1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68 
69 #include <asm/futex.h>
70 
71 #include "locking/rtmutex_common.h"
72 
73 /*
74  * READ this before attempting to hack on futexes!
75  *
76  * Basic futex operation and ordering guarantees
77  * =============================================
78  *
79  * The waiter reads the futex value in user space and calls
80  * futex_wait(). This function computes the hash bucket and acquires
81  * the hash bucket lock. After that it reads the futex user space value
82  * again and verifies that the data has not changed. If it has not changed
83  * it enqueues itself into the hash bucket, releases the hash bucket lock
84  * and schedules.
85  *
86  * The waker side modifies the user space value of the futex and calls
87  * futex_wake(). This function computes the hash bucket and acquires the
88  * hash bucket lock. Then it looks for waiters on that futex in the hash
89  * bucket and wakes them.
90  *
91  * In futex wake up scenarios where no tasks are blocked on a futex, taking
92  * the hb spinlock can be avoided and simply return. In order for this
93  * optimization to work, ordering guarantees must exist so that the waiter
94  * being added to the list is acknowledged when the list is concurrently being
95  * checked by the waker, avoiding scenarios like the following:
96  *
97  * CPU 0                               CPU 1
98  * val = *futex;
99  * sys_futex(WAIT, futex, val);
100  *   futex_wait(futex, val);
101  *   uval = *futex;
102  *                                     *futex = newval;
103  *                                     sys_futex(WAKE, futex);
104  *                                       futex_wake(futex);
105  *                                       if (queue_empty())
106  *                                         return;
107  *   if (uval == val)
108  *      lock(hash_bucket(futex));
109  *      queue();
110  *     unlock(hash_bucket(futex));
111  *     schedule();
112  *
113  * This would cause the waiter on CPU 0 to wait forever because it
114  * missed the transition of the user space value from val to newval
115  * and the waker did not find the waiter in the hash bucket queue.
116  *
117  * The correct serialization ensures that a waiter either observes
118  * the changed user space value before blocking or is woken by a
119  * concurrent waker:
120  *
121  * CPU 0                                 CPU 1
122  * val = *futex;
123  * sys_futex(WAIT, futex, val);
124  *   futex_wait(futex, val);
125  *
126  *   waiters++; (a)
127  *   mb(); (A) <-- paired with -.
128  *                              |
129  *   lock(hash_bucket(futex));  |
130  *                              |
131  *   uval = *futex;             |
132  *                              |        *futex = newval;
133  *                              |        sys_futex(WAKE, futex);
134  *                              |          futex_wake(futex);
135  *                              |
136  *                              `------->  mb(); (B)
137  *   if (uval == val)
138  *     queue();
139  *     unlock(hash_bucket(futex));
140  *     schedule();                         if (waiters)
141  *                                           lock(hash_bucket(futex));
142  *   else                                    wake_waiters(futex);
143  *     waiters--; (b)                        unlock(hash_bucket(futex));
144  *
145  * Where (A) orders the waiters increment and the futex value read through
146  * atomic operations (see hb_waiters_inc) and where (B) orders the write
147  * to futex and the waiters read -- this is done by the barriers for both
148  * shared and private futexes in get_futex_key_refs().
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *	X = Y = 0
153  *
154  *	w[X]=1		w[Y]=1
155  *	MB		MB
156  *	r[Y]=y		r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173 
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177 
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED		0x01
183 #define FLAGS_CLOCKRT		0x02
184 #define FLAGS_HAS_TIMEOUT	0x04
185 
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190 	/*
191 	 * list of 'owned' pi_state instances - these have to be
192 	 * cleaned up in do_exit() if the task exits prematurely:
193 	 */
194 	struct list_head list;
195 
196 	/*
197 	 * The PI object:
198 	 */
199 	struct rt_mutex pi_mutex;
200 
201 	struct task_struct *owner;
202 	atomic_t refcount;
203 
204 	union futex_key key;
205 };
206 
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:		priority-sorted list of tasks waiting on this futex
210  * @task:		the task waiting on the futex
211  * @lock_ptr:		the hash bucket lock
212  * @key:		the key the futex is hashed on
213  * @pi_state:		optional priority inheritance state
214  * @rt_waiter:		rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:	the requeue_pi target futex key
216  * @bitset:		bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230 	struct plist_node list;
231 
232 	struct task_struct *task;
233 	spinlock_t *lock_ptr;
234 	union futex_key key;
235 	struct futex_pi_state *pi_state;
236 	struct rt_mutex_waiter *rt_waiter;
237 	union futex_key *requeue_pi_key;
238 	u32 bitset;
239 };
240 
241 static const struct futex_q futex_q_init = {
242 	/* list gets initialized in queue_me()*/
243 	.key = FUTEX_KEY_INIT,
244 	.bitset = FUTEX_BITSET_MATCH_ANY
245 };
246 
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253 	atomic_t waiters;
254 	spinlock_t lock;
255 	struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257 
258 /*
259  * The base of the bucket array and its size are always used together
260  * (after initialization only in hash_futex()), so ensure that they
261  * reside in the same cacheline.
262  */
263 static struct {
264 	struct futex_hash_bucket *queues;
265 	unsigned long            hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues   (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269 
270 
271 /*
272  * Fault injections for futexes.
273  */
274 #ifdef CONFIG_FAIL_FUTEX
275 
276 static struct {
277 	struct fault_attr attr;
278 
279 	bool ignore_private;
280 } fail_futex = {
281 	.attr = FAULT_ATTR_INITIALIZER,
282 	.ignore_private = false,
283 };
284 
setup_fail_futex(char * str)285 static int __init setup_fail_futex(char *str)
286 {
287 	return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290 
should_fail_futex(bool fshared)291 static bool should_fail_futex(bool fshared)
292 {
293 	if (fail_futex.ignore_private && !fshared)
294 		return false;
295 
296 	return should_fail(&fail_futex.attr, 1);
297 }
298 
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300 
fail_futex_debugfs(void)301 static int __init fail_futex_debugfs(void)
302 {
303 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304 	struct dentry *dir;
305 
306 	dir = fault_create_debugfs_attr("fail_futex", NULL,
307 					&fail_futex.attr);
308 	if (IS_ERR(dir))
309 		return PTR_ERR(dir);
310 
311 	if (!debugfs_create_bool("ignore-private", mode, dir,
312 				 &fail_futex.ignore_private)) {
313 		debugfs_remove_recursive(dir);
314 		return -ENOMEM;
315 	}
316 
317 	return 0;
318 }
319 
320 late_initcall(fail_futex_debugfs);
321 
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
323 
324 #else
should_fail_futex(bool fshared)325 static inline bool should_fail_futex(bool fshared)
326 {
327 	return false;
328 }
329 #endif /* CONFIG_FAIL_FUTEX */
330 
futex_get_mm(union futex_key * key)331 static inline void futex_get_mm(union futex_key *key)
332 {
333 	atomic_inc(&key->private.mm->mm_count);
334 	/*
335 	 * Ensure futex_get_mm() implies a full barrier such that
336 	 * get_futex_key() implies a full barrier. This is relied upon
337 	 * as full barrier (B), see the ordering comment above.
338 	 */
339 	smp_mb__after_atomic();
340 }
341 
342 /*
343  * Reflects a new waiter being added to the waitqueue.
344  */
hb_waiters_inc(struct futex_hash_bucket * hb)345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 {
347 #ifdef CONFIG_SMP
348 	atomic_inc(&hb->waiters);
349 	/*
350 	 * Full barrier (A), see the ordering comment above.
351 	 */
352 	smp_mb__after_atomic();
353 #endif
354 }
355 
356 /*
357  * Reflects a waiter being removed from the waitqueue by wakeup
358  * paths.
359  */
hb_waiters_dec(struct futex_hash_bucket * hb)360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
361 {
362 #ifdef CONFIG_SMP
363 	atomic_dec(&hb->waiters);
364 #endif
365 }
366 
hb_waiters_pending(struct futex_hash_bucket * hb)367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
368 {
369 #ifdef CONFIG_SMP
370 	return atomic_read(&hb->waiters);
371 #else
372 	return 1;
373 #endif
374 }
375 
376 /*
377  * We hash on the keys returned from get_futex_key (see below).
378  */
hash_futex(union futex_key * key)379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
380 {
381 	u32 hash = jhash2((u32*)&key->both.word,
382 			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383 			  key->both.offset);
384 	return &futex_queues[hash & (futex_hashsize - 1)];
385 }
386 
387 /*
388  * Return 1 if two futex_keys are equal, 0 otherwise.
389  */
match_futex(union futex_key * key1,union futex_key * key2)390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
391 {
392 	return (key1 && key2
393 		&& key1->both.word == key2->both.word
394 		&& key1->both.ptr == key2->both.ptr
395 		&& key1->both.offset == key2->both.offset);
396 }
397 
398 /*
399  * Take a reference to the resource addressed by a key.
400  * Can be called while holding spinlocks.
401  *
402  */
get_futex_key_refs(union futex_key * key)403 static void get_futex_key_refs(union futex_key *key)
404 {
405 	if (!key->both.ptr)
406 		return;
407 
408 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409 	case FUT_OFF_INODE:
410 		ihold(key->shared.inode); /* implies MB (B) */
411 		break;
412 	case FUT_OFF_MMSHARED:
413 		futex_get_mm(key); /* implies MB (B) */
414 		break;
415 	default:
416 		/*
417 		 * Private futexes do not hold reference on an inode or
418 		 * mm, therefore the only purpose of calling get_futex_key_refs
419 		 * is because we need the barrier for the lockless waiter check.
420 		 */
421 		smp_mb(); /* explicit MB (B) */
422 	}
423 }
424 
425 /*
426  * Drop a reference to the resource addressed by a key.
427  * The hash bucket spinlock must not be held. This is
428  * a no-op for private futexes, see comment in the get
429  * counterpart.
430  */
drop_futex_key_refs(union futex_key * key)431 static void drop_futex_key_refs(union futex_key *key)
432 {
433 	if (!key->both.ptr) {
434 		/* If we're here then we tried to put a key we failed to get */
435 		WARN_ON_ONCE(1);
436 		return;
437 	}
438 
439 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440 	case FUT_OFF_INODE:
441 		iput(key->shared.inode);
442 		break;
443 	case FUT_OFF_MMSHARED:
444 		mmdrop(key->private.mm);
445 		break;
446 	}
447 }
448 
449 /**
450  * get_futex_key() - Get parameters which are the keys for a futex
451  * @uaddr:	virtual address of the futex
452  * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453  * @key:	address where result is stored.
454  * @rw:		mapping needs to be read/write (values: VERIFY_READ,
455  *              VERIFY_WRITE)
456  *
457  * Return: a negative error code or 0
458  *
459  * The key words are stored in *key on success.
460  *
461  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
462  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
463  * We can usually work out the index without swapping in the page.
464  *
465  * lock_page() might sleep, the caller should not hold a spinlock.
466  */
467 static int
get_futex_key(u32 __user * uaddr,int fshared,union futex_key * key,int rw)468 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
469 {
470 	unsigned long address = (unsigned long)uaddr;
471 	struct mm_struct *mm = current->mm;
472 	struct page *page, *page_head;
473 	int err, ro = 0;
474 
475 	/*
476 	 * The futex address must be "naturally" aligned.
477 	 */
478 	key->both.offset = address % PAGE_SIZE;
479 	if (unlikely((address % sizeof(u32)) != 0))
480 		return -EINVAL;
481 	address -= key->both.offset;
482 
483 	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
484 		return -EFAULT;
485 
486 	if (unlikely(should_fail_futex(fshared)))
487 		return -EFAULT;
488 
489 	/*
490 	 * PROCESS_PRIVATE futexes are fast.
491 	 * As the mm cannot disappear under us and the 'key' only needs
492 	 * virtual address, we dont even have to find the underlying vma.
493 	 * Note : We do have to check 'uaddr' is a valid user address,
494 	 *        but access_ok() should be faster than find_vma()
495 	 */
496 	if (!fshared) {
497 		key->private.mm = mm;
498 		key->private.address = address;
499 		get_futex_key_refs(key);  /* implies MB (B) */
500 		return 0;
501 	}
502 
503 again:
504 	/* Ignore any VERIFY_READ mapping (futex common case) */
505 	if (unlikely(should_fail_futex(fshared)))
506 		return -EFAULT;
507 
508 	err = get_user_pages_fast(address, 1, 1, &page);
509 	/*
510 	 * If write access is not required (eg. FUTEX_WAIT), try
511 	 * and get read-only access.
512 	 */
513 	if (err == -EFAULT && rw == VERIFY_READ) {
514 		err = get_user_pages_fast(address, 1, 0, &page);
515 		ro = 1;
516 	}
517 	if (err < 0)
518 		return err;
519 	else
520 		err = 0;
521 
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 	page_head = page;
524 	if (unlikely(PageTail(page))) {
525 		put_page(page);
526 		/* serialize against __split_huge_page_splitting() */
527 		local_irq_disable();
528 		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
529 			page_head = compound_head(page);
530 			/*
531 			 * page_head is valid pointer but we must pin
532 			 * it before taking the PG_lock and/or
533 			 * PG_compound_lock. The moment we re-enable
534 			 * irqs __split_huge_page_splitting() can
535 			 * return and the head page can be freed from
536 			 * under us. We can't take the PG_lock and/or
537 			 * PG_compound_lock on a page that could be
538 			 * freed from under us.
539 			 */
540 			if (page != page_head) {
541 				get_page(page_head);
542 				put_page(page);
543 			}
544 			local_irq_enable();
545 		} else {
546 			local_irq_enable();
547 			goto again;
548 		}
549 	}
550 #else
551 	page_head = compound_head(page);
552 	if (page != page_head) {
553 		get_page(page_head);
554 		put_page(page);
555 	}
556 #endif
557 
558 	lock_page(page_head);
559 
560 	/*
561 	 * If page_head->mapping is NULL, then it cannot be a PageAnon
562 	 * page; but it might be the ZERO_PAGE or in the gate area or
563 	 * in a special mapping (all cases which we are happy to fail);
564 	 * or it may have been a good file page when get_user_pages_fast
565 	 * found it, but truncated or holepunched or subjected to
566 	 * invalidate_complete_page2 before we got the page lock (also
567 	 * cases which we are happy to fail).  And we hold a reference,
568 	 * so refcount care in invalidate_complete_page's remove_mapping
569 	 * prevents drop_caches from setting mapping to NULL beneath us.
570 	 *
571 	 * The case we do have to guard against is when memory pressure made
572 	 * shmem_writepage move it from filecache to swapcache beneath us:
573 	 * an unlikely race, but we do need to retry for page_head->mapping.
574 	 */
575 	if (!page_head->mapping) {
576 		int shmem_swizzled = PageSwapCache(page_head);
577 		unlock_page(page_head);
578 		put_page(page_head);
579 		if (shmem_swizzled)
580 			goto again;
581 		return -EFAULT;
582 	}
583 
584 	/*
585 	 * Private mappings are handled in a simple way.
586 	 *
587 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
588 	 * it's a read-only handle, it's expected that futexes attach to
589 	 * the object not the particular process.
590 	 */
591 	if (PageAnon(page_head)) {
592 		/*
593 		 * A RO anonymous page will never change and thus doesn't make
594 		 * sense for futex operations.
595 		 */
596 		if (unlikely(should_fail_futex(fshared)) || ro) {
597 			err = -EFAULT;
598 			goto out;
599 		}
600 
601 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
602 		key->private.mm = mm;
603 		key->private.address = address;
604 	} else {
605 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
606 		key->shared.inode = page_head->mapping->host;
607 		key->shared.pgoff = basepage_index(page);
608 	}
609 
610 	get_futex_key_refs(key); /* implies MB (B) */
611 
612 out:
613 	unlock_page(page_head);
614 	put_page(page_head);
615 	return err;
616 }
617 
put_futex_key(union futex_key * key)618 static inline void put_futex_key(union futex_key *key)
619 {
620 	drop_futex_key_refs(key);
621 }
622 
623 /**
624  * fault_in_user_writeable() - Fault in user address and verify RW access
625  * @uaddr:	pointer to faulting user space address
626  *
627  * Slow path to fixup the fault we just took in the atomic write
628  * access to @uaddr.
629  *
630  * We have no generic implementation of a non-destructive write to the
631  * user address. We know that we faulted in the atomic pagefault
632  * disabled section so we can as well avoid the #PF overhead by
633  * calling get_user_pages() right away.
634  */
fault_in_user_writeable(u32 __user * uaddr)635 static int fault_in_user_writeable(u32 __user *uaddr)
636 {
637 	struct mm_struct *mm = current->mm;
638 	int ret;
639 
640 	down_read(&mm->mmap_sem);
641 	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
642 			       FAULT_FLAG_WRITE);
643 	up_read(&mm->mmap_sem);
644 
645 	return ret < 0 ? ret : 0;
646 }
647 
648 /**
649  * futex_top_waiter() - Return the highest priority waiter on a futex
650  * @hb:		the hash bucket the futex_q's reside in
651  * @key:	the futex key (to distinguish it from other futex futex_q's)
652  *
653  * Must be called with the hb lock held.
654  */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)655 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
656 					union futex_key *key)
657 {
658 	struct futex_q *this;
659 
660 	plist_for_each_entry(this, &hb->chain, list) {
661 		if (match_futex(&this->key, key))
662 			return this;
663 	}
664 	return NULL;
665 }
666 
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)667 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
668 				      u32 uval, u32 newval)
669 {
670 	int ret;
671 
672 	pagefault_disable();
673 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
674 	pagefault_enable();
675 
676 	return ret;
677 }
678 
get_futex_value_locked(u32 * dest,u32 __user * from)679 static int get_futex_value_locked(u32 *dest, u32 __user *from)
680 {
681 	int ret;
682 
683 	pagefault_disable();
684 	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
685 	pagefault_enable();
686 
687 	return ret ? -EFAULT : 0;
688 }
689 
690 
691 /*
692  * PI code:
693  */
refill_pi_state_cache(void)694 static int refill_pi_state_cache(void)
695 {
696 	struct futex_pi_state *pi_state;
697 
698 	if (likely(current->pi_state_cache))
699 		return 0;
700 
701 	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
702 
703 	if (!pi_state)
704 		return -ENOMEM;
705 
706 	INIT_LIST_HEAD(&pi_state->list);
707 	/* pi_mutex gets initialized later */
708 	pi_state->owner = NULL;
709 	atomic_set(&pi_state->refcount, 1);
710 	pi_state->key = FUTEX_KEY_INIT;
711 
712 	current->pi_state_cache = pi_state;
713 
714 	return 0;
715 }
716 
alloc_pi_state(void)717 static struct futex_pi_state * alloc_pi_state(void)
718 {
719 	struct futex_pi_state *pi_state = current->pi_state_cache;
720 
721 	WARN_ON(!pi_state);
722 	current->pi_state_cache = NULL;
723 
724 	return pi_state;
725 }
726 
727 /*
728  * Must be called with the hb lock held.
729  */
free_pi_state(struct futex_pi_state * pi_state)730 static void free_pi_state(struct futex_pi_state *pi_state)
731 {
732 	if (!pi_state)
733 		return;
734 
735 	if (!atomic_dec_and_test(&pi_state->refcount))
736 		return;
737 
738 	/*
739 	 * If pi_state->owner is NULL, the owner is most probably dying
740 	 * and has cleaned up the pi_state already
741 	 */
742 	if (pi_state->owner) {
743 		raw_spin_lock_irq(&pi_state->owner->pi_lock);
744 		list_del_init(&pi_state->list);
745 		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
746 
747 		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
748 	}
749 
750 	if (current->pi_state_cache)
751 		kfree(pi_state);
752 	else {
753 		/*
754 		 * pi_state->list is already empty.
755 		 * clear pi_state->owner.
756 		 * refcount is at 0 - put it back to 1.
757 		 */
758 		pi_state->owner = NULL;
759 		atomic_set(&pi_state->refcount, 1);
760 		current->pi_state_cache = pi_state;
761 	}
762 }
763 
764 /*
765  * Look up the task based on what TID userspace gave us.
766  * We dont trust it.
767  */
futex_find_get_task(pid_t pid)768 static struct task_struct * futex_find_get_task(pid_t pid)
769 {
770 	struct task_struct *p;
771 
772 	rcu_read_lock();
773 	p = find_task_by_vpid(pid);
774 	if (p)
775 		get_task_struct(p);
776 
777 	rcu_read_unlock();
778 
779 	return p;
780 }
781 
782 /*
783  * This task is holding PI mutexes at exit time => bad.
784  * Kernel cleans up PI-state, but userspace is likely hosed.
785  * (Robust-futex cleanup is separate and might save the day for userspace.)
786  */
exit_pi_state_list(struct task_struct * curr)787 void exit_pi_state_list(struct task_struct *curr)
788 {
789 	struct list_head *next, *head = &curr->pi_state_list;
790 	struct futex_pi_state *pi_state;
791 	struct futex_hash_bucket *hb;
792 	union futex_key key = FUTEX_KEY_INIT;
793 
794 	if (!futex_cmpxchg_enabled)
795 		return;
796 	/*
797 	 * We are a ZOMBIE and nobody can enqueue itself on
798 	 * pi_state_list anymore, but we have to be careful
799 	 * versus waiters unqueueing themselves:
800 	 */
801 	raw_spin_lock_irq(&curr->pi_lock);
802 	while (!list_empty(head)) {
803 
804 		next = head->next;
805 		pi_state = list_entry(next, struct futex_pi_state, list);
806 		key = pi_state->key;
807 		hb = hash_futex(&key);
808 		raw_spin_unlock_irq(&curr->pi_lock);
809 
810 		spin_lock(&hb->lock);
811 
812 		raw_spin_lock_irq(&curr->pi_lock);
813 		/*
814 		 * We dropped the pi-lock, so re-check whether this
815 		 * task still owns the PI-state:
816 		 */
817 		if (head->next != next) {
818 			spin_unlock(&hb->lock);
819 			continue;
820 		}
821 
822 		WARN_ON(pi_state->owner != curr);
823 		WARN_ON(list_empty(&pi_state->list));
824 		list_del_init(&pi_state->list);
825 		pi_state->owner = NULL;
826 		raw_spin_unlock_irq(&curr->pi_lock);
827 
828 		rt_mutex_unlock(&pi_state->pi_mutex);
829 
830 		spin_unlock(&hb->lock);
831 
832 		raw_spin_lock_irq(&curr->pi_lock);
833 	}
834 	raw_spin_unlock_irq(&curr->pi_lock);
835 }
836 
837 /*
838  * We need to check the following states:
839  *
840  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
841  *
842  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
843  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
844  *
845  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
846  *
847  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
848  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
849  *
850  * [6]  Found  | Found    | task      | 0         | 1      | Valid
851  *
852  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
853  *
854  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
855  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
856  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
857  *
858  * [1]	Indicates that the kernel can acquire the futex atomically. We
859  *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
860  *
861  * [2]	Valid, if TID does not belong to a kernel thread. If no matching
862  *      thread is found then it indicates that the owner TID has died.
863  *
864  * [3]	Invalid. The waiter is queued on a non PI futex
865  *
866  * [4]	Valid state after exit_robust_list(), which sets the user space
867  *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
868  *
869  * [5]	The user space value got manipulated between exit_robust_list()
870  *	and exit_pi_state_list()
871  *
872  * [6]	Valid state after exit_pi_state_list() which sets the new owner in
873  *	the pi_state but cannot access the user space value.
874  *
875  * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
876  *
877  * [8]	Owner and user space value match
878  *
879  * [9]	There is no transient state which sets the user space TID to 0
880  *	except exit_robust_list(), but this is indicated by the
881  *	FUTEX_OWNER_DIED bit. See [4]
882  *
883  * [10] There is no transient state which leaves owner and user space
884  *	TID out of sync.
885  */
886 
887 /*
888  * Validate that the existing waiter has a pi_state and sanity check
889  * the pi_state against the user space value. If correct, attach to
890  * it.
891  */
attach_to_pi_state(u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)892 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
893 			      struct futex_pi_state **ps)
894 {
895 	pid_t pid = uval & FUTEX_TID_MASK;
896 
897 	/*
898 	 * Userspace might have messed up non-PI and PI futexes [3]
899 	 */
900 	if (unlikely(!pi_state))
901 		return -EINVAL;
902 
903 	WARN_ON(!atomic_read(&pi_state->refcount));
904 
905 	/*
906 	 * Handle the owner died case:
907 	 */
908 	if (uval & FUTEX_OWNER_DIED) {
909 		/*
910 		 * exit_pi_state_list sets owner to NULL and wakes the
911 		 * topmost waiter. The task which acquires the
912 		 * pi_state->rt_mutex will fixup owner.
913 		 */
914 		if (!pi_state->owner) {
915 			/*
916 			 * No pi state owner, but the user space TID
917 			 * is not 0. Inconsistent state. [5]
918 			 */
919 			if (pid)
920 				return -EINVAL;
921 			/*
922 			 * Take a ref on the state and return success. [4]
923 			 */
924 			goto out_state;
925 		}
926 
927 		/*
928 		 * If TID is 0, then either the dying owner has not
929 		 * yet executed exit_pi_state_list() or some waiter
930 		 * acquired the rtmutex in the pi state, but did not
931 		 * yet fixup the TID in user space.
932 		 *
933 		 * Take a ref on the state and return success. [6]
934 		 */
935 		if (!pid)
936 			goto out_state;
937 	} else {
938 		/*
939 		 * If the owner died bit is not set, then the pi_state
940 		 * must have an owner. [7]
941 		 */
942 		if (!pi_state->owner)
943 			return -EINVAL;
944 	}
945 
946 	/*
947 	 * Bail out if user space manipulated the futex value. If pi
948 	 * state exists then the owner TID must be the same as the
949 	 * user space TID. [9/10]
950 	 */
951 	if (pid != task_pid_vnr(pi_state->owner))
952 		return -EINVAL;
953 out_state:
954 	atomic_inc(&pi_state->refcount);
955 	*ps = pi_state;
956 	return 0;
957 }
958 
959 /*
960  * Lookup the task for the TID provided from user space and attach to
961  * it after doing proper sanity checks.
962  */
attach_to_pi_owner(u32 uval,union futex_key * key,struct futex_pi_state ** ps)963 static int attach_to_pi_owner(u32 uval, union futex_key *key,
964 			      struct futex_pi_state **ps)
965 {
966 	pid_t pid = uval & FUTEX_TID_MASK;
967 	struct futex_pi_state *pi_state;
968 	struct task_struct *p;
969 
970 	/*
971 	 * We are the first waiter - try to look up the real owner and attach
972 	 * the new pi_state to it, but bail out when TID = 0 [1]
973 	 */
974 	if (!pid)
975 		return -ESRCH;
976 	p = futex_find_get_task(pid);
977 	if (!p)
978 		return -ESRCH;
979 
980 	if (unlikely(p->flags & PF_KTHREAD)) {
981 		put_task_struct(p);
982 		return -EPERM;
983 	}
984 
985 	/*
986 	 * We need to look at the task state flags to figure out,
987 	 * whether the task is exiting. To protect against the do_exit
988 	 * change of the task flags, we do this protected by
989 	 * p->pi_lock:
990 	 */
991 	raw_spin_lock_irq(&p->pi_lock);
992 	if (unlikely(p->flags & PF_EXITING)) {
993 		/*
994 		 * The task is on the way out. When PF_EXITPIDONE is
995 		 * set, we know that the task has finished the
996 		 * cleanup:
997 		 */
998 		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
999 
1000 		raw_spin_unlock_irq(&p->pi_lock);
1001 		put_task_struct(p);
1002 		return ret;
1003 	}
1004 
1005 	/*
1006 	 * No existing pi state. First waiter. [2]
1007 	 */
1008 	pi_state = alloc_pi_state();
1009 
1010 	/*
1011 	 * Initialize the pi_mutex in locked state and make @p
1012 	 * the owner of it:
1013 	 */
1014 	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1015 
1016 	/* Store the key for possible exit cleanups: */
1017 	pi_state->key = *key;
1018 
1019 	WARN_ON(!list_empty(&pi_state->list));
1020 	list_add(&pi_state->list, &p->pi_state_list);
1021 	pi_state->owner = p;
1022 	raw_spin_unlock_irq(&p->pi_lock);
1023 
1024 	put_task_struct(p);
1025 
1026 	*ps = pi_state;
1027 
1028 	return 0;
1029 }
1030 
lookup_pi_state(u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps)1031 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1032 			   union futex_key *key, struct futex_pi_state **ps)
1033 {
1034 	struct futex_q *match = futex_top_waiter(hb, key);
1035 
1036 	/*
1037 	 * If there is a waiter on that futex, validate it and
1038 	 * attach to the pi_state when the validation succeeds.
1039 	 */
1040 	if (match)
1041 		return attach_to_pi_state(uval, match->pi_state, ps);
1042 
1043 	/*
1044 	 * We are the first waiter - try to look up the owner based on
1045 	 * @uval and attach to it.
1046 	 */
1047 	return attach_to_pi_owner(uval, key, ps);
1048 }
1049 
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1050 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1051 {
1052 	u32 uninitialized_var(curval);
1053 
1054 	if (unlikely(should_fail_futex(true)))
1055 		return -EFAULT;
1056 
1057 	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1058 		return -EFAULT;
1059 
1060 	/*If user space value changed, let the caller retry */
1061 	return curval != uval ? -EAGAIN : 0;
1062 }
1063 
1064 /**
1065  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1066  * @uaddr:		the pi futex user address
1067  * @hb:			the pi futex hash bucket
1068  * @key:		the futex key associated with uaddr and hb
1069  * @ps:			the pi_state pointer where we store the result of the
1070  *			lookup
1071  * @task:		the task to perform the atomic lock work for.  This will
1072  *			be "current" except in the case of requeue pi.
1073  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1074  *
1075  * Return:
1076  *  0 - ready to wait;
1077  *  1 - acquired the lock;
1078  * <0 - error
1079  *
1080  * The hb->lock and futex_key refs shall be held by the caller.
1081  */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,int set_waiters)1082 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1083 				union futex_key *key,
1084 				struct futex_pi_state **ps,
1085 				struct task_struct *task, int set_waiters)
1086 {
1087 	u32 uval, newval, vpid = task_pid_vnr(task);
1088 	struct futex_q *match;
1089 	int ret;
1090 
1091 	/*
1092 	 * Read the user space value first so we can validate a few
1093 	 * things before proceeding further.
1094 	 */
1095 	if (get_futex_value_locked(&uval, uaddr))
1096 		return -EFAULT;
1097 
1098 	if (unlikely(should_fail_futex(true)))
1099 		return -EFAULT;
1100 
1101 	/*
1102 	 * Detect deadlocks.
1103 	 */
1104 	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1105 		return -EDEADLK;
1106 
1107 	if ((unlikely(should_fail_futex(true))))
1108 		return -EDEADLK;
1109 
1110 	/*
1111 	 * Lookup existing state first. If it exists, try to attach to
1112 	 * its pi_state.
1113 	 */
1114 	match = futex_top_waiter(hb, key);
1115 	if (match)
1116 		return attach_to_pi_state(uval, match->pi_state, ps);
1117 
1118 	/*
1119 	 * No waiter and user TID is 0. We are here because the
1120 	 * waiters or the owner died bit is set or called from
1121 	 * requeue_cmp_pi or for whatever reason something took the
1122 	 * syscall.
1123 	 */
1124 	if (!(uval & FUTEX_TID_MASK)) {
1125 		/*
1126 		 * We take over the futex. No other waiters and the user space
1127 		 * TID is 0. We preserve the owner died bit.
1128 		 */
1129 		newval = uval & FUTEX_OWNER_DIED;
1130 		newval |= vpid;
1131 
1132 		/* The futex requeue_pi code can enforce the waiters bit */
1133 		if (set_waiters)
1134 			newval |= FUTEX_WAITERS;
1135 
1136 		ret = lock_pi_update_atomic(uaddr, uval, newval);
1137 		/* If the take over worked, return 1 */
1138 		return ret < 0 ? ret : 1;
1139 	}
1140 
1141 	/*
1142 	 * First waiter. Set the waiters bit before attaching ourself to
1143 	 * the owner. If owner tries to unlock, it will be forced into
1144 	 * the kernel and blocked on hb->lock.
1145 	 */
1146 	newval = uval | FUTEX_WAITERS;
1147 	ret = lock_pi_update_atomic(uaddr, uval, newval);
1148 	if (ret)
1149 		return ret;
1150 	/*
1151 	 * If the update of the user space value succeeded, we try to
1152 	 * attach to the owner. If that fails, no harm done, we only
1153 	 * set the FUTEX_WAITERS bit in the user space variable.
1154 	 */
1155 	return attach_to_pi_owner(uval, key, ps);
1156 }
1157 
1158 /**
1159  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1160  * @q:	The futex_q to unqueue
1161  *
1162  * The q->lock_ptr must not be NULL and must be held by the caller.
1163  */
__unqueue_futex(struct futex_q * q)1164 static void __unqueue_futex(struct futex_q *q)
1165 {
1166 	struct futex_hash_bucket *hb;
1167 
1168 	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1169 	    || WARN_ON(plist_node_empty(&q->list)))
1170 		return;
1171 
1172 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1173 	plist_del(&q->list, &hb->chain);
1174 	hb_waiters_dec(hb);
1175 }
1176 
1177 /*
1178  * The hash bucket lock must be held when this is called.
1179  * Afterwards, the futex_q must not be accessed. Callers
1180  * must ensure to later call wake_up_q() for the actual
1181  * wakeups to occur.
1182  */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1183 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1184 {
1185 	struct task_struct *p = q->task;
1186 
1187 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1188 		return;
1189 
1190 	/*
1191 	 * Queue the task for later wakeup for after we've released
1192 	 * the hb->lock. wake_q_add() grabs reference to p.
1193 	 */
1194 	wake_q_add(wake_q, p);
1195 	__unqueue_futex(q);
1196 	/*
1197 	 * The waiting task can free the futex_q as soon as
1198 	 * q->lock_ptr = NULL is written, without taking any locks. A
1199 	 * memory barrier is required here to prevent the following
1200 	 * store to lock_ptr from getting ahead of the plist_del.
1201 	 */
1202 	smp_wmb();
1203 	q->lock_ptr = NULL;
1204 }
1205 
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_q * this,struct futex_hash_bucket * hb)1206 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1207 			 struct futex_hash_bucket *hb)
1208 {
1209 	struct task_struct *new_owner;
1210 	struct futex_pi_state *pi_state = this->pi_state;
1211 	u32 uninitialized_var(curval), newval;
1212 	WAKE_Q(wake_q);
1213 	bool deboost;
1214 	int ret = 0;
1215 
1216 	if (!pi_state)
1217 		return -EINVAL;
1218 
1219 	/*
1220 	 * If current does not own the pi_state then the futex is
1221 	 * inconsistent and user space fiddled with the futex value.
1222 	 */
1223 	if (pi_state->owner != current)
1224 		return -EINVAL;
1225 
1226 	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1227 	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1228 
1229 	/*
1230 	 * It is possible that the next waiter (the one that brought
1231 	 * this owner to the kernel) timed out and is no longer
1232 	 * waiting on the lock.
1233 	 */
1234 	if (!new_owner)
1235 		new_owner = this->task;
1236 
1237 	/*
1238 	 * We pass it to the next owner. The WAITERS bit is always
1239 	 * kept enabled while there is PI state around. We cleanup the
1240 	 * owner died bit, because we are the owner.
1241 	 */
1242 	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1243 
1244 	if (unlikely(should_fail_futex(true)))
1245 		ret = -EFAULT;
1246 
1247 	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1248 		ret = -EFAULT;
1249 	} else if (curval != uval) {
1250 		/*
1251 		 * If a unconditional UNLOCK_PI operation (user space did not
1252 		 * try the TID->0 transition) raced with a waiter setting the
1253 		 * FUTEX_WAITERS flag between get_user() and locking the hash
1254 		 * bucket lock, retry the operation.
1255 		 */
1256 		if ((FUTEX_TID_MASK & curval) == uval)
1257 			ret = -EAGAIN;
1258 		else
1259 			ret = -EINVAL;
1260 	}
1261 	if (ret) {
1262 		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1263 		return ret;
1264 	}
1265 
1266 	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1267 	WARN_ON(list_empty(&pi_state->list));
1268 	list_del_init(&pi_state->list);
1269 	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1270 
1271 	raw_spin_lock_irq(&new_owner->pi_lock);
1272 	WARN_ON(!list_empty(&pi_state->list));
1273 	list_add(&pi_state->list, &new_owner->pi_state_list);
1274 	pi_state->owner = new_owner;
1275 	raw_spin_unlock_irq(&new_owner->pi_lock);
1276 
1277 	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1278 
1279 	deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1280 
1281 	/*
1282 	 * First unlock HB so the waiter does not spin on it once he got woken
1283 	 * up. Second wake up the waiter before the priority is adjusted. If we
1284 	 * deboost first (and lose our higher priority), then the task might get
1285 	 * scheduled away before the wake up can take place.
1286 	 */
1287 	spin_unlock(&hb->lock);
1288 	wake_up_q(&wake_q);
1289 	if (deboost)
1290 		rt_mutex_adjust_prio(current);
1291 
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Express the locking dependencies for lockdep:
1297  */
1298 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1299 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1300 {
1301 	if (hb1 <= hb2) {
1302 		spin_lock(&hb1->lock);
1303 		if (hb1 < hb2)
1304 			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1305 	} else { /* hb1 > hb2 */
1306 		spin_lock(&hb2->lock);
1307 		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1308 	}
1309 }
1310 
1311 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1312 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1313 {
1314 	spin_unlock(&hb1->lock);
1315 	if (hb1 != hb2)
1316 		spin_unlock(&hb2->lock);
1317 }
1318 
1319 /*
1320  * Wake up waiters matching bitset queued on this futex (uaddr).
1321  */
1322 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1323 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1324 {
1325 	struct futex_hash_bucket *hb;
1326 	struct futex_q *this, *next;
1327 	union futex_key key = FUTEX_KEY_INIT;
1328 	int ret;
1329 	WAKE_Q(wake_q);
1330 
1331 	if (!bitset)
1332 		return -EINVAL;
1333 
1334 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1335 	if (unlikely(ret != 0))
1336 		goto out;
1337 
1338 	hb = hash_futex(&key);
1339 
1340 	/* Make sure we really have tasks to wakeup */
1341 	if (!hb_waiters_pending(hb))
1342 		goto out_put_key;
1343 
1344 	spin_lock(&hb->lock);
1345 
1346 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1347 		if (match_futex (&this->key, &key)) {
1348 			if (this->pi_state || this->rt_waiter) {
1349 				ret = -EINVAL;
1350 				break;
1351 			}
1352 
1353 			/* Check if one of the bits is set in both bitsets */
1354 			if (!(this->bitset & bitset))
1355 				continue;
1356 
1357 			mark_wake_futex(&wake_q, this);
1358 			if (++ret >= nr_wake)
1359 				break;
1360 		}
1361 	}
1362 
1363 	spin_unlock(&hb->lock);
1364 	wake_up_q(&wake_q);
1365 out_put_key:
1366 	put_futex_key(&key);
1367 out:
1368 	return ret;
1369 }
1370 
1371 /*
1372  * Wake up all waiters hashed on the physical page that is mapped
1373  * to this virtual address:
1374  */
1375 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1376 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1377 	      int nr_wake, int nr_wake2, int op)
1378 {
1379 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1380 	struct futex_hash_bucket *hb1, *hb2;
1381 	struct futex_q *this, *next;
1382 	int ret, op_ret;
1383 	WAKE_Q(wake_q);
1384 
1385 retry:
1386 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1387 	if (unlikely(ret != 0))
1388 		goto out;
1389 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1390 	if (unlikely(ret != 0))
1391 		goto out_put_key1;
1392 
1393 	hb1 = hash_futex(&key1);
1394 	hb2 = hash_futex(&key2);
1395 
1396 retry_private:
1397 	double_lock_hb(hb1, hb2);
1398 	op_ret = futex_atomic_op_inuser(op, uaddr2);
1399 	if (unlikely(op_ret < 0)) {
1400 
1401 		double_unlock_hb(hb1, hb2);
1402 
1403 #ifndef CONFIG_MMU
1404 		/*
1405 		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1406 		 * but we might get them from range checking
1407 		 */
1408 		ret = op_ret;
1409 		goto out_put_keys;
1410 #endif
1411 
1412 		if (unlikely(op_ret != -EFAULT)) {
1413 			ret = op_ret;
1414 			goto out_put_keys;
1415 		}
1416 
1417 		ret = fault_in_user_writeable(uaddr2);
1418 		if (ret)
1419 			goto out_put_keys;
1420 
1421 		if (!(flags & FLAGS_SHARED))
1422 			goto retry_private;
1423 
1424 		put_futex_key(&key2);
1425 		put_futex_key(&key1);
1426 		goto retry;
1427 	}
1428 
1429 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1430 		if (match_futex (&this->key, &key1)) {
1431 			if (this->pi_state || this->rt_waiter) {
1432 				ret = -EINVAL;
1433 				goto out_unlock;
1434 			}
1435 			mark_wake_futex(&wake_q, this);
1436 			if (++ret >= nr_wake)
1437 				break;
1438 		}
1439 	}
1440 
1441 	if (op_ret > 0) {
1442 		op_ret = 0;
1443 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1444 			if (match_futex (&this->key, &key2)) {
1445 				if (this->pi_state || this->rt_waiter) {
1446 					ret = -EINVAL;
1447 					goto out_unlock;
1448 				}
1449 				mark_wake_futex(&wake_q, this);
1450 				if (++op_ret >= nr_wake2)
1451 					break;
1452 			}
1453 		}
1454 		ret += op_ret;
1455 	}
1456 
1457 out_unlock:
1458 	double_unlock_hb(hb1, hb2);
1459 	wake_up_q(&wake_q);
1460 out_put_keys:
1461 	put_futex_key(&key2);
1462 out_put_key1:
1463 	put_futex_key(&key1);
1464 out:
1465 	return ret;
1466 }
1467 
1468 /**
1469  * requeue_futex() - Requeue a futex_q from one hb to another
1470  * @q:		the futex_q to requeue
1471  * @hb1:	the source hash_bucket
1472  * @hb2:	the target hash_bucket
1473  * @key2:	the new key for the requeued futex_q
1474  */
1475 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1476 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1477 		   struct futex_hash_bucket *hb2, union futex_key *key2)
1478 {
1479 
1480 	/*
1481 	 * If key1 and key2 hash to the same bucket, no need to
1482 	 * requeue.
1483 	 */
1484 	if (likely(&hb1->chain != &hb2->chain)) {
1485 		plist_del(&q->list, &hb1->chain);
1486 		hb_waiters_dec(hb1);
1487 		hb_waiters_inc(hb2);
1488 		plist_add(&q->list, &hb2->chain);
1489 		q->lock_ptr = &hb2->lock;
1490 	}
1491 	get_futex_key_refs(key2);
1492 	q->key = *key2;
1493 }
1494 
1495 /**
1496  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1497  * @q:		the futex_q
1498  * @key:	the key of the requeue target futex
1499  * @hb:		the hash_bucket of the requeue target futex
1500  *
1501  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1502  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1503  * to the requeue target futex so the waiter can detect the wakeup on the right
1504  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1505  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1506  * to protect access to the pi_state to fixup the owner later.  Must be called
1507  * with both q->lock_ptr and hb->lock held.
1508  */
1509 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1510 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1511 			   struct futex_hash_bucket *hb)
1512 {
1513 	get_futex_key_refs(key);
1514 	q->key = *key;
1515 
1516 	__unqueue_futex(q);
1517 
1518 	WARN_ON(!q->rt_waiter);
1519 	q->rt_waiter = NULL;
1520 
1521 	q->lock_ptr = &hb->lock;
1522 
1523 	wake_up_state(q->task, TASK_NORMAL);
1524 }
1525 
1526 /**
1527  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1528  * @pifutex:		the user address of the to futex
1529  * @hb1:		the from futex hash bucket, must be locked by the caller
1530  * @hb2:		the to futex hash bucket, must be locked by the caller
1531  * @key1:		the from futex key
1532  * @key2:		the to futex key
1533  * @ps:			address to store the pi_state pointer
1534  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1535  *
1536  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1537  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1538  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1539  * hb1 and hb2 must be held by the caller.
1540  *
1541  * Return:
1542  *  0 - failed to acquire the lock atomically;
1543  * >0 - acquired the lock, return value is vpid of the top_waiter
1544  * <0 - error
1545  */
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,int set_waiters)1546 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1547 				 struct futex_hash_bucket *hb1,
1548 				 struct futex_hash_bucket *hb2,
1549 				 union futex_key *key1, union futex_key *key2,
1550 				 struct futex_pi_state **ps, int set_waiters)
1551 {
1552 	struct futex_q *top_waiter = NULL;
1553 	u32 curval;
1554 	int ret, vpid;
1555 
1556 	if (get_futex_value_locked(&curval, pifutex))
1557 		return -EFAULT;
1558 
1559 	if (unlikely(should_fail_futex(true)))
1560 		return -EFAULT;
1561 
1562 	/*
1563 	 * Find the top_waiter and determine if there are additional waiters.
1564 	 * If the caller intends to requeue more than 1 waiter to pifutex,
1565 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1566 	 * as we have means to handle the possible fault.  If not, don't set
1567 	 * the bit unecessarily as it will force the subsequent unlock to enter
1568 	 * the kernel.
1569 	 */
1570 	top_waiter = futex_top_waiter(hb1, key1);
1571 
1572 	/* There are no waiters, nothing for us to do. */
1573 	if (!top_waiter)
1574 		return 0;
1575 
1576 	/* Ensure we requeue to the expected futex. */
1577 	if (!match_futex(top_waiter->requeue_pi_key, key2))
1578 		return -EINVAL;
1579 
1580 	/*
1581 	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1582 	 * the contended case or if set_waiters is 1.  The pi_state is returned
1583 	 * in ps in contended cases.
1584 	 */
1585 	vpid = task_pid_vnr(top_waiter->task);
1586 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1587 				   set_waiters);
1588 	if (ret == 1) {
1589 		requeue_pi_wake_futex(top_waiter, key2, hb2);
1590 		return vpid;
1591 	}
1592 	return ret;
1593 }
1594 
1595 /**
1596  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1597  * @uaddr1:	source futex user address
1598  * @flags:	futex flags (FLAGS_SHARED, etc.)
1599  * @uaddr2:	target futex user address
1600  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1601  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1602  * @cmpval:	@uaddr1 expected value (or %NULL)
1603  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1604  *		pi futex (pi to pi requeue is not supported)
1605  *
1606  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1607  * uaddr2 atomically on behalf of the top waiter.
1608  *
1609  * Return:
1610  * >=0 - on success, the number of tasks requeued or woken;
1611  *  <0 - on error
1612  */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1613 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1614 			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1615 			 u32 *cmpval, int requeue_pi)
1616 {
1617 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1618 	int drop_count = 0, task_count = 0, ret;
1619 	struct futex_pi_state *pi_state = NULL;
1620 	struct futex_hash_bucket *hb1, *hb2;
1621 	struct futex_q *this, *next;
1622 	WAKE_Q(wake_q);
1623 
1624 	if (requeue_pi) {
1625 		/*
1626 		 * Requeue PI only works on two distinct uaddrs. This
1627 		 * check is only valid for private futexes. See below.
1628 		 */
1629 		if (uaddr1 == uaddr2)
1630 			return -EINVAL;
1631 
1632 		/*
1633 		 * requeue_pi requires a pi_state, try to allocate it now
1634 		 * without any locks in case it fails.
1635 		 */
1636 		if (refill_pi_state_cache())
1637 			return -ENOMEM;
1638 		/*
1639 		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1640 		 * + nr_requeue, since it acquires the rt_mutex prior to
1641 		 * returning to userspace, so as to not leave the rt_mutex with
1642 		 * waiters and no owner.  However, second and third wake-ups
1643 		 * cannot be predicted as they involve race conditions with the
1644 		 * first wake and a fault while looking up the pi_state.  Both
1645 		 * pthread_cond_signal() and pthread_cond_broadcast() should
1646 		 * use nr_wake=1.
1647 		 */
1648 		if (nr_wake != 1)
1649 			return -EINVAL;
1650 	}
1651 
1652 retry:
1653 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1654 	if (unlikely(ret != 0))
1655 		goto out;
1656 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1657 			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1658 	if (unlikely(ret != 0))
1659 		goto out_put_key1;
1660 
1661 	/*
1662 	 * The check above which compares uaddrs is not sufficient for
1663 	 * shared futexes. We need to compare the keys:
1664 	 */
1665 	if (requeue_pi && match_futex(&key1, &key2)) {
1666 		ret = -EINVAL;
1667 		goto out_put_keys;
1668 	}
1669 
1670 	hb1 = hash_futex(&key1);
1671 	hb2 = hash_futex(&key2);
1672 
1673 retry_private:
1674 	hb_waiters_inc(hb2);
1675 	double_lock_hb(hb1, hb2);
1676 
1677 	if (likely(cmpval != NULL)) {
1678 		u32 curval;
1679 
1680 		ret = get_futex_value_locked(&curval, uaddr1);
1681 
1682 		if (unlikely(ret)) {
1683 			double_unlock_hb(hb1, hb2);
1684 			hb_waiters_dec(hb2);
1685 
1686 			ret = get_user(curval, uaddr1);
1687 			if (ret)
1688 				goto out_put_keys;
1689 
1690 			if (!(flags & FLAGS_SHARED))
1691 				goto retry_private;
1692 
1693 			put_futex_key(&key2);
1694 			put_futex_key(&key1);
1695 			goto retry;
1696 		}
1697 		if (curval != *cmpval) {
1698 			ret = -EAGAIN;
1699 			goto out_unlock;
1700 		}
1701 	}
1702 
1703 	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1704 		/*
1705 		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1706 		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1707 		 * bit.  We force this here where we are able to easily handle
1708 		 * faults rather in the requeue loop below.
1709 		 */
1710 		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1711 						 &key2, &pi_state, nr_requeue);
1712 
1713 		/*
1714 		 * At this point the top_waiter has either taken uaddr2 or is
1715 		 * waiting on it.  If the former, then the pi_state will not
1716 		 * exist yet, look it up one more time to ensure we have a
1717 		 * reference to it. If the lock was taken, ret contains the
1718 		 * vpid of the top waiter task.
1719 		 */
1720 		if (ret > 0) {
1721 			WARN_ON(pi_state);
1722 			drop_count++;
1723 			task_count++;
1724 			/*
1725 			 * If we acquired the lock, then the user
1726 			 * space value of uaddr2 should be vpid. It
1727 			 * cannot be changed by the top waiter as it
1728 			 * is blocked on hb2 lock if it tries to do
1729 			 * so. If something fiddled with it behind our
1730 			 * back the pi state lookup might unearth
1731 			 * it. So we rather use the known value than
1732 			 * rereading and handing potential crap to
1733 			 * lookup_pi_state.
1734 			 */
1735 			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1736 		}
1737 
1738 		switch (ret) {
1739 		case 0:
1740 			break;
1741 		case -EFAULT:
1742 			free_pi_state(pi_state);
1743 			pi_state = NULL;
1744 			double_unlock_hb(hb1, hb2);
1745 			hb_waiters_dec(hb2);
1746 			put_futex_key(&key2);
1747 			put_futex_key(&key1);
1748 			ret = fault_in_user_writeable(uaddr2);
1749 			if (!ret)
1750 				goto retry;
1751 			goto out;
1752 		case -EAGAIN:
1753 			/*
1754 			 * Two reasons for this:
1755 			 * - Owner is exiting and we just wait for the
1756 			 *   exit to complete.
1757 			 * - The user space value changed.
1758 			 */
1759 			free_pi_state(pi_state);
1760 			pi_state = NULL;
1761 			double_unlock_hb(hb1, hb2);
1762 			hb_waiters_dec(hb2);
1763 			put_futex_key(&key2);
1764 			put_futex_key(&key1);
1765 			cond_resched();
1766 			goto retry;
1767 		default:
1768 			goto out_unlock;
1769 		}
1770 	}
1771 
1772 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1773 		if (task_count - nr_wake >= nr_requeue)
1774 			break;
1775 
1776 		if (!match_futex(&this->key, &key1))
1777 			continue;
1778 
1779 		/*
1780 		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1781 		 * be paired with each other and no other futex ops.
1782 		 *
1783 		 * We should never be requeueing a futex_q with a pi_state,
1784 		 * which is awaiting a futex_unlock_pi().
1785 		 */
1786 		if ((requeue_pi && !this->rt_waiter) ||
1787 		    (!requeue_pi && this->rt_waiter) ||
1788 		    this->pi_state) {
1789 			ret = -EINVAL;
1790 			break;
1791 		}
1792 
1793 		/*
1794 		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1795 		 * lock, we already woke the top_waiter.  If not, it will be
1796 		 * woken by futex_unlock_pi().
1797 		 */
1798 		if (++task_count <= nr_wake && !requeue_pi) {
1799 			mark_wake_futex(&wake_q, this);
1800 			continue;
1801 		}
1802 
1803 		/* Ensure we requeue to the expected futex for requeue_pi. */
1804 		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1805 			ret = -EINVAL;
1806 			break;
1807 		}
1808 
1809 		/*
1810 		 * Requeue nr_requeue waiters and possibly one more in the case
1811 		 * of requeue_pi if we couldn't acquire the lock atomically.
1812 		 */
1813 		if (requeue_pi) {
1814 			/* Prepare the waiter to take the rt_mutex. */
1815 			atomic_inc(&pi_state->refcount);
1816 			this->pi_state = pi_state;
1817 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1818 							this->rt_waiter,
1819 							this->task);
1820 			if (ret == 1) {
1821 				/* We got the lock. */
1822 				requeue_pi_wake_futex(this, &key2, hb2);
1823 				drop_count++;
1824 				continue;
1825 			} else if (ret) {
1826 				/* -EDEADLK */
1827 				this->pi_state = NULL;
1828 				free_pi_state(pi_state);
1829 				goto out_unlock;
1830 			}
1831 		}
1832 		requeue_futex(this, hb1, hb2, &key2);
1833 		drop_count++;
1834 	}
1835 
1836 out_unlock:
1837 	free_pi_state(pi_state);
1838 	double_unlock_hb(hb1, hb2);
1839 	wake_up_q(&wake_q);
1840 	hb_waiters_dec(hb2);
1841 
1842 	/*
1843 	 * drop_futex_key_refs() must be called outside the spinlocks. During
1844 	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1845 	 * one at key2 and updated their key pointer.  We no longer need to
1846 	 * hold the references to key1.
1847 	 */
1848 	while (--drop_count >= 0)
1849 		drop_futex_key_refs(&key1);
1850 
1851 out_put_keys:
1852 	put_futex_key(&key2);
1853 out_put_key1:
1854 	put_futex_key(&key1);
1855 out:
1856 	return ret ? ret : task_count;
1857 }
1858 
1859 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)1860 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1861 	__acquires(&hb->lock)
1862 {
1863 	struct futex_hash_bucket *hb;
1864 
1865 	hb = hash_futex(&q->key);
1866 
1867 	/*
1868 	 * Increment the counter before taking the lock so that
1869 	 * a potential waker won't miss a to-be-slept task that is
1870 	 * waiting for the spinlock. This is safe as all queue_lock()
1871 	 * users end up calling queue_me(). Similarly, for housekeeping,
1872 	 * decrement the counter at queue_unlock() when some error has
1873 	 * occurred and we don't end up adding the task to the list.
1874 	 */
1875 	hb_waiters_inc(hb);
1876 
1877 	q->lock_ptr = &hb->lock;
1878 
1879 	spin_lock(&hb->lock); /* implies MB (A) */
1880 	return hb;
1881 }
1882 
1883 static inline void
queue_unlock(struct futex_hash_bucket * hb)1884 queue_unlock(struct futex_hash_bucket *hb)
1885 	__releases(&hb->lock)
1886 {
1887 	spin_unlock(&hb->lock);
1888 	hb_waiters_dec(hb);
1889 }
1890 
1891 /**
1892  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1893  * @q:	The futex_q to enqueue
1894  * @hb:	The destination hash bucket
1895  *
1896  * The hb->lock must be held by the caller, and is released here. A call to
1897  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1898  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1899  * or nothing if the unqueue is done as part of the wake process and the unqueue
1900  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1901  * an example).
1902  */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)1903 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1904 	__releases(&hb->lock)
1905 {
1906 	int prio;
1907 
1908 	/*
1909 	 * The priority used to register this element is
1910 	 * - either the real thread-priority for the real-time threads
1911 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1912 	 * - or MAX_RT_PRIO for non-RT threads.
1913 	 * Thus, all RT-threads are woken first in priority order, and
1914 	 * the others are woken last, in FIFO order.
1915 	 */
1916 	prio = min(current->normal_prio, MAX_RT_PRIO);
1917 
1918 	plist_node_init(&q->list, prio);
1919 	plist_add(&q->list, &hb->chain);
1920 	q->task = current;
1921 	spin_unlock(&hb->lock);
1922 }
1923 
1924 /**
1925  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1926  * @q:	The futex_q to unqueue
1927  *
1928  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1929  * be paired with exactly one earlier call to queue_me().
1930  *
1931  * Return:
1932  *   1 - if the futex_q was still queued (and we removed unqueued it);
1933  *   0 - if the futex_q was already removed by the waking thread
1934  */
unqueue_me(struct futex_q * q)1935 static int unqueue_me(struct futex_q *q)
1936 {
1937 	spinlock_t *lock_ptr;
1938 	int ret = 0;
1939 
1940 	/* In the common case we don't take the spinlock, which is nice. */
1941 retry:
1942 	lock_ptr = q->lock_ptr;
1943 	barrier();
1944 	if (lock_ptr != NULL) {
1945 		spin_lock(lock_ptr);
1946 		/*
1947 		 * q->lock_ptr can change between reading it and
1948 		 * spin_lock(), causing us to take the wrong lock.  This
1949 		 * corrects the race condition.
1950 		 *
1951 		 * Reasoning goes like this: if we have the wrong lock,
1952 		 * q->lock_ptr must have changed (maybe several times)
1953 		 * between reading it and the spin_lock().  It can
1954 		 * change again after the spin_lock() but only if it was
1955 		 * already changed before the spin_lock().  It cannot,
1956 		 * however, change back to the original value.  Therefore
1957 		 * we can detect whether we acquired the correct lock.
1958 		 */
1959 		if (unlikely(lock_ptr != q->lock_ptr)) {
1960 			spin_unlock(lock_ptr);
1961 			goto retry;
1962 		}
1963 		__unqueue_futex(q);
1964 
1965 		BUG_ON(q->pi_state);
1966 
1967 		spin_unlock(lock_ptr);
1968 		ret = 1;
1969 	}
1970 
1971 	drop_futex_key_refs(&q->key);
1972 	return ret;
1973 }
1974 
1975 /*
1976  * PI futexes can not be requeued and must remove themself from the
1977  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1978  * and dropped here.
1979  */
unqueue_me_pi(struct futex_q * q)1980 static void unqueue_me_pi(struct futex_q *q)
1981 	__releases(q->lock_ptr)
1982 {
1983 	__unqueue_futex(q);
1984 
1985 	BUG_ON(!q->pi_state);
1986 	free_pi_state(q->pi_state);
1987 	q->pi_state = NULL;
1988 
1989 	spin_unlock(q->lock_ptr);
1990 }
1991 
1992 /*
1993  * Fixup the pi_state owner with the new owner.
1994  *
1995  * Must be called with hash bucket lock held and mm->sem held for non
1996  * private futexes.
1997  */
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * newowner)1998 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1999 				struct task_struct *newowner)
2000 {
2001 	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2002 	struct futex_pi_state *pi_state = q->pi_state;
2003 	struct task_struct *oldowner = pi_state->owner;
2004 	u32 uval, uninitialized_var(curval), newval;
2005 	int ret;
2006 
2007 	/* Owner died? */
2008 	if (!pi_state->owner)
2009 		newtid |= FUTEX_OWNER_DIED;
2010 
2011 	/*
2012 	 * We are here either because we stole the rtmutex from the
2013 	 * previous highest priority waiter or we are the highest priority
2014 	 * waiter but failed to get the rtmutex the first time.
2015 	 * We have to replace the newowner TID in the user space variable.
2016 	 * This must be atomic as we have to preserve the owner died bit here.
2017 	 *
2018 	 * Note: We write the user space value _before_ changing the pi_state
2019 	 * because we can fault here. Imagine swapped out pages or a fork
2020 	 * that marked all the anonymous memory readonly for cow.
2021 	 *
2022 	 * Modifying pi_state _before_ the user space value would
2023 	 * leave the pi_state in an inconsistent state when we fault
2024 	 * here, because we need to drop the hash bucket lock to
2025 	 * handle the fault. This might be observed in the PID check
2026 	 * in lookup_pi_state.
2027 	 */
2028 retry:
2029 	if (get_futex_value_locked(&uval, uaddr))
2030 		goto handle_fault;
2031 
2032 	while (1) {
2033 		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2034 
2035 		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2036 			goto handle_fault;
2037 		if (curval == uval)
2038 			break;
2039 		uval = curval;
2040 	}
2041 
2042 	/*
2043 	 * We fixed up user space. Now we need to fix the pi_state
2044 	 * itself.
2045 	 */
2046 	if (pi_state->owner != NULL) {
2047 		raw_spin_lock_irq(&pi_state->owner->pi_lock);
2048 		WARN_ON(list_empty(&pi_state->list));
2049 		list_del_init(&pi_state->list);
2050 		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2051 	}
2052 
2053 	pi_state->owner = newowner;
2054 
2055 	raw_spin_lock_irq(&newowner->pi_lock);
2056 	WARN_ON(!list_empty(&pi_state->list));
2057 	list_add(&pi_state->list, &newowner->pi_state_list);
2058 	raw_spin_unlock_irq(&newowner->pi_lock);
2059 	return 0;
2060 
2061 	/*
2062 	 * To handle the page fault we need to drop the hash bucket
2063 	 * lock here. That gives the other task (either the highest priority
2064 	 * waiter itself or the task which stole the rtmutex) the
2065 	 * chance to try the fixup of the pi_state. So once we are
2066 	 * back from handling the fault we need to check the pi_state
2067 	 * after reacquiring the hash bucket lock and before trying to
2068 	 * do another fixup. When the fixup has been done already we
2069 	 * simply return.
2070 	 */
2071 handle_fault:
2072 	spin_unlock(q->lock_ptr);
2073 
2074 	ret = fault_in_user_writeable(uaddr);
2075 
2076 	spin_lock(q->lock_ptr);
2077 
2078 	/*
2079 	 * Check if someone else fixed it for us:
2080 	 */
2081 	if (pi_state->owner != oldowner)
2082 		return 0;
2083 
2084 	if (ret)
2085 		return ret;
2086 
2087 	goto retry;
2088 }
2089 
2090 static long futex_wait_restart(struct restart_block *restart);
2091 
2092 /**
2093  * fixup_owner() - Post lock pi_state and corner case management
2094  * @uaddr:	user address of the futex
2095  * @q:		futex_q (contains pi_state and access to the rt_mutex)
2096  * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2097  *
2098  * After attempting to lock an rt_mutex, this function is called to cleanup
2099  * the pi_state owner as well as handle race conditions that may allow us to
2100  * acquire the lock. Must be called with the hb lock held.
2101  *
2102  * Return:
2103  *  1 - success, lock taken;
2104  *  0 - success, lock not taken;
2105  * <0 - on error (-EFAULT)
2106  */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2107 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2108 {
2109 	struct task_struct *owner;
2110 	int ret = 0;
2111 
2112 	if (locked) {
2113 		/*
2114 		 * Got the lock. We might not be the anticipated owner if we
2115 		 * did a lock-steal - fix up the PI-state in that case:
2116 		 */
2117 		if (q->pi_state->owner != current)
2118 			ret = fixup_pi_state_owner(uaddr, q, current);
2119 		goto out;
2120 	}
2121 
2122 	/*
2123 	 * Catch the rare case, where the lock was released when we were on the
2124 	 * way back before we locked the hash bucket.
2125 	 */
2126 	if (q->pi_state->owner == current) {
2127 		/*
2128 		 * Try to get the rt_mutex now. This might fail as some other
2129 		 * task acquired the rt_mutex after we removed ourself from the
2130 		 * rt_mutex waiters list.
2131 		 */
2132 		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2133 			locked = 1;
2134 			goto out;
2135 		}
2136 
2137 		/*
2138 		 * pi_state is incorrect, some other task did a lock steal and
2139 		 * we returned due to timeout or signal without taking the
2140 		 * rt_mutex. Too late.
2141 		 */
2142 		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2143 		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2144 		if (!owner)
2145 			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2146 		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2147 		ret = fixup_pi_state_owner(uaddr, q, owner);
2148 		goto out;
2149 	}
2150 
2151 	/*
2152 	 * Paranoia check. If we did not take the lock, then we should not be
2153 	 * the owner of the rt_mutex.
2154 	 */
2155 	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2156 		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2157 				"pi-state %p\n", ret,
2158 				q->pi_state->pi_mutex.owner,
2159 				q->pi_state->owner);
2160 
2161 out:
2162 	return ret ? ret : locked;
2163 }
2164 
2165 /**
2166  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2167  * @hb:		the futex hash bucket, must be locked by the caller
2168  * @q:		the futex_q to queue up on
2169  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2170  */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2171 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2172 				struct hrtimer_sleeper *timeout)
2173 {
2174 	/*
2175 	 * The task state is guaranteed to be set before another task can
2176 	 * wake it. set_current_state() is implemented using smp_store_mb() and
2177 	 * queue_me() calls spin_unlock() upon completion, both serializing
2178 	 * access to the hash list and forcing another memory barrier.
2179 	 */
2180 	set_current_state(TASK_INTERRUPTIBLE);
2181 	queue_me(q, hb);
2182 
2183 	/* Arm the timer */
2184 	if (timeout)
2185 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2186 
2187 	/*
2188 	 * If we have been removed from the hash list, then another task
2189 	 * has tried to wake us, and we can skip the call to schedule().
2190 	 */
2191 	if (likely(!plist_node_empty(&q->list))) {
2192 		/*
2193 		 * If the timer has already expired, current will already be
2194 		 * flagged for rescheduling. Only call schedule if there
2195 		 * is no timeout, or if it has yet to expire.
2196 		 */
2197 		if (!timeout || timeout->task)
2198 			freezable_schedule();
2199 	}
2200 	__set_current_state(TASK_RUNNING);
2201 }
2202 
2203 /**
2204  * futex_wait_setup() - Prepare to wait on a futex
2205  * @uaddr:	the futex userspace address
2206  * @val:	the expected value
2207  * @flags:	futex flags (FLAGS_SHARED, etc.)
2208  * @q:		the associated futex_q
2209  * @hb:		storage for hash_bucket pointer to be returned to caller
2210  *
2211  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2212  * compare it with the expected value.  Handle atomic faults internally.
2213  * Return with the hb lock held and a q.key reference on success, and unlocked
2214  * with no q.key reference on failure.
2215  *
2216  * Return:
2217  *  0 - uaddr contains val and hb has been locked;
2218  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2219  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2220 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2221 			   struct futex_q *q, struct futex_hash_bucket **hb)
2222 {
2223 	u32 uval;
2224 	int ret;
2225 
2226 	/*
2227 	 * Access the page AFTER the hash-bucket is locked.
2228 	 * Order is important:
2229 	 *
2230 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2231 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2232 	 *
2233 	 * The basic logical guarantee of a futex is that it blocks ONLY
2234 	 * if cond(var) is known to be true at the time of blocking, for
2235 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2236 	 * would open a race condition where we could block indefinitely with
2237 	 * cond(var) false, which would violate the guarantee.
2238 	 *
2239 	 * On the other hand, we insert q and release the hash-bucket only
2240 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2241 	 * absorb a wakeup if *uaddr does not match the desired values
2242 	 * while the syscall executes.
2243 	 */
2244 retry:
2245 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2246 	if (unlikely(ret != 0))
2247 		return ret;
2248 
2249 retry_private:
2250 	*hb = queue_lock(q);
2251 
2252 	ret = get_futex_value_locked(&uval, uaddr);
2253 
2254 	if (ret) {
2255 		queue_unlock(*hb);
2256 
2257 		ret = get_user(uval, uaddr);
2258 		if (ret)
2259 			goto out;
2260 
2261 		if (!(flags & FLAGS_SHARED))
2262 			goto retry_private;
2263 
2264 		put_futex_key(&q->key);
2265 		goto retry;
2266 	}
2267 
2268 	if (uval != val) {
2269 		queue_unlock(*hb);
2270 		ret = -EWOULDBLOCK;
2271 	}
2272 
2273 out:
2274 	if (ret)
2275 		put_futex_key(&q->key);
2276 	return ret;
2277 }
2278 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2279 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2280 		      ktime_t *abs_time, u32 bitset)
2281 {
2282 	struct hrtimer_sleeper timeout, *to = NULL;
2283 	struct restart_block *restart;
2284 	struct futex_hash_bucket *hb;
2285 	struct futex_q q = futex_q_init;
2286 	int ret;
2287 
2288 	if (!bitset)
2289 		return -EINVAL;
2290 	q.bitset = bitset;
2291 
2292 	if (abs_time) {
2293 		to = &timeout;
2294 
2295 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2296 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2297 				      HRTIMER_MODE_ABS);
2298 		hrtimer_init_sleeper(to, current);
2299 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2300 					     current->timer_slack_ns);
2301 	}
2302 
2303 retry:
2304 	/*
2305 	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2306 	 * q.key refs.
2307 	 */
2308 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2309 	if (ret)
2310 		goto out;
2311 
2312 	/* queue_me and wait for wakeup, timeout, or a signal. */
2313 	futex_wait_queue_me(hb, &q, to);
2314 
2315 	/* If we were woken (and unqueued), we succeeded, whatever. */
2316 	ret = 0;
2317 	/* unqueue_me() drops q.key ref */
2318 	if (!unqueue_me(&q))
2319 		goto out;
2320 	ret = -ETIMEDOUT;
2321 	if (to && !to->task)
2322 		goto out;
2323 
2324 	/*
2325 	 * We expect signal_pending(current), but we might be the
2326 	 * victim of a spurious wakeup as well.
2327 	 */
2328 	if (!signal_pending(current))
2329 		goto retry;
2330 
2331 	ret = -ERESTARTSYS;
2332 	if (!abs_time)
2333 		goto out;
2334 
2335 	restart = &current->restart_block;
2336 	restart->fn = futex_wait_restart;
2337 	restart->futex.uaddr = uaddr;
2338 	restart->futex.val = val;
2339 	restart->futex.time = abs_time->tv64;
2340 	restart->futex.bitset = bitset;
2341 	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2342 
2343 	ret = -ERESTART_RESTARTBLOCK;
2344 
2345 out:
2346 	if (to) {
2347 		hrtimer_cancel(&to->timer);
2348 		destroy_hrtimer_on_stack(&to->timer);
2349 	}
2350 	return ret;
2351 }
2352 
2353 
futex_wait_restart(struct restart_block * restart)2354 static long futex_wait_restart(struct restart_block *restart)
2355 {
2356 	u32 __user *uaddr = restart->futex.uaddr;
2357 	ktime_t t, *tp = NULL;
2358 
2359 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2360 		t.tv64 = restart->futex.time;
2361 		tp = &t;
2362 	}
2363 	restart->fn = do_no_restart_syscall;
2364 
2365 	return (long)futex_wait(uaddr, restart->futex.flags,
2366 				restart->futex.val, tp, restart->futex.bitset);
2367 }
2368 
2369 
2370 /*
2371  * Userspace tried a 0 -> TID atomic transition of the futex value
2372  * and failed. The kernel side here does the whole locking operation:
2373  * if there are waiters then it will block as a consequence of relying
2374  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2375  * a 0 value of the futex too.).
2376  *
2377  * Also serves as futex trylock_pi()'ing, and due semantics.
2378  */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2379 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2380 			 ktime_t *time, int trylock)
2381 {
2382 	struct hrtimer_sleeper timeout, *to = NULL;
2383 	struct futex_hash_bucket *hb;
2384 	struct futex_q q = futex_q_init;
2385 	int res, ret;
2386 
2387 	if (refill_pi_state_cache())
2388 		return -ENOMEM;
2389 
2390 	if (time) {
2391 		to = &timeout;
2392 		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2393 				      HRTIMER_MODE_ABS);
2394 		hrtimer_init_sleeper(to, current);
2395 		hrtimer_set_expires(&to->timer, *time);
2396 	}
2397 
2398 retry:
2399 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2400 	if (unlikely(ret != 0))
2401 		goto out;
2402 
2403 retry_private:
2404 	hb = queue_lock(&q);
2405 
2406 	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2407 	if (unlikely(ret)) {
2408 		/*
2409 		 * Atomic work succeeded and we got the lock,
2410 		 * or failed. Either way, we do _not_ block.
2411 		 */
2412 		switch (ret) {
2413 		case 1:
2414 			/* We got the lock. */
2415 			ret = 0;
2416 			goto out_unlock_put_key;
2417 		case -EFAULT:
2418 			goto uaddr_faulted;
2419 		case -EAGAIN:
2420 			/*
2421 			 * Two reasons for this:
2422 			 * - Task is exiting and we just wait for the
2423 			 *   exit to complete.
2424 			 * - The user space value changed.
2425 			 */
2426 			queue_unlock(hb);
2427 			put_futex_key(&q.key);
2428 			cond_resched();
2429 			goto retry;
2430 		default:
2431 			goto out_unlock_put_key;
2432 		}
2433 	}
2434 
2435 	/*
2436 	 * Only actually queue now that the atomic ops are done:
2437 	 */
2438 	queue_me(&q, hb);
2439 
2440 	WARN_ON(!q.pi_state);
2441 	/*
2442 	 * Block on the PI mutex:
2443 	 */
2444 	if (!trylock) {
2445 		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2446 	} else {
2447 		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2448 		/* Fixup the trylock return value: */
2449 		ret = ret ? 0 : -EWOULDBLOCK;
2450 	}
2451 
2452 	spin_lock(q.lock_ptr);
2453 	/*
2454 	 * Fixup the pi_state owner and possibly acquire the lock if we
2455 	 * haven't already.
2456 	 */
2457 	res = fixup_owner(uaddr, &q, !ret);
2458 	/*
2459 	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2460 	 * the lock, clear our -ETIMEDOUT or -EINTR.
2461 	 */
2462 	if (res)
2463 		ret = (res < 0) ? res : 0;
2464 
2465 	/*
2466 	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2467 	 * it and return the fault to userspace.
2468 	 */
2469 	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2470 		rt_mutex_unlock(&q.pi_state->pi_mutex);
2471 
2472 	/* Unqueue and drop the lock */
2473 	unqueue_me_pi(&q);
2474 
2475 	goto out_put_key;
2476 
2477 out_unlock_put_key:
2478 	queue_unlock(hb);
2479 
2480 out_put_key:
2481 	put_futex_key(&q.key);
2482 out:
2483 	if (to)
2484 		destroy_hrtimer_on_stack(&to->timer);
2485 	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2486 
2487 uaddr_faulted:
2488 	queue_unlock(hb);
2489 
2490 	ret = fault_in_user_writeable(uaddr);
2491 	if (ret)
2492 		goto out_put_key;
2493 
2494 	if (!(flags & FLAGS_SHARED))
2495 		goto retry_private;
2496 
2497 	put_futex_key(&q.key);
2498 	goto retry;
2499 }
2500 
2501 /*
2502  * Userspace attempted a TID -> 0 atomic transition, and failed.
2503  * This is the in-kernel slowpath: we look up the PI state (if any),
2504  * and do the rt-mutex unlock.
2505  */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2506 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2507 {
2508 	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2509 	union futex_key key = FUTEX_KEY_INIT;
2510 	struct futex_hash_bucket *hb;
2511 	struct futex_q *match;
2512 	int ret;
2513 
2514 retry:
2515 	if (get_user(uval, uaddr))
2516 		return -EFAULT;
2517 	/*
2518 	 * We release only a lock we actually own:
2519 	 */
2520 	if ((uval & FUTEX_TID_MASK) != vpid)
2521 		return -EPERM;
2522 
2523 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2524 	if (ret)
2525 		return ret;
2526 
2527 	hb = hash_futex(&key);
2528 	spin_lock(&hb->lock);
2529 
2530 	/*
2531 	 * Check waiters first. We do not trust user space values at
2532 	 * all and we at least want to know if user space fiddled
2533 	 * with the futex value instead of blindly unlocking.
2534 	 */
2535 	match = futex_top_waiter(hb, &key);
2536 	if (match) {
2537 		ret = wake_futex_pi(uaddr, uval, match, hb);
2538 		/*
2539 		 * In case of success wake_futex_pi dropped the hash
2540 		 * bucket lock.
2541 		 */
2542 		if (!ret)
2543 			goto out_putkey;
2544 		/*
2545 		 * The atomic access to the futex value generated a
2546 		 * pagefault, so retry the user-access and the wakeup:
2547 		 */
2548 		if (ret == -EFAULT)
2549 			goto pi_faulted;
2550 		/*
2551 		 * A unconditional UNLOCK_PI op raced against a waiter
2552 		 * setting the FUTEX_WAITERS bit. Try again.
2553 		 */
2554 		if (ret == -EAGAIN) {
2555 			spin_unlock(&hb->lock);
2556 			put_futex_key(&key);
2557 			goto retry;
2558 		}
2559 		/*
2560 		 * wake_futex_pi has detected invalid state. Tell user
2561 		 * space.
2562 		 */
2563 		goto out_unlock;
2564 	}
2565 
2566 	/*
2567 	 * We have no kernel internal state, i.e. no waiters in the
2568 	 * kernel. Waiters which are about to queue themselves are stuck
2569 	 * on hb->lock. So we can safely ignore them. We do neither
2570 	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2571 	 * owner.
2572 	 */
2573 	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2574 		goto pi_faulted;
2575 
2576 	/*
2577 	 * If uval has changed, let user space handle it.
2578 	 */
2579 	ret = (curval == uval) ? 0 : -EAGAIN;
2580 
2581 out_unlock:
2582 	spin_unlock(&hb->lock);
2583 out_putkey:
2584 	put_futex_key(&key);
2585 	return ret;
2586 
2587 pi_faulted:
2588 	spin_unlock(&hb->lock);
2589 	put_futex_key(&key);
2590 
2591 	ret = fault_in_user_writeable(uaddr);
2592 	if (!ret)
2593 		goto retry;
2594 
2595 	return ret;
2596 }
2597 
2598 /**
2599  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2600  * @hb:		the hash_bucket futex_q was original enqueued on
2601  * @q:		the futex_q woken while waiting to be requeued
2602  * @key2:	the futex_key of the requeue target futex
2603  * @timeout:	the timeout associated with the wait (NULL if none)
2604  *
2605  * Detect if the task was woken on the initial futex as opposed to the requeue
2606  * target futex.  If so, determine if it was a timeout or a signal that caused
2607  * the wakeup and return the appropriate error code to the caller.  Must be
2608  * called with the hb lock held.
2609  *
2610  * Return:
2611  *  0 = no early wakeup detected;
2612  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2613  */
2614 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)2615 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2616 				   struct futex_q *q, union futex_key *key2,
2617 				   struct hrtimer_sleeper *timeout)
2618 {
2619 	int ret = 0;
2620 
2621 	/*
2622 	 * With the hb lock held, we avoid races while we process the wakeup.
2623 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2624 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2625 	 * It can't be requeued from uaddr2 to something else since we don't
2626 	 * support a PI aware source futex for requeue.
2627 	 */
2628 	if (!match_futex(&q->key, key2)) {
2629 		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2630 		/*
2631 		 * We were woken prior to requeue by a timeout or a signal.
2632 		 * Unqueue the futex_q and determine which it was.
2633 		 */
2634 		plist_del(&q->list, &hb->chain);
2635 		hb_waiters_dec(hb);
2636 
2637 		/* Handle spurious wakeups gracefully */
2638 		ret = -EWOULDBLOCK;
2639 		if (timeout && !timeout->task)
2640 			ret = -ETIMEDOUT;
2641 		else if (signal_pending(current))
2642 			ret = -ERESTARTNOINTR;
2643 	}
2644 	return ret;
2645 }
2646 
2647 /**
2648  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2649  * @uaddr:	the futex we initially wait on (non-pi)
2650  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2651  *		the same type, no requeueing from private to shared, etc.
2652  * @val:	the expected value of uaddr
2653  * @abs_time:	absolute timeout
2654  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2655  * @uaddr2:	the pi futex we will take prior to returning to user-space
2656  *
2657  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2658  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2659  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2660  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2661  * without one, the pi logic would not know which task to boost/deboost, if
2662  * there was a need to.
2663  *
2664  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2665  * via the following--
2666  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2667  * 2) wakeup on uaddr2 after a requeue
2668  * 3) signal
2669  * 4) timeout
2670  *
2671  * If 3, cleanup and return -ERESTARTNOINTR.
2672  *
2673  * If 2, we may then block on trying to take the rt_mutex and return via:
2674  * 5) successful lock
2675  * 6) signal
2676  * 7) timeout
2677  * 8) other lock acquisition failure
2678  *
2679  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2680  *
2681  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2682  *
2683  * Return:
2684  *  0 - On success;
2685  * <0 - On error
2686  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)2687 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2688 				 u32 val, ktime_t *abs_time, u32 bitset,
2689 				 u32 __user *uaddr2)
2690 {
2691 	struct hrtimer_sleeper timeout, *to = NULL;
2692 	struct rt_mutex_waiter rt_waiter;
2693 	struct rt_mutex *pi_mutex = NULL;
2694 	struct futex_hash_bucket *hb;
2695 	union futex_key key2 = FUTEX_KEY_INIT;
2696 	struct futex_q q = futex_q_init;
2697 	int res, ret;
2698 
2699 	if (uaddr == uaddr2)
2700 		return -EINVAL;
2701 
2702 	if (!bitset)
2703 		return -EINVAL;
2704 
2705 	if (abs_time) {
2706 		to = &timeout;
2707 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2708 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2709 				      HRTIMER_MODE_ABS);
2710 		hrtimer_init_sleeper(to, current);
2711 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2712 					     current->timer_slack_ns);
2713 	}
2714 
2715 	/*
2716 	 * The waiter is allocated on our stack, manipulated by the requeue
2717 	 * code while we sleep on uaddr.
2718 	 */
2719 	debug_rt_mutex_init_waiter(&rt_waiter);
2720 	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2721 	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2722 	rt_waiter.task = NULL;
2723 
2724 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2725 	if (unlikely(ret != 0))
2726 		goto out;
2727 
2728 	q.bitset = bitset;
2729 	q.rt_waiter = &rt_waiter;
2730 	q.requeue_pi_key = &key2;
2731 
2732 	/*
2733 	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2734 	 * count.
2735 	 */
2736 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2737 	if (ret)
2738 		goto out_key2;
2739 
2740 	/*
2741 	 * The check above which compares uaddrs is not sufficient for
2742 	 * shared futexes. We need to compare the keys:
2743 	 */
2744 	if (match_futex(&q.key, &key2)) {
2745 		queue_unlock(hb);
2746 		ret = -EINVAL;
2747 		goto out_put_keys;
2748 	}
2749 
2750 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2751 	futex_wait_queue_me(hb, &q, to);
2752 
2753 	spin_lock(&hb->lock);
2754 	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2755 	spin_unlock(&hb->lock);
2756 	if (ret)
2757 		goto out_put_keys;
2758 
2759 	/*
2760 	 * In order for us to be here, we know our q.key == key2, and since
2761 	 * we took the hb->lock above, we also know that futex_requeue() has
2762 	 * completed and we no longer have to concern ourselves with a wakeup
2763 	 * race with the atomic proxy lock acquisition by the requeue code. The
2764 	 * futex_requeue dropped our key1 reference and incremented our key2
2765 	 * reference count.
2766 	 */
2767 
2768 	/* Check if the requeue code acquired the second futex for us. */
2769 	if (!q.rt_waiter) {
2770 		/*
2771 		 * Got the lock. We might not be the anticipated owner if we
2772 		 * did a lock-steal - fix up the PI-state in that case.
2773 		 */
2774 		if (q.pi_state && (q.pi_state->owner != current)) {
2775 			spin_lock(q.lock_ptr);
2776 			ret = fixup_pi_state_owner(uaddr2, &q, current);
2777 			/*
2778 			 * Drop the reference to the pi state which
2779 			 * the requeue_pi() code acquired for us.
2780 			 */
2781 			free_pi_state(q.pi_state);
2782 			spin_unlock(q.lock_ptr);
2783 		}
2784 	} else {
2785 		/*
2786 		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2787 		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2788 		 * the pi_state.
2789 		 */
2790 		WARN_ON(!q.pi_state);
2791 		pi_mutex = &q.pi_state->pi_mutex;
2792 		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2793 		debug_rt_mutex_free_waiter(&rt_waiter);
2794 
2795 		spin_lock(q.lock_ptr);
2796 		/*
2797 		 * Fixup the pi_state owner and possibly acquire the lock if we
2798 		 * haven't already.
2799 		 */
2800 		res = fixup_owner(uaddr2, &q, !ret);
2801 		/*
2802 		 * If fixup_owner() returned an error, proprogate that.  If it
2803 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2804 		 */
2805 		if (res)
2806 			ret = (res < 0) ? res : 0;
2807 
2808 		/* Unqueue and drop the lock. */
2809 		unqueue_me_pi(&q);
2810 	}
2811 
2812 	/*
2813 	 * If fixup_pi_state_owner() faulted and was unable to handle the
2814 	 * fault, unlock the rt_mutex and return the fault to userspace.
2815 	 */
2816 	if (ret == -EFAULT) {
2817 		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2818 			rt_mutex_unlock(pi_mutex);
2819 	} else if (ret == -EINTR) {
2820 		/*
2821 		 * We've already been requeued, but cannot restart by calling
2822 		 * futex_lock_pi() directly. We could restart this syscall, but
2823 		 * it would detect that the user space "val" changed and return
2824 		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2825 		 * -EWOULDBLOCK directly.
2826 		 */
2827 		ret = -EWOULDBLOCK;
2828 	}
2829 
2830 out_put_keys:
2831 	put_futex_key(&q.key);
2832 out_key2:
2833 	put_futex_key(&key2);
2834 
2835 out:
2836 	if (to) {
2837 		hrtimer_cancel(&to->timer);
2838 		destroy_hrtimer_on_stack(&to->timer);
2839 	}
2840 	return ret;
2841 }
2842 
2843 /*
2844  * Support for robust futexes: the kernel cleans up held futexes at
2845  * thread exit time.
2846  *
2847  * Implementation: user-space maintains a per-thread list of locks it
2848  * is holding. Upon do_exit(), the kernel carefully walks this list,
2849  * and marks all locks that are owned by this thread with the
2850  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2851  * always manipulated with the lock held, so the list is private and
2852  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2853  * field, to allow the kernel to clean up if the thread dies after
2854  * acquiring the lock, but just before it could have added itself to
2855  * the list. There can only be one such pending lock.
2856  */
2857 
2858 /**
2859  * sys_set_robust_list() - Set the robust-futex list head of a task
2860  * @head:	pointer to the list-head
2861  * @len:	length of the list-head, as userspace expects
2862  */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)2863 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2864 		size_t, len)
2865 {
2866 	if (!futex_cmpxchg_enabled)
2867 		return -ENOSYS;
2868 	/*
2869 	 * The kernel knows only one size for now:
2870 	 */
2871 	if (unlikely(len != sizeof(*head)))
2872 		return -EINVAL;
2873 
2874 	current->robust_list = head;
2875 
2876 	return 0;
2877 }
2878 
2879 /**
2880  * sys_get_robust_list() - Get the robust-futex list head of a task
2881  * @pid:	pid of the process [zero for current task]
2882  * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2883  * @len_ptr:	pointer to a length field, the kernel fills in the header size
2884  */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)2885 SYSCALL_DEFINE3(get_robust_list, int, pid,
2886 		struct robust_list_head __user * __user *, head_ptr,
2887 		size_t __user *, len_ptr)
2888 {
2889 	struct robust_list_head __user *head;
2890 	unsigned long ret;
2891 	struct task_struct *p;
2892 
2893 	if (!futex_cmpxchg_enabled)
2894 		return -ENOSYS;
2895 
2896 	rcu_read_lock();
2897 
2898 	ret = -ESRCH;
2899 	if (!pid)
2900 		p = current;
2901 	else {
2902 		p = find_task_by_vpid(pid);
2903 		if (!p)
2904 			goto err_unlock;
2905 	}
2906 
2907 	ret = -EPERM;
2908 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2909 		goto err_unlock;
2910 
2911 	head = p->robust_list;
2912 	rcu_read_unlock();
2913 
2914 	if (put_user(sizeof(*head), len_ptr))
2915 		return -EFAULT;
2916 	return put_user(head, head_ptr);
2917 
2918 err_unlock:
2919 	rcu_read_unlock();
2920 
2921 	return ret;
2922 }
2923 
2924 /*
2925  * Process a futex-list entry, check whether it's owned by the
2926  * dying task, and do notification if so:
2927  */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,int pi)2928 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2929 {
2930 	u32 uval, uninitialized_var(nval), mval;
2931 
2932 retry:
2933 	if (get_user(uval, uaddr))
2934 		return -1;
2935 
2936 	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2937 		/*
2938 		 * Ok, this dying thread is truly holding a futex
2939 		 * of interest. Set the OWNER_DIED bit atomically
2940 		 * via cmpxchg, and if the value had FUTEX_WAITERS
2941 		 * set, wake up a waiter (if any). (We have to do a
2942 		 * futex_wake() even if OWNER_DIED is already set -
2943 		 * to handle the rare but possible case of recursive
2944 		 * thread-death.) The rest of the cleanup is done in
2945 		 * userspace.
2946 		 */
2947 		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2948 		/*
2949 		 * We are not holding a lock here, but we want to have
2950 		 * the pagefault_disable/enable() protection because
2951 		 * we want to handle the fault gracefully. If the
2952 		 * access fails we try to fault in the futex with R/W
2953 		 * verification via get_user_pages. get_user() above
2954 		 * does not guarantee R/W access. If that fails we
2955 		 * give up and leave the futex locked.
2956 		 */
2957 		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2958 			if (fault_in_user_writeable(uaddr))
2959 				return -1;
2960 			goto retry;
2961 		}
2962 		if (nval != uval)
2963 			goto retry;
2964 
2965 		/*
2966 		 * Wake robust non-PI futexes here. The wakeup of
2967 		 * PI futexes happens in exit_pi_state():
2968 		 */
2969 		if (!pi && (uval & FUTEX_WAITERS))
2970 			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2971 	}
2972 	return 0;
2973 }
2974 
2975 /*
2976  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2977  */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)2978 static inline int fetch_robust_entry(struct robust_list __user **entry,
2979 				     struct robust_list __user * __user *head,
2980 				     unsigned int *pi)
2981 {
2982 	unsigned long uentry;
2983 
2984 	if (get_user(uentry, (unsigned long __user *)head))
2985 		return -EFAULT;
2986 
2987 	*entry = (void __user *)(uentry & ~1UL);
2988 	*pi = uentry & 1;
2989 
2990 	return 0;
2991 }
2992 
2993 /*
2994  * Walk curr->robust_list (very carefully, it's a userspace list!)
2995  * and mark any locks found there dead, and notify any waiters.
2996  *
2997  * We silently return on any sign of list-walking problem.
2998  */
exit_robust_list(struct task_struct * curr)2999 void exit_robust_list(struct task_struct *curr)
3000 {
3001 	struct robust_list_head __user *head = curr->robust_list;
3002 	struct robust_list __user *entry, *next_entry, *pending;
3003 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3004 	unsigned int uninitialized_var(next_pi);
3005 	unsigned long futex_offset;
3006 	int rc;
3007 
3008 	if (!futex_cmpxchg_enabled)
3009 		return;
3010 
3011 	/*
3012 	 * Fetch the list head (which was registered earlier, via
3013 	 * sys_set_robust_list()):
3014 	 */
3015 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3016 		return;
3017 	/*
3018 	 * Fetch the relative futex offset:
3019 	 */
3020 	if (get_user(futex_offset, &head->futex_offset))
3021 		return;
3022 	/*
3023 	 * Fetch any possibly pending lock-add first, and handle it
3024 	 * if it exists:
3025 	 */
3026 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3027 		return;
3028 
3029 	next_entry = NULL;	/* avoid warning with gcc */
3030 	while (entry != &head->list) {
3031 		/*
3032 		 * Fetch the next entry in the list before calling
3033 		 * handle_futex_death:
3034 		 */
3035 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3036 		/*
3037 		 * A pending lock might already be on the list, so
3038 		 * don't process it twice:
3039 		 */
3040 		if (entry != pending)
3041 			if (handle_futex_death((void __user *)entry + futex_offset,
3042 						curr, pi))
3043 				return;
3044 		if (rc)
3045 			return;
3046 		entry = next_entry;
3047 		pi = next_pi;
3048 		/*
3049 		 * Avoid excessively long or circular lists:
3050 		 */
3051 		if (!--limit)
3052 			break;
3053 
3054 		cond_resched();
3055 	}
3056 
3057 	if (pending)
3058 		handle_futex_death((void __user *)pending + futex_offset,
3059 				   curr, pip);
3060 }
3061 
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3062 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3063 		u32 __user *uaddr2, u32 val2, u32 val3)
3064 {
3065 	int cmd = op & FUTEX_CMD_MASK;
3066 	unsigned int flags = 0;
3067 
3068 	if (!(op & FUTEX_PRIVATE_FLAG))
3069 		flags |= FLAGS_SHARED;
3070 
3071 	if (op & FUTEX_CLOCK_REALTIME) {
3072 		flags |= FLAGS_CLOCKRT;
3073 		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3074 			return -ENOSYS;
3075 	}
3076 
3077 	switch (cmd) {
3078 	case FUTEX_LOCK_PI:
3079 	case FUTEX_UNLOCK_PI:
3080 	case FUTEX_TRYLOCK_PI:
3081 	case FUTEX_WAIT_REQUEUE_PI:
3082 	case FUTEX_CMP_REQUEUE_PI:
3083 		if (!futex_cmpxchg_enabled)
3084 			return -ENOSYS;
3085 	}
3086 
3087 	switch (cmd) {
3088 	case FUTEX_WAIT:
3089 		val3 = FUTEX_BITSET_MATCH_ANY;
3090 	case FUTEX_WAIT_BITSET:
3091 		return futex_wait(uaddr, flags, val, timeout, val3);
3092 	case FUTEX_WAKE:
3093 		val3 = FUTEX_BITSET_MATCH_ANY;
3094 	case FUTEX_WAKE_BITSET:
3095 		return futex_wake(uaddr, flags, val, val3);
3096 	case FUTEX_REQUEUE:
3097 		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3098 	case FUTEX_CMP_REQUEUE:
3099 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3100 	case FUTEX_WAKE_OP:
3101 		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3102 	case FUTEX_LOCK_PI:
3103 		return futex_lock_pi(uaddr, flags, timeout, 0);
3104 	case FUTEX_UNLOCK_PI:
3105 		return futex_unlock_pi(uaddr, flags);
3106 	case FUTEX_TRYLOCK_PI:
3107 		return futex_lock_pi(uaddr, flags, NULL, 1);
3108 	case FUTEX_WAIT_REQUEUE_PI:
3109 		val3 = FUTEX_BITSET_MATCH_ANY;
3110 		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3111 					     uaddr2);
3112 	case FUTEX_CMP_REQUEUE_PI:
3113 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3114 	}
3115 	return -ENOSYS;
3116 }
3117 
3118 
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3119 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3120 		struct timespec __user *, utime, u32 __user *, uaddr2,
3121 		u32, val3)
3122 {
3123 	struct timespec ts;
3124 	ktime_t t, *tp = NULL;
3125 	u32 val2 = 0;
3126 	int cmd = op & FUTEX_CMD_MASK;
3127 
3128 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3129 		      cmd == FUTEX_WAIT_BITSET ||
3130 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3131 		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3132 			return -EFAULT;
3133 		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3134 			return -EFAULT;
3135 		if (!timespec_valid(&ts))
3136 			return -EINVAL;
3137 
3138 		t = timespec_to_ktime(ts);
3139 		if (cmd == FUTEX_WAIT)
3140 			t = ktime_add_safe(ktime_get(), t);
3141 		tp = &t;
3142 	}
3143 	/*
3144 	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3145 	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3146 	 */
3147 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3148 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3149 		val2 = (u32) (unsigned long) utime;
3150 
3151 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3152 }
3153 
futex_detect_cmpxchg(void)3154 static void __init futex_detect_cmpxchg(void)
3155 {
3156 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3157 	u32 curval;
3158 
3159 	/*
3160 	 * This will fail and we want it. Some arch implementations do
3161 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3162 	 * functionality. We want to know that before we call in any
3163 	 * of the complex code paths. Also we want to prevent
3164 	 * registration of robust lists in that case. NULL is
3165 	 * guaranteed to fault and we get -EFAULT on functional
3166 	 * implementation, the non-functional ones will return
3167 	 * -ENOSYS.
3168 	 */
3169 	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3170 		futex_cmpxchg_enabled = 1;
3171 #endif
3172 }
3173 
futex_init(void)3174 static int __init futex_init(void)
3175 {
3176 	unsigned int futex_shift;
3177 	unsigned long i;
3178 
3179 #if CONFIG_BASE_SMALL
3180 	futex_hashsize = 16;
3181 #else
3182 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3183 #endif
3184 
3185 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3186 					       futex_hashsize, 0,
3187 					       futex_hashsize < 256 ? HASH_SMALL : 0,
3188 					       &futex_shift, NULL,
3189 					       futex_hashsize, futex_hashsize);
3190 	futex_hashsize = 1UL << futex_shift;
3191 
3192 	futex_detect_cmpxchg();
3193 
3194 	for (i = 0; i < futex_hashsize; i++) {
3195 		atomic_set(&futex_queues[i].waiters, 0);
3196 		plist_head_init(&futex_queues[i].chain);
3197 		spin_lock_init(&futex_queues[i].lock);
3198 	}
3199 
3200 	return 0;
3201 }
3202 __initcall(futex_init);
3203