
6811 * are onlined.
6812 */
sched_domains_numa_masks_update(struct notifier_block * nfb,unsigned long action,void * hcpu)6813 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6814 unsigned long action,
6815 void *hcpu)
6816 {
6817 int cpu = (long)hcpu;
6818
6819 switch (action & ~CPU_TASKS_FROZEN) {
6820 case CPU_ONLINE:
6821 sched_domains_numa_masks_set(cpu);
6822 break;
6823
6824 case CPU_DEAD:
6825 sched_domains_numa_masks_clear(cpu);
6826 break;
6827
6828 default:
6829 return NOTIFY_DONE;
6830 }
6831
6832 return NOTIFY_OK;
6833 }
6834 #else
sched_init_numa(void)6835 static inline void sched_init_numa(void)
6836 {
6837 }
6838
sched_domains_numa_masks_update(struct notifier_block * nfb,unsigned long action,void * hcpu)6839 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6840 unsigned long action,
6841 void *hcpu)
6842 {
6843 return 0;
6844 }
6845 #endif /* CONFIG_NUMA */
6846
__sdt_alloc(const struct cpumask * cpu_map)6847 static int __sdt_alloc(const struct cpumask *cpu_map)
6848 {
6849 struct sched_domain_topology_level *tl;
6850 int j;
6851
6852 for_each_sd_topology(tl) {
6853 struct sd_data *sdd = &tl->data;
6854
6855 sdd->sd = alloc_percpu(struct sched_domain *);
6856 if (!sdd->sd)
6857 return -ENOMEM;
6858
6859 sdd->sg = alloc_percpu(struct sched_group *);
6860 if (!sdd->sg)
6861 return -ENOMEM;
6862
6863 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6864 if (!sdd->sgc)
6865 return -ENOMEM;
6866
6867 for_each_cpu(j, cpu_map) {
6868 struct sched_domain *sd;
6869 struct sched_group *sg;
6870 struct sched_group_capacity *sgc;
6871
6872 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6873 GFP_KERNEL, cpu_to_node(j));
6874 if (!sd)
6875 return -ENOMEM;
6876
6877 *per_cpu_ptr(sdd->sd, j) = sd;
6878
6879 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6880 GFP_KERNEL, cpu_to_node(j));
6881 if (!sg)
6882 return -ENOMEM;
6883
6884 sg->next = sg;
6885
6886 *per_cpu_ptr(sdd->sg, j) = sg;
6887
6888 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6889 GFP_KERNEL, cpu_to_node(j));
6890 if (!sgc)
6891 return -ENOMEM;
6892
6893 *per_cpu_ptr(sdd->sgc, j) = sgc;
6894 }
6895 }
6896
6897 return 0;
6898 }
6899
__sdt_free(const struct cpumask * cpu_map)6900 static void __sdt_free(const struct cpumask *cpu_map)
6901 {
6902 struct sched_domain_topology_level *tl;
6903 int j;
6904
6905 for_each_sd_topology(tl) {
6906 struct sd_data *sdd = &tl->data;
6907
6908 for_each_cpu(j, cpu_map) {
6909 struct sched_domain *sd;
6910
6911 if (sdd->sd) {
6912 sd = *per_cpu_ptr(sdd->sd, j);
6913 if (sd && (sd->flags & SD_OVERLAP))
6914 free_sched_groups(sd->groups, 0);
6915 kfree(*per_cpu_ptr(sdd->sd, j));
6916 }
6917
6918 if (sdd->sg)
6919 kfree(*per_cpu_ptr(sdd->sg, j));
6920 if (sdd->sgc)
6921 kfree(*per_cpu_ptr(sdd->sgc, j));
6922 }
6923 free_percpu(sdd->sd);
6924 sdd->sd = NULL;
6925 free_percpu(sdd->sg);
6926 sdd->sg = NULL;
6927 free_percpu(sdd->sgc);
6928 sdd->sgc = NULL;
6929 }
6930 }
6931
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)6932 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6933 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6934 struct sched_domain *child, int cpu)
6935 {
6936 struct sched_domain *sd = sd_init(tl, cpu);
6937 if (!sd)
6938 return child;
6939
6940 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6941 if (child) {
6942 sd->level = child->level + 1;
6943 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6944 child->parent = sd;
6945 sd->child = child;
6946
6947 if (!cpumask_subset(sched_domain_span(child),
6948 sched_domain_span(sd))) {
6949 pr_err("BUG: arch topology borken\n");
6950 #ifdef CONFIG_SCHED_DEBUG
6951 pr_err(" the %s domain not a subset of the %s domain\n",
6952 child->name, sd->name);
6953 #endif
6954 /* Fixup, ensure @sd has at least @child cpus. */
6955 cpumask_or(sched_domain_span(sd),
6956 sched_domain_span(sd),
6957 sched_domain_span(child));
6958 }
6959
6960 }
6961 set_domain_attribute(sd, attr);
6962
6963 return sd;
6964 }
6965
6966 /*
6967 * Build sched domains for a given set of cpus and attach the sched domains
6968 * to the individual cpus
6969 */
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)6970 static int build_sched_domains(const struct cpumask *cpu_map,
6971 struct sched_domain_attr *attr)
6972 {
6973 enum s_alloc alloc_state;
6974 struct sched_domain *sd;
6975 struct s_data d;
6976 int i, ret = -ENOMEM;
6977
6978 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6979 if (alloc_state != sa_rootdomain)
6980 goto error;
6981
6982 /* Set up domains for cpus specified by the cpu_map. */
6983 for_each_cpu(i, cpu_map) {
6984 struct sched_domain_topology_level *tl;
6985
6986 sd = NULL;
6987 for_each_sd_topology(tl) {
6988 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6989 if (tl == sched_domain_topology)
6990 *per_cpu_ptr(d.sd, i) = sd;
6991 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6992 sd->flags |= SD_OVERLAP;
6993 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6994 break;
6995 }
6996 }
6997
6998 /* Build the groups for the domains */
6999 for_each_cpu(i, cpu_map) {
7000 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7001 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7002 if (sd->flags & SD_OVERLAP) {
7003 if (build_overlap_sched_groups(sd, i))
7004 goto error;
7005 } else {
7006 if (build_sched_groups(sd, i))
7007 goto error;
7008 }
7009 }
7010 }
7011
7012 /* Calculate CPU capacity for physical packages and nodes */
7013 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7014 if (!cpumask_test_cpu(i, cpu_map))
7015 continue;
7016
7017 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7018 claim_allocations(i, sd);
7019 init_sched_groups_capacity(i, sd);
7020 }
7021 }
7022
7023 /* Attach the domains */
7024 rcu_read_lock();
7025 for_each_cpu(i, cpu_map) {
7026 sd = *per_cpu_ptr(d.sd, i);
7027 cpu_attach_domain(sd, d.rd, i);
7028 }
7029 rcu_read_unlock();
7030
7031 ret = 0;
7032 error:
7033 __free_domain_allocs(&d, alloc_state, cpu_map);
7034 return ret;
7035 }
7036
7037 static cpumask_var_t *doms_cur; /* current sched domains */
7038 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7039 static struct sched_domain_attr *dattr_cur;
7040 /* attribues of custom domains in 'doms_cur' */
7041
7042 /*
7043 * Special case: If a kmalloc of a doms_cur partition (array of
7044 * cpumask) fails, then fallback to a single sched domain,
7045 * as determined by the single cpumask fallback_doms.
7046 */
7047 static cpumask_var_t fallback_doms;
7048
7049 /*
7050 * arch_update_cpu_topology lets virtualized architectures update the
7051 * cpu core maps. It is supposed to return 1 if the topology changed
7052 * or 0 if it stayed the same.
7053 */
arch_update_cpu_topology(void)7054 int __weak arch_update_cpu_topology(void)
7055 {
7056 return 0;
7057 }
7058
alloc_sched_domains(unsigned int ndoms)7059 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7060 {
7061 int i;
7062 cpumask_var_t *doms;
7063
7064 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7065 if (!doms)
7066 return NULL;
7067 for (i = 0; i < ndoms; i++) {
7068 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7069 free_sched_domains(doms, i);
7070 return NULL;
7071 }
7072 }
7073 return doms;
7074 }
7075
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)7076 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7077 {
7078 unsigned int i;
7079 for (i = 0; i < ndoms; i++)
7080 free_cpumask_var(doms[i]);
7081 kfree(doms);
7082 }
7083
7084 /*
7085 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7086 * For now this just excludes isolated cpus, but could be used to
7087 * exclude other special cases in the future.
7088 */
init_sched_domains(const struct cpumask * cpu_map)7089 static int init_sched_domains(const struct cpumask *cpu_map)
7090 {
7091 int err;
7092
7093 arch_update_cpu_topology();
7094 ndoms_cur = 1;
7095 doms_cur = alloc_sched_domains(ndoms_cur);
7096 if (!doms_cur)
7097 doms_cur = &fallback_doms;
7098 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7099 err = build_sched_domains(doms_cur[0], NULL);
7100 register_sched_domain_sysctl();
7101
7102 return err;
7103 }
7104
7105 /*
7106 * Detach sched domains from a group of cpus specified in cpu_map
7107 * These cpus will now be attached to the NULL domain
7108 */
detach_destroy_domains(const struct cpumask * cpu_map)7109 static void detach_destroy_domains(const struct cpumask *cpu_map)
7110 {
7111 int i;
7112
7113 rcu_read_lock();
7114 for_each_cpu(i, cpu_map)
7115 cpu_attach_domain(NULL, &def_root_domain, i);
7116 rcu_read_unlock();
7117 }
7118
7119 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)7120 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7121 struct sched_domain_attr *new, int idx_new)
7122 {
7123 struct sched_domain_attr tmp;
7124
7125 /* fast path */
7126 if (!new && !cur)
7127 return 1;
7128
7129 tmp = SD_ATTR_INIT;
7130 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7131 new ? (new + idx_new) : &tmp,
7132 sizeof(struct sched_domain_attr));
7133 }
7134
7135 /*
7136 * Partition sched domains as specified by the 'ndoms_new'
7137 * cpumasks in the array doms_new[] of cpumasks. This compares
7138 * doms_new[] to the current sched domain partitioning, doms_cur[].
7139 * It destroys each deleted domain and builds each new domain.
7140 *
7141 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7142 * The masks don't intersect (don't overlap.) We should setup one
7143 * sched domain for each mask. CPUs not in any of the cpumasks will
7144 * not be load balanced. If the same cpumask appears both in the
7145 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7146 * it as it is.
7147 *
7148 * The passed in 'doms_new' should be allocated using
7149 * alloc_sched_domains. This routine takes ownership of it and will
7150 * free_sched_domains it when done with it. If the caller failed the
7151 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7152 * and partition_sched_domains() will fallback to the single partition
7153 * 'fallback_doms', it also forces the domains to be rebuilt.
7154 *
7155 * If doms_new == NULL it will be replaced with cpu_online_mask.
7156 * ndoms_new == 0 is a special case for destroying existing domains,
7157 * and it will not create the default domain.
7158 *
7159 * Call with hotplug lock held
7160 */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)7161 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7162 struct sched_domain_attr *dattr_new)
7163 {
7164 int i, j, n;
7165 int new_topology;
7166
7167 mutex_lock(&sched_domains_mutex);
7168
7169 /* always unregister in case we don't destroy any domains */
7170 unregister_sched_domain_sysctl();
7171
7172 /* Let architecture update cpu core mappings. */
7173 new_topology = arch_update_cpu_topology();
7174
7175 n = doms_new ? ndoms_new : 0;
7176
7177 /* Destroy deleted domains */
7178 for (i = 0; i < ndoms_cur; i++) {
7179 for (j = 0; j < n && !new_topology; j++) {
7180 if (cpumask_equal(doms_cur[i], doms_new[j])
7181 && dattrs_equal(dattr_cur, i, dattr_new, j))
7182 goto match1;
7183 }
7184 /* no match - a current sched domain not in new doms_new[] */
7185 detach_destroy_domains(doms_cur[i]);
7186 match1:
7187 ;
7188 }
7189
7190 n = ndoms_cur;
7191 if (doms_new == NULL) {
7192 n = 0;
7193 doms_new = &fallback_doms;
7194 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7195 WARN_ON_ONCE(dattr_new);
7196 }
7197
7198 /* Build new domains */
7199 for (i = 0; i < ndoms_new; i++) {
7200 for (j = 0; j < n && !new_topology; j++) {
7201 if (cpumask_equal(doms_new[i], doms_cur[j])
7202 && dattrs_equal(dattr_new, i, dattr_cur, j))
7203 goto match2;
7204 }
7205 /* no match - add a new doms_new */
7206 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7207 match2:
7208 ;
7209 }
7210
7211 /* Remember the new sched domains */
7212 if (doms_cur != &fallback_doms)
7213 free_sched_domains(doms_cur, ndoms_cur);
7214 kfree(dattr_cur); /* kfree(NULL) is safe */
7215 doms_cur = doms_new;
7216 dattr_cur = dattr_new;
7217 ndoms_cur = ndoms_new;
7218
7219 register_sched_domain_sysctl();
7220
7221 mutex_unlock(&sched_domains_mutex);
7222 }
7223
7224 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7225
7226 /*
7227 * Update cpusets according to cpu_active mask. If cpusets are
7228 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7229 * around partition_sched_domains().
7230 *
7231 * If we come here as part of a suspend/resume, don't touch cpusets because we
7232 * want to restore it back to its original state upon resume anyway.
7233 */
cpuset_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)7234 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7235 void *hcpu)
7236 {
7237 switch (action) {
7238 case CPU_ONLINE_FROZEN:
7239 case CPU_DOWN_FAILED_FROZEN:
7240
7241 /*
7242 * num_cpus_frozen tracks how many CPUs are involved in suspend
7243 * resume sequence. As long as this is not the last online
7244 * operation in the resume sequence, just build a single sched
7245 * domain, ignoring cpusets.
7246 */
7247 num_cpus_frozen--;
7248 if (likely(num_cpus_frozen)) {
7249 partition_sched_domains(1, NULL, NULL);
7250 break;
7251 }
7252
7253 /*
7254 * This is the last CPU online operation. So fall through and
7255 * restore the original sched domains by considering the
7256 * cpuset configurations.
7257 */
7258
7259 case CPU_ONLINE:
7260 cpuset_update_active_cpus(true);
7261 break;
7262 default:
7263 return NOTIFY_DONE;
7264 }
7265 return NOTIFY_OK;
7266 }
7267
cpuset_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)7268 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7269 void *hcpu)
7270 {
7271 unsigned long flags;
7272 long cpu = (long)hcpu;
7273 struct dl_bw *dl_b;
7274 bool overflow;
7275 int cpus;
7276
7277 switch (action) {
7278 case CPU_DOWN_PREPARE:
7279 rcu_read_lock_sched();
7280 dl_b = dl_bw_of(cpu);
7281
7282 raw_spin_lock_irqsave(&dl_b->lock, flags);
7283 cpus = dl_bw_cpus(cpu);
7284 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7285 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7286
7287 rcu_read_unlock_sched();
7288
7289 if (overflow)
7290 return notifier_from_errno(-EBUSY);
7291 cpuset_update_active_cpus(false);
7292 break;
7293 case CPU_DOWN_PREPARE_FROZEN:
7294 num_cpus_frozen++;
7295 partition_sched_domains(1, NULL, NULL);
7296 break;
7297 default:
7298 return NOTIFY_DONE;
7299 }
7300 return NOTIFY_OK;
7301 }
7302
sched_init_smp(void)7303 void __init sched_init_smp(void)
7304 {
7305 cpumask_var_t non_isolated_cpus;
7306
7307 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7308 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7309
7310 sched_init_numa();
7311
7312 /*
7313 * There's no userspace yet to cause hotplug operations; hence all the
7314 * cpu masks are stable and all blatant races in the below code cannot
7315 * happen.
7316 */
7317 mutex_lock(&sched_domains_mutex);
7318 init_sched_domains(cpu_active_mask);
7319 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7320 if (cpumask_empty(non_isolated_cpus))
7321 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7322 mutex_unlock(&sched_domains_mutex);
7323
7324 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7325 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7326 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7327
7328 init_hrtick();
7329
7330 /* Move init over to a non-isolated CPU */
7331 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7332 BUG();
7333 sched_init_granularity();
7334 free_cpumask_var(non_isolated_cpus);
7335
7336 init_sched_rt_class();
7337 init_sched_dl_class();
7338 }
7339 #else
sched_init_smp(void)7340 void __init sched_init_smp(void)
7341 {
7342 sched_init_granularity();
7343 }
7344 #endif /* CONFIG_SMP */
7345
in_sched_functions(unsigned long addr)7346 int in_sched_functions(unsigned long addr)
7347 {
7348 return in_lock_functions(addr) ||
7349 (addr >= (unsigned long)__sched_text_start
7350 && addr < (unsigned long)__sched_text_end);
7351 }
7352
7353 #ifdef CONFIG_CGROUP_SCHED
7354 /*
7355 * Default task group.
7356 * Every task in system belongs to this group at bootup.
7357 */
7358 struct task_group root_task_group;
7359 LIST_HEAD(task_groups);
7360 #endif
7361
7362 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7363
sched_init(void)7364 void __init sched_init(void)
7365 {
7366 int i, j;
7367 unsigned long alloc_size = 0, ptr;
7368
7369 #ifdef CONFIG_FAIR_GROUP_SCHED
7370 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7371 #endif
7372 #ifdef CONFIG_RT_GROUP_SCHED
7373 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7374 #endif
7375 if (alloc_size) {
7376 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7377
7378 #ifdef CONFIG_FAIR_GROUP_SCHED
7379 root_task_group.se = (struct sched_entity **)ptr;
7380 ptr += nr_cpu_ids * sizeof(void **);
7381
7382 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7383 ptr += nr_cpu_ids * sizeof(void **);
7384
7385 #endif /* CONFIG_FAIR_GROUP_SCHED */
7386 #ifdef CONFIG_RT_GROUP_SCHED
7387 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7388 ptr += nr_cpu_ids * sizeof(void **);
7389
7390 root_task_group.rt_rq = (struct rt_rq **)ptr;
7391 ptr += nr_cpu_ids * sizeof(void **);
7392
7393 #endif /* CONFIG_RT_GROUP_SCHED */
7394 }
7395 #ifdef CONFIG_CPUMASK_OFFSTACK
7396 for_each_possible_cpu(i) {
7397 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7398 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7399 }
7400 #endif /* CONFIG_CPUMASK_OFFSTACK */
7401
7402 init_rt_bandwidth(&def_rt_bandwidth,
7403 global_rt_period(), global_rt_runtime());
7404 init_dl_bandwidth(&def_dl_bandwidth,
7405 global_rt_period(), global_rt_runtime());
7406
7407 #ifdef CONFIG_SMP
7408 init_defrootdomain();
7409 #endif
7410
7411 #ifdef CONFIG_RT_GROUP_SCHED
7412 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7413 global_rt_period(), global_rt_runtime());
7414 #endif /* CONFIG_RT_GROUP_SCHED */
7415
7416 #ifdef CONFIG_CGROUP_SCHED
7417 list_add(&root_task_group.list, &task_groups);
7418 INIT_LIST_HEAD(&root_task_group.children);
7419 INIT_LIST_HEAD(&root_task_group.siblings);
7420 autogroup_init(&init_task);
7421
7422 #endif /* CONFIG_CGROUP_SCHED */
7423
7424 for_each_possible_cpu(i) {
7425 struct rq *rq;
7426
7427 rq = cpu_rq(i);
7428 raw_spin_lock_init(&rq->lock);
7429 rq->nr_running = 0;
7430 rq->calc_load_active = 0;
7431 rq->calc_load_update = jiffies + LOAD_FREQ;
7432 init_cfs_rq(&rq->cfs);
7433 init_rt_rq(&rq->rt);
7434 init_dl_rq(&rq->dl);
7435 #ifdef CONFIG_FAIR_GROUP_SCHED
7436 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7437 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7438 /*
7439 * How much cpu bandwidth does root_task_group get?
7440 *
7441 * In case of task-groups formed thr' the cgroup filesystem, it
7442 * gets 100% of the cpu resources in the system. This overall
7443 * system cpu resource is divided among the tasks of
7444 * root_task_group and its child task-groups in a fair manner,
7445 * based on each entity's (task or task-group's) weight
7446 * (se->load.weight).
7447 *
7448 * In other words, if root_task_group has 10 tasks of weight
7449 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7450 * then A0's share of the cpu resource is:
7451 *
7452 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7453 *
7454 * We achieve this by letting root_task_group's tasks sit
7455 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7456 */
7457 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7458 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7459 #endif /* CONFIG_FAIR_GROUP_SCHED */
7460
7461 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7462 #ifdef CONFIG_RT_GROUP_SCHED
7463 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7464 #endif
7465
7466 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7467 rq->cpu_load[j] = 0;
7468
7469 rq->last_load_update_tick = jiffies;
7470
7471 #ifdef CONFIG_SMP
7472 rq->sd = NULL;
7473 rq->rd = NULL;
7474 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7475 rq->balance_callback = NULL;
7476 rq->active_balance = 0;
7477 rq->next_balance = jiffies;
7478 rq->push_cpu = 0;
7479 rq->cpu = i;
7480 rq->online = 0;
7481 rq->idle_stamp = 0;
7482 rq->avg_idle = 2*sysctl_sched_migration_cost;
7483 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7484
7485 INIT_LIST_HEAD(&rq->cfs_tasks);
7486
7487 rq_attach_root(rq, &def_root_domain);
7488 #ifdef CONFIG_NO_HZ_COMMON
7489 rq->nohz_flags = 0;
7490 #endif
7491 #ifdef CONFIG_NO_HZ_FULL
7492 rq->last_sched_tick = 0;
7493 #endif
7494 #endif
7495 init_rq_hrtick(rq);
7496 atomic_set(&rq->nr_iowait, 0);
7497 }
7498
7499 set_load_weight(&init_task);
7500
7501 #ifdef CONFIG_PREEMPT_NOTIFIERS
7502 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7503 #endif
7504
7505 /*
7506 * The boot idle thread does lazy MMU switching as well:
7507 */
7508 atomic_inc(&init_mm.mm_count);
7509 enter_lazy_tlb(&init_mm, current);
7510
7511 /*
7512 * During early bootup we pretend to be a normal task:
7513 */
7514 current->sched_class = &fair_sched_class;
7515
7516 /*
7517 * Make us the idle thread. Technically, schedule() should not be
7518 * called from this thread, however somewhere below it might be,
7519 * but because we are the idle thread, we just pick up running again
7520 * when this runqueue becomes "idle".
7521 */
7522 init_idle(current, smp_processor_id());
7523
7524 calc_load_update = jiffies + LOAD_FREQ;
7525
7526 #ifdef CONFIG_SMP
7527 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7528 /* May be allocated at isolcpus cmdline parse time */
7529 if (cpu_isolated_map == NULL)
7530 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7531 idle_thread_set_boot_cpu();
7532 set_cpu_rq_start_time();
7533 #endif
7534 init_sched_fair_class();
7535
7536 scheduler_running = 1;
7537 }
7538
7539 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7540 static inline int preempt_count_equals(int preempt_offset)
7541 {
7542 int nested = preempt_count() + rcu_preempt_depth();
7543
7544 return (nested == preempt_offset);
7545 }
7546
__might_sleep(const char * file,int line,int preempt_offset)7547 void __might_sleep(const char *file, int line, int preempt_offset)
7548 {
7549 /*
7550 * Blocking primitives will set (and therefore destroy) current->state,
7551 * since we will exit with TASK_RUNNING make sure we enter with it,
7552 * otherwise we will destroy state.
7553 */
7554 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7555 "do not call blocking ops when !TASK_RUNNING; "
7556 "state=%lx set at [<%p>] %pS\n",
7557 current->state,
7558 (void *)current->task_state_change,
7559 (void *)current->task_state_change);
7560
7561 ___might_sleep(file, line, preempt_offset);
7562 }
7563 EXPORT_SYMBOL(__might_sleep);
7564
___might_sleep(const char * file,int line,int preempt_offset)7565 void ___might_sleep(const char *file, int line, int preempt_offset)
7566 {
7567 static unsigned long prev_jiffy; /* ratelimiting */
7568
7569 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7570 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7571 !is_idle_task(current)) ||
7572 system_state != SYSTEM_RUNNING || oops_in_progress)
7573 return;
7574 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7575 return;
7576 prev_jiffy = jiffies;
7577
7578 printk(KERN_ERR
7579 "BUG: sleeping function called from invalid context at %s:%d\n",
7580 file, line);
7581 printk(KERN_ERR
7582 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7583 in_atomic(), irqs_disabled(),
7584 current->pid, current->comm);
7585
7586 if (task_stack_end_corrupted(current))
7587 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7588
7589 debug_show_held_locks(current);
7590 if (irqs_disabled())
7591 print_irqtrace_events(current);
7592 #ifdef CONFIG_DEBUG_PREEMPT
7593 if (!preempt_count_equals(preempt_offset)) {
7594 pr_err("Preemption disabled at:");
7595 print_ip_sym(current->preempt_disable_ip);
7596 pr_cont("\n");
7597 }
7598 #endif
7599 dump_stack();
7600 }
7601 EXPORT_SYMBOL(___might_sleep);
7602 #endif
7603
7604 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)7605 void normalize_rt_tasks(void)
7606 {
7607 struct task_struct *g, *p;
7608 struct sched_attr attr = {
7609 .sched_policy = SCHED_NORMAL,
7610 };
7611
7612 read_lock(&tasklist_lock);
7613 for_each_process_thread(g, p) {
7614 /*
7615 * Only normalize user tasks:
7616 */
7617 if (p->flags & PF_KTHREAD)
7618 continue;
7619
7620 p->se.exec_start = 0;
7621 #ifdef CONFIG_SCHEDSTATS
7622 p->se.statistics.wait_start = 0;
7623 p->se.statistics.sleep_start = 0;
7624 p->se.statistics.block_start = 0;
7625 #endif
7626
7627 if (!dl_task(p) && !rt_task(p)) {
7628 /*
7629 * Renice negative nice level userspace
7630 * tasks back to 0:
7631 */
7632 if (task_nice(p) < 0)
7633 set_user_nice(p, 0);
7634 continue;
7635 }
7636
7637 __sched_setscheduler(p, &attr, false, false);
7638 }
7639 read_unlock(&tasklist_lock);
7640 }
7641
7642 #endif /* CONFIG_MAGIC_SYSRQ */
7643
7644 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7645 /*
7646 * These functions are only useful for the IA64 MCA handling, or kdb.
7647 *
7648 * They can only be called when the whole system has been
7649 * stopped - every CPU needs to be quiescent, and no scheduling
7650 * activity can take place. Using them for anything else would
7651 * be a serious bug, and as a result, they aren't even visible
7652 * under any other configuration.
7653 */
7654
7655 /**
7656 * curr_task - return the current task for a given cpu.
7657 * @cpu: the processor in question.
7658 *
7659 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7660 *
7661 * Return: The current task for @cpu.
7662 */
curr_task(int cpu)7663 struct task_struct *curr_task(int cpu)
7664 {
7665 return cpu_curr(cpu);
7666 }
7667
7668 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7669
7670 #ifdef CONFIG_IA64
7671 /**
7672 * set_curr_task - set the current task for a given cpu.
7673 * @cpu: the processor in question.
7674 * @p: the task pointer to set.
7675 *
7676 * Description: This function must only be used when non-maskable interrupts
7677 * are serviced on a separate stack. It allows the architecture to switch the
7678 * notion of the current task on a cpu in a non-blocking manner. This function
7679 * must be called with all CPU's synchronized, and interrupts disabled, the
7680 * and caller must save the original value of the current task (see
7681 * curr_task() above) and restore that value before reenabling interrupts and
7682 * re-starting the system.
7683 *
7684 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7685 */
set_curr_task(int cpu,struct task_struct * p)7686 void set_curr_task(int cpu, struct task_struct *p)
7687 {
7688 cpu_curr(cpu) = p;
7689 }
7690
7691 #endif
7692
7693 #ifdef CONFIG_CGROUP_SCHED
7694 /* task_group_lock serializes the addition/removal of task groups */
7695 static DEFINE_SPINLOCK(task_group_lock);
7696
sched_free_group(struct task_group * tg)7697 static void sched_free_group(struct task_group *tg)
7698 {
7699 free_fair_sched_group(tg);
7700 free_rt_sched_group(tg);
7701 autogroup_free(tg);
7702 kfree(tg);
7703 }
7704
7705 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)7706 struct task_group *sched_create_group(struct task_group *parent)
7707 {
7708 struct task_group *tg;
7709
7710 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7711 if (!tg)
7712 return ERR_PTR(-ENOMEM);
7713
7714 if (!alloc_fair_sched_group(tg, parent))
7715 goto err;
7716
7717 if (!alloc_rt_sched_group(tg, parent))
7718 goto err;
7719
7720 return tg;
7721
7722 err:
7723 sched_free_group(tg);
7724 return ERR_PTR(-ENOMEM);
7725 }
7726
sched_online_group(struct task_group * tg,struct task_group * parent)7727 void sched_online_group(struct task_group *tg, struct task_group *parent)
7728 {
7729 unsigned long flags;
7730
7731 spin_lock_irqsave(&task_group_lock, flags);
7732 list_add_rcu(&tg->list, &task_groups);
7733
7734 WARN_ON(!parent); /* root should already exist */
7735
7736 tg->parent = parent;
7737 INIT_LIST_HEAD(&tg->children);
7738 list_add_rcu(&tg->siblings, &parent->children);
7739 spin_unlock_irqrestore(&task_group_lock, flags);
7740 }
7741
7742 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)7743 static void sched_free_group_rcu(struct rcu_head *rhp)
7744 {
7745 /* now it should be safe to free those cfs_rqs */
7746 sched_free_group(container_of(rhp, struct task_group, rcu));
7747 }
7748
sched_destroy_group(struct task_group * tg)7749 void sched_destroy_group(struct task_group *tg)
7750 {
7751 /* wait for possible concurrent references to cfs_rqs complete */
7752 call_rcu(&tg->rcu, sched_free_group_rcu);
7753 }
7754
sched_offline_group(struct task_group * tg)7755 void sched_offline_group(struct task_group *tg)
7756 {
7757 unsigned long flags;
7758 int i;
7759
7760 /* end participation in shares distribution */
7761 for_each_possible_cpu(i)
7762 unregister_fair_sched_group(tg, i);
7763
7764 spin_lock_irqsave(&task_group_lock, flags);
7765 list_del_rcu(&tg->list);
7766 list_del_rcu(&tg->siblings);
7767 spin_unlock_irqrestore(&task_group_lock, flags);
7768 }
7769
7770 /* change task's runqueue when it moves between groups.
7771 * The caller of this function should have put the task in its new group
7772 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7773 * reflect its new group.
7774 */
sched_move_task(struct task_struct * tsk)7775 void sched_move_task(struct task_struct *tsk)
7776 {
7777 struct task_group *tg;
7778 int queued, running;
7779 unsigned long flags;
7780 struct rq *rq;
7781
7782 rq = task_rq_lock(tsk, &flags);
7783
7784 running = task_current(rq, tsk);
7785 queued = task_on_rq_queued(tsk);
7786
7787 if (queued)
7788 dequeue_task(rq, tsk, DEQUEUE_SAVE);
7789 if (unlikely(running))
7790 put_prev_task(rq, tsk);
7791
7792 /*
7793 * All callers are synchronized by task_rq_lock(); we do not use RCU
7794 * which is pointless here. Thus, we pass "true" to task_css_check()
7795 * to prevent lockdep warnings.
7796 */
7797 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7798 struct task_group, css);
7799 tg = autogroup_task_group(tsk, tg);
7800 tsk->sched_task_group = tg;
7801
7802 #ifdef CONFIG_FAIR_GROUP_SCHED
7803 if (tsk->sched_class->task_move_group)
7804 tsk->sched_class->task_move_group(tsk);
7805 else
7806 #endif
7807 set_task_rq(tsk, task_cpu(tsk));
7808
7809 if (unlikely(running))
7810 tsk->sched_class->set_curr_task(rq);
7811 if (queued)
7812 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7813
7814 task_rq_unlock(rq, tsk, &flags);
7815 }
7816 #endif /* CONFIG_CGROUP_SCHED */
7817
7818 #ifdef CONFIG_RT_GROUP_SCHED
7819 /*
7820 * Ensure that the real time constraints are schedulable.
7821 */
7822 static DEFINE_MUTEX(rt_constraints_mutex);
7823
7824 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)7825 static inline int tg_has_rt_tasks(struct task_group *tg)
7826 {
7827 struct task_struct *g, *p;
7828
7829 /*
7830 * Autogroups do not have RT tasks; see autogroup_create().
7831 */
7832 if (task_group_is_autogroup(tg))
7833 return 0;
7834
7835 for_each_process_thread(g, p) {
7836 if (rt_task(p) && task_group(p) == tg)
7837 return 1;
7838 }
7839
7840 return 0;
7841 }
7842
7843 struct rt_schedulable_data {
7844 struct task_group *tg;
7845 u64 rt_period;
7846 u64 rt_runtime;
7847 };
7848
tg_rt_schedulable(struct task_group * tg,void * data)7849 static int tg_rt_schedulable(struct task_group *tg, void *data)
7850 {
7851 struct rt_schedulable_data *d = data;
7852 struct task_group *child;
7853 unsigned long total, sum = 0;
7854 u64 period, runtime;
7855
7856 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7857 runtime = tg->rt_bandwidth.rt_runtime;
7858
7859 if (tg == d->tg) {
7860 period = d->rt_period;
7861 runtime = d->rt_runtime;
7862 }
7863
7864 /*
7865 * Cannot have more runtime than the period.
7866 */
7867 if (runtime > period && runtime != RUNTIME_INF)
7868 return -EINVAL;
7869
7870 /*
7871 * Ensure we don't starve existing RT tasks.
7872 */
7873 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7874 return -EBUSY;
7875
7876 total = to_ratio(period, runtime);
7877
7878 /*
7879 * Nobody can have more than the global setting allows.
7880 */
7881 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7882 return -EINVAL;
7883
7884 /*
7885 * The sum of our children's runtime should not exceed our own.
7886 */
7887 list_for_each_entry_rcu(child, &tg->children, siblings) {
7888 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7889 runtime = child->rt_bandwidth.rt_runtime;
7890
7891 if (child == d->tg) {
7892 period = d->rt_period;
7893 runtime = d->rt_runtime;
7894 }
7895
7896 sum += to_ratio(period, runtime);
7897 }
7898
7899 if (sum > total)
7900 return -EINVAL;
7901
7902 return 0;
7903 }
7904
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)7905 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7906 {
7907 int ret;
7908
7909 struct rt_schedulable_data data = {
7910 .tg = tg,
7911 .rt_period = period,
7912 .rt_runtime = runtime,
7913 };
7914
7915 rcu_read_lock();
7916 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7917 rcu_read_unlock();
7918
7919 return ret;
7920 }
7921
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)7922 static int tg_set_rt_bandwidth(struct task_group *tg,
7923 u64 rt_period, u64 rt_runtime)
7924 {
7925 int i, err = 0;
7926
7927 /*
7928 * Disallowing the root group RT runtime is BAD, it would disallow the
7929 * kernel creating (and or operating) RT threads.
7930 */
7931 if (tg == &root_task_group && rt_runtime == 0)
7932 return -EINVAL;
7933
7934 /* No period doesn't make any sense. */
7935 if (rt_period == 0)
7936 return -EINVAL;
7937
7938 mutex_lock(&rt_constraints_mutex);
7939 read_lock(&tasklist_lock);
7940 err = __rt_schedulable(tg, rt_period, rt_runtime);
7941 if (err)
7942 goto unlock;
7943
7944 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7945 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7946 tg->rt_bandwidth.rt_runtime = rt_runtime;
7947
7948 for_each_possible_cpu(i) {
7949 struct rt_rq *rt_rq = tg->rt_rq[i];
7950
7951 raw_spin_lock(&rt_rq->rt_runtime_lock);
7952 rt_rq->rt_runtime = rt_runtime;
7953 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7954 }
7955 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7956 unlock:
7957 read_unlock(&tasklist_lock);
7958 mutex_unlock(&rt_constraints_mutex);
7959
7960 return err;
7961 }
7962
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)7963 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7964 {
7965 u64 rt_runtime, rt_period;
7966
7967 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7968 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7969 if (rt_runtime_us < 0)
7970 rt_runtime = RUNTIME_INF;
7971
7972 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7973 }
7974
sched_group_rt_runtime(struct task_group * tg)7975 static long sched_group_rt_runtime(struct task_group *tg)
7976 {
7977 u64 rt_runtime_us;
7978
7979 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7980 return -1;
7981
7982 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7983 do_div(rt_runtime_us, NSEC_PER_USEC);
7984 return rt_runtime_us;
7985 }
7986
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)7987 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7988 {
7989 u64 rt_runtime, rt_period;
7990
7991 rt_period = rt_period_us * NSEC_PER_USEC;
7992 rt_runtime = tg->rt_bandwidth.rt_runtime;
7993
7994 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7995 }
7996
sched_group_rt_period(struct task_group * tg)7997 static long sched_group_rt_period(struct task_group *tg)
7998 {
7999 u64 rt_period_us;
8000
8001 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8002 do_div(rt_period_us, NSEC_PER_USEC);
8003 return rt_period_us;
8004 }
8005 #endif /* CONFIG_RT_GROUP_SCHED */
8006
8007 #ifdef CONFIG_RT_GROUP_SCHED
sched_rt_global_constraints(void)8008 static int sched_rt_global_constraints(void)
8009 {
8010 int ret = 0;
8011
8012 mutex_lock(&rt_constraints_mutex);
8013 read_lock(&tasklist_lock);
8014 ret = __rt_schedulable(NULL, 0, 0);
8015 read_unlock(&tasklist_lock);
8016 mutex_unlock(&rt_constraints_mutex);
8017
8018 return ret;
8019 }
8020
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)8021 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8022 {
8023 /* Don't accept realtime tasks when there is no way for them to run */
8024 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8025 return 0;
8026
8027 return 1;
8028 }
8029
8030 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)8031 static int sched_rt_global_constraints(void)
8032 {
8033 unsigned long flags;
8034 int i, ret = 0;
8035
8036 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8037 for_each_possible_cpu(i) {
8038 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8039
8040 raw_spin_lock(&rt_rq->rt_runtime_lock);
8041 rt_rq->rt_runtime = global_rt_runtime();
8042 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8043 }
8044 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8045
8046 return ret;
8047 }
8048 #endif /* CONFIG_RT_GROUP_SCHED */
8049
sched_dl_global_validate(void)8050 static int sched_dl_global_validate(void)
8051 {
8052 u64 runtime = global_rt_runtime();
8053 u64 period = global_rt_period();
8054 u64 new_bw = to_ratio(period, runtime);
8055 struct dl_bw *dl_b;
8056 int cpu, ret = 0;
8057 unsigned long flags;
8058
8059 /*
8060 * Here we want to check the bandwidth not being set to some
8061 * value smaller than the currently allocated bandwidth in
8062 * any of the root_domains.
8063 *
8064 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8065 * cycling on root_domains... Discussion on different/better
8066 * solutions is welcome!
8067 */
8068 for_each_possible_cpu(cpu) {
8069 rcu_read_lock_sched();
8070 dl_b = dl_bw_of(cpu);
8071
8072 raw_spin_lock_irqsave(&dl_b->lock, flags);
8073 if (new_bw < dl_b->total_bw)
8074 ret = -EBUSY;
8075 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8076
8077 rcu_read_unlock_sched();
8078
8079 if (ret)
8080 break;
8081 }
8082
8083 return ret;
8084 }
8085
sched_dl_do_global(void)8086 static void sched_dl_do_global(void)
8087 {
8088 u64 new_bw = -1;
8089 struct dl_bw *dl_b;
8090 int cpu;
8091 unsigned long flags;
8092
8093 def_dl_bandwidth.dl_period = global_rt_period();
8094 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8095
8096 if (global_rt_runtime() != RUNTIME_INF)
8097 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8098
8099 /*
8100 * FIXME: As above...
8101 */
8102 for_each_possible_cpu(cpu) {
8103 rcu_read_lock_sched();
8104 dl_b = dl_bw_of(cpu);
8105
8106 raw_spin_lock_irqsave(&dl_b->lock, flags);
8107 dl_b->bw = new_bw;
8108 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8109
8110 rcu_read_unlock_sched();
8111 }
8112 }
8113
sched_rt_global_validate(void)8114 static int sched_rt_global_validate(void)
8115 {
8116 if (sysctl_sched_rt_period <= 0)
8117 return -EINVAL;
8118
8119 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8120 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8121 return -EINVAL;
8122
8123 return 0;
8124 }
8125
sched_rt_do_global(void)8126 static void sched_rt_do_global(void)
8127 {
8128 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8129 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8130 }
8131
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8132 int sched_rt_handler(struct ctl_table *table, int write,
8133 void __user *buffer, size_t *lenp,
8134 loff_t *ppos)
8135 {
8136 int old_period, old_runtime;
8137 static DEFINE_MUTEX(mutex);
8138 int ret;
8139
8140 mutex_lock(&mutex);
8141 old_period = sysctl_sched_rt_period;
8142 old_runtime = sysctl_sched_rt_runtime;
8143
8144 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8145
8146 if (!ret && write) {
8147 ret = sched_rt_global_validate();
8148 if (ret)
8149 goto undo;
8150
8151 ret = sched_dl_global_validate();
8152 if (ret)
8153 goto undo;
8154
8155 ret = sched_rt_global_constraints();
8156 if (ret)
8157 goto undo;
8158
8159 sched_rt_do_global();
8160 sched_dl_do_global();
8161 }
8162 if (0) {
8163 undo:
8164 sysctl_sched_rt_period = old_period;
8165 sysctl_sched_rt_runtime = old_runtime;
8166 }
8167 mutex_unlock(&mutex);
8168
8169 return ret;
8170 }
8171
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8172 int sched_rr_handler(struct ctl_table *table, int write,
8173 void __user *buffer, size_t *lenp,
8174 loff_t *ppos)
8175 {
8176 int ret;
8177 static DEFINE_MUTEX(mutex);
8178
8179 mutex_lock(&mutex);
8180 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8181 /* make sure that internally we keep jiffies */
8182 /* also, writing zero resets timeslice to default */
8183 if (!ret && write) {
8184 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8185 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8186 }
8187 mutex_unlock(&mutex);
8188 return ret;
8189 }
8190
8191 #ifdef CONFIG_CGROUP_SCHED
8192
css_tg(struct cgroup_subsys_state * css)8193 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8194 {
8195 return css ? container_of(css, struct task_group, css) : NULL;
8196 }
8197
8198 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)8199 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8200 {
8201 struct task_group *parent = css_tg(parent_css);
8202 struct task_group *tg;
8203
8204 if (!parent) {
8205 /* This is early initialization for the top cgroup */
8206 return &root_task_group.css;
8207 }
8208
8209 tg = sched_create_group(parent);
8210 if (IS_ERR(tg))
8211 return ERR_PTR(-ENOMEM);
8212
8213 sched_online_group(tg, parent);
8214
8215 return &tg->css;
8216 }
8217
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8218 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8219 {
8220 struct task_group *tg = css_tg(css);
8221
8222 sched_offline_group(tg);
8223 }
8224
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8225 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8226 {
8227 struct task_group *tg = css_tg(css);
8228
8229 /*
8230 * Relies on the RCU grace period between css_released() and this.
8231 */
8232 sched_free_group(tg);
8233 }
8234
cpu_cgroup_fork(struct task_struct * task,void * private)8235 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8236 {
8237 sched_move_task(task);
8238 }
8239
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8240 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8241 {
8242 struct task_struct *task;
8243 struct cgroup_subsys_state *css;
8244
8245 cgroup_taskset_for_each(task, css, tset) {
8246 #ifdef CONFIG_RT_GROUP_SCHED
8247 if (!sched_rt_can_attach(css_tg(css), task))
8248 return -EINVAL;
8249 #else
8250 /* We don't support RT-tasks being in separate groups */
8251 if (task->sched_class != &fair_sched_class)
8252 return -EINVAL;
8253 #endif
8254 }
8255 return 0;
8256 }
8257
cpu_cgroup_attach(struct cgroup_taskset * tset)8258 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8259 {
8260 struct task_struct *task;
8261 struct cgroup_subsys_state *css;
8262
8263 cgroup_taskset_for_each(task, css, tset)
8264 sched_move_task(task);
8265 }
8266
8267 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8268 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8269 struct cftype *cftype, u64 shareval)
8270 {
8271 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8272 }
8273
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8274 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8275 struct cftype *cft)
8276 {
8277 struct task_group *tg = css_tg(css);
8278
8279 return (u64) scale_load_down(tg->shares);
8280 }
8281
8282 #ifdef CONFIG_CFS_BANDWIDTH
8283 static DEFINE_MUTEX(cfs_constraints_mutex);
8284
8285 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8286 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8287
8288 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8289
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8290 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8291 {
8292 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8293 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8294
8295 if (tg == &root_task_group)
8296 return -EINVAL;
8297
8298 /*
8299 * Ensure we have at some amount of bandwidth every period. This is
8300 * to prevent reaching a state of large arrears when throttled via
8301 * entity_tick() resulting in prolonged exit starvation.
8302 */
8303 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8304 return -EINVAL;
8305
8306 /*
8307 * Likewise, bound things on the otherside by preventing insane quota
8308 * periods. This also allows us to normalize in computing quota
8309 * feasibility.
8310 */
8311 if (period > max_cfs_quota_period)
8312 return -EINVAL;
8313
8314 /*
8315 * Prevent race between setting of cfs_rq->runtime_enabled and
8316 * unthrottle_offline_cfs_rqs().
8317 */
8318 get_online_cpus();
8319 mutex_lock(&cfs_constraints_mutex);
8320 ret = __cfs_schedulable(tg, period, quota);
8321 if (ret)
8322 goto out_unlock;
8323
8324 runtime_enabled = quota != RUNTIME_INF;
8325 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8326 /*
8327 * If we need to toggle cfs_bandwidth_used, off->on must occur
8328 * before making related changes, and on->off must occur afterwards
8329 */
8330 if (runtime_enabled && !runtime_was_enabled)
8331 cfs_bandwidth_usage_inc();
8332 raw_spin_lock_irq(&cfs_b->lock);
8333 cfs_b->period = ns_to_ktime(period);
8334 cfs_b->quota = quota;
8335
8336 __refill_cfs_bandwidth_runtime(cfs_b);
8337 /* restart the period timer (if active) to handle new period expiry */
8338 if (runtime_enabled)
8339 start_cfs_bandwidth(cfs_b);
8340 raw_spin_unlock_irq(&cfs_b->lock);
8341
8342 for_each_online_cpu(i) {
8343 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8344 struct rq *rq = cfs_rq->rq;
8345
8346 raw_spin_lock_irq(&rq->lock);
8347 cfs_rq->runtime_enabled = runtime_enabled;
8348 cfs_rq->runtime_remaining = 0;
8349
8350 if (cfs_rq->throttled)
8351 unthrottle_cfs_rq(cfs_rq);
8352 raw_spin_unlock_irq(&rq->lock);
8353 }
8354 if (runtime_was_enabled && !runtime_enabled)
8355 cfs_bandwidth_usage_dec();
8356 out_unlock:
8357 mutex_unlock(&cfs_constraints_mutex);
8358 put_online_cpus();
8359
8360 return ret;
8361 }
8362
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8363 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8364 {
8365 u64 quota, period;
8366
8367 period = ktime_to_ns(tg->cfs_bandwidth.period);
8368 if (cfs_quota_us < 0)
8369 quota = RUNTIME_INF;
8370 else
8371 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8372
8373 return tg_set_cfs_bandwidth(tg, period, quota);
8374 }
8375
tg_get_cfs_quota(struct task_group * tg)8376 long tg_get_cfs_quota(struct task_group *tg)
8377 {
8378 u64 quota_us;
8379
8380 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8381 return -1;
8382
8383 quota_us = tg->cfs_bandwidth.quota;
8384 do_div(quota_us, NSEC_PER_USEC);
8385
8386 return quota_us;
8387 }
8388
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8389 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8390 {
8391 u64 quota, period;
8392
8393 period = (u64)cfs_period_us * NSEC_PER_USEC;
8394 quota = tg->cfs_bandwidth.quota;
8395
8396 return tg_set_cfs_bandwidth(tg, period, quota);
8397 }
8398
tg_get_cfs_period(struct task_group * tg)8399 long tg_get_cfs_period(struct task_group *tg)
8400 {
8401 u64 cfs_period_us;
8402
8403 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8404 do_div(cfs_period_us, NSEC_PER_USEC);
8405
8406 return cfs_period_us;
8407 }
8408
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8409 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8410 struct cftype *cft)
8411 {
8412 return tg_get_cfs_quota(css_tg(css));
8413 }
8414
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8415 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8416 struct cftype *cftype, s64 cfs_quota_us)
8417 {
8418 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8419 }
8420
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8421 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8422 struct cftype *cft)
8423 {
8424 return tg_get_cfs_period(css_tg(css));
8425 }
8426
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8427 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8428 struct cftype *cftype, u64 cfs_period_us)
8429 {
8430 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8431 }
8432
8433 struct cfs_schedulable_data {
8434 struct task_group *tg;
8435 u64 period, quota;
8436 };
8437
8438 /*
8439 * normalize group quota/period to be quota/max_period
8440 * note: units are usecs
8441 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8442 static u64 normalize_cfs_quota(struct task_group *tg,
8443 struct cfs_schedulable_data *d)
8444 {
8445 u64 quota, period;
8446
8447 if (tg == d->tg) {
8448 period = d->period;
8449 quota = d->quota;
8450 } else {
8451 period = tg_get_cfs_period(tg);
8452 quota = tg_get_cfs_quota(tg);
8453 }
8454
8455 /* note: these should typically be equivalent */
8456 if (quota == RUNTIME_INF || quota == -1)
8457 return RUNTIME_INF;
8458
8459 return to_ratio(period, quota);
8460 }
8461
tg_cfs_schedulable_down(struct task_group * tg,void * data)8462 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8463 {
8464 struct cfs_schedulable_data *d = data;
8465 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8466 s64 quota = 0, parent_quota = -1;
8467
8468 if (!tg->parent) {
8469 quota = RUNTIME_INF;
8470 } else {
8471 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8472
8473 quota = normalize_cfs_quota(tg, d);
8474 parent_quota = parent_b->hierarchical_quota;
8475
8476 /*
8477 * ensure max(child_quota) <= parent_quota, inherit when no
8478 * limit is set
8479 */
8480 if (quota == RUNTIME_INF)
8481 quota = parent_quota;
8482 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8483 return -EINVAL;
8484 }
8485 cfs_b->hierarchical_quota = quota;
8486
8487 return 0;
8488 }
8489
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8490 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8491 {
8492 int ret;
8493 struct cfs_schedulable_data data = {
8494 .tg = tg,
8495 .period = period,
8496 .quota = quota,
8497 };
8498
8499 if (quota != RUNTIME_INF) {
8500 do_div(data.period, NSEC_PER_USEC);
8501 do_div(data.quota, NSEC_PER_USEC);
8502 }
8503
8504 rcu_read_lock();
8505 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8506 rcu_read_unlock();
8507
8508 return ret;
8509 }
8510
cpu_stats_show(struct seq_file * sf,void * v)8511 static int cpu_stats_show(struct seq_file *sf, void *v)
8512 {
8513 struct task_group *tg = css_tg(seq_css(sf));
8514 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8515
8516 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8517 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8518 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8519
8520 return 0;
8521 }
8522 #endif /* CONFIG_CFS_BANDWIDTH */
8523 #endif /* CONFIG_FAIR_GROUP_SCHED */
8524
8525 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8526 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8527 struct cftype *cft, s64 val)
8528 {
8529 return sched_group_set_rt_runtime(css_tg(css), val);
8530 }
8531
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8532 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8533 struct cftype *cft)
8534 {
8535 return sched_group_rt_runtime(css_tg(css));
8536 }
8537
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8538 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8539 struct cftype *cftype, u64 rt_period_us)
8540 {
8541 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8542 }
8543
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8544 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8545 struct cftype *cft)
8546 {
8547 return sched_group_rt_period(css_tg(css));
8548 }
8549 #endif /* CONFIG_RT_GROUP_SCHED */
8550
8551 static struct cftype cpu_files[] = {
8552 #ifdef CONFIG_FAIR_GROUP_SCHED
8553 {
8554 .name = "shares",
8555 .read_u64 = cpu_shares_read_u64,
8556 .write_u64 = cpu_shares_write_u64,
8557 },
8558 #endif
8559 #ifdef CONFIG_CFS_BANDWIDTH
8560 {
8561 .name = "cfs_quota_us",
8562 .read_s64 = cpu_cfs_quota_read_s64,
8563 .write_s64 = cpu_cfs_quota_write_s64,
8564 },
8565 {
8566 .name = "cfs_period_us",
8567 .read_u64 = cpu_cfs_period_read_u64,
8568 .write_u64 = cpu_cfs_period_write_u64,
8569 },
8570 {
8571 .name = "stat",
8572 .seq_show = cpu_stats_show,
8573 },
8574 #endif
8575 #ifdef CONFIG_RT_GROUP_SCHED
8576 {
8577 .name = "rt_runtime_us",
8578 .read_s64 = cpu_rt_runtime_read,
8579 .write_s64 = cpu_rt_runtime_write,
8580 },
8581 {
8582 .name = "rt_period_us",
8583 .read_u64 = cpu_rt_period_read_uint,
8584 .write_u64 = cpu_rt_period_write_uint,
8585 },
8586 #endif
8587 { } /* terminate */
8588 };
8589
8590 struct cgroup_subsys cpu_cgrp_subsys = {
8591 .css_alloc = cpu_cgroup_css_alloc,
8592 .css_released = cpu_cgroup_css_released,
8593 .css_free = cpu_cgroup_css_free,
8594 .fork = cpu_cgroup_fork,
8595 .can_attach = cpu_cgroup_can_attach,
8596 .attach = cpu_cgroup_attach,
8597 .legacy_cftypes = cpu_files,
8598 .early_init = 1,
8599 };
8600
8601 #endif /* CONFIG_CGROUP_SCHED */
8602
dump_cpu_task(int cpu)8603 void dump_cpu_task(int cpu)
8604 {
8605 pr_info("Task dump for CPU %d:\n", cpu);
8606 sched_show_task(cpu_curr(cpu));
8607 }
8608