1 /*
2  *  linux/kernel/panic.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * This function is used through-out the kernel (including mm and fs)
9  * to indicate a major problem.
10  */
11 #include <linux/debug_locks.h>
12 #include <linux/interrupt.h>
13 #include <linux/kmsg_dump.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/ftrace.h>
19 #include <linux/reboot.h>
20 #include <linux/delay.h>
21 #include <linux/kexec.h>
22 #include <linux/sched.h>
23 #include <linux/sysrq.h>
24 #include <linux/init.h>
25 #include <linux/nmi.h>
26 #include <linux/console.h>
27 
28 #define PANIC_TIMER_STEP 100
29 #define PANIC_BLINK_SPD 18
30 
31 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
32 static unsigned long tainted_mask;
33 static int pause_on_oops;
34 static int pause_on_oops_flag;
35 static DEFINE_SPINLOCK(pause_on_oops_lock);
36 bool crash_kexec_post_notifiers;
37 int panic_on_warn __read_mostly;
38 
39 int panic_timeout = CONFIG_PANIC_TIMEOUT;
40 EXPORT_SYMBOL_GPL(panic_timeout);
41 
42 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
43 
44 EXPORT_SYMBOL(panic_notifier_list);
45 
no_blink(int state)46 static long no_blink(int state)
47 {
48 	return 0;
49 }
50 
51 /* Returns how long it waited in ms */
52 long (*panic_blink)(int state);
53 EXPORT_SYMBOL(panic_blink);
54 
55 /*
56  * Stop ourself in panic -- architecture code may override this
57  */
panic_smp_self_stop(void)58 void __weak panic_smp_self_stop(void)
59 {
60 	while (1)
61 		cpu_relax();
62 }
63 
64 /**
65  *	panic - halt the system
66  *	@fmt: The text string to print
67  *
68  *	Display a message, then perform cleanups.
69  *
70  *	This function never returns.
71  */
panic(const char * fmt,...)72 void panic(const char *fmt, ...)
73 {
74 	static DEFINE_SPINLOCK(panic_lock);
75 	static char buf[1024];
76 	va_list args;
77 	long i, i_next = 0;
78 	int state = 0;
79 
80 	/*
81 	 * Disable local interrupts. This will prevent panic_smp_self_stop
82 	 * from deadlocking the first cpu that invokes the panic, since
83 	 * there is nothing to prevent an interrupt handler (that runs
84 	 * after the panic_lock is acquired) from invoking panic again.
85 	 */
86 	local_irq_disable();
87 
88 	/*
89 	 * It's possible to come here directly from a panic-assertion and
90 	 * not have preempt disabled. Some functions called from here want
91 	 * preempt to be disabled. No point enabling it later though...
92 	 *
93 	 * Only one CPU is allowed to execute the panic code from here. For
94 	 * multiple parallel invocations of panic, all other CPUs either
95 	 * stop themself or will wait until they are stopped by the 1st CPU
96 	 * with smp_send_stop().
97 	 */
98 	if (!spin_trylock(&panic_lock))
99 		panic_smp_self_stop();
100 
101 	console_verbose();
102 	bust_spinlocks(1);
103 	va_start(args, fmt);
104 	vsnprintf(buf, sizeof(buf), fmt, args);
105 	va_end(args);
106 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
107 #ifdef CONFIG_DEBUG_BUGVERBOSE
108 	/*
109 	 * Avoid nested stack-dumping if a panic occurs during oops processing
110 	 */
111 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
112 		dump_stack();
113 #endif
114 
115 	/*
116 	 * If we have crashed and we have a crash kernel loaded let it handle
117 	 * everything else.
118 	 * If we want to run this after calling panic_notifiers, pass
119 	 * the "crash_kexec_post_notifiers" option to the kernel.
120 	 */
121 	if (!crash_kexec_post_notifiers)
122 		crash_kexec(NULL);
123 
124 	/*
125 	 * Note smp_send_stop is the usual smp shutdown function, which
126 	 * unfortunately means it may not be hardened to work in a panic
127 	 * situation.
128 	 */
129 	smp_send_stop();
130 
131 	/*
132 	 * Run any panic handlers, including those that might need to
133 	 * add information to the kmsg dump output.
134 	 */
135 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
136 
137 	kmsg_dump(KMSG_DUMP_PANIC);
138 
139 	/*
140 	 * If you doubt kdump always works fine in any situation,
141 	 * "crash_kexec_post_notifiers" offers you a chance to run
142 	 * panic_notifiers and dumping kmsg before kdump.
143 	 * Note: since some panic_notifiers can make crashed kernel
144 	 * more unstable, it can increase risks of the kdump failure too.
145 	 */
146 	if (crash_kexec_post_notifiers)
147 		crash_kexec(NULL);
148 
149 	bust_spinlocks(0);
150 
151 	/*
152 	 * We may have ended up stopping the CPU holding the lock (in
153 	 * smp_send_stop()) while still having some valuable data in the console
154 	 * buffer.  Try to acquire the lock then release it regardless of the
155 	 * result.  The release will also print the buffers out.  Locks debug
156 	 * should be disabled to avoid reporting bad unlock balance when
157 	 * panic() is not being callled from OOPS.
158 	 */
159 	debug_locks_off();
160 	console_flush_on_panic();
161 
162 	if (!panic_blink)
163 		panic_blink = no_blink;
164 
165 	if (panic_timeout > 0) {
166 		/*
167 		 * Delay timeout seconds before rebooting the machine.
168 		 * We can't use the "normal" timers since we just panicked.
169 		 */
170 		pr_emerg("Rebooting in %d seconds..", panic_timeout);
171 
172 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
173 			touch_nmi_watchdog();
174 			if (i >= i_next) {
175 				i += panic_blink(state ^= 1);
176 				i_next = i + 3600 / PANIC_BLINK_SPD;
177 			}
178 			mdelay(PANIC_TIMER_STEP);
179 		}
180 	}
181 	if (panic_timeout != 0) {
182 		/*
183 		 * This will not be a clean reboot, with everything
184 		 * shutting down.  But if there is a chance of
185 		 * rebooting the system it will be rebooted.
186 		 */
187 		emergency_restart();
188 	}
189 #ifdef __sparc__
190 	{
191 		extern int stop_a_enabled;
192 		/* Make sure the user can actually press Stop-A (L1-A) */
193 		stop_a_enabled = 1;
194 		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
195 	}
196 #endif
197 #if defined(CONFIG_S390)
198 	{
199 		unsigned long caller;
200 
201 		caller = (unsigned long)__builtin_return_address(0);
202 		disabled_wait(caller);
203 	}
204 #endif
205 	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
206 	local_irq_enable();
207 	for (i = 0; ; i += PANIC_TIMER_STEP) {
208 		touch_softlockup_watchdog();
209 		if (i >= i_next) {
210 			i += panic_blink(state ^= 1);
211 			i_next = i + 3600 / PANIC_BLINK_SPD;
212 		}
213 		mdelay(PANIC_TIMER_STEP);
214 	}
215 }
216 
217 EXPORT_SYMBOL(panic);
218 
219 
220 struct tnt {
221 	u8	bit;
222 	char	true;
223 	char	false;
224 };
225 
226 static const struct tnt tnts[] = {
227 	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
228 	{ TAINT_FORCED_MODULE,		'F', ' ' },
229 	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
230 	{ TAINT_FORCED_RMMOD,		'R', ' ' },
231 	{ TAINT_MACHINE_CHECK,		'M', ' ' },
232 	{ TAINT_BAD_PAGE,		'B', ' ' },
233 	{ TAINT_USER,			'U', ' ' },
234 	{ TAINT_DIE,			'D', ' ' },
235 	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
236 	{ TAINT_WARN,			'W', ' ' },
237 	{ TAINT_CRAP,			'C', ' ' },
238 	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
239 	{ TAINT_OOT_MODULE,		'O', ' ' },
240 	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
241 	{ TAINT_SOFTLOCKUP,		'L', ' ' },
242 	{ TAINT_LIVEPATCH,		'K', ' ' },
243 };
244 
245 /**
246  *	print_tainted - return a string to represent the kernel taint state.
247  *
248  *  'P' - Proprietary module has been loaded.
249  *  'F' - Module has been forcibly loaded.
250  *  'S' - SMP with CPUs not designed for SMP.
251  *  'R' - User forced a module unload.
252  *  'M' - System experienced a machine check exception.
253  *  'B' - System has hit bad_page.
254  *  'U' - Userspace-defined naughtiness.
255  *  'D' - Kernel has oopsed before
256  *  'A' - ACPI table overridden.
257  *  'W' - Taint on warning.
258  *  'C' - modules from drivers/staging are loaded.
259  *  'I' - Working around severe firmware bug.
260  *  'O' - Out-of-tree module has been loaded.
261  *  'E' - Unsigned module has been loaded.
262  *  'L' - A soft lockup has previously occurred.
263  *  'K' - Kernel has been live patched.
264  *
265  *	The string is overwritten by the next call to print_tainted().
266  */
print_tainted(void)267 const char *print_tainted(void)
268 {
269 	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
270 
271 	if (tainted_mask) {
272 		char *s;
273 		int i;
274 
275 		s = buf + sprintf(buf, "Tainted: ");
276 		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
277 			const struct tnt *t = &tnts[i];
278 			*s++ = test_bit(t->bit, &tainted_mask) ?
279 					t->true : t->false;
280 		}
281 		*s = 0;
282 	} else
283 		snprintf(buf, sizeof(buf), "Not tainted");
284 
285 	return buf;
286 }
287 
test_taint(unsigned flag)288 int test_taint(unsigned flag)
289 {
290 	return test_bit(flag, &tainted_mask);
291 }
292 EXPORT_SYMBOL(test_taint);
293 
get_taint(void)294 unsigned long get_taint(void)
295 {
296 	return tainted_mask;
297 }
298 
299 /**
300  * add_taint: add a taint flag if not already set.
301  * @flag: one of the TAINT_* constants.
302  * @lockdep_ok: whether lock debugging is still OK.
303  *
304  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
305  * some notewortht-but-not-corrupting cases, it can be set to true.
306  */
add_taint(unsigned flag,enum lockdep_ok lockdep_ok)307 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
308 {
309 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
310 		pr_warn("Disabling lock debugging due to kernel taint\n");
311 
312 	set_bit(flag, &tainted_mask);
313 }
314 EXPORT_SYMBOL(add_taint);
315 
spin_msec(int msecs)316 static void spin_msec(int msecs)
317 {
318 	int i;
319 
320 	for (i = 0; i < msecs; i++) {
321 		touch_nmi_watchdog();
322 		mdelay(1);
323 	}
324 }
325 
326 /*
327  * It just happens that oops_enter() and oops_exit() are identically
328  * implemented...
329  */
do_oops_enter_exit(void)330 static void do_oops_enter_exit(void)
331 {
332 	unsigned long flags;
333 	static int spin_counter;
334 
335 	if (!pause_on_oops)
336 		return;
337 
338 	spin_lock_irqsave(&pause_on_oops_lock, flags);
339 	if (pause_on_oops_flag == 0) {
340 		/* This CPU may now print the oops message */
341 		pause_on_oops_flag = 1;
342 	} else {
343 		/* We need to stall this CPU */
344 		if (!spin_counter) {
345 			/* This CPU gets to do the counting */
346 			spin_counter = pause_on_oops;
347 			do {
348 				spin_unlock(&pause_on_oops_lock);
349 				spin_msec(MSEC_PER_SEC);
350 				spin_lock(&pause_on_oops_lock);
351 			} while (--spin_counter);
352 			pause_on_oops_flag = 0;
353 		} else {
354 			/* This CPU waits for a different one */
355 			while (spin_counter) {
356 				spin_unlock(&pause_on_oops_lock);
357 				spin_msec(1);
358 				spin_lock(&pause_on_oops_lock);
359 			}
360 		}
361 	}
362 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
363 }
364 
365 /*
366  * Return true if the calling CPU is allowed to print oops-related info.
367  * This is a bit racy..
368  */
oops_may_print(void)369 int oops_may_print(void)
370 {
371 	return pause_on_oops_flag == 0;
372 }
373 
374 /*
375  * Called when the architecture enters its oops handler, before it prints
376  * anything.  If this is the first CPU to oops, and it's oopsing the first
377  * time then let it proceed.
378  *
379  * This is all enabled by the pause_on_oops kernel boot option.  We do all
380  * this to ensure that oopses don't scroll off the screen.  It has the
381  * side-effect of preventing later-oopsing CPUs from mucking up the display,
382  * too.
383  *
384  * It turns out that the CPU which is allowed to print ends up pausing for
385  * the right duration, whereas all the other CPUs pause for twice as long:
386  * once in oops_enter(), once in oops_exit().
387  */
oops_enter(void)388 void oops_enter(void)
389 {
390 	tracing_off();
391 	/* can't trust the integrity of the kernel anymore: */
392 	debug_locks_off();
393 	do_oops_enter_exit();
394 }
395 
396 /*
397  * 64-bit random ID for oopses:
398  */
399 static u64 oops_id;
400 
init_oops_id(void)401 static int init_oops_id(void)
402 {
403 	if (!oops_id)
404 		get_random_bytes(&oops_id, sizeof(oops_id));
405 	else
406 		oops_id++;
407 
408 	return 0;
409 }
410 late_initcall(init_oops_id);
411 
print_oops_end_marker(void)412 void print_oops_end_marker(void)
413 {
414 	init_oops_id();
415 	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
416 }
417 
418 /*
419  * Called when the architecture exits its oops handler, after printing
420  * everything.
421  */
oops_exit(void)422 void oops_exit(void)
423 {
424 	do_oops_enter_exit();
425 	print_oops_end_marker();
426 	kmsg_dump(KMSG_DUMP_OOPS);
427 }
428 
429 #ifdef WANT_WARN_ON_SLOWPATH
430 struct slowpath_args {
431 	const char *fmt;
432 	va_list args;
433 };
434 
warn_slowpath_common(const char * file,int line,void * caller,unsigned taint,struct slowpath_args * args)435 static void warn_slowpath_common(const char *file, int line, void *caller,
436 				 unsigned taint, struct slowpath_args *args)
437 {
438 	disable_trace_on_warning();
439 
440 	pr_warn("------------[ cut here ]------------\n");
441 	pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS()\n",
442 		raw_smp_processor_id(), current->pid, file, line, caller);
443 
444 	if (args)
445 		vprintk(args->fmt, args->args);
446 
447 	if (panic_on_warn) {
448 		/*
449 		 * This thread may hit another WARN() in the panic path.
450 		 * Resetting this prevents additional WARN() from panicking the
451 		 * system on this thread.  Other threads are blocked by the
452 		 * panic_mutex in panic().
453 		 */
454 		panic_on_warn = 0;
455 		panic("panic_on_warn set ...\n");
456 	}
457 
458 	print_modules();
459 	dump_stack();
460 	print_oops_end_marker();
461 	/* Just a warning, don't kill lockdep. */
462 	add_taint(taint, LOCKDEP_STILL_OK);
463 }
464 
warn_slowpath_fmt(const char * file,int line,const char * fmt,...)465 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
466 {
467 	struct slowpath_args args;
468 
469 	args.fmt = fmt;
470 	va_start(args.args, fmt);
471 	warn_slowpath_common(file, line, __builtin_return_address(0),
472 			     TAINT_WARN, &args);
473 	va_end(args.args);
474 }
475 EXPORT_SYMBOL(warn_slowpath_fmt);
476 
warn_slowpath_fmt_taint(const char * file,int line,unsigned taint,const char * fmt,...)477 void warn_slowpath_fmt_taint(const char *file, int line,
478 			     unsigned taint, const char *fmt, ...)
479 {
480 	struct slowpath_args args;
481 
482 	args.fmt = fmt;
483 	va_start(args.args, fmt);
484 	warn_slowpath_common(file, line, __builtin_return_address(0),
485 			     taint, &args);
486 	va_end(args.args);
487 }
488 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
489 
warn_slowpath_null(const char * file,int line)490 void warn_slowpath_null(const char *file, int line)
491 {
492 	warn_slowpath_common(file, line, __builtin_return_address(0),
493 			     TAINT_WARN, NULL);
494 }
495 EXPORT_SYMBOL(warn_slowpath_null);
496 #endif
497 
498 #ifdef CONFIG_CC_STACKPROTECTOR
499 
500 /*
501  * Called when gcc's -fstack-protector feature is used, and
502  * gcc detects corruption of the on-stack canary value
503  */
__stack_chk_fail(void)504 __visible void __stack_chk_fail(void)
505 {
506 	panic("stack-protector: Kernel stack is corrupted in: %p\n",
507 		__builtin_return_address(0));
508 }
509 EXPORT_SYMBOL(__stack_chk_fail);
510 
511 #endif
512 
513 core_param(panic, panic_timeout, int, 0644);
514 core_param(pause_on_oops, pause_on_oops, int, 0644);
515 core_param(panic_on_warn, panic_on_warn, int, 0644);
516 
setup_crash_kexec_post_notifiers(char * s)517 static int __init setup_crash_kexec_post_notifiers(char *s)
518 {
519 	crash_kexec_post_notifiers = true;
520 	return 0;
521 }
522 early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
523 
oops_setup(char * s)524 static int __init oops_setup(char *s)
525 {
526 	if (!s)
527 		return -EINVAL;
528 	if (!strcmp(s, "panic"))
529 		panic_on_oops = 1;
530 	return 0;
531 }
532 early_param("oops", oops_setup);
533