1 /*
2    Copyright (C) 2002 Richard Henderson
3    Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 2 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, write to the Free Software
17     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/async.h>
57 #include <linux/percpu.h>
58 #include <linux/kmemleak.h>
59 #include <linux/jump_label.h>
60 #include <linux/pfn.h>
61 #include <linux/bsearch.h>
62 #include <uapi/linux/module.h>
63 #include "module-internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71 
72 /*
73  * Modules' sections will be aligned on page boundaries
74  * to ensure complete separation of code and data, but
75  * only when CONFIG_DEBUG_SET_MODULE_RONX=y
76  */
77 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
78 # define debug_align(X) ALIGN(X, PAGE_SIZE)
79 #else
80 # define debug_align(X) (X)
81 #endif
82 
83 /*
84  * Given BASE and SIZE this macro calculates the number of pages the
85  * memory regions occupies
86  */
87 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
88 		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
89 			 PFN_DOWN((unsigned long)BASE) + 1)	\
90 		: (0UL))
91 
92 /* If this is set, the section belongs in the init part of the module */
93 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
94 
95 /*
96  * Mutex protects:
97  * 1) List of modules (also safely readable with preempt_disable),
98  * 2) module_use links,
99  * 3) module_addr_min/module_addr_max.
100  * (delete and add uses RCU list operations). */
101 DEFINE_MUTEX(module_mutex);
102 EXPORT_SYMBOL_GPL(module_mutex);
103 static LIST_HEAD(modules);
104 
105 #ifdef CONFIG_MODULES_TREE_LOOKUP
106 
107 /*
108  * Use a latched RB-tree for __module_address(); this allows us to use
109  * RCU-sched lookups of the address from any context.
110  *
111  * Because modules have two address ranges: init and core, we need two
112  * latch_tree_nodes entries. Therefore we need the back-pointer from
113  * mod_tree_node.
114  *
115  * Because init ranges are short lived we mark them unlikely and have placed
116  * them outside the critical cacheline in struct module.
117  *
118  * This is conditional on PERF_EVENTS || TRACING because those can really hit
119  * __module_address() hard by doing a lot of stack unwinding; potentially from
120  * NMI context.
121  */
122 
__mod_tree_val(struct latch_tree_node * n)123 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
124 {
125 	struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
126 	struct module *mod = mtn->mod;
127 
128 	if (unlikely(mtn == &mod->mtn_init))
129 		return (unsigned long)mod->module_init;
130 
131 	return (unsigned long)mod->module_core;
132 }
133 
__mod_tree_size(struct latch_tree_node * n)134 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
135 {
136 	struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
137 	struct module *mod = mtn->mod;
138 
139 	if (unlikely(mtn == &mod->mtn_init))
140 		return (unsigned long)mod->init_size;
141 
142 	return (unsigned long)mod->core_size;
143 }
144 
145 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)146 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
147 {
148 	return __mod_tree_val(a) < __mod_tree_val(b);
149 }
150 
151 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)152 mod_tree_comp(void *key, struct latch_tree_node *n)
153 {
154 	unsigned long val = (unsigned long)key;
155 	unsigned long start, end;
156 
157 	start = __mod_tree_val(n);
158 	if (val < start)
159 		return -1;
160 
161 	end = start + __mod_tree_size(n);
162 	if (val >= end)
163 		return 1;
164 
165 	return 0;
166 }
167 
168 static const struct latch_tree_ops mod_tree_ops = {
169 	.less = mod_tree_less,
170 	.comp = mod_tree_comp,
171 };
172 
173 static struct mod_tree_root {
174 	struct latch_tree_root root;
175 	unsigned long addr_min;
176 	unsigned long addr_max;
177 } mod_tree __cacheline_aligned = {
178 	.addr_min = -1UL,
179 };
180 
181 #define module_addr_min mod_tree.addr_min
182 #define module_addr_max mod_tree.addr_max
183 
__mod_tree_insert(struct mod_tree_node * node)184 static noinline void __mod_tree_insert(struct mod_tree_node *node)
185 {
186 	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
187 }
188 
__mod_tree_remove(struct mod_tree_node * node)189 static void __mod_tree_remove(struct mod_tree_node *node)
190 {
191 	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
192 }
193 
194 /*
195  * These modifications: insert, remove_init and remove; are serialized by the
196  * module_mutex.
197  */
mod_tree_insert(struct module * mod)198 static void mod_tree_insert(struct module *mod)
199 {
200 	mod->mtn_core.mod = mod;
201 	mod->mtn_init.mod = mod;
202 
203 	__mod_tree_insert(&mod->mtn_core);
204 	if (mod->init_size)
205 		__mod_tree_insert(&mod->mtn_init);
206 }
207 
mod_tree_remove_init(struct module * mod)208 static void mod_tree_remove_init(struct module *mod)
209 {
210 	if (mod->init_size)
211 		__mod_tree_remove(&mod->mtn_init);
212 }
213 
mod_tree_remove(struct module * mod)214 static void mod_tree_remove(struct module *mod)
215 {
216 	__mod_tree_remove(&mod->mtn_core);
217 	mod_tree_remove_init(mod);
218 }
219 
mod_find(unsigned long addr)220 static struct module *mod_find(unsigned long addr)
221 {
222 	struct latch_tree_node *ltn;
223 
224 	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
225 	if (!ltn)
226 		return NULL;
227 
228 	return container_of(ltn, struct mod_tree_node, node)->mod;
229 }
230 
231 #else /* MODULES_TREE_LOOKUP */
232 
233 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
234 
mod_tree_insert(struct module * mod)235 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)236 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)237 static void mod_tree_remove(struct module *mod) { }
238 
mod_find(unsigned long addr)239 static struct module *mod_find(unsigned long addr)
240 {
241 	struct module *mod;
242 
243 	list_for_each_entry_rcu(mod, &modules, list) {
244 		if (within_module(addr, mod))
245 			return mod;
246 	}
247 
248 	return NULL;
249 }
250 
251 #endif /* MODULES_TREE_LOOKUP */
252 
253 /*
254  * Bounds of module text, for speeding up __module_address.
255  * Protected by module_mutex.
256  */
__mod_update_bounds(void * base,unsigned int size)257 static void __mod_update_bounds(void *base, unsigned int size)
258 {
259 	unsigned long min = (unsigned long)base;
260 	unsigned long max = min + size;
261 
262 	if (min < module_addr_min)
263 		module_addr_min = min;
264 	if (max > module_addr_max)
265 		module_addr_max = max;
266 }
267 
mod_update_bounds(struct module * mod)268 static void mod_update_bounds(struct module *mod)
269 {
270 	__mod_update_bounds(mod->module_core, mod->core_size);
271 	if (mod->init_size)
272 		__mod_update_bounds(mod->module_init, mod->init_size);
273 }
274 
275 #ifdef CONFIG_KGDB_KDB
276 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
277 #endif /* CONFIG_KGDB_KDB */
278 
module_assert_mutex(void)279 static void module_assert_mutex(void)
280 {
281 	lockdep_assert_held(&module_mutex);
282 }
283 
module_assert_mutex_or_preempt(void)284 static void module_assert_mutex_or_preempt(void)
285 {
286 #ifdef CONFIG_LOCKDEP
287 	if (unlikely(!debug_locks))
288 		return;
289 
290 	WARN_ON(!rcu_read_lock_sched_held() &&
291 		!lockdep_is_held(&module_mutex));
292 #endif
293 }
294 
295 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
296 #ifndef CONFIG_MODULE_SIG_FORCE
297 module_param(sig_enforce, bool_enable_only, 0644);
298 #endif /* !CONFIG_MODULE_SIG_FORCE */
299 
300 /* Block module loading/unloading? */
301 int modules_disabled = 0;
302 core_param(nomodule, modules_disabled, bint, 0);
303 
304 /* Waiting for a module to finish initializing? */
305 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
306 
307 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
308 
register_module_notifier(struct notifier_block * nb)309 int register_module_notifier(struct notifier_block *nb)
310 {
311 	return blocking_notifier_chain_register(&module_notify_list, nb);
312 }
313 EXPORT_SYMBOL(register_module_notifier);
314 
unregister_module_notifier(struct notifier_block * nb)315 int unregister_module_notifier(struct notifier_block *nb)
316 {
317 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
318 }
319 EXPORT_SYMBOL(unregister_module_notifier);
320 
321 struct load_info {
322 	Elf_Ehdr *hdr;
323 	unsigned long len;
324 	Elf_Shdr *sechdrs;
325 	char *secstrings, *strtab;
326 	unsigned long symoffs, stroffs;
327 	struct _ddebug *debug;
328 	unsigned int num_debug;
329 	bool sig_ok;
330 #ifdef CONFIG_KALLSYMS
331 	unsigned long mod_kallsyms_init_off;
332 #endif
333 	struct {
334 		unsigned int sym, str, mod, vers, info, pcpu;
335 	} index;
336 };
337 
338 /* We require a truly strong try_module_get(): 0 means failure due to
339    ongoing or failed initialization etc. */
strong_try_module_get(struct module * mod)340 static inline int strong_try_module_get(struct module *mod)
341 {
342 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
343 	if (mod && mod->state == MODULE_STATE_COMING)
344 		return -EBUSY;
345 	if (try_module_get(mod))
346 		return 0;
347 	else
348 		return -ENOENT;
349 }
350 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)351 static inline void add_taint_module(struct module *mod, unsigned flag,
352 				    enum lockdep_ok lockdep_ok)
353 {
354 	add_taint(flag, lockdep_ok);
355 	mod->taints |= (1U << flag);
356 }
357 
358 /*
359  * A thread that wants to hold a reference to a module only while it
360  * is running can call this to safely exit.  nfsd and lockd use this.
361  */
__module_put_and_exit(struct module * mod,long code)362 void __module_put_and_exit(struct module *mod, long code)
363 {
364 	module_put(mod);
365 	do_exit(code);
366 }
367 EXPORT_SYMBOL(__module_put_and_exit);
368 
369 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)370 static unsigned int find_sec(const struct load_info *info, const char *name)
371 {
372 	unsigned int i;
373 
374 	for (i = 1; i < info->hdr->e_shnum; i++) {
375 		Elf_Shdr *shdr = &info->sechdrs[i];
376 		/* Alloc bit cleared means "ignore it." */
377 		if ((shdr->sh_flags & SHF_ALLOC)
378 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
379 			return i;
380 	}
381 	return 0;
382 }
383 
384 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)385 static void *section_addr(const struct load_info *info, const char *name)
386 {
387 	/* Section 0 has sh_addr 0. */
388 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
389 }
390 
391 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)392 static void *section_objs(const struct load_info *info,
393 			  const char *name,
394 			  size_t object_size,
395 			  unsigned int *num)
396 {
397 	unsigned int sec = find_sec(info, name);
398 
399 	/* Section 0 has sh_addr 0 and sh_size 0. */
400 	*num = info->sechdrs[sec].sh_size / object_size;
401 	return (void *)info->sechdrs[sec].sh_addr;
402 }
403 
404 /* Provided by the linker */
405 extern const struct kernel_symbol __start___ksymtab[];
406 extern const struct kernel_symbol __stop___ksymtab[];
407 extern const struct kernel_symbol __start___ksymtab_gpl[];
408 extern const struct kernel_symbol __stop___ksymtab_gpl[];
409 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
410 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
411 extern const unsigned long __start___kcrctab[];
412 extern const unsigned long __start___kcrctab_gpl[];
413 extern const unsigned long __start___kcrctab_gpl_future[];
414 #ifdef CONFIG_UNUSED_SYMBOLS
415 extern const struct kernel_symbol __start___ksymtab_unused[];
416 extern const struct kernel_symbol __stop___ksymtab_unused[];
417 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
418 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
419 extern const unsigned long __start___kcrctab_unused[];
420 extern const unsigned long __start___kcrctab_unused_gpl[];
421 #endif
422 
423 #ifndef CONFIG_MODVERSIONS
424 #define symversion(base, idx) NULL
425 #else
426 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
427 #endif
428 
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)429 static bool each_symbol_in_section(const struct symsearch *arr,
430 				   unsigned int arrsize,
431 				   struct module *owner,
432 				   bool (*fn)(const struct symsearch *syms,
433 					      struct module *owner,
434 					      void *data),
435 				   void *data)
436 {
437 	unsigned int j;
438 
439 	for (j = 0; j < arrsize; j++) {
440 		if (fn(&arr[j], owner, data))
441 			return true;
442 	}
443 
444 	return false;
445 }
446 
447 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)448 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
449 				    struct module *owner,
450 				    void *data),
451 			 void *data)
452 {
453 	struct module *mod;
454 	static const struct symsearch arr[] = {
455 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
456 		  NOT_GPL_ONLY, false },
457 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
458 		  __start___kcrctab_gpl,
459 		  GPL_ONLY, false },
460 		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
461 		  __start___kcrctab_gpl_future,
462 		  WILL_BE_GPL_ONLY, false },
463 #ifdef CONFIG_UNUSED_SYMBOLS
464 		{ __start___ksymtab_unused, __stop___ksymtab_unused,
465 		  __start___kcrctab_unused,
466 		  NOT_GPL_ONLY, true },
467 		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
468 		  __start___kcrctab_unused_gpl,
469 		  GPL_ONLY, true },
470 #endif
471 	};
472 
473 	module_assert_mutex_or_preempt();
474 
475 	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
476 		return true;
477 
478 	list_for_each_entry_rcu(mod, &modules, list) {
479 		struct symsearch arr[] = {
480 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
481 			  NOT_GPL_ONLY, false },
482 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
483 			  mod->gpl_crcs,
484 			  GPL_ONLY, false },
485 			{ mod->gpl_future_syms,
486 			  mod->gpl_future_syms + mod->num_gpl_future_syms,
487 			  mod->gpl_future_crcs,
488 			  WILL_BE_GPL_ONLY, false },
489 #ifdef CONFIG_UNUSED_SYMBOLS
490 			{ mod->unused_syms,
491 			  mod->unused_syms + mod->num_unused_syms,
492 			  mod->unused_crcs,
493 			  NOT_GPL_ONLY, true },
494 			{ mod->unused_gpl_syms,
495 			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
496 			  mod->unused_gpl_crcs,
497 			  GPL_ONLY, true },
498 #endif
499 		};
500 
501 		if (mod->state == MODULE_STATE_UNFORMED)
502 			continue;
503 
504 		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
505 			return true;
506 	}
507 	return false;
508 }
509 EXPORT_SYMBOL_GPL(each_symbol_section);
510 
511 struct find_symbol_arg {
512 	/* Input */
513 	const char *name;
514 	bool gplok;
515 	bool warn;
516 
517 	/* Output */
518 	struct module *owner;
519 	const unsigned long *crc;
520 	const struct kernel_symbol *sym;
521 };
522 
check_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)523 static bool check_symbol(const struct symsearch *syms,
524 				 struct module *owner,
525 				 unsigned int symnum, void *data)
526 {
527 	struct find_symbol_arg *fsa = data;
528 
529 	if (!fsa->gplok) {
530 		if (syms->licence == GPL_ONLY)
531 			return false;
532 		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
533 			pr_warn("Symbol %s is being used by a non-GPL module, "
534 				"which will not be allowed in the future\n",
535 				fsa->name);
536 		}
537 	}
538 
539 #ifdef CONFIG_UNUSED_SYMBOLS
540 	if (syms->unused && fsa->warn) {
541 		pr_warn("Symbol %s is marked as UNUSED, however this module is "
542 			"using it.\n", fsa->name);
543 		pr_warn("This symbol will go away in the future.\n");
544 		pr_warn("Please evaluate if this is the right api to use and "
545 			"if it really is, submit a report to the linux kernel "
546 			"mailing list together with submitting your code for "
547 			"inclusion.\n");
548 	}
549 #endif
550 
551 	fsa->owner = owner;
552 	fsa->crc = symversion(syms->crcs, symnum);
553 	fsa->sym = &syms->start[symnum];
554 	return true;
555 }
556 
cmp_name(const void * va,const void * vb)557 static int cmp_name(const void *va, const void *vb)
558 {
559 	const char *a;
560 	const struct kernel_symbol *b;
561 	a = va; b = vb;
562 	return strcmp(a, b->name);
563 }
564 
find_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)565 static bool find_symbol_in_section(const struct symsearch *syms,
566 				   struct module *owner,
567 				   void *data)
568 {
569 	struct find_symbol_arg *fsa = data;
570 	struct kernel_symbol *sym;
571 
572 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
573 			sizeof(struct kernel_symbol), cmp_name);
574 
575 	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
576 		return true;
577 
578 	return false;
579 }
580 
581 /* Find a symbol and return it, along with, (optional) crc and
582  * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const unsigned long ** crc,bool gplok,bool warn)583 const struct kernel_symbol *find_symbol(const char *name,
584 					struct module **owner,
585 					const unsigned long **crc,
586 					bool gplok,
587 					bool warn)
588 {
589 	struct find_symbol_arg fsa;
590 
591 	fsa.name = name;
592 	fsa.gplok = gplok;
593 	fsa.warn = warn;
594 
595 	if (each_symbol_section(find_symbol_in_section, &fsa)) {
596 		if (owner)
597 			*owner = fsa.owner;
598 		if (crc)
599 			*crc = fsa.crc;
600 		return fsa.sym;
601 	}
602 
603 	pr_debug("Failed to find symbol %s\n", name);
604 	return NULL;
605 }
606 EXPORT_SYMBOL_GPL(find_symbol);
607 
608 /*
609  * Search for module by name: must hold module_mutex (or preempt disabled
610  * for read-only access).
611  */
find_module_all(const char * name,size_t len,bool even_unformed)612 static struct module *find_module_all(const char *name, size_t len,
613 				      bool even_unformed)
614 {
615 	struct module *mod;
616 
617 	module_assert_mutex_or_preempt();
618 
619 	list_for_each_entry(mod, &modules, list) {
620 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
621 			continue;
622 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
623 			return mod;
624 	}
625 	return NULL;
626 }
627 
find_module(const char * name)628 struct module *find_module(const char *name)
629 {
630 	module_assert_mutex();
631 	return find_module_all(name, strlen(name), false);
632 }
633 EXPORT_SYMBOL_GPL(find_module);
634 
635 #ifdef CONFIG_SMP
636 
mod_percpu(struct module * mod)637 static inline void __percpu *mod_percpu(struct module *mod)
638 {
639 	return mod->percpu;
640 }
641 
percpu_modalloc(struct module * mod,struct load_info * info)642 static int percpu_modalloc(struct module *mod, struct load_info *info)
643 {
644 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
645 	unsigned long align = pcpusec->sh_addralign;
646 
647 	if (!pcpusec->sh_size)
648 		return 0;
649 
650 	if (align > PAGE_SIZE) {
651 		pr_warn("%s: per-cpu alignment %li > %li\n",
652 			mod->name, align, PAGE_SIZE);
653 		align = PAGE_SIZE;
654 	}
655 
656 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
657 	if (!mod->percpu) {
658 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
659 			mod->name, (unsigned long)pcpusec->sh_size);
660 		return -ENOMEM;
661 	}
662 	mod->percpu_size = pcpusec->sh_size;
663 	return 0;
664 }
665 
percpu_modfree(struct module * mod)666 static void percpu_modfree(struct module *mod)
667 {
668 	free_percpu(mod->percpu);
669 }
670 
find_pcpusec(struct load_info * info)671 static unsigned int find_pcpusec(struct load_info *info)
672 {
673 	return find_sec(info, ".data..percpu");
674 }
675 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)676 static void percpu_modcopy(struct module *mod,
677 			   const void *from, unsigned long size)
678 {
679 	int cpu;
680 
681 	for_each_possible_cpu(cpu)
682 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
683 }
684 
685 /**
686  * is_module_percpu_address - test whether address is from module static percpu
687  * @addr: address to test
688  *
689  * Test whether @addr belongs to module static percpu area.
690  *
691  * RETURNS:
692  * %true if @addr is from module static percpu area
693  */
is_module_percpu_address(unsigned long addr)694 bool is_module_percpu_address(unsigned long addr)
695 {
696 	struct module *mod;
697 	unsigned int cpu;
698 
699 	preempt_disable();
700 
701 	list_for_each_entry_rcu(mod, &modules, list) {
702 		if (mod->state == MODULE_STATE_UNFORMED)
703 			continue;
704 		if (!mod->percpu_size)
705 			continue;
706 		for_each_possible_cpu(cpu) {
707 			void *start = per_cpu_ptr(mod->percpu, cpu);
708 
709 			if ((void *)addr >= start &&
710 			    (void *)addr < start + mod->percpu_size) {
711 				preempt_enable();
712 				return true;
713 			}
714 		}
715 	}
716 
717 	preempt_enable();
718 	return false;
719 }
720 
721 #else /* ... !CONFIG_SMP */
722 
mod_percpu(struct module * mod)723 static inline void __percpu *mod_percpu(struct module *mod)
724 {
725 	return NULL;
726 }
percpu_modalloc(struct module * mod,struct load_info * info)727 static int percpu_modalloc(struct module *mod, struct load_info *info)
728 {
729 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
730 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
731 		return -ENOMEM;
732 	return 0;
733 }
percpu_modfree(struct module * mod)734 static inline void percpu_modfree(struct module *mod)
735 {
736 }
find_pcpusec(struct load_info * info)737 static unsigned int find_pcpusec(struct load_info *info)
738 {
739 	return 0;
740 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)741 static inline void percpu_modcopy(struct module *mod,
742 				  const void *from, unsigned long size)
743 {
744 	/* pcpusec should be 0, and size of that section should be 0. */
745 	BUG_ON(size != 0);
746 }
is_module_percpu_address(unsigned long addr)747 bool is_module_percpu_address(unsigned long addr)
748 {
749 	return false;
750 }
751 
752 #endif /* CONFIG_SMP */
753 
754 #define MODINFO_ATTR(field)	\
755 static void setup_modinfo_##field(struct module *mod, const char *s)  \
756 {                                                                     \
757 	mod->field = kstrdup(s, GFP_KERNEL);                          \
758 }                                                                     \
759 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
760 			struct module_kobject *mk, char *buffer)      \
761 {                                                                     \
762 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
763 }                                                                     \
764 static int modinfo_##field##_exists(struct module *mod)               \
765 {                                                                     \
766 	return mod->field != NULL;                                    \
767 }                                                                     \
768 static void free_modinfo_##field(struct module *mod)                  \
769 {                                                                     \
770 	kfree(mod->field);                                            \
771 	mod->field = NULL;                                            \
772 }                                                                     \
773 static struct module_attribute modinfo_##field = {                    \
774 	.attr = { .name = __stringify(field), .mode = 0444 },         \
775 	.show = show_modinfo_##field,                                 \
776 	.setup = setup_modinfo_##field,                               \
777 	.test = modinfo_##field##_exists,                             \
778 	.free = free_modinfo_##field,                                 \
779 };
780 
781 MODINFO_ATTR(version);
782 MODINFO_ATTR(srcversion);
783 
784 static char last_unloaded_module[MODULE_NAME_LEN+1];
785 
786 #ifdef CONFIG_MODULE_UNLOAD
787 
788 EXPORT_TRACEPOINT_SYMBOL(module_get);
789 
790 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
791 #define MODULE_REF_BASE	1
792 
793 /* Init the unload section of the module. */
module_unload_init(struct module * mod)794 static int module_unload_init(struct module *mod)
795 {
796 	/*
797 	 * Initialize reference counter to MODULE_REF_BASE.
798 	 * refcnt == 0 means module is going.
799 	 */
800 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
801 
802 	INIT_LIST_HEAD(&mod->source_list);
803 	INIT_LIST_HEAD(&mod->target_list);
804 
805 	/* Hold reference count during initialization. */
806 	atomic_inc(&mod->refcnt);
807 
808 	return 0;
809 }
810 
811 /* Does a already use b? */
already_uses(struct module * a,struct module * b)812 static int already_uses(struct module *a, struct module *b)
813 {
814 	struct module_use *use;
815 
816 	list_for_each_entry(use, &b->source_list, source_list) {
817 		if (use->source == a) {
818 			pr_debug("%s uses %s!\n", a->name, b->name);
819 			return 1;
820 		}
821 	}
822 	pr_debug("%s does not use %s!\n", a->name, b->name);
823 	return 0;
824 }
825 
826 /*
827  * Module a uses b
828  *  - we add 'a' as a "source", 'b' as a "target" of module use
829  *  - the module_use is added to the list of 'b' sources (so
830  *    'b' can walk the list to see who sourced them), and of 'a'
831  *    targets (so 'a' can see what modules it targets).
832  */
add_module_usage(struct module * a,struct module * b)833 static int add_module_usage(struct module *a, struct module *b)
834 {
835 	struct module_use *use;
836 
837 	pr_debug("Allocating new usage for %s.\n", a->name);
838 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
839 	if (!use) {
840 		pr_warn("%s: out of memory loading\n", a->name);
841 		return -ENOMEM;
842 	}
843 
844 	use->source = a;
845 	use->target = b;
846 	list_add(&use->source_list, &b->source_list);
847 	list_add(&use->target_list, &a->target_list);
848 	return 0;
849 }
850 
851 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)852 int ref_module(struct module *a, struct module *b)
853 {
854 	int err;
855 
856 	if (b == NULL || already_uses(a, b))
857 		return 0;
858 
859 	/* If module isn't available, we fail. */
860 	err = strong_try_module_get(b);
861 	if (err)
862 		return err;
863 
864 	err = add_module_usage(a, b);
865 	if (err) {
866 		module_put(b);
867 		return err;
868 	}
869 	return 0;
870 }
871 EXPORT_SYMBOL_GPL(ref_module);
872 
873 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)874 static void module_unload_free(struct module *mod)
875 {
876 	struct module_use *use, *tmp;
877 
878 	mutex_lock(&module_mutex);
879 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
880 		struct module *i = use->target;
881 		pr_debug("%s unusing %s\n", mod->name, i->name);
882 		module_put(i);
883 		list_del(&use->source_list);
884 		list_del(&use->target_list);
885 		kfree(use);
886 	}
887 	mutex_unlock(&module_mutex);
888 }
889 
890 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)891 static inline int try_force_unload(unsigned int flags)
892 {
893 	int ret = (flags & O_TRUNC);
894 	if (ret)
895 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
896 	return ret;
897 }
898 #else
try_force_unload(unsigned int flags)899 static inline int try_force_unload(unsigned int flags)
900 {
901 	return 0;
902 }
903 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
904 
905 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)906 static int try_release_module_ref(struct module *mod)
907 {
908 	int ret;
909 
910 	/* Try to decrement refcnt which we set at loading */
911 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
912 	BUG_ON(ret < 0);
913 	if (ret)
914 		/* Someone can put this right now, recover with checking */
915 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
916 
917 	return ret;
918 }
919 
try_stop_module(struct module * mod,int flags,int * forced)920 static int try_stop_module(struct module *mod, int flags, int *forced)
921 {
922 	/* If it's not unused, quit unless we're forcing. */
923 	if (try_release_module_ref(mod) != 0) {
924 		*forced = try_force_unload(flags);
925 		if (!(*forced))
926 			return -EWOULDBLOCK;
927 	}
928 
929 	/* Mark it as dying. */
930 	mod->state = MODULE_STATE_GOING;
931 
932 	return 0;
933 }
934 
935 /**
936  * module_refcount - return the refcount or -1 if unloading
937  *
938  * @mod:	the module we're checking
939  *
940  * Returns:
941  *	-1 if the module is in the process of unloading
942  *	otherwise the number of references in the kernel to the module
943  */
module_refcount(struct module * mod)944 int module_refcount(struct module *mod)
945 {
946 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
947 }
948 EXPORT_SYMBOL(module_refcount);
949 
950 /* This exists whether we can unload or not */
951 static void free_module(struct module *mod);
952 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)953 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
954 		unsigned int, flags)
955 {
956 	struct module *mod;
957 	char name[MODULE_NAME_LEN];
958 	int ret, forced = 0;
959 
960 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
961 		return -EPERM;
962 
963 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
964 		return -EFAULT;
965 	name[MODULE_NAME_LEN-1] = '\0';
966 
967 	if (mutex_lock_interruptible(&module_mutex) != 0)
968 		return -EINTR;
969 
970 	mod = find_module(name);
971 	if (!mod) {
972 		ret = -ENOENT;
973 		goto out;
974 	}
975 
976 	if (!list_empty(&mod->source_list)) {
977 		/* Other modules depend on us: get rid of them first. */
978 		ret = -EWOULDBLOCK;
979 		goto out;
980 	}
981 
982 	/* Doing init or already dying? */
983 	if (mod->state != MODULE_STATE_LIVE) {
984 		/* FIXME: if (force), slam module count damn the torpedoes */
985 		pr_debug("%s already dying\n", mod->name);
986 		ret = -EBUSY;
987 		goto out;
988 	}
989 
990 	/* If it has an init func, it must have an exit func to unload */
991 	if (mod->init && !mod->exit) {
992 		forced = try_force_unload(flags);
993 		if (!forced) {
994 			/* This module can't be removed */
995 			ret = -EBUSY;
996 			goto out;
997 		}
998 	}
999 
1000 	/* Stop the machine so refcounts can't move and disable module. */
1001 	ret = try_stop_module(mod, flags, &forced);
1002 	if (ret != 0)
1003 		goto out;
1004 
1005 	mutex_unlock(&module_mutex);
1006 	/* Final destruction now no one is using it. */
1007 	if (mod->exit != NULL)
1008 		mod->exit();
1009 	blocking_notifier_call_chain(&module_notify_list,
1010 				     MODULE_STATE_GOING, mod);
1011 	async_synchronize_full();
1012 
1013 	/* Store the name of the last unloaded module for diagnostic purposes */
1014 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1015 
1016 	free_module(mod);
1017 	return 0;
1018 out:
1019 	mutex_unlock(&module_mutex);
1020 	return ret;
1021 }
1022 
print_unload_info(struct seq_file * m,struct module * mod)1023 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1024 {
1025 	struct module_use *use;
1026 	int printed_something = 0;
1027 
1028 	seq_printf(m, " %i ", module_refcount(mod));
1029 
1030 	/*
1031 	 * Always include a trailing , so userspace can differentiate
1032 	 * between this and the old multi-field proc format.
1033 	 */
1034 	list_for_each_entry(use, &mod->source_list, source_list) {
1035 		printed_something = 1;
1036 		seq_printf(m, "%s,", use->source->name);
1037 	}
1038 
1039 	if (mod->init != NULL && mod->exit == NULL) {
1040 		printed_something = 1;
1041 		seq_puts(m, "[permanent],");
1042 	}
1043 
1044 	if (!printed_something)
1045 		seq_puts(m, "-");
1046 }
1047 
__symbol_put(const char * symbol)1048 void __symbol_put(const char *symbol)
1049 {
1050 	struct module *owner;
1051 
1052 	preempt_disable();
1053 	if (!find_symbol(symbol, &owner, NULL, true, false))
1054 		BUG();
1055 	module_put(owner);
1056 	preempt_enable();
1057 }
1058 EXPORT_SYMBOL(__symbol_put);
1059 
1060 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1061 void symbol_put_addr(void *addr)
1062 {
1063 	struct module *modaddr;
1064 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1065 
1066 	if (core_kernel_text(a))
1067 		return;
1068 
1069 	/*
1070 	 * Even though we hold a reference on the module; we still need to
1071 	 * disable preemption in order to safely traverse the data structure.
1072 	 */
1073 	preempt_disable();
1074 	modaddr = __module_text_address(a);
1075 	BUG_ON(!modaddr);
1076 	module_put(modaddr);
1077 	preempt_enable();
1078 }
1079 EXPORT_SYMBOL_GPL(symbol_put_addr);
1080 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1081 static ssize_t show_refcnt(struct module_attribute *mattr,
1082 			   struct module_kobject *mk, char *buffer)
1083 {
1084 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1085 }
1086 
1087 static struct module_attribute modinfo_refcnt =
1088 	__ATTR(refcnt, 0444, show_refcnt, NULL);
1089 
__module_get(struct module * module)1090 void __module_get(struct module *module)
1091 {
1092 	if (module) {
1093 		preempt_disable();
1094 		atomic_inc(&module->refcnt);
1095 		trace_module_get(module, _RET_IP_);
1096 		preempt_enable();
1097 	}
1098 }
1099 EXPORT_SYMBOL(__module_get);
1100 
try_module_get(struct module * module)1101 bool try_module_get(struct module *module)
1102 {
1103 	bool ret = true;
1104 
1105 	if (module) {
1106 		preempt_disable();
1107 		/* Note: here, we can fail to get a reference */
1108 		if (likely(module_is_live(module) &&
1109 			   atomic_inc_not_zero(&module->refcnt) != 0))
1110 			trace_module_get(module, _RET_IP_);
1111 		else
1112 			ret = false;
1113 
1114 		preempt_enable();
1115 	}
1116 	return ret;
1117 }
1118 EXPORT_SYMBOL(try_module_get);
1119 
module_put(struct module * module)1120 void module_put(struct module *module)
1121 {
1122 	int ret;
1123 
1124 	if (module) {
1125 		preempt_disable();
1126 		ret = atomic_dec_if_positive(&module->refcnt);
1127 		WARN_ON(ret < 0);	/* Failed to put refcount */
1128 		trace_module_put(module, _RET_IP_);
1129 		preempt_enable();
1130 	}
1131 }
1132 EXPORT_SYMBOL(module_put);
1133 
1134 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1135 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1136 {
1137 	/* We don't know the usage count, or what modules are using. */
1138 	seq_puts(m, " - -");
1139 }
1140 
module_unload_free(struct module * mod)1141 static inline void module_unload_free(struct module *mod)
1142 {
1143 }
1144 
ref_module(struct module * a,struct module * b)1145 int ref_module(struct module *a, struct module *b)
1146 {
1147 	return strong_try_module_get(b);
1148 }
1149 EXPORT_SYMBOL_GPL(ref_module);
1150 
module_unload_init(struct module * mod)1151 static inline int module_unload_init(struct module *mod)
1152 {
1153 	return 0;
1154 }
1155 #endif /* CONFIG_MODULE_UNLOAD */
1156 
module_flags_taint(struct module * mod,char * buf)1157 static size_t module_flags_taint(struct module *mod, char *buf)
1158 {
1159 	size_t l = 0;
1160 
1161 	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1162 		buf[l++] = 'P';
1163 	if (mod->taints & (1 << TAINT_OOT_MODULE))
1164 		buf[l++] = 'O';
1165 	if (mod->taints & (1 << TAINT_FORCED_MODULE))
1166 		buf[l++] = 'F';
1167 	if (mod->taints & (1 << TAINT_CRAP))
1168 		buf[l++] = 'C';
1169 	if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1170 		buf[l++] = 'E';
1171 	/*
1172 	 * TAINT_FORCED_RMMOD: could be added.
1173 	 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1174 	 * apply to modules.
1175 	 */
1176 	return l;
1177 }
1178 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1179 static ssize_t show_initstate(struct module_attribute *mattr,
1180 			      struct module_kobject *mk, char *buffer)
1181 {
1182 	const char *state = "unknown";
1183 
1184 	switch (mk->mod->state) {
1185 	case MODULE_STATE_LIVE:
1186 		state = "live";
1187 		break;
1188 	case MODULE_STATE_COMING:
1189 		state = "coming";
1190 		break;
1191 	case MODULE_STATE_GOING:
1192 		state = "going";
1193 		break;
1194 	default:
1195 		BUG();
1196 	}
1197 	return sprintf(buffer, "%s\n", state);
1198 }
1199 
1200 static struct module_attribute modinfo_initstate =
1201 	__ATTR(initstate, 0444, show_initstate, NULL);
1202 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1203 static ssize_t store_uevent(struct module_attribute *mattr,
1204 			    struct module_kobject *mk,
1205 			    const char *buffer, size_t count)
1206 {
1207 	enum kobject_action action;
1208 
1209 	if (kobject_action_type(buffer, count, &action) == 0)
1210 		kobject_uevent(&mk->kobj, action);
1211 	return count;
1212 }
1213 
1214 struct module_attribute module_uevent =
1215 	__ATTR(uevent, 0200, NULL, store_uevent);
1216 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1217 static ssize_t show_coresize(struct module_attribute *mattr,
1218 			     struct module_kobject *mk, char *buffer)
1219 {
1220 	return sprintf(buffer, "%u\n", mk->mod->core_size);
1221 }
1222 
1223 static struct module_attribute modinfo_coresize =
1224 	__ATTR(coresize, 0444, show_coresize, NULL);
1225 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1226 static ssize_t show_initsize(struct module_attribute *mattr,
1227 			     struct module_kobject *mk, char *buffer)
1228 {
1229 	return sprintf(buffer, "%u\n", mk->mod->init_size);
1230 }
1231 
1232 static struct module_attribute modinfo_initsize =
1233 	__ATTR(initsize, 0444, show_initsize, NULL);
1234 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1235 static ssize_t show_taint(struct module_attribute *mattr,
1236 			  struct module_kobject *mk, char *buffer)
1237 {
1238 	size_t l;
1239 
1240 	l = module_flags_taint(mk->mod, buffer);
1241 	buffer[l++] = '\n';
1242 	return l;
1243 }
1244 
1245 static struct module_attribute modinfo_taint =
1246 	__ATTR(taint, 0444, show_taint, NULL);
1247 
1248 static struct module_attribute *modinfo_attrs[] = {
1249 	&module_uevent,
1250 	&modinfo_version,
1251 	&modinfo_srcversion,
1252 	&modinfo_initstate,
1253 	&modinfo_coresize,
1254 	&modinfo_initsize,
1255 	&modinfo_taint,
1256 #ifdef CONFIG_MODULE_UNLOAD
1257 	&modinfo_refcnt,
1258 #endif
1259 	NULL,
1260 };
1261 
1262 static const char vermagic[] = VERMAGIC_STRING;
1263 
try_to_force_load(struct module * mod,const char * reason)1264 static int try_to_force_load(struct module *mod, const char *reason)
1265 {
1266 #ifdef CONFIG_MODULE_FORCE_LOAD
1267 	if (!test_taint(TAINT_FORCED_MODULE))
1268 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1269 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1270 	return 0;
1271 #else
1272 	return -ENOEXEC;
1273 #endif
1274 }
1275 
1276 #ifdef CONFIG_MODVERSIONS
1277 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
maybe_relocated(unsigned long crc,const struct module * crc_owner)1278 static unsigned long maybe_relocated(unsigned long crc,
1279 				     const struct module *crc_owner)
1280 {
1281 #ifdef ARCH_RELOCATES_KCRCTAB
1282 	if (crc_owner == NULL)
1283 		return crc - (unsigned long)reloc_start;
1284 #endif
1285 	return crc;
1286 }
1287 
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1288 static int check_version(Elf_Shdr *sechdrs,
1289 			 unsigned int versindex,
1290 			 const char *symname,
1291 			 struct module *mod,
1292 			 const unsigned long *crc,
1293 			 const struct module *crc_owner)
1294 {
1295 	unsigned int i, num_versions;
1296 	struct modversion_info *versions;
1297 
1298 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1299 	if (!crc)
1300 		return 1;
1301 
1302 	/* No versions at all?  modprobe --force does this. */
1303 	if (versindex == 0)
1304 		return try_to_force_load(mod, symname) == 0;
1305 
1306 	versions = (void *) sechdrs[versindex].sh_addr;
1307 	num_versions = sechdrs[versindex].sh_size
1308 		/ sizeof(struct modversion_info);
1309 
1310 	for (i = 0; i < num_versions; i++) {
1311 		if (strcmp(versions[i].name, symname) != 0)
1312 			continue;
1313 
1314 		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1315 			return 1;
1316 		pr_debug("Found checksum %lX vs module %lX\n",
1317 		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1318 		goto bad_version;
1319 	}
1320 
1321 	pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1322 	return 0;
1323 
1324 bad_version:
1325 	pr_warn("%s: disagrees about version of symbol %s\n",
1326 	       mod->name, symname);
1327 	return 0;
1328 }
1329 
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1330 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1331 					  unsigned int versindex,
1332 					  struct module *mod)
1333 {
1334 	const unsigned long *crc;
1335 
1336 	/*
1337 	 * Since this should be found in kernel (which can't be removed), no
1338 	 * locking is necessary -- use preempt_disable() to placate lockdep.
1339 	 */
1340 	preempt_disable();
1341 	if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1342 			 &crc, true, false)) {
1343 		preempt_enable();
1344 		BUG();
1345 	}
1346 	preempt_enable();
1347 	return check_version(sechdrs, versindex,
1348 			     VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1349 			     NULL);
1350 }
1351 
1352 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1353 static inline int same_magic(const char *amagic, const char *bmagic,
1354 			     bool has_crcs)
1355 {
1356 	if (has_crcs) {
1357 		amagic += strcspn(amagic, " ");
1358 		bmagic += strcspn(bmagic, " ");
1359 	}
1360 	return strcmp(amagic, bmagic) == 0;
1361 }
1362 #else
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1363 static inline int check_version(Elf_Shdr *sechdrs,
1364 				unsigned int versindex,
1365 				const char *symname,
1366 				struct module *mod,
1367 				const unsigned long *crc,
1368 				const struct module *crc_owner)
1369 {
1370 	return 1;
1371 }
1372 
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1373 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1374 					  unsigned int versindex,
1375 					  struct module *mod)
1376 {
1377 	return 1;
1378 }
1379 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1380 static inline int same_magic(const char *amagic, const char *bmagic,
1381 			     bool has_crcs)
1382 {
1383 	return strcmp(amagic, bmagic) == 0;
1384 }
1385 #endif /* CONFIG_MODVERSIONS */
1386 
1387 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1388 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1389 						  const struct load_info *info,
1390 						  const char *name,
1391 						  char ownername[])
1392 {
1393 	struct module *owner;
1394 	const struct kernel_symbol *sym;
1395 	const unsigned long *crc;
1396 	int err;
1397 
1398 	/*
1399 	 * The module_mutex should not be a heavily contended lock;
1400 	 * if we get the occasional sleep here, we'll go an extra iteration
1401 	 * in the wait_event_interruptible(), which is harmless.
1402 	 */
1403 	sched_annotate_sleep();
1404 	mutex_lock(&module_mutex);
1405 	sym = find_symbol(name, &owner, &crc,
1406 			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1407 	if (!sym)
1408 		goto unlock;
1409 
1410 	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1411 			   owner)) {
1412 		sym = ERR_PTR(-EINVAL);
1413 		goto getname;
1414 	}
1415 
1416 	err = ref_module(mod, owner);
1417 	if (err) {
1418 		sym = ERR_PTR(err);
1419 		goto getname;
1420 	}
1421 
1422 getname:
1423 	/* We must make copy under the lock if we failed to get ref. */
1424 	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1425 unlock:
1426 	mutex_unlock(&module_mutex);
1427 	return sym;
1428 }
1429 
1430 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1431 resolve_symbol_wait(struct module *mod,
1432 		    const struct load_info *info,
1433 		    const char *name)
1434 {
1435 	const struct kernel_symbol *ksym;
1436 	char owner[MODULE_NAME_LEN];
1437 
1438 	if (wait_event_interruptible_timeout(module_wq,
1439 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1440 			|| PTR_ERR(ksym) != -EBUSY,
1441 					     30 * HZ) <= 0) {
1442 		pr_warn("%s: gave up waiting for init of module %s.\n",
1443 			mod->name, owner);
1444 	}
1445 	return ksym;
1446 }
1447 
1448 /*
1449  * /sys/module/foo/sections stuff
1450  * J. Corbet <corbet@lwn.net>
1451  */
1452 #ifdef CONFIG_SYSFS
1453 
1454 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1455 static inline bool sect_empty(const Elf_Shdr *sect)
1456 {
1457 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1458 }
1459 
1460 struct module_sect_attr {
1461 	struct module_attribute mattr;
1462 	char *name;
1463 	unsigned long address;
1464 };
1465 
1466 struct module_sect_attrs {
1467 	struct attribute_group grp;
1468 	unsigned int nsections;
1469 	struct module_sect_attr attrs[0];
1470 };
1471 
module_sect_show(struct module_attribute * mattr,struct module_kobject * mk,char * buf)1472 static ssize_t module_sect_show(struct module_attribute *mattr,
1473 				struct module_kobject *mk, char *buf)
1474 {
1475 	struct module_sect_attr *sattr =
1476 		container_of(mattr, struct module_sect_attr, mattr);
1477 	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1478 }
1479 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1480 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1481 {
1482 	unsigned int section;
1483 
1484 	for (section = 0; section < sect_attrs->nsections; section++)
1485 		kfree(sect_attrs->attrs[section].name);
1486 	kfree(sect_attrs);
1487 }
1488 
add_sect_attrs(struct module * mod,const struct load_info * info)1489 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1490 {
1491 	unsigned int nloaded = 0, i, size[2];
1492 	struct module_sect_attrs *sect_attrs;
1493 	struct module_sect_attr *sattr;
1494 	struct attribute **gattr;
1495 
1496 	/* Count loaded sections and allocate structures */
1497 	for (i = 0; i < info->hdr->e_shnum; i++)
1498 		if (!sect_empty(&info->sechdrs[i]))
1499 			nloaded++;
1500 	size[0] = ALIGN(sizeof(*sect_attrs)
1501 			+ nloaded * sizeof(sect_attrs->attrs[0]),
1502 			sizeof(sect_attrs->grp.attrs[0]));
1503 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1504 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1505 	if (sect_attrs == NULL)
1506 		return;
1507 
1508 	/* Setup section attributes. */
1509 	sect_attrs->grp.name = "sections";
1510 	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1511 
1512 	sect_attrs->nsections = 0;
1513 	sattr = &sect_attrs->attrs[0];
1514 	gattr = &sect_attrs->grp.attrs[0];
1515 	for (i = 0; i < info->hdr->e_shnum; i++) {
1516 		Elf_Shdr *sec = &info->sechdrs[i];
1517 		if (sect_empty(sec))
1518 			continue;
1519 		sattr->address = sec->sh_addr;
1520 		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1521 					GFP_KERNEL);
1522 		if (sattr->name == NULL)
1523 			goto out;
1524 		sect_attrs->nsections++;
1525 		sysfs_attr_init(&sattr->mattr.attr);
1526 		sattr->mattr.show = module_sect_show;
1527 		sattr->mattr.store = NULL;
1528 		sattr->mattr.attr.name = sattr->name;
1529 		sattr->mattr.attr.mode = S_IRUGO;
1530 		*(gattr++) = &(sattr++)->mattr.attr;
1531 	}
1532 	*gattr = NULL;
1533 
1534 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1535 		goto out;
1536 
1537 	mod->sect_attrs = sect_attrs;
1538 	return;
1539   out:
1540 	free_sect_attrs(sect_attrs);
1541 }
1542 
remove_sect_attrs(struct module * mod)1543 static void remove_sect_attrs(struct module *mod)
1544 {
1545 	if (mod->sect_attrs) {
1546 		sysfs_remove_group(&mod->mkobj.kobj,
1547 				   &mod->sect_attrs->grp);
1548 		/* We are positive that no one is using any sect attrs
1549 		 * at this point.  Deallocate immediately. */
1550 		free_sect_attrs(mod->sect_attrs);
1551 		mod->sect_attrs = NULL;
1552 	}
1553 }
1554 
1555 /*
1556  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1557  */
1558 
1559 struct module_notes_attrs {
1560 	struct kobject *dir;
1561 	unsigned int notes;
1562 	struct bin_attribute attrs[0];
1563 };
1564 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1565 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1566 				 struct bin_attribute *bin_attr,
1567 				 char *buf, loff_t pos, size_t count)
1568 {
1569 	/*
1570 	 * The caller checked the pos and count against our size.
1571 	 */
1572 	memcpy(buf, bin_attr->private + pos, count);
1573 	return count;
1574 }
1575 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1576 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1577 			     unsigned int i)
1578 {
1579 	if (notes_attrs->dir) {
1580 		while (i-- > 0)
1581 			sysfs_remove_bin_file(notes_attrs->dir,
1582 					      &notes_attrs->attrs[i]);
1583 		kobject_put(notes_attrs->dir);
1584 	}
1585 	kfree(notes_attrs);
1586 }
1587 
add_notes_attrs(struct module * mod,const struct load_info * info)1588 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1589 {
1590 	unsigned int notes, loaded, i;
1591 	struct module_notes_attrs *notes_attrs;
1592 	struct bin_attribute *nattr;
1593 
1594 	/* failed to create section attributes, so can't create notes */
1595 	if (!mod->sect_attrs)
1596 		return;
1597 
1598 	/* Count notes sections and allocate structures.  */
1599 	notes = 0;
1600 	for (i = 0; i < info->hdr->e_shnum; i++)
1601 		if (!sect_empty(&info->sechdrs[i]) &&
1602 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1603 			++notes;
1604 
1605 	if (notes == 0)
1606 		return;
1607 
1608 	notes_attrs = kzalloc(sizeof(*notes_attrs)
1609 			      + notes * sizeof(notes_attrs->attrs[0]),
1610 			      GFP_KERNEL);
1611 	if (notes_attrs == NULL)
1612 		return;
1613 
1614 	notes_attrs->notes = notes;
1615 	nattr = &notes_attrs->attrs[0];
1616 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1617 		if (sect_empty(&info->sechdrs[i]))
1618 			continue;
1619 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1620 			sysfs_bin_attr_init(nattr);
1621 			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1622 			nattr->attr.mode = S_IRUGO;
1623 			nattr->size = info->sechdrs[i].sh_size;
1624 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1625 			nattr->read = module_notes_read;
1626 			++nattr;
1627 		}
1628 		++loaded;
1629 	}
1630 
1631 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1632 	if (!notes_attrs->dir)
1633 		goto out;
1634 
1635 	for (i = 0; i < notes; ++i)
1636 		if (sysfs_create_bin_file(notes_attrs->dir,
1637 					  &notes_attrs->attrs[i]))
1638 			goto out;
1639 
1640 	mod->notes_attrs = notes_attrs;
1641 	return;
1642 
1643   out:
1644 	free_notes_attrs(notes_attrs, i);
1645 }
1646 
remove_notes_attrs(struct module * mod)1647 static void remove_notes_attrs(struct module *mod)
1648 {
1649 	if (mod->notes_attrs)
1650 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1651 }
1652 
1653 #else
1654 
add_sect_attrs(struct module * mod,const struct load_info * info)1655 static inline void add_sect_attrs(struct module *mod,
1656 				  const struct load_info *info)
1657 {
1658 }
1659 
remove_sect_attrs(struct module * mod)1660 static inline void remove_sect_attrs(struct module *mod)
1661 {
1662 }
1663 
add_notes_attrs(struct module * mod,const struct load_info * info)1664 static inline void add_notes_attrs(struct module *mod,
1665 				   const struct load_info *info)
1666 {
1667 }
1668 
remove_notes_attrs(struct module * mod)1669 static inline void remove_notes_attrs(struct module *mod)
1670 {
1671 }
1672 #endif /* CONFIG_KALLSYMS */
1673 
add_usage_links(struct module * mod)1674 static void add_usage_links(struct module *mod)
1675 {
1676 #ifdef CONFIG_MODULE_UNLOAD
1677 	struct module_use *use;
1678 	int nowarn;
1679 
1680 	mutex_lock(&module_mutex);
1681 	list_for_each_entry(use, &mod->target_list, target_list) {
1682 		nowarn = sysfs_create_link(use->target->holders_dir,
1683 					   &mod->mkobj.kobj, mod->name);
1684 	}
1685 	mutex_unlock(&module_mutex);
1686 #endif
1687 }
1688 
del_usage_links(struct module * mod)1689 static void del_usage_links(struct module *mod)
1690 {
1691 #ifdef CONFIG_MODULE_UNLOAD
1692 	struct module_use *use;
1693 
1694 	mutex_lock(&module_mutex);
1695 	list_for_each_entry(use, &mod->target_list, target_list)
1696 		sysfs_remove_link(use->target->holders_dir, mod->name);
1697 	mutex_unlock(&module_mutex);
1698 #endif
1699 }
1700 
module_add_modinfo_attrs(struct module * mod)1701 static int module_add_modinfo_attrs(struct module *mod)
1702 {
1703 	struct module_attribute *attr;
1704 	struct module_attribute *temp_attr;
1705 	int error = 0;
1706 	int i;
1707 
1708 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1709 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1710 					GFP_KERNEL);
1711 	if (!mod->modinfo_attrs)
1712 		return -ENOMEM;
1713 
1714 	temp_attr = mod->modinfo_attrs;
1715 	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1716 		if (!attr->test ||
1717 		    (attr->test && attr->test(mod))) {
1718 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1719 			sysfs_attr_init(&temp_attr->attr);
1720 			error = sysfs_create_file(&mod->mkobj.kobj,
1721 					&temp_attr->attr);
1722 			++temp_attr;
1723 		}
1724 	}
1725 	return error;
1726 }
1727 
module_remove_modinfo_attrs(struct module * mod)1728 static void module_remove_modinfo_attrs(struct module *mod)
1729 {
1730 	struct module_attribute *attr;
1731 	int i;
1732 
1733 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1734 		/* pick a field to test for end of list */
1735 		if (!attr->attr.name)
1736 			break;
1737 		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1738 		if (attr->free)
1739 			attr->free(mod);
1740 	}
1741 	kfree(mod->modinfo_attrs);
1742 }
1743 
mod_kobject_put(struct module * mod)1744 static void mod_kobject_put(struct module *mod)
1745 {
1746 	DECLARE_COMPLETION_ONSTACK(c);
1747 	mod->mkobj.kobj_completion = &c;
1748 	kobject_put(&mod->mkobj.kobj);
1749 	wait_for_completion(&c);
1750 }
1751 
mod_sysfs_init(struct module * mod)1752 static int mod_sysfs_init(struct module *mod)
1753 {
1754 	int err;
1755 	struct kobject *kobj;
1756 
1757 	if (!module_sysfs_initialized) {
1758 		pr_err("%s: module sysfs not initialized\n", mod->name);
1759 		err = -EINVAL;
1760 		goto out;
1761 	}
1762 
1763 	kobj = kset_find_obj(module_kset, mod->name);
1764 	if (kobj) {
1765 		pr_err("%s: module is already loaded\n", mod->name);
1766 		kobject_put(kobj);
1767 		err = -EINVAL;
1768 		goto out;
1769 	}
1770 
1771 	mod->mkobj.mod = mod;
1772 
1773 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1774 	mod->mkobj.kobj.kset = module_kset;
1775 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1776 				   "%s", mod->name);
1777 	if (err)
1778 		mod_kobject_put(mod);
1779 
1780 	/* delay uevent until full sysfs population */
1781 out:
1782 	return err;
1783 }
1784 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1785 static int mod_sysfs_setup(struct module *mod,
1786 			   const struct load_info *info,
1787 			   struct kernel_param *kparam,
1788 			   unsigned int num_params)
1789 {
1790 	int err;
1791 
1792 	err = mod_sysfs_init(mod);
1793 	if (err)
1794 		goto out;
1795 
1796 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1797 	if (!mod->holders_dir) {
1798 		err = -ENOMEM;
1799 		goto out_unreg;
1800 	}
1801 
1802 	err = module_param_sysfs_setup(mod, kparam, num_params);
1803 	if (err)
1804 		goto out_unreg_holders;
1805 
1806 	err = module_add_modinfo_attrs(mod);
1807 	if (err)
1808 		goto out_unreg_param;
1809 
1810 	add_usage_links(mod);
1811 	add_sect_attrs(mod, info);
1812 	add_notes_attrs(mod, info);
1813 
1814 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1815 	return 0;
1816 
1817 out_unreg_param:
1818 	module_param_sysfs_remove(mod);
1819 out_unreg_holders:
1820 	kobject_put(mod->holders_dir);
1821 out_unreg:
1822 	mod_kobject_put(mod);
1823 out:
1824 	return err;
1825 }
1826 
mod_sysfs_fini(struct module * mod)1827 static void mod_sysfs_fini(struct module *mod)
1828 {
1829 	remove_notes_attrs(mod);
1830 	remove_sect_attrs(mod);
1831 	mod_kobject_put(mod);
1832 }
1833 
init_param_lock(struct module * mod)1834 static void init_param_lock(struct module *mod)
1835 {
1836 	mutex_init(&mod->param_lock);
1837 }
1838 #else /* !CONFIG_SYSFS */
1839 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1840 static int mod_sysfs_setup(struct module *mod,
1841 			   const struct load_info *info,
1842 			   struct kernel_param *kparam,
1843 			   unsigned int num_params)
1844 {
1845 	return 0;
1846 }
1847 
mod_sysfs_fini(struct module * mod)1848 static void mod_sysfs_fini(struct module *mod)
1849 {
1850 }
1851 
module_remove_modinfo_attrs(struct module * mod)1852 static void module_remove_modinfo_attrs(struct module *mod)
1853 {
1854 }
1855 
del_usage_links(struct module * mod)1856 static void del_usage_links(struct module *mod)
1857 {
1858 }
1859 
init_param_lock(struct module * mod)1860 static void init_param_lock(struct module *mod)
1861 {
1862 }
1863 #endif /* CONFIG_SYSFS */
1864 
mod_sysfs_teardown(struct module * mod)1865 static void mod_sysfs_teardown(struct module *mod)
1866 {
1867 	del_usage_links(mod);
1868 	module_remove_modinfo_attrs(mod);
1869 	module_param_sysfs_remove(mod);
1870 	kobject_put(mod->mkobj.drivers_dir);
1871 	kobject_put(mod->holders_dir);
1872 	mod_sysfs_fini(mod);
1873 }
1874 
1875 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1876 /*
1877  * LKM RO/NX protection: protect module's text/ro-data
1878  * from modification and any data from execution.
1879  */
set_page_attributes(void * start,void * end,int (* set)(unsigned long start,int num_pages))1880 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1881 {
1882 	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1883 	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1884 
1885 	if (end_pfn > begin_pfn)
1886 		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1887 }
1888 
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1889 static void set_section_ro_nx(void *base,
1890 			unsigned long text_size,
1891 			unsigned long ro_size,
1892 			unsigned long total_size)
1893 {
1894 	/* begin and end PFNs of the current subsection */
1895 	unsigned long begin_pfn;
1896 	unsigned long end_pfn;
1897 
1898 	/*
1899 	 * Set RO for module text and RO-data:
1900 	 * - Always protect first page.
1901 	 * - Do not protect last partial page.
1902 	 */
1903 	if (ro_size > 0)
1904 		set_page_attributes(base, base + ro_size, set_memory_ro);
1905 
1906 	/*
1907 	 * Set NX permissions for module data:
1908 	 * - Do not protect first partial page.
1909 	 * - Always protect last page.
1910 	 */
1911 	if (total_size > text_size) {
1912 		begin_pfn = PFN_UP((unsigned long)base + text_size);
1913 		end_pfn = PFN_UP((unsigned long)base + total_size);
1914 		if (end_pfn > begin_pfn)
1915 			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1916 	}
1917 }
1918 
unset_module_core_ro_nx(struct module * mod)1919 static void unset_module_core_ro_nx(struct module *mod)
1920 {
1921 	set_page_attributes(mod->module_core + mod->core_text_size,
1922 		mod->module_core + mod->core_size,
1923 		set_memory_x);
1924 	set_page_attributes(mod->module_core,
1925 		mod->module_core + mod->core_ro_size,
1926 		set_memory_rw);
1927 }
1928 
unset_module_init_ro_nx(struct module * mod)1929 static void unset_module_init_ro_nx(struct module *mod)
1930 {
1931 	set_page_attributes(mod->module_init + mod->init_text_size,
1932 		mod->module_init + mod->init_size,
1933 		set_memory_x);
1934 	set_page_attributes(mod->module_init,
1935 		mod->module_init + mod->init_ro_size,
1936 		set_memory_rw);
1937 }
1938 
1939 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw(void)1940 void set_all_modules_text_rw(void)
1941 {
1942 	struct module *mod;
1943 
1944 	mutex_lock(&module_mutex);
1945 	list_for_each_entry_rcu(mod, &modules, list) {
1946 		if (mod->state == MODULE_STATE_UNFORMED)
1947 			continue;
1948 		if ((mod->module_core) && (mod->core_text_size)) {
1949 			set_page_attributes(mod->module_core,
1950 						mod->module_core + mod->core_text_size,
1951 						set_memory_rw);
1952 		}
1953 		if ((mod->module_init) && (mod->init_text_size)) {
1954 			set_page_attributes(mod->module_init,
1955 						mod->module_init + mod->init_text_size,
1956 						set_memory_rw);
1957 		}
1958 	}
1959 	mutex_unlock(&module_mutex);
1960 }
1961 
1962 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro(void)1963 void set_all_modules_text_ro(void)
1964 {
1965 	struct module *mod;
1966 
1967 	mutex_lock(&module_mutex);
1968 	list_for_each_entry_rcu(mod, &modules, list) {
1969 		if (mod->state == MODULE_STATE_UNFORMED)
1970 			continue;
1971 		if ((mod->module_core) && (mod->core_text_size)) {
1972 			set_page_attributes(mod->module_core,
1973 						mod->module_core + mod->core_text_size,
1974 						set_memory_ro);
1975 		}
1976 		if ((mod->module_init) && (mod->init_text_size)) {
1977 			set_page_attributes(mod->module_init,
1978 						mod->module_init + mod->init_text_size,
1979 						set_memory_ro);
1980 		}
1981 	}
1982 	mutex_unlock(&module_mutex);
1983 }
1984 #else
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1985 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
unset_module_core_ro_nx(struct module * mod)1986 static void unset_module_core_ro_nx(struct module *mod) { }
unset_module_init_ro_nx(struct module * mod)1987 static void unset_module_init_ro_nx(struct module *mod) { }
1988 #endif
1989 
module_memfree(void * module_region)1990 void __weak module_memfree(void *module_region)
1991 {
1992 	vfree(module_region);
1993 }
1994 
module_arch_cleanup(struct module * mod)1995 void __weak module_arch_cleanup(struct module *mod)
1996 {
1997 }
1998 
module_arch_freeing_init(struct module * mod)1999 void __weak module_arch_freeing_init(struct module *mod)
2000 {
2001 }
2002 
2003 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2004 static void free_module(struct module *mod)
2005 {
2006 	trace_module_free(mod);
2007 
2008 	mod_sysfs_teardown(mod);
2009 
2010 	/* We leave it in list to prevent duplicate loads, but make sure
2011 	 * that noone uses it while it's being deconstructed. */
2012 	mutex_lock(&module_mutex);
2013 	mod->state = MODULE_STATE_UNFORMED;
2014 	mutex_unlock(&module_mutex);
2015 
2016 	/* Remove dynamic debug info */
2017 	ddebug_remove_module(mod->name);
2018 
2019 	/* Arch-specific cleanup. */
2020 	module_arch_cleanup(mod);
2021 
2022 	/* Module unload stuff */
2023 	module_unload_free(mod);
2024 
2025 	/* Free any allocated parameters. */
2026 	destroy_params(mod->kp, mod->num_kp);
2027 
2028 	/* Now we can delete it from the lists */
2029 	mutex_lock(&module_mutex);
2030 	/* Unlink carefully: kallsyms could be walking list. */
2031 	list_del_rcu(&mod->list);
2032 	mod_tree_remove(mod);
2033 	/* Remove this module from bug list, this uses list_del_rcu */
2034 	module_bug_cleanup(mod);
2035 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2036 	synchronize_sched();
2037 	mutex_unlock(&module_mutex);
2038 
2039 	/* This may be NULL, but that's OK */
2040 	unset_module_init_ro_nx(mod);
2041 	module_arch_freeing_init(mod);
2042 	module_memfree(mod->module_init);
2043 	kfree(mod->args);
2044 	percpu_modfree(mod);
2045 
2046 	/* Free lock-classes; relies on the preceding sync_rcu(). */
2047 	lockdep_free_key_range(mod->module_core, mod->core_size);
2048 
2049 	/* Finally, free the core (containing the module structure) */
2050 	unset_module_core_ro_nx(mod);
2051 	module_memfree(mod->module_core);
2052 
2053 #ifdef CONFIG_MPU
2054 	update_protections(current->mm);
2055 #endif
2056 }
2057 
__symbol_get(const char * symbol)2058 void *__symbol_get(const char *symbol)
2059 {
2060 	struct module *owner;
2061 	const struct kernel_symbol *sym;
2062 
2063 	preempt_disable();
2064 	sym = find_symbol(symbol, &owner, NULL, true, true);
2065 	if (sym && strong_try_module_get(owner))
2066 		sym = NULL;
2067 	preempt_enable();
2068 
2069 	return sym ? (void *)sym->value : NULL;
2070 }
2071 EXPORT_SYMBOL_GPL(__symbol_get);
2072 
2073 /*
2074  * Ensure that an exported symbol [global namespace] does not already exist
2075  * in the kernel or in some other module's exported symbol table.
2076  *
2077  * You must hold the module_mutex.
2078  */
verify_export_symbols(struct module * mod)2079 static int verify_export_symbols(struct module *mod)
2080 {
2081 	unsigned int i;
2082 	struct module *owner;
2083 	const struct kernel_symbol *s;
2084 	struct {
2085 		const struct kernel_symbol *sym;
2086 		unsigned int num;
2087 	} arr[] = {
2088 		{ mod->syms, mod->num_syms },
2089 		{ mod->gpl_syms, mod->num_gpl_syms },
2090 		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2091 #ifdef CONFIG_UNUSED_SYMBOLS
2092 		{ mod->unused_syms, mod->num_unused_syms },
2093 		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2094 #endif
2095 	};
2096 
2097 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2098 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2099 			if (find_symbol(s->name, &owner, NULL, true, false)) {
2100 				pr_err("%s: exports duplicate symbol %s"
2101 				       " (owned by %s)\n",
2102 				       mod->name, s->name, module_name(owner));
2103 				return -ENOEXEC;
2104 			}
2105 		}
2106 	}
2107 	return 0;
2108 }
2109 
2110 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2111 static int simplify_symbols(struct module *mod, const struct load_info *info)
2112 {
2113 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2114 	Elf_Sym *sym = (void *)symsec->sh_addr;
2115 	unsigned long secbase;
2116 	unsigned int i;
2117 	int ret = 0;
2118 	const struct kernel_symbol *ksym;
2119 
2120 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2121 		const char *name = info->strtab + sym[i].st_name;
2122 
2123 		switch (sym[i].st_shndx) {
2124 		case SHN_COMMON:
2125 			/* Ignore common symbols */
2126 			if (!strncmp(name, "__gnu_lto", 9))
2127 				break;
2128 
2129 			/* We compiled with -fno-common.  These are not
2130 			   supposed to happen.  */
2131 			pr_debug("Common symbol: %s\n", name);
2132 			pr_warn("%s: please compile with -fno-common\n",
2133 			       mod->name);
2134 			ret = -ENOEXEC;
2135 			break;
2136 
2137 		case SHN_ABS:
2138 			/* Don't need to do anything */
2139 			pr_debug("Absolute symbol: 0x%08lx\n",
2140 			       (long)sym[i].st_value);
2141 			break;
2142 
2143 		case SHN_UNDEF:
2144 			ksym = resolve_symbol_wait(mod, info, name);
2145 			/* Ok if resolved.  */
2146 			if (ksym && !IS_ERR(ksym)) {
2147 				sym[i].st_value = ksym->value;
2148 				break;
2149 			}
2150 
2151 			/* Ok if weak.  */
2152 			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2153 				break;
2154 
2155 			pr_warn("%s: Unknown symbol %s (err %li)\n",
2156 				mod->name, name, PTR_ERR(ksym));
2157 			ret = PTR_ERR(ksym) ?: -ENOENT;
2158 			break;
2159 
2160 		default:
2161 			/* Divert to percpu allocation if a percpu var. */
2162 			if (sym[i].st_shndx == info->index.pcpu)
2163 				secbase = (unsigned long)mod_percpu(mod);
2164 			else
2165 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2166 			sym[i].st_value += secbase;
2167 			break;
2168 		}
2169 	}
2170 
2171 	return ret;
2172 }
2173 
apply_relocations(struct module * mod,const struct load_info * info)2174 static int apply_relocations(struct module *mod, const struct load_info *info)
2175 {
2176 	unsigned int i;
2177 	int err = 0;
2178 
2179 	/* Now do relocations. */
2180 	for (i = 1; i < info->hdr->e_shnum; i++) {
2181 		unsigned int infosec = info->sechdrs[i].sh_info;
2182 
2183 		/* Not a valid relocation section? */
2184 		if (infosec >= info->hdr->e_shnum)
2185 			continue;
2186 
2187 		/* Don't bother with non-allocated sections */
2188 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2189 			continue;
2190 
2191 		if (info->sechdrs[i].sh_type == SHT_REL)
2192 			err = apply_relocate(info->sechdrs, info->strtab,
2193 					     info->index.sym, i, mod);
2194 		else if (info->sechdrs[i].sh_type == SHT_RELA)
2195 			err = apply_relocate_add(info->sechdrs, info->strtab,
2196 						 info->index.sym, i, mod);
2197 		if (err < 0)
2198 			break;
2199 	}
2200 	return err;
2201 }
2202 
2203 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2204 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2205 					     unsigned int section)
2206 {
2207 	/* default implementation just returns zero */
2208 	return 0;
2209 }
2210 
2211 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2212 static long get_offset(struct module *mod, unsigned int *size,
2213 		       Elf_Shdr *sechdr, unsigned int section)
2214 {
2215 	long ret;
2216 
2217 	*size += arch_mod_section_prepend(mod, section);
2218 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2219 	*size = ret + sechdr->sh_size;
2220 	return ret;
2221 }
2222 
2223 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2224    might -- code, read-only data, read-write data, small data.  Tally
2225    sizes, and place the offsets into sh_entsize fields: high bit means it
2226    belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2227 static void layout_sections(struct module *mod, struct load_info *info)
2228 {
2229 	static unsigned long const masks[][2] = {
2230 		/* NOTE: all executable code must be the first section
2231 		 * in this array; otherwise modify the text_size
2232 		 * finder in the two loops below */
2233 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2234 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2235 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2236 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2237 	};
2238 	unsigned int m, i;
2239 
2240 	for (i = 0; i < info->hdr->e_shnum; i++)
2241 		info->sechdrs[i].sh_entsize = ~0UL;
2242 
2243 	pr_debug("Core section allocation order:\n");
2244 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2245 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2246 			Elf_Shdr *s = &info->sechdrs[i];
2247 			const char *sname = info->secstrings + s->sh_name;
2248 
2249 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2250 			    || (s->sh_flags & masks[m][1])
2251 			    || s->sh_entsize != ~0UL
2252 			    || strstarts(sname, ".init"))
2253 				continue;
2254 			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2255 			pr_debug("\t%s\n", sname);
2256 		}
2257 		switch (m) {
2258 		case 0: /* executable */
2259 			mod->core_size = debug_align(mod->core_size);
2260 			mod->core_text_size = mod->core_size;
2261 			break;
2262 		case 1: /* RO: text and ro-data */
2263 			mod->core_size = debug_align(mod->core_size);
2264 			mod->core_ro_size = mod->core_size;
2265 			break;
2266 		case 3: /* whole core */
2267 			mod->core_size = debug_align(mod->core_size);
2268 			break;
2269 		}
2270 	}
2271 
2272 	pr_debug("Init section allocation order:\n");
2273 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2274 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2275 			Elf_Shdr *s = &info->sechdrs[i];
2276 			const char *sname = info->secstrings + s->sh_name;
2277 
2278 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2279 			    || (s->sh_flags & masks[m][1])
2280 			    || s->sh_entsize != ~0UL
2281 			    || !strstarts(sname, ".init"))
2282 				continue;
2283 			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2284 					 | INIT_OFFSET_MASK);
2285 			pr_debug("\t%s\n", sname);
2286 		}
2287 		switch (m) {
2288 		case 0: /* executable */
2289 			mod->init_size = debug_align(mod->init_size);
2290 			mod->init_text_size = mod->init_size;
2291 			break;
2292 		case 1: /* RO: text and ro-data */
2293 			mod->init_size = debug_align(mod->init_size);
2294 			mod->init_ro_size = mod->init_size;
2295 			break;
2296 		case 3: /* whole init */
2297 			mod->init_size = debug_align(mod->init_size);
2298 			break;
2299 		}
2300 	}
2301 }
2302 
set_license(struct module * mod,const char * license)2303 static void set_license(struct module *mod, const char *license)
2304 {
2305 	if (!license)
2306 		license = "unspecified";
2307 
2308 	if (!license_is_gpl_compatible(license)) {
2309 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2310 			pr_warn("%s: module license '%s' taints kernel.\n",
2311 				mod->name, license);
2312 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2313 				 LOCKDEP_NOW_UNRELIABLE);
2314 	}
2315 }
2316 
2317 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2318 static char *next_string(char *string, unsigned long *secsize)
2319 {
2320 	/* Skip non-zero chars */
2321 	while (string[0]) {
2322 		string++;
2323 		if ((*secsize)-- <= 1)
2324 			return NULL;
2325 	}
2326 
2327 	/* Skip any zero padding. */
2328 	while (!string[0]) {
2329 		string++;
2330 		if ((*secsize)-- <= 1)
2331 			return NULL;
2332 	}
2333 	return string;
2334 }
2335 
get_modinfo(struct load_info * info,const char * tag)2336 static char *get_modinfo(struct load_info *info, const char *tag)
2337 {
2338 	char *p;
2339 	unsigned int taglen = strlen(tag);
2340 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2341 	unsigned long size = infosec->sh_size;
2342 
2343 	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2344 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2345 			return p + taglen + 1;
2346 	}
2347 	return NULL;
2348 }
2349 
setup_modinfo(struct module * mod,struct load_info * info)2350 static void setup_modinfo(struct module *mod, struct load_info *info)
2351 {
2352 	struct module_attribute *attr;
2353 	int i;
2354 
2355 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2356 		if (attr->setup)
2357 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2358 	}
2359 }
2360 
free_modinfo(struct module * mod)2361 static void free_modinfo(struct module *mod)
2362 {
2363 	struct module_attribute *attr;
2364 	int i;
2365 
2366 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2367 		if (attr->free)
2368 			attr->free(mod);
2369 	}
2370 }
2371 
2372 #ifdef CONFIG_KALLSYMS
2373 
2374 /* lookup symbol in given range of kernel_symbols */
lookup_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2375 static const struct kernel_symbol *lookup_symbol(const char *name,
2376 	const struct kernel_symbol *start,
2377 	const struct kernel_symbol *stop)
2378 {
2379 	return bsearch(name, start, stop - start,
2380 			sizeof(struct kernel_symbol), cmp_name);
2381 }
2382 
is_exported(const char * name,unsigned long value,const struct module * mod)2383 static int is_exported(const char *name, unsigned long value,
2384 		       const struct module *mod)
2385 {
2386 	const struct kernel_symbol *ks;
2387 	if (!mod)
2388 		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2389 	else
2390 		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2391 	return ks != NULL && ks->value == value;
2392 }
2393 
2394 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2395 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2396 {
2397 	const Elf_Shdr *sechdrs = info->sechdrs;
2398 
2399 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2400 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2401 			return 'v';
2402 		else
2403 			return 'w';
2404 	}
2405 	if (sym->st_shndx == SHN_UNDEF)
2406 		return 'U';
2407 	if (sym->st_shndx == SHN_ABS)
2408 		return 'a';
2409 	if (sym->st_shndx >= SHN_LORESERVE)
2410 		return '?';
2411 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2412 		return 't';
2413 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2414 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2415 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2416 			return 'r';
2417 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2418 			return 'g';
2419 		else
2420 			return 'd';
2421 	}
2422 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2423 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2424 			return 's';
2425 		else
2426 			return 'b';
2427 	}
2428 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2429 		      ".debug")) {
2430 		return 'n';
2431 	}
2432 	return '?';
2433 }
2434 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum)2435 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2436 			unsigned int shnum)
2437 {
2438 	const Elf_Shdr *sec;
2439 
2440 	if (src->st_shndx == SHN_UNDEF
2441 	    || src->st_shndx >= shnum
2442 	    || !src->st_name)
2443 		return false;
2444 
2445 	sec = sechdrs + src->st_shndx;
2446 	if (!(sec->sh_flags & SHF_ALLOC)
2447 #ifndef CONFIG_KALLSYMS_ALL
2448 	    || !(sec->sh_flags & SHF_EXECINSTR)
2449 #endif
2450 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2451 		return false;
2452 
2453 	return true;
2454 }
2455 
2456 /*
2457  * We only allocate and copy the strings needed by the parts of symtab
2458  * we keep.  This is simple, but has the effect of making multiple
2459  * copies of duplicates.  We could be more sophisticated, see
2460  * linux-kernel thread starting with
2461  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2462  */
layout_symtab(struct module * mod,struct load_info * info)2463 static void layout_symtab(struct module *mod, struct load_info *info)
2464 {
2465 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2466 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2467 	const Elf_Sym *src;
2468 	unsigned int i, nsrc, ndst, strtab_size = 0;
2469 
2470 	/* Put symbol section at end of init part of module. */
2471 	symsect->sh_flags |= SHF_ALLOC;
2472 	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2473 					 info->index.sym) | INIT_OFFSET_MASK;
2474 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2475 
2476 	src = (void *)info->hdr + symsect->sh_offset;
2477 	nsrc = symsect->sh_size / sizeof(*src);
2478 
2479 	/* Compute total space required for the core symbols' strtab. */
2480 	for (ndst = i = 0; i < nsrc; i++) {
2481 		if (i == 0 ||
2482 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2483 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2484 			ndst++;
2485 		}
2486 	}
2487 
2488 	/* Append room for core symbols at end of core part. */
2489 	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2490 	info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2491 	mod->core_size += strtab_size;
2492 	mod->core_size = debug_align(mod->core_size);
2493 
2494 	/* Put string table section at end of init part of module. */
2495 	strsect->sh_flags |= SHF_ALLOC;
2496 	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2497 					 info->index.str) | INIT_OFFSET_MASK;
2498 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2499 
2500 	/* We'll tack temporary mod_kallsyms on the end. */
2501 	mod->init_size = ALIGN(mod->init_size,
2502 			       __alignof__(struct mod_kallsyms));
2503 	info->mod_kallsyms_init_off = mod->init_size;
2504 	mod->init_size += sizeof(struct mod_kallsyms);
2505 	mod->init_size = debug_align(mod->init_size);
2506 }
2507 
2508 /*
2509  * We use the full symtab and strtab which layout_symtab arranged to
2510  * be appended to the init section.  Later we switch to the cut-down
2511  * core-only ones.
2512  */
add_kallsyms(struct module * mod,const struct load_info * info)2513 static void add_kallsyms(struct module *mod, const struct load_info *info)
2514 {
2515 	unsigned int i, ndst;
2516 	const Elf_Sym *src;
2517 	Elf_Sym *dst;
2518 	char *s;
2519 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2520 
2521 	/* Set up to point into init section. */
2522 	mod->kallsyms = mod->module_init + info->mod_kallsyms_init_off;
2523 
2524 	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2525 	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2526 	/* Make sure we get permanent strtab: don't use info->strtab. */
2527 	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2528 
2529 	/* Set types up while we still have access to sections. */
2530 	for (i = 0; i < mod->kallsyms->num_symtab; i++)
2531 		mod->kallsyms->symtab[i].st_info
2532 			= elf_type(&mod->kallsyms->symtab[i], info);
2533 
2534 	/* Now populate the cut down core kallsyms for after init. */
2535 	mod->core_kallsyms.symtab = dst = mod->module_core + info->symoffs;
2536 	mod->core_kallsyms.strtab = s = mod->module_core + info->stroffs;
2537 	src = mod->kallsyms->symtab;
2538 	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2539 		if (i == 0 ||
2540 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2541 			dst[ndst] = src[i];
2542 			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2543 			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2544 				     KSYM_NAME_LEN) + 1;
2545 		}
2546 	}
2547 	mod->core_kallsyms.num_symtab = ndst;
2548 }
2549 #else
layout_symtab(struct module * mod,struct load_info * info)2550 static inline void layout_symtab(struct module *mod, struct load_info *info)
2551 {
2552 }
2553 
add_kallsyms(struct module * mod,const struct load_info * info)2554 static void add_kallsyms(struct module *mod, const struct load_info *info)
2555 {
2556 }
2557 #endif /* CONFIG_KALLSYMS */
2558 
dynamic_debug_setup(struct _ddebug * debug,unsigned int num)2559 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2560 {
2561 	if (!debug)
2562 		return;
2563 #ifdef CONFIG_DYNAMIC_DEBUG
2564 	if (ddebug_add_module(debug, num, debug->modname))
2565 		pr_err("dynamic debug error adding module: %s\n",
2566 			debug->modname);
2567 #endif
2568 }
2569 
dynamic_debug_remove(struct _ddebug * debug)2570 static void dynamic_debug_remove(struct _ddebug *debug)
2571 {
2572 	if (debug)
2573 		ddebug_remove_module(debug->modname);
2574 }
2575 
module_alloc(unsigned long size)2576 void * __weak module_alloc(unsigned long size)
2577 {
2578 	return vmalloc_exec(size);
2579 }
2580 
2581 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2582 static void kmemleak_load_module(const struct module *mod,
2583 				 const struct load_info *info)
2584 {
2585 	unsigned int i;
2586 
2587 	/* only scan the sections containing data */
2588 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2589 
2590 	for (i = 1; i < info->hdr->e_shnum; i++) {
2591 		/* Scan all writable sections that's not executable */
2592 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2593 		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2594 		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2595 			continue;
2596 
2597 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2598 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2599 	}
2600 }
2601 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2602 static inline void kmemleak_load_module(const struct module *mod,
2603 					const struct load_info *info)
2604 {
2605 }
2606 #endif
2607 
2608 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info)2609 static int module_sig_check(struct load_info *info)
2610 {
2611 	int err = -ENOKEY;
2612 	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2613 	const void *mod = info->hdr;
2614 
2615 	if (info->len > markerlen &&
2616 	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2617 		/* We truncate the module to discard the signature */
2618 		info->len -= markerlen;
2619 		err = mod_verify_sig(mod, &info->len);
2620 	}
2621 
2622 	if (!err) {
2623 		info->sig_ok = true;
2624 		return 0;
2625 	}
2626 
2627 	/* Not having a signature is only an error if we're strict. */
2628 	if (err == -ENOKEY && !sig_enforce)
2629 		err = 0;
2630 
2631 	return err;
2632 }
2633 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info)2634 static int module_sig_check(struct load_info *info)
2635 {
2636 	return 0;
2637 }
2638 #endif /* !CONFIG_MODULE_SIG */
2639 
2640 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
elf_header_check(struct load_info * info)2641 static int elf_header_check(struct load_info *info)
2642 {
2643 	if (info->len < sizeof(*(info->hdr)))
2644 		return -ENOEXEC;
2645 
2646 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2647 	    || info->hdr->e_type != ET_REL
2648 	    || !elf_check_arch(info->hdr)
2649 	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2650 		return -ENOEXEC;
2651 
2652 	if (info->hdr->e_shoff >= info->len
2653 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2654 		info->len - info->hdr->e_shoff))
2655 		return -ENOEXEC;
2656 
2657 	return 0;
2658 }
2659 
2660 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2661 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2662 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2663 {
2664 	do {
2665 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2666 
2667 		if (copy_from_user(dst, usrc, n) != 0)
2668 			return -EFAULT;
2669 		cond_resched();
2670 		dst += n;
2671 		usrc += n;
2672 		len -= n;
2673 	} while (len);
2674 	return 0;
2675 }
2676 
2677 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2678 static int copy_module_from_user(const void __user *umod, unsigned long len,
2679 				  struct load_info *info)
2680 {
2681 	int err;
2682 
2683 	info->len = len;
2684 	if (info->len < sizeof(*(info->hdr)))
2685 		return -ENOEXEC;
2686 
2687 	err = security_kernel_module_from_file(NULL);
2688 	if (err)
2689 		return err;
2690 
2691 	/* Suck in entire file: we'll want most of it. */
2692 	info->hdr = __vmalloc(info->len,
2693 			GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2694 	if (!info->hdr)
2695 		return -ENOMEM;
2696 
2697 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2698 		vfree(info->hdr);
2699 		return -EFAULT;
2700 	}
2701 
2702 	return 0;
2703 }
2704 
2705 /* Sets info->hdr and info->len. */
copy_module_from_fd(int fd,struct load_info * info)2706 static int copy_module_from_fd(int fd, struct load_info *info)
2707 {
2708 	struct fd f = fdget(fd);
2709 	int err;
2710 	struct kstat stat;
2711 	loff_t pos;
2712 	ssize_t bytes = 0;
2713 
2714 	if (!f.file)
2715 		return -ENOEXEC;
2716 
2717 	err = security_kernel_module_from_file(f.file);
2718 	if (err)
2719 		goto out;
2720 
2721 	err = vfs_getattr(&f.file->f_path, &stat);
2722 	if (err)
2723 		goto out;
2724 
2725 	if (stat.size > INT_MAX) {
2726 		err = -EFBIG;
2727 		goto out;
2728 	}
2729 
2730 	/* Don't hand 0 to vmalloc, it whines. */
2731 	if (stat.size == 0) {
2732 		err = -EINVAL;
2733 		goto out;
2734 	}
2735 
2736 	info->hdr = vmalloc(stat.size);
2737 	if (!info->hdr) {
2738 		err = -ENOMEM;
2739 		goto out;
2740 	}
2741 
2742 	pos = 0;
2743 	while (pos < stat.size) {
2744 		bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2745 				    stat.size - pos);
2746 		if (bytes < 0) {
2747 			vfree(info->hdr);
2748 			err = bytes;
2749 			goto out;
2750 		}
2751 		if (bytes == 0)
2752 			break;
2753 		pos += bytes;
2754 	}
2755 	info->len = pos;
2756 
2757 out:
2758 	fdput(f);
2759 	return err;
2760 }
2761 
free_copy(struct load_info * info)2762 static void free_copy(struct load_info *info)
2763 {
2764 	vfree(info->hdr);
2765 }
2766 
rewrite_section_headers(struct load_info * info,int flags)2767 static int rewrite_section_headers(struct load_info *info, int flags)
2768 {
2769 	unsigned int i;
2770 
2771 	/* This should always be true, but let's be sure. */
2772 	info->sechdrs[0].sh_addr = 0;
2773 
2774 	for (i = 1; i < info->hdr->e_shnum; i++) {
2775 		Elf_Shdr *shdr = &info->sechdrs[i];
2776 		if (shdr->sh_type != SHT_NOBITS
2777 		    && info->len < shdr->sh_offset + shdr->sh_size) {
2778 			pr_err("Module len %lu truncated\n", info->len);
2779 			return -ENOEXEC;
2780 		}
2781 
2782 		/* Mark all sections sh_addr with their address in the
2783 		   temporary image. */
2784 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2785 
2786 #ifndef CONFIG_MODULE_UNLOAD
2787 		/* Don't load .exit sections */
2788 		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2789 			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2790 #endif
2791 	}
2792 
2793 	/* Track but don't keep modinfo and version sections. */
2794 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2795 		info->index.vers = 0; /* Pretend no __versions section! */
2796 	else
2797 		info->index.vers = find_sec(info, "__versions");
2798 	info->index.info = find_sec(info, ".modinfo");
2799 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2800 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2801 	return 0;
2802 }
2803 
2804 /*
2805  * Set up our basic convenience variables (pointers to section headers,
2806  * search for module section index etc), and do some basic section
2807  * verification.
2808  *
2809  * Return the temporary module pointer (we'll replace it with the final
2810  * one when we move the module sections around).
2811  */
setup_load_info(struct load_info * info,int flags)2812 static struct module *setup_load_info(struct load_info *info, int flags)
2813 {
2814 	unsigned int i;
2815 	int err;
2816 	struct module *mod;
2817 
2818 	/* Set up the convenience variables */
2819 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2820 	info->secstrings = (void *)info->hdr
2821 		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2822 
2823 	err = rewrite_section_headers(info, flags);
2824 	if (err)
2825 		return ERR_PTR(err);
2826 
2827 	/* Find internal symbols and strings. */
2828 	for (i = 1; i < info->hdr->e_shnum; i++) {
2829 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2830 			info->index.sym = i;
2831 			info->index.str = info->sechdrs[i].sh_link;
2832 			info->strtab = (char *)info->hdr
2833 				+ info->sechdrs[info->index.str].sh_offset;
2834 			break;
2835 		}
2836 	}
2837 
2838 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2839 	if (!info->index.mod) {
2840 		pr_warn("No module found in object\n");
2841 		return ERR_PTR(-ENOEXEC);
2842 	}
2843 	/* This is temporary: point mod into copy of data. */
2844 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2845 
2846 	if (info->index.sym == 0) {
2847 		pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2848 		return ERR_PTR(-ENOEXEC);
2849 	}
2850 
2851 	info->index.pcpu = find_pcpusec(info);
2852 
2853 	/* Check module struct version now, before we try to use module. */
2854 	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2855 		return ERR_PTR(-ENOEXEC);
2856 
2857 	return mod;
2858 }
2859 
check_modinfo(struct module * mod,struct load_info * info,int flags)2860 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2861 {
2862 	const char *modmagic = get_modinfo(info, "vermagic");
2863 	int err;
2864 
2865 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2866 		modmagic = NULL;
2867 
2868 	/* This is allowed: modprobe --force will invalidate it. */
2869 	if (!modmagic) {
2870 		err = try_to_force_load(mod, "bad vermagic");
2871 		if (err)
2872 			return err;
2873 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2874 		pr_err("%s: version magic '%s' should be '%s'\n",
2875 		       mod->name, modmagic, vermagic);
2876 		return -ENOEXEC;
2877 	}
2878 
2879 	if (!get_modinfo(info, "intree"))
2880 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2881 
2882 	if (get_modinfo(info, "staging")) {
2883 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2884 		pr_warn("%s: module is from the staging directory, the quality "
2885 			"is unknown, you have been warned.\n", mod->name);
2886 	}
2887 
2888 	/* Set up license info based on the info section */
2889 	set_license(mod, get_modinfo(info, "license"));
2890 
2891 	return 0;
2892 }
2893 
find_module_sections(struct module * mod,struct load_info * info)2894 static int find_module_sections(struct module *mod, struct load_info *info)
2895 {
2896 	mod->kp = section_objs(info, "__param",
2897 			       sizeof(*mod->kp), &mod->num_kp);
2898 	mod->syms = section_objs(info, "__ksymtab",
2899 				 sizeof(*mod->syms), &mod->num_syms);
2900 	mod->crcs = section_addr(info, "__kcrctab");
2901 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2902 				     sizeof(*mod->gpl_syms),
2903 				     &mod->num_gpl_syms);
2904 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2905 	mod->gpl_future_syms = section_objs(info,
2906 					    "__ksymtab_gpl_future",
2907 					    sizeof(*mod->gpl_future_syms),
2908 					    &mod->num_gpl_future_syms);
2909 	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2910 
2911 #ifdef CONFIG_UNUSED_SYMBOLS
2912 	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2913 					sizeof(*mod->unused_syms),
2914 					&mod->num_unused_syms);
2915 	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2916 	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2917 					    sizeof(*mod->unused_gpl_syms),
2918 					    &mod->num_unused_gpl_syms);
2919 	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2920 #endif
2921 #ifdef CONFIG_CONSTRUCTORS
2922 	mod->ctors = section_objs(info, ".ctors",
2923 				  sizeof(*mod->ctors), &mod->num_ctors);
2924 	if (!mod->ctors)
2925 		mod->ctors = section_objs(info, ".init_array",
2926 				sizeof(*mod->ctors), &mod->num_ctors);
2927 	else if (find_sec(info, ".init_array")) {
2928 		/*
2929 		 * This shouldn't happen with same compiler and binutils
2930 		 * building all parts of the module.
2931 		 */
2932 		pr_warn("%s: has both .ctors and .init_array.\n",
2933 		       mod->name);
2934 		return -EINVAL;
2935 	}
2936 #endif
2937 
2938 #ifdef CONFIG_TRACEPOINTS
2939 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2940 					     sizeof(*mod->tracepoints_ptrs),
2941 					     &mod->num_tracepoints);
2942 #endif
2943 #ifdef HAVE_JUMP_LABEL
2944 	mod->jump_entries = section_objs(info, "__jump_table",
2945 					sizeof(*mod->jump_entries),
2946 					&mod->num_jump_entries);
2947 #endif
2948 #ifdef CONFIG_EVENT_TRACING
2949 	mod->trace_events = section_objs(info, "_ftrace_events",
2950 					 sizeof(*mod->trace_events),
2951 					 &mod->num_trace_events);
2952 	mod->trace_enums = section_objs(info, "_ftrace_enum_map",
2953 					sizeof(*mod->trace_enums),
2954 					&mod->num_trace_enums);
2955 #endif
2956 #ifdef CONFIG_TRACING
2957 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2958 					 sizeof(*mod->trace_bprintk_fmt_start),
2959 					 &mod->num_trace_bprintk_fmt);
2960 #endif
2961 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2962 	/* sechdrs[0].sh_size is always zero */
2963 	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2964 					     sizeof(*mod->ftrace_callsites),
2965 					     &mod->num_ftrace_callsites);
2966 #endif
2967 
2968 	mod->extable = section_objs(info, "__ex_table",
2969 				    sizeof(*mod->extable), &mod->num_exentries);
2970 
2971 	if (section_addr(info, "__obsparm"))
2972 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2973 
2974 	info->debug = section_objs(info, "__verbose",
2975 				   sizeof(*info->debug), &info->num_debug);
2976 
2977 	return 0;
2978 }
2979 
move_module(struct module * mod,struct load_info * info)2980 static int move_module(struct module *mod, struct load_info *info)
2981 {
2982 	int i;
2983 	void *ptr;
2984 
2985 	/* Do the allocs. */
2986 	ptr = module_alloc(mod->core_size);
2987 	/*
2988 	 * The pointer to this block is stored in the module structure
2989 	 * which is inside the block. Just mark it as not being a
2990 	 * leak.
2991 	 */
2992 	kmemleak_not_leak(ptr);
2993 	if (!ptr)
2994 		return -ENOMEM;
2995 
2996 	memset(ptr, 0, mod->core_size);
2997 	mod->module_core = ptr;
2998 
2999 	if (mod->init_size) {
3000 		ptr = module_alloc(mod->init_size);
3001 		/*
3002 		 * The pointer to this block is stored in the module structure
3003 		 * which is inside the block. This block doesn't need to be
3004 		 * scanned as it contains data and code that will be freed
3005 		 * after the module is initialized.
3006 		 */
3007 		kmemleak_ignore(ptr);
3008 		if (!ptr) {
3009 			module_memfree(mod->module_core);
3010 			return -ENOMEM;
3011 		}
3012 		memset(ptr, 0, mod->init_size);
3013 		mod->module_init = ptr;
3014 	} else
3015 		mod->module_init = NULL;
3016 
3017 	/* Transfer each section which specifies SHF_ALLOC */
3018 	pr_debug("final section addresses:\n");
3019 	for (i = 0; i < info->hdr->e_shnum; i++) {
3020 		void *dest;
3021 		Elf_Shdr *shdr = &info->sechdrs[i];
3022 
3023 		if (!(shdr->sh_flags & SHF_ALLOC))
3024 			continue;
3025 
3026 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3027 			dest = mod->module_init
3028 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3029 		else
3030 			dest = mod->module_core + shdr->sh_entsize;
3031 
3032 		if (shdr->sh_type != SHT_NOBITS)
3033 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3034 		/* Update sh_addr to point to copy in image. */
3035 		shdr->sh_addr = (unsigned long)dest;
3036 		pr_debug("\t0x%lx %s\n",
3037 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3038 	}
3039 
3040 	return 0;
3041 }
3042 
check_module_license_and_versions(struct module * mod)3043 static int check_module_license_and_versions(struct module *mod)
3044 {
3045 	/*
3046 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3047 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3048 	 * using GPL-only symbols it needs.
3049 	 */
3050 	if (strcmp(mod->name, "ndiswrapper") == 0)
3051 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3052 
3053 	/* driverloader was caught wrongly pretending to be under GPL */
3054 	if (strcmp(mod->name, "driverloader") == 0)
3055 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3056 				 LOCKDEP_NOW_UNRELIABLE);
3057 
3058 	/* lve claims to be GPL but upstream won't provide source */
3059 	if (strcmp(mod->name, "lve") == 0)
3060 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3061 				 LOCKDEP_NOW_UNRELIABLE);
3062 
3063 #ifdef CONFIG_MODVERSIONS
3064 	if ((mod->num_syms && !mod->crcs)
3065 	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3066 	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3067 #ifdef CONFIG_UNUSED_SYMBOLS
3068 	    || (mod->num_unused_syms && !mod->unused_crcs)
3069 	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3070 #endif
3071 		) {
3072 		return try_to_force_load(mod,
3073 					 "no versions for exported symbols");
3074 	}
3075 #endif
3076 	return 0;
3077 }
3078 
flush_module_icache(const struct module * mod)3079 static void flush_module_icache(const struct module *mod)
3080 {
3081 	mm_segment_t old_fs;
3082 
3083 	/* flush the icache in correct context */
3084 	old_fs = get_fs();
3085 	set_fs(KERNEL_DS);
3086 
3087 	/*
3088 	 * Flush the instruction cache, since we've played with text.
3089 	 * Do it before processing of module parameters, so the module
3090 	 * can provide parameter accessor functions of its own.
3091 	 */
3092 	if (mod->module_init)
3093 		flush_icache_range((unsigned long)mod->module_init,
3094 				   (unsigned long)mod->module_init
3095 				   + mod->init_size);
3096 	flush_icache_range((unsigned long)mod->module_core,
3097 			   (unsigned long)mod->module_core + mod->core_size);
3098 
3099 	set_fs(old_fs);
3100 }
3101 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3102 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3103 				     Elf_Shdr *sechdrs,
3104 				     char *secstrings,
3105 				     struct module *mod)
3106 {
3107 	return 0;
3108 }
3109 
layout_and_allocate(struct load_info * info,int flags)3110 static struct module *layout_and_allocate(struct load_info *info, int flags)
3111 {
3112 	/* Module within temporary copy. */
3113 	struct module *mod;
3114 	int err;
3115 
3116 	mod = setup_load_info(info, flags);
3117 	if (IS_ERR(mod))
3118 		return mod;
3119 
3120 	err = check_modinfo(mod, info, flags);
3121 	if (err)
3122 		return ERR_PTR(err);
3123 
3124 	/* Allow arches to frob section contents and sizes.  */
3125 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3126 					info->secstrings, mod);
3127 	if (err < 0)
3128 		return ERR_PTR(err);
3129 
3130 	/* We will do a special allocation for per-cpu sections later. */
3131 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3132 
3133 	/* Determine total sizes, and put offsets in sh_entsize.  For now
3134 	   this is done generically; there doesn't appear to be any
3135 	   special cases for the architectures. */
3136 	layout_sections(mod, info);
3137 	layout_symtab(mod, info);
3138 
3139 	/* Allocate and move to the final place */
3140 	err = move_module(mod, info);
3141 	if (err)
3142 		return ERR_PTR(err);
3143 
3144 	/* Module has been copied to its final place now: return it. */
3145 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3146 	kmemleak_load_module(mod, info);
3147 	return mod;
3148 }
3149 
3150 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3151 static void module_deallocate(struct module *mod, struct load_info *info)
3152 {
3153 	percpu_modfree(mod);
3154 	module_arch_freeing_init(mod);
3155 	module_memfree(mod->module_init);
3156 	module_memfree(mod->module_core);
3157 }
3158 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3159 int __weak module_finalize(const Elf_Ehdr *hdr,
3160 			   const Elf_Shdr *sechdrs,
3161 			   struct module *me)
3162 {
3163 	return 0;
3164 }
3165 
post_relocation(struct module * mod,const struct load_info * info)3166 static int post_relocation(struct module *mod, const struct load_info *info)
3167 {
3168 	/* Sort exception table now relocations are done. */
3169 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3170 
3171 	/* Copy relocated percpu area over. */
3172 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3173 		       info->sechdrs[info->index.pcpu].sh_size);
3174 
3175 	/* Setup kallsyms-specific fields. */
3176 	add_kallsyms(mod, info);
3177 
3178 	/* Arch-specific module finalizing. */
3179 	return module_finalize(info->hdr, info->sechdrs, mod);
3180 }
3181 
3182 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3183 static bool finished_loading(const char *name)
3184 {
3185 	struct module *mod;
3186 	bool ret;
3187 
3188 	/*
3189 	 * The module_mutex should not be a heavily contended lock;
3190 	 * if we get the occasional sleep here, we'll go an extra iteration
3191 	 * in the wait_event_interruptible(), which is harmless.
3192 	 */
3193 	sched_annotate_sleep();
3194 	mutex_lock(&module_mutex);
3195 	mod = find_module_all(name, strlen(name), true);
3196 	ret = !mod || mod->state == MODULE_STATE_LIVE
3197 		|| mod->state == MODULE_STATE_GOING;
3198 	mutex_unlock(&module_mutex);
3199 
3200 	return ret;
3201 }
3202 
3203 /* Call module constructors. */
do_mod_ctors(struct module * mod)3204 static void do_mod_ctors(struct module *mod)
3205 {
3206 #ifdef CONFIG_CONSTRUCTORS
3207 	unsigned long i;
3208 
3209 	for (i = 0; i < mod->num_ctors; i++)
3210 		mod->ctors[i]();
3211 #endif
3212 }
3213 
3214 /* For freeing module_init on success, in case kallsyms traversing */
3215 struct mod_initfree {
3216 	struct rcu_head rcu;
3217 	void *module_init;
3218 };
3219 
do_free_init(struct rcu_head * head)3220 static void do_free_init(struct rcu_head *head)
3221 {
3222 	struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3223 	module_memfree(m->module_init);
3224 	kfree(m);
3225 }
3226 
3227 /*
3228  * This is where the real work happens.
3229  *
3230  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3231  * helper command 'lx-symbols'.
3232  */
do_init_module(struct module * mod)3233 static noinline int do_init_module(struct module *mod)
3234 {
3235 	int ret = 0;
3236 	struct mod_initfree *freeinit;
3237 
3238 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3239 	if (!freeinit) {
3240 		ret = -ENOMEM;
3241 		goto fail;
3242 	}
3243 	freeinit->module_init = mod->module_init;
3244 
3245 	/*
3246 	 * We want to find out whether @mod uses async during init.  Clear
3247 	 * PF_USED_ASYNC.  async_schedule*() will set it.
3248 	 */
3249 	current->flags &= ~PF_USED_ASYNC;
3250 
3251 	do_mod_ctors(mod);
3252 	/* Start the module */
3253 	if (mod->init != NULL)
3254 		ret = do_one_initcall(mod->init);
3255 	if (ret < 0) {
3256 		goto fail_free_freeinit;
3257 	}
3258 	if (ret > 0) {
3259 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3260 			"follow 0/-E convention\n"
3261 			"%s: loading module anyway...\n",
3262 			__func__, mod->name, ret, __func__);
3263 		dump_stack();
3264 	}
3265 
3266 	/* Now it's a first class citizen! */
3267 	mod->state = MODULE_STATE_LIVE;
3268 	blocking_notifier_call_chain(&module_notify_list,
3269 				     MODULE_STATE_LIVE, mod);
3270 
3271 	/*
3272 	 * We need to finish all async code before the module init sequence
3273 	 * is done.  This has potential to deadlock.  For example, a newly
3274 	 * detected block device can trigger request_module() of the
3275 	 * default iosched from async probing task.  Once userland helper
3276 	 * reaches here, async_synchronize_full() will wait on the async
3277 	 * task waiting on request_module() and deadlock.
3278 	 *
3279 	 * This deadlock is avoided by perfomring async_synchronize_full()
3280 	 * iff module init queued any async jobs.  This isn't a full
3281 	 * solution as it will deadlock the same if module loading from
3282 	 * async jobs nests more than once; however, due to the various
3283 	 * constraints, this hack seems to be the best option for now.
3284 	 * Please refer to the following thread for details.
3285 	 *
3286 	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3287 	 */
3288 	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3289 		async_synchronize_full();
3290 
3291 	mutex_lock(&module_mutex);
3292 	/* Drop initial reference. */
3293 	module_put(mod);
3294 	trim_init_extable(mod);
3295 #ifdef CONFIG_KALLSYMS
3296 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3297 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3298 #endif
3299 	mod_tree_remove_init(mod);
3300 	unset_module_init_ro_nx(mod);
3301 	module_arch_freeing_init(mod);
3302 	mod->module_init = NULL;
3303 	mod->init_size = 0;
3304 	mod->init_ro_size = 0;
3305 	mod->init_text_size = 0;
3306 	/*
3307 	 * We want to free module_init, but be aware that kallsyms may be
3308 	 * walking this with preempt disabled.  In all the failure paths, we
3309 	 * call synchronize_sched(), but we don't want to slow down the success
3310 	 * path, so use actual RCU here.
3311 	 */
3312 	call_rcu_sched(&freeinit->rcu, do_free_init);
3313 	mutex_unlock(&module_mutex);
3314 	wake_up_all(&module_wq);
3315 
3316 	return 0;
3317 
3318 fail_free_freeinit:
3319 	kfree(freeinit);
3320 fail:
3321 	/* Try to protect us from buggy refcounters. */
3322 	mod->state = MODULE_STATE_GOING;
3323 	synchronize_sched();
3324 	module_put(mod);
3325 	blocking_notifier_call_chain(&module_notify_list,
3326 				     MODULE_STATE_GOING, mod);
3327 	free_module(mod);
3328 	wake_up_all(&module_wq);
3329 	return ret;
3330 }
3331 
may_init_module(void)3332 static int may_init_module(void)
3333 {
3334 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3335 		return -EPERM;
3336 
3337 	return 0;
3338 }
3339 
3340 /*
3341  * We try to place it in the list now to make sure it's unique before
3342  * we dedicate too many resources.  In particular, temporary percpu
3343  * memory exhaustion.
3344  */
add_unformed_module(struct module * mod)3345 static int add_unformed_module(struct module *mod)
3346 {
3347 	int err;
3348 	struct module *old;
3349 
3350 	mod->state = MODULE_STATE_UNFORMED;
3351 
3352 again:
3353 	mutex_lock(&module_mutex);
3354 	old = find_module_all(mod->name, strlen(mod->name), true);
3355 	if (old != NULL) {
3356 		if (old->state == MODULE_STATE_COMING
3357 		    || old->state == MODULE_STATE_UNFORMED) {
3358 			/* Wait in case it fails to load. */
3359 			mutex_unlock(&module_mutex);
3360 			err = wait_event_interruptible(module_wq,
3361 					       finished_loading(mod->name));
3362 			if (err)
3363 				goto out_unlocked;
3364 			goto again;
3365 		}
3366 		err = -EEXIST;
3367 		goto out;
3368 	}
3369 	mod_update_bounds(mod);
3370 	list_add_rcu(&mod->list, &modules);
3371 	mod_tree_insert(mod);
3372 	err = 0;
3373 
3374 out:
3375 	mutex_unlock(&module_mutex);
3376 out_unlocked:
3377 	return err;
3378 }
3379 
complete_formation(struct module * mod,struct load_info * info)3380 static int complete_formation(struct module *mod, struct load_info *info)
3381 {
3382 	int err;
3383 
3384 	mutex_lock(&module_mutex);
3385 
3386 	/* Find duplicate symbols (must be called under lock). */
3387 	err = verify_export_symbols(mod);
3388 	if (err < 0)
3389 		goto out;
3390 
3391 	/* This relies on module_mutex for list integrity. */
3392 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3393 
3394 	/* Set RO and NX regions for core */
3395 	set_section_ro_nx(mod->module_core,
3396 				mod->core_text_size,
3397 				mod->core_ro_size,
3398 				mod->core_size);
3399 
3400 	/* Set RO and NX regions for init */
3401 	set_section_ro_nx(mod->module_init,
3402 				mod->init_text_size,
3403 				mod->init_ro_size,
3404 				mod->init_size);
3405 
3406 	/* Mark state as coming so strong_try_module_get() ignores us,
3407 	 * but kallsyms etc. can see us. */
3408 	mod->state = MODULE_STATE_COMING;
3409 	mutex_unlock(&module_mutex);
3410 
3411 	blocking_notifier_call_chain(&module_notify_list,
3412 				     MODULE_STATE_COMING, mod);
3413 	return 0;
3414 
3415 out:
3416 	mutex_unlock(&module_mutex);
3417 	return err;
3418 }
3419 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3420 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3421 				   void *arg)
3422 {
3423 	struct module *mod = arg;
3424 	int ret;
3425 
3426 	if (strcmp(param, "async_probe") == 0) {
3427 		mod->async_probe_requested = true;
3428 		return 0;
3429 	}
3430 
3431 	/* Check for magic 'dyndbg' arg */
3432 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3433 	if (ret != 0)
3434 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3435 	return 0;
3436 }
3437 
3438 /* Allocate and load the module: note that size of section 0 is always
3439    zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3440 static int load_module(struct load_info *info, const char __user *uargs,
3441 		       int flags)
3442 {
3443 	struct module *mod;
3444 	long err;
3445 	char *after_dashes;
3446 
3447 	err = module_sig_check(info);
3448 	if (err)
3449 		goto free_copy;
3450 
3451 	err = elf_header_check(info);
3452 	if (err)
3453 		goto free_copy;
3454 
3455 	/* Figure out module layout, and allocate all the memory. */
3456 	mod = layout_and_allocate(info, flags);
3457 	if (IS_ERR(mod)) {
3458 		err = PTR_ERR(mod);
3459 		goto free_copy;
3460 	}
3461 
3462 	/* Reserve our place in the list. */
3463 	err = add_unformed_module(mod);
3464 	if (err)
3465 		goto free_module;
3466 
3467 #ifdef CONFIG_MODULE_SIG
3468 	mod->sig_ok = info->sig_ok;
3469 	if (!mod->sig_ok) {
3470 		pr_notice_once("%s: module verification failed: signature "
3471 			       "and/or required key missing - tainting "
3472 			       "kernel\n", mod->name);
3473 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3474 	}
3475 #endif
3476 
3477 	/* To avoid stressing percpu allocator, do this once we're unique. */
3478 	err = percpu_modalloc(mod, info);
3479 	if (err)
3480 		goto unlink_mod;
3481 
3482 	/* Now module is in final location, initialize linked lists, etc. */
3483 	err = module_unload_init(mod);
3484 	if (err)
3485 		goto unlink_mod;
3486 
3487 	init_param_lock(mod);
3488 
3489 	/* Now we've got everything in the final locations, we can
3490 	 * find optional sections. */
3491 	err = find_module_sections(mod, info);
3492 	if (err)
3493 		goto free_unload;
3494 
3495 	err = check_module_license_and_versions(mod);
3496 	if (err)
3497 		goto free_unload;
3498 
3499 	/* Set up MODINFO_ATTR fields */
3500 	setup_modinfo(mod, info);
3501 
3502 	/* Fix up syms, so that st_value is a pointer to location. */
3503 	err = simplify_symbols(mod, info);
3504 	if (err < 0)
3505 		goto free_modinfo;
3506 
3507 	err = apply_relocations(mod, info);
3508 	if (err < 0)
3509 		goto free_modinfo;
3510 
3511 	err = post_relocation(mod, info);
3512 	if (err < 0)
3513 		goto free_modinfo;
3514 
3515 	flush_module_icache(mod);
3516 
3517 	/* Now copy in args */
3518 	mod->args = strndup_user(uargs, ~0UL >> 1);
3519 	if (IS_ERR(mod->args)) {
3520 		err = PTR_ERR(mod->args);
3521 		goto free_arch_cleanup;
3522 	}
3523 
3524 	dynamic_debug_setup(info->debug, info->num_debug);
3525 
3526 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3527 	ftrace_module_init(mod);
3528 
3529 	/* Finally it's fully formed, ready to start executing. */
3530 	err = complete_formation(mod, info);
3531 	if (err)
3532 		goto ddebug_cleanup;
3533 
3534 	/* Module is ready to execute: parsing args may do that. */
3535 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3536 				  -32768, 32767, mod,
3537 				  unknown_module_param_cb);
3538 	if (IS_ERR(after_dashes)) {
3539 		err = PTR_ERR(after_dashes);
3540 		goto bug_cleanup;
3541 	} else if (after_dashes) {
3542 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3543 		       mod->name, after_dashes);
3544 	}
3545 
3546 	/* Link in to syfs. */
3547 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3548 	if (err < 0)
3549 		goto bug_cleanup;
3550 
3551 	/* Get rid of temporary copy. */
3552 	free_copy(info);
3553 
3554 	/* Done! */
3555 	trace_module_load(mod);
3556 
3557 	return do_init_module(mod);
3558 
3559  bug_cleanup:
3560 	/* module_bug_cleanup needs module_mutex protection */
3561 	mutex_lock(&module_mutex);
3562 	module_bug_cleanup(mod);
3563 	mutex_unlock(&module_mutex);
3564 
3565 	blocking_notifier_call_chain(&module_notify_list,
3566 				     MODULE_STATE_GOING, mod);
3567 
3568 	/* we can't deallocate the module until we clear memory protection */
3569 	unset_module_init_ro_nx(mod);
3570 	unset_module_core_ro_nx(mod);
3571 
3572  ddebug_cleanup:
3573 	dynamic_debug_remove(info->debug);
3574 	synchronize_sched();
3575 	kfree(mod->args);
3576  free_arch_cleanup:
3577 	module_arch_cleanup(mod);
3578  free_modinfo:
3579 	free_modinfo(mod);
3580  free_unload:
3581 	module_unload_free(mod);
3582  unlink_mod:
3583 	mutex_lock(&module_mutex);
3584 	/* Unlink carefully: kallsyms could be walking list. */
3585 	list_del_rcu(&mod->list);
3586 	mod_tree_remove(mod);
3587 	wake_up_all(&module_wq);
3588 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3589 	synchronize_sched();
3590 	mutex_unlock(&module_mutex);
3591  free_module:
3592 	/*
3593 	 * Ftrace needs to clean up what it initialized.
3594 	 * This does nothing if ftrace_module_init() wasn't called,
3595 	 * but it must be called outside of module_mutex.
3596 	 */
3597 	ftrace_release_mod(mod);
3598 	/* Free lock-classes; relies on the preceding sync_rcu() */
3599 	lockdep_free_key_range(mod->module_core, mod->core_size);
3600 
3601 	module_deallocate(mod, info);
3602  free_copy:
3603 	free_copy(info);
3604 	return err;
3605 }
3606 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3607 SYSCALL_DEFINE3(init_module, void __user *, umod,
3608 		unsigned long, len, const char __user *, uargs)
3609 {
3610 	int err;
3611 	struct load_info info = { };
3612 
3613 	err = may_init_module();
3614 	if (err)
3615 		return err;
3616 
3617 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3618 	       umod, len, uargs);
3619 
3620 	err = copy_module_from_user(umod, len, &info);
3621 	if (err)
3622 		return err;
3623 
3624 	return load_module(&info, uargs, 0);
3625 }
3626 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3627 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3628 {
3629 	int err;
3630 	struct load_info info = { };
3631 
3632 	err = may_init_module();
3633 	if (err)
3634 		return err;
3635 
3636 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3637 
3638 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3639 		      |MODULE_INIT_IGNORE_VERMAGIC))
3640 		return -EINVAL;
3641 
3642 	err = copy_module_from_fd(fd, &info);
3643 	if (err)
3644 		return err;
3645 
3646 	return load_module(&info, uargs, flags);
3647 }
3648 
within(unsigned long addr,void * start,unsigned long size)3649 static inline int within(unsigned long addr, void *start, unsigned long size)
3650 {
3651 	return ((void *)addr >= start && (void *)addr < start + size);
3652 }
3653 
3654 #ifdef CONFIG_KALLSYMS
3655 /*
3656  * This ignores the intensely annoying "mapping symbols" found
3657  * in ARM ELF files: $a, $t and $d.
3658  */
is_arm_mapping_symbol(const char * str)3659 static inline int is_arm_mapping_symbol(const char *str)
3660 {
3661 	if (str[0] == '.' && str[1] == 'L')
3662 		return true;
3663 	return str[0] == '$' && strchr("axtd", str[1])
3664 	       && (str[2] == '\0' || str[2] == '.');
3665 }
3666 
symname(struct mod_kallsyms * kallsyms,unsigned int symnum)3667 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3668 {
3669 	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3670 }
3671 
get_ksymbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)3672 static const char *get_ksymbol(struct module *mod,
3673 			       unsigned long addr,
3674 			       unsigned long *size,
3675 			       unsigned long *offset)
3676 {
3677 	unsigned int i, best = 0;
3678 	unsigned long nextval;
3679 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3680 
3681 	/* At worse, next value is at end of module */
3682 	if (within_module_init(addr, mod))
3683 		nextval = (unsigned long)mod->module_init+mod->init_text_size;
3684 	else
3685 		nextval = (unsigned long)mod->module_core+mod->core_text_size;
3686 
3687 	/* Scan for closest preceding symbol, and next symbol. (ELF
3688 	   starts real symbols at 1). */
3689 	for (i = 1; i < kallsyms->num_symtab; i++) {
3690 		if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3691 			continue;
3692 
3693 		/* We ignore unnamed symbols: they're uninformative
3694 		 * and inserted at a whim. */
3695 		if (*symname(kallsyms, i) == '\0'
3696 		    || is_arm_mapping_symbol(symname(kallsyms, i)))
3697 			continue;
3698 
3699 		if (kallsyms->symtab[i].st_value <= addr
3700 		    && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3701 			best = i;
3702 		if (kallsyms->symtab[i].st_value > addr
3703 		    && kallsyms->symtab[i].st_value < nextval)
3704 			nextval = kallsyms->symtab[i].st_value;
3705 	}
3706 
3707 	if (!best)
3708 		return NULL;
3709 
3710 	if (size)
3711 		*size = nextval - kallsyms->symtab[best].st_value;
3712 	if (offset)
3713 		*offset = addr - kallsyms->symtab[best].st_value;
3714 	return symname(kallsyms, best);
3715 }
3716 
3717 /* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3718  * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)3719 const char *module_address_lookup(unsigned long addr,
3720 			    unsigned long *size,
3721 			    unsigned long *offset,
3722 			    char **modname,
3723 			    char *namebuf)
3724 {
3725 	const char *ret = NULL;
3726 	struct module *mod;
3727 
3728 	preempt_disable();
3729 	mod = __module_address(addr);
3730 	if (mod) {
3731 		if (modname)
3732 			*modname = mod->name;
3733 		ret = get_ksymbol(mod, addr, size, offset);
3734 	}
3735 	/* Make a copy in here where it's safe */
3736 	if (ret) {
3737 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3738 		ret = namebuf;
3739 	}
3740 	preempt_enable();
3741 
3742 	return ret;
3743 }
3744 
lookup_module_symbol_name(unsigned long addr,char * symname)3745 int lookup_module_symbol_name(unsigned long addr, char *symname)
3746 {
3747 	struct module *mod;
3748 
3749 	preempt_disable();
3750 	list_for_each_entry_rcu(mod, &modules, list) {
3751 		if (mod->state == MODULE_STATE_UNFORMED)
3752 			continue;
3753 		if (within_module(addr, mod)) {
3754 			const char *sym;
3755 
3756 			sym = get_ksymbol(mod, addr, NULL, NULL);
3757 			if (!sym)
3758 				goto out;
3759 			strlcpy(symname, sym, KSYM_NAME_LEN);
3760 			preempt_enable();
3761 			return 0;
3762 		}
3763 	}
3764 out:
3765 	preempt_enable();
3766 	return -ERANGE;
3767 }
3768 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)3769 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3770 			unsigned long *offset, char *modname, char *name)
3771 {
3772 	struct module *mod;
3773 
3774 	preempt_disable();
3775 	list_for_each_entry_rcu(mod, &modules, list) {
3776 		if (mod->state == MODULE_STATE_UNFORMED)
3777 			continue;
3778 		if (within_module(addr, mod)) {
3779 			const char *sym;
3780 
3781 			sym = get_ksymbol(mod, addr, size, offset);
3782 			if (!sym)
3783 				goto out;
3784 			if (modname)
3785 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3786 			if (name)
3787 				strlcpy(name, sym, KSYM_NAME_LEN);
3788 			preempt_enable();
3789 			return 0;
3790 		}
3791 	}
3792 out:
3793 	preempt_enable();
3794 	return -ERANGE;
3795 }
3796 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)3797 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3798 			char *name, char *module_name, int *exported)
3799 {
3800 	struct module *mod;
3801 
3802 	preempt_disable();
3803 	list_for_each_entry_rcu(mod, &modules, list) {
3804 		struct mod_kallsyms *kallsyms;
3805 
3806 		if (mod->state == MODULE_STATE_UNFORMED)
3807 			continue;
3808 		kallsyms = rcu_dereference_sched(mod->kallsyms);
3809 		if (symnum < kallsyms->num_symtab) {
3810 			*value = kallsyms->symtab[symnum].st_value;
3811 			*type = kallsyms->symtab[symnum].st_info;
3812 			strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3813 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3814 			*exported = is_exported(name, *value, mod);
3815 			preempt_enable();
3816 			return 0;
3817 		}
3818 		symnum -= kallsyms->num_symtab;
3819 	}
3820 	preempt_enable();
3821 	return -ERANGE;
3822 }
3823 
mod_find_symname(struct module * mod,const char * name)3824 static unsigned long mod_find_symname(struct module *mod, const char *name)
3825 {
3826 	unsigned int i;
3827 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3828 
3829 	for (i = 0; i < kallsyms->num_symtab; i++)
3830 		if (strcmp(name, symname(kallsyms, i)) == 0 &&
3831 		    kallsyms->symtab[i].st_info != 'U')
3832 			return kallsyms->symtab[i].st_value;
3833 	return 0;
3834 }
3835 
3836 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)3837 unsigned long module_kallsyms_lookup_name(const char *name)
3838 {
3839 	struct module *mod;
3840 	char *colon;
3841 	unsigned long ret = 0;
3842 
3843 	/* Don't lock: we're in enough trouble already. */
3844 	preempt_disable();
3845 	if ((colon = strchr(name, ':')) != NULL) {
3846 		if ((mod = find_module_all(name, colon - name, false)) != NULL)
3847 			ret = mod_find_symname(mod, colon+1);
3848 	} else {
3849 		list_for_each_entry_rcu(mod, &modules, list) {
3850 			if (mod->state == MODULE_STATE_UNFORMED)
3851 				continue;
3852 			if ((ret = mod_find_symname(mod, name)) != 0)
3853 				break;
3854 		}
3855 	}
3856 	preempt_enable();
3857 	return ret;
3858 }
3859 
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)3860 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3861 					     struct module *, unsigned long),
3862 				   void *data)
3863 {
3864 	struct module *mod;
3865 	unsigned int i;
3866 	int ret;
3867 
3868 	module_assert_mutex();
3869 
3870 	list_for_each_entry(mod, &modules, list) {
3871 		/* We hold module_mutex: no need for rcu_dereference_sched */
3872 		struct mod_kallsyms *kallsyms = mod->kallsyms;
3873 
3874 		if (mod->state == MODULE_STATE_UNFORMED)
3875 			continue;
3876 		for (i = 0; i < kallsyms->num_symtab; i++) {
3877 			ret = fn(data, symname(kallsyms, i),
3878 				 mod, kallsyms->symtab[i].st_value);
3879 			if (ret != 0)
3880 				return ret;
3881 		}
3882 	}
3883 	return 0;
3884 }
3885 #endif /* CONFIG_KALLSYMS */
3886 
module_flags(struct module * mod,char * buf)3887 static char *module_flags(struct module *mod, char *buf)
3888 {
3889 	int bx = 0;
3890 
3891 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3892 	if (mod->taints ||
3893 	    mod->state == MODULE_STATE_GOING ||
3894 	    mod->state == MODULE_STATE_COMING) {
3895 		buf[bx++] = '(';
3896 		bx += module_flags_taint(mod, buf + bx);
3897 		/* Show a - for module-is-being-unloaded */
3898 		if (mod->state == MODULE_STATE_GOING)
3899 			buf[bx++] = '-';
3900 		/* Show a + for module-is-being-loaded */
3901 		if (mod->state == MODULE_STATE_COMING)
3902 			buf[bx++] = '+';
3903 		buf[bx++] = ')';
3904 	}
3905 	buf[bx] = '\0';
3906 
3907 	return buf;
3908 }
3909 
3910 #ifdef CONFIG_PROC_FS
3911 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)3912 static void *m_start(struct seq_file *m, loff_t *pos)
3913 {
3914 	mutex_lock(&module_mutex);
3915 	return seq_list_start(&modules, *pos);
3916 }
3917 
m_next(struct seq_file * m,void * p,loff_t * pos)3918 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3919 {
3920 	return seq_list_next(p, &modules, pos);
3921 }
3922 
m_stop(struct seq_file * m,void * p)3923 static void m_stop(struct seq_file *m, void *p)
3924 {
3925 	mutex_unlock(&module_mutex);
3926 }
3927 
m_show(struct seq_file * m,void * p)3928 static int m_show(struct seq_file *m, void *p)
3929 {
3930 	struct module *mod = list_entry(p, struct module, list);
3931 	char buf[8];
3932 
3933 	/* We always ignore unformed modules. */
3934 	if (mod->state == MODULE_STATE_UNFORMED)
3935 		return 0;
3936 
3937 	seq_printf(m, "%s %u",
3938 		   mod->name, mod->init_size + mod->core_size);
3939 	print_unload_info(m, mod);
3940 
3941 	/* Informative for users. */
3942 	seq_printf(m, " %s",
3943 		   mod->state == MODULE_STATE_GOING ? "Unloading" :
3944 		   mod->state == MODULE_STATE_COMING ? "Loading" :
3945 		   "Live");
3946 	/* Used by oprofile and other similar tools. */
3947 	seq_printf(m, " 0x%pK", mod->module_core);
3948 
3949 	/* Taints info */
3950 	if (mod->taints)
3951 		seq_printf(m, " %s", module_flags(mod, buf));
3952 
3953 	seq_puts(m, "\n");
3954 	return 0;
3955 }
3956 
3957 /* Format: modulename size refcount deps address
3958 
3959    Where refcount is a number or -, and deps is a comma-separated list
3960    of depends or -.
3961 */
3962 static const struct seq_operations modules_op = {
3963 	.start	= m_start,
3964 	.next	= m_next,
3965 	.stop	= m_stop,
3966 	.show	= m_show
3967 };
3968 
modules_open(struct inode * inode,struct file * file)3969 static int modules_open(struct inode *inode, struct file *file)
3970 {
3971 	return seq_open(file, &modules_op);
3972 }
3973 
3974 static const struct file_operations proc_modules_operations = {
3975 	.open		= modules_open,
3976 	.read		= seq_read,
3977 	.llseek		= seq_lseek,
3978 	.release	= seq_release,
3979 };
3980 
proc_modules_init(void)3981 static int __init proc_modules_init(void)
3982 {
3983 	proc_create("modules", 0, NULL, &proc_modules_operations);
3984 	return 0;
3985 }
3986 module_init(proc_modules_init);
3987 #endif
3988 
3989 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3990 const struct exception_table_entry *search_module_extables(unsigned long addr)
3991 {
3992 	const struct exception_table_entry *e = NULL;
3993 	struct module *mod;
3994 
3995 	preempt_disable();
3996 	list_for_each_entry_rcu(mod, &modules, list) {
3997 		if (mod->state == MODULE_STATE_UNFORMED)
3998 			continue;
3999 		if (mod->num_exentries == 0)
4000 			continue;
4001 
4002 		e = search_extable(mod->extable,
4003 				   mod->extable + mod->num_exentries - 1,
4004 				   addr);
4005 		if (e)
4006 			break;
4007 	}
4008 	preempt_enable();
4009 
4010 	/* Now, if we found one, we are running inside it now, hence
4011 	   we cannot unload the module, hence no refcnt needed. */
4012 	return e;
4013 }
4014 
4015 /*
4016  * is_module_address - is this address inside a module?
4017  * @addr: the address to check.
4018  *
4019  * See is_module_text_address() if you simply want to see if the address
4020  * is code (not data).
4021  */
is_module_address(unsigned long addr)4022 bool is_module_address(unsigned long addr)
4023 {
4024 	bool ret;
4025 
4026 	preempt_disable();
4027 	ret = __module_address(addr) != NULL;
4028 	preempt_enable();
4029 
4030 	return ret;
4031 }
4032 
4033 /*
4034  * __module_address - get the module which contains an address.
4035  * @addr: the address.
4036  *
4037  * Must be called with preempt disabled or module mutex held so that
4038  * module doesn't get freed during this.
4039  */
__module_address(unsigned long addr)4040 struct module *__module_address(unsigned long addr)
4041 {
4042 	struct module *mod;
4043 
4044 	if (addr < module_addr_min || addr > module_addr_max)
4045 		return NULL;
4046 
4047 	module_assert_mutex_or_preempt();
4048 
4049 	mod = mod_find(addr);
4050 	if (mod) {
4051 		BUG_ON(!within_module(addr, mod));
4052 		if (mod->state == MODULE_STATE_UNFORMED)
4053 			mod = NULL;
4054 	}
4055 	return mod;
4056 }
4057 EXPORT_SYMBOL_GPL(__module_address);
4058 
4059 /*
4060  * is_module_text_address - is this address inside module code?
4061  * @addr: the address to check.
4062  *
4063  * See is_module_address() if you simply want to see if the address is
4064  * anywhere in a module.  See kernel_text_address() for testing if an
4065  * address corresponds to kernel or module code.
4066  */
is_module_text_address(unsigned long addr)4067 bool is_module_text_address(unsigned long addr)
4068 {
4069 	bool ret;
4070 
4071 	preempt_disable();
4072 	ret = __module_text_address(addr) != NULL;
4073 	preempt_enable();
4074 
4075 	return ret;
4076 }
4077 
4078 /*
4079  * __module_text_address - get the module whose code contains an address.
4080  * @addr: the address.
4081  *
4082  * Must be called with preempt disabled or module mutex held so that
4083  * module doesn't get freed during this.
4084  */
__module_text_address(unsigned long addr)4085 struct module *__module_text_address(unsigned long addr)
4086 {
4087 	struct module *mod = __module_address(addr);
4088 	if (mod) {
4089 		/* Make sure it's within the text section. */
4090 		if (!within(addr, mod->module_init, mod->init_text_size)
4091 		    && !within(addr, mod->module_core, mod->core_text_size))
4092 			mod = NULL;
4093 	}
4094 	return mod;
4095 }
4096 EXPORT_SYMBOL_GPL(__module_text_address);
4097 
4098 /* Don't grab lock, we're oopsing. */
print_modules(void)4099 void print_modules(void)
4100 {
4101 	struct module *mod;
4102 	char buf[8];
4103 
4104 	printk(KERN_DEFAULT "Modules linked in:");
4105 	/* Most callers should already have preempt disabled, but make sure */
4106 	preempt_disable();
4107 	list_for_each_entry_rcu(mod, &modules, list) {
4108 		if (mod->state == MODULE_STATE_UNFORMED)
4109 			continue;
4110 		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4111 	}
4112 	preempt_enable();
4113 	if (last_unloaded_module[0])
4114 		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4115 	pr_cont("\n");
4116 }
4117 
4118 #ifdef CONFIG_MODVERSIONS
4119 /* Generate the signature for all relevant module structures here.
4120  * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4121 void module_layout(struct module *mod,
4122 		   struct modversion_info *ver,
4123 		   struct kernel_param *kp,
4124 		   struct kernel_symbol *ks,
4125 		   struct tracepoint * const *tp)
4126 {
4127 }
4128 EXPORT_SYMBOL(module_layout);
4129 #endif
4130