1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16 #include <linux/poll.h>
17 
18 #include "internal.h"
19 
perf_output_wakeup(struct perf_output_handle * handle)20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, POLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
perf_output_get_handle(struct perf_output_handle * handle)36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct ring_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 	local_inc(&rb->nest);
42 	handle->wakeup = local_read(&rb->wakeup);
43 }
44 
perf_output_put_handle(struct perf_output_handle * handle)45 static void perf_output_put_handle(struct perf_output_handle *handle)
46 {
47 	struct ring_buffer *rb = handle->rb;
48 	unsigned long head;
49 
50 again:
51 	head = local_read(&rb->head);
52 
53 	/*
54 	 * IRQ/NMI can happen here, which means we can miss a head update.
55 	 */
56 
57 	if (!local_dec_and_test(&rb->nest))
58 		goto out;
59 
60 	/*
61 	 * Since the mmap() consumer (userspace) can run on a different CPU:
62 	 *
63 	 *   kernel				user
64 	 *
65 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
66 	 *			(A)		smp_rmb()	(C)
67 	 *	STORE $data			LOAD $data
68 	 *	smp_wmb()	(B)		smp_mb()	(D)
69 	 *	STORE ->data_head		STORE ->data_tail
70 	 *   }
71 	 *
72 	 * Where A pairs with D, and B pairs with C.
73 	 *
74 	 * In our case (A) is a control dependency that separates the load of
75 	 * the ->data_tail and the stores of $data. In case ->data_tail
76 	 * indicates there is no room in the buffer to store $data we do not.
77 	 *
78 	 * D needs to be a full barrier since it separates the data READ
79 	 * from the tail WRITE.
80 	 *
81 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
82 	 * an RMB is sufficient since it separates two READs.
83 	 *
84 	 * See perf_output_begin().
85 	 */
86 	smp_wmb(); /* B, matches C */
87 	rb->user_page->data_head = head;
88 
89 	/*
90 	 * Now check if we missed an update -- rely on previous implied
91 	 * compiler barriers to force a re-read.
92 	 */
93 	if (unlikely(head != local_read(&rb->head))) {
94 		local_inc(&rb->nest);
95 		goto again;
96 	}
97 
98 	if (handle->wakeup != local_read(&rb->wakeup))
99 		perf_output_wakeup(handle);
100 
101 out:
102 	preempt_enable();
103 }
104 
perf_output_begin(struct perf_output_handle * handle,struct perf_event * event,unsigned int size)105 int perf_output_begin(struct perf_output_handle *handle,
106 		      struct perf_event *event, unsigned int size)
107 {
108 	struct ring_buffer *rb;
109 	unsigned long tail, offset, head;
110 	int have_lost, page_shift;
111 	struct {
112 		struct perf_event_header header;
113 		u64			 id;
114 		u64			 lost;
115 	} lost_event;
116 
117 	rcu_read_lock();
118 	/*
119 	 * For inherited events we send all the output towards the parent.
120 	 */
121 	if (event->parent)
122 		event = event->parent;
123 
124 	rb = rcu_dereference(event->rb);
125 	if (unlikely(!rb))
126 		goto out;
127 
128 	if (unlikely(!rb->nr_pages))
129 		goto out;
130 
131 	handle->rb    = rb;
132 	handle->event = event;
133 
134 	have_lost = local_read(&rb->lost);
135 	if (unlikely(have_lost)) {
136 		size += sizeof(lost_event);
137 		if (event->attr.sample_id_all)
138 			size += event->id_header_size;
139 	}
140 
141 	perf_output_get_handle(handle);
142 
143 	do {
144 		tail = READ_ONCE(rb->user_page->data_tail);
145 		offset = head = local_read(&rb->head);
146 		if (!rb->overwrite &&
147 		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
148 			goto fail;
149 
150 		/*
151 		 * The above forms a control dependency barrier separating the
152 		 * @tail load above from the data stores below. Since the @tail
153 		 * load is required to compute the branch to fail below.
154 		 *
155 		 * A, matches D; the full memory barrier userspace SHOULD issue
156 		 * after reading the data and before storing the new tail
157 		 * position.
158 		 *
159 		 * See perf_output_put_handle().
160 		 */
161 
162 		head += size;
163 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
164 
165 	/*
166 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
167 	 * none of the data stores below can be lifted up by the compiler.
168 	 */
169 
170 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
171 		local_add(rb->watermark, &rb->wakeup);
172 
173 	page_shift = PAGE_SHIFT + page_order(rb);
174 
175 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
176 	offset &= (1UL << page_shift) - 1;
177 	handle->addr = rb->data_pages[handle->page] + offset;
178 	handle->size = (1UL << page_shift) - offset;
179 
180 	if (unlikely(have_lost)) {
181 		struct perf_sample_data sample_data;
182 
183 		lost_event.header.size = sizeof(lost_event);
184 		lost_event.header.type = PERF_RECORD_LOST;
185 		lost_event.header.misc = 0;
186 		lost_event.id          = event->id;
187 		lost_event.lost        = local_xchg(&rb->lost, 0);
188 
189 		perf_event_header__init_id(&lost_event.header,
190 					   &sample_data, event);
191 		perf_output_put(handle, lost_event);
192 		perf_event__output_id_sample(event, handle, &sample_data);
193 	}
194 
195 	return 0;
196 
197 fail:
198 	local_inc(&rb->lost);
199 	perf_output_put_handle(handle);
200 out:
201 	rcu_read_unlock();
202 
203 	return -ENOSPC;
204 }
205 
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)206 unsigned int perf_output_copy(struct perf_output_handle *handle,
207 		      const void *buf, unsigned int len)
208 {
209 	return __output_copy(handle, buf, len);
210 }
211 
perf_output_skip(struct perf_output_handle * handle,unsigned int len)212 unsigned int perf_output_skip(struct perf_output_handle *handle,
213 			      unsigned int len)
214 {
215 	return __output_skip(handle, NULL, len);
216 }
217 
perf_output_end(struct perf_output_handle * handle)218 void perf_output_end(struct perf_output_handle *handle)
219 {
220 	perf_output_put_handle(handle);
221 	rcu_read_unlock();
222 }
223 
224 static void rb_irq_work(struct irq_work *work);
225 
226 static void
ring_buffer_init(struct ring_buffer * rb,long watermark,int flags)227 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
228 {
229 	long max_size = perf_data_size(rb);
230 
231 	if (watermark)
232 		rb->watermark = min(max_size, watermark);
233 
234 	if (!rb->watermark)
235 		rb->watermark = max_size / 2;
236 
237 	if (flags & RING_BUFFER_WRITABLE)
238 		rb->overwrite = 0;
239 	else
240 		rb->overwrite = 1;
241 
242 	atomic_set(&rb->refcount, 1);
243 
244 	INIT_LIST_HEAD(&rb->event_list);
245 	spin_lock_init(&rb->event_lock);
246 	init_irq_work(&rb->irq_work, rb_irq_work);
247 }
248 
ring_buffer_put_async(struct ring_buffer * rb)249 static void ring_buffer_put_async(struct ring_buffer *rb)
250 {
251 	if (!atomic_dec_and_test(&rb->refcount))
252 		return;
253 
254 	rb->rcu_head.next = (void *)rb;
255 	irq_work_queue(&rb->irq_work);
256 }
257 
258 /*
259  * This is called before hardware starts writing to the AUX area to
260  * obtain an output handle and make sure there's room in the buffer.
261  * When the capture completes, call perf_aux_output_end() to commit
262  * the recorded data to the buffer.
263  *
264  * The ordering is similar to that of perf_output_{begin,end}, with
265  * the exception of (B), which should be taken care of by the pmu
266  * driver, since ordering rules will differ depending on hardware.
267  */
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)268 void *perf_aux_output_begin(struct perf_output_handle *handle,
269 			    struct perf_event *event)
270 {
271 	struct perf_event *output_event = event;
272 	unsigned long aux_head, aux_tail;
273 	struct ring_buffer *rb;
274 
275 	if (output_event->parent)
276 		output_event = output_event->parent;
277 
278 	/*
279 	 * Since this will typically be open across pmu::add/pmu::del, we
280 	 * grab ring_buffer's refcount instead of holding rcu read lock
281 	 * to make sure it doesn't disappear under us.
282 	 */
283 	rb = ring_buffer_get(output_event);
284 	if (!rb)
285 		return NULL;
286 
287 	if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount))
288 		goto err;
289 
290 	/*
291 	 * Nesting is not supported for AUX area, make sure nested
292 	 * writers are caught early
293 	 */
294 	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
295 		goto err_put;
296 
297 	aux_head = local_read(&rb->aux_head);
298 
299 	handle->rb = rb;
300 	handle->event = event;
301 	handle->head = aux_head;
302 	handle->size = 0;
303 
304 	/*
305 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
306 	 * therefore (A) control dependency barrier does not exist. The
307 	 * (B) <-> (C) ordering is still observed by the pmu driver.
308 	 */
309 	if (!rb->aux_overwrite) {
310 		aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
311 		handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark;
312 		if (aux_head - aux_tail < perf_aux_size(rb))
313 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
314 
315 		/*
316 		 * handle->size computation depends on aux_tail load; this forms a
317 		 * control dependency barrier separating aux_tail load from aux data
318 		 * store that will be enabled on successful return
319 		 */
320 		if (!handle->size) { /* A, matches D */
321 			event->pending_disable = 1;
322 			perf_output_wakeup(handle);
323 			local_set(&rb->aux_nest, 0);
324 			goto err_put;
325 		}
326 	}
327 
328 	return handle->rb->aux_priv;
329 
330 err_put:
331 	rb_free_aux(rb);
332 
333 err:
334 	ring_buffer_put_async(rb);
335 	handle->event = NULL;
336 
337 	return NULL;
338 }
339 
340 /*
341  * Commit the data written by hardware into the ring buffer by adjusting
342  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
343  * pmu driver's responsibility to observe ordering rules of the hardware,
344  * so that all the data is externally visible before this is called.
345  */
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size,bool truncated)346 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
347 			 bool truncated)
348 {
349 	struct ring_buffer *rb = handle->rb;
350 	bool wakeup = truncated;
351 	unsigned long aux_head;
352 	u64 flags = 0;
353 
354 	if (truncated)
355 		flags |= PERF_AUX_FLAG_TRUNCATED;
356 
357 	/* in overwrite mode, driver provides aux_head via handle */
358 	if (rb->aux_overwrite) {
359 		flags |= PERF_AUX_FLAG_OVERWRITE;
360 
361 		aux_head = handle->head;
362 		local_set(&rb->aux_head, aux_head);
363 	} else {
364 		aux_head = local_read(&rb->aux_head);
365 		local_add(size, &rb->aux_head);
366 	}
367 
368 	if (size || flags) {
369 		/*
370 		 * Only send RECORD_AUX if we have something useful to communicate
371 		 */
372 
373 		perf_event_aux_event(handle->event, aux_head, size, flags);
374 	}
375 
376 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
377 
378 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
379 		wakeup = true;
380 		local_add(rb->aux_watermark, &rb->aux_wakeup);
381 	}
382 
383 	if (wakeup) {
384 		if (truncated)
385 			handle->event->pending_disable = 1;
386 		perf_output_wakeup(handle);
387 	}
388 
389 	handle->event = NULL;
390 
391 	local_set(&rb->aux_nest, 0);
392 	rb_free_aux(rb);
393 	ring_buffer_put_async(rb);
394 }
395 
396 /*
397  * Skip over a given number of bytes in the AUX buffer, due to, for example,
398  * hardware's alignment constraints.
399  */
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)400 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
401 {
402 	struct ring_buffer *rb = handle->rb;
403 	unsigned long aux_head;
404 
405 	if (size > handle->size)
406 		return -ENOSPC;
407 
408 	local_add(size, &rb->aux_head);
409 
410 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
411 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
412 		perf_output_wakeup(handle);
413 		local_add(rb->aux_watermark, &rb->aux_wakeup);
414 		handle->wakeup = local_read(&rb->aux_wakeup) +
415 				 rb->aux_watermark;
416 	}
417 
418 	handle->head = aux_head;
419 	handle->size -= size;
420 
421 	return 0;
422 }
423 
perf_get_aux(struct perf_output_handle * handle)424 void *perf_get_aux(struct perf_output_handle *handle)
425 {
426 	/* this is only valid between perf_aux_output_begin and *_end */
427 	if (!handle->event)
428 		return NULL;
429 
430 	return handle->rb->aux_priv;
431 }
432 
433 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
434 
rb_alloc_aux_page(int node,int order)435 static struct page *rb_alloc_aux_page(int node, int order)
436 {
437 	struct page *page;
438 
439 	if (order > MAX_ORDER)
440 		order = MAX_ORDER;
441 
442 	do {
443 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
444 	} while (!page && order--);
445 
446 	if (page && order) {
447 		/*
448 		 * Communicate the allocation size to the driver:
449 		 * if we managed to secure a high-order allocation,
450 		 * set its first page's private to this order;
451 		 * !PagePrivate(page) means it's just a normal page.
452 		 */
453 		split_page(page, order);
454 		SetPagePrivate(page);
455 		set_page_private(page, order);
456 	}
457 
458 	return page;
459 }
460 
rb_free_aux_page(struct ring_buffer * rb,int idx)461 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
462 {
463 	struct page *page = virt_to_page(rb->aux_pages[idx]);
464 
465 	ClearPagePrivate(page);
466 	page->mapping = NULL;
467 	__free_page(page);
468 }
469 
rb_alloc_aux(struct ring_buffer * rb,struct perf_event * event,pgoff_t pgoff,int nr_pages,long watermark,int flags)470 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
471 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
472 {
473 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
474 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
475 	int ret = -ENOMEM, max_order = 0;
476 
477 	if (!has_aux(event))
478 		return -ENOTSUPP;
479 
480 	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
481 		/*
482 		 * We need to start with the max_order that fits in nr_pages,
483 		 * not the other way around, hence ilog2() and not get_order.
484 		 */
485 		max_order = ilog2(nr_pages);
486 
487 		/*
488 		 * PMU requests more than one contiguous chunks of memory
489 		 * for SW double buffering
490 		 */
491 		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
492 		    !overwrite) {
493 			if (!max_order)
494 				return -EINVAL;
495 
496 			max_order--;
497 		}
498 	}
499 
500 	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
501 	if (!rb->aux_pages)
502 		return -ENOMEM;
503 
504 	rb->free_aux = event->pmu->free_aux;
505 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
506 		struct page *page;
507 		int last, order;
508 
509 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
510 		page = rb_alloc_aux_page(node, order);
511 		if (!page)
512 			goto out;
513 
514 		for (last = rb->aux_nr_pages + (1 << page_private(page));
515 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
516 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
517 	}
518 
519 	/*
520 	 * In overwrite mode, PMUs that don't support SG may not handle more
521 	 * than one contiguous allocation, since they rely on PMI to do double
522 	 * buffering. In this case, the entire buffer has to be one contiguous
523 	 * chunk.
524 	 */
525 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
526 	    overwrite) {
527 		struct page *page = virt_to_page(rb->aux_pages[0]);
528 
529 		if (page_private(page) != max_order)
530 			goto out;
531 	}
532 
533 	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
534 					     overwrite);
535 	if (!rb->aux_priv)
536 		goto out;
537 
538 	ret = 0;
539 
540 	/*
541 	 * aux_pages (and pmu driver's private data, aux_priv) will be
542 	 * referenced in both producer's and consumer's contexts, thus
543 	 * we keep a refcount here to make sure either of the two can
544 	 * reference them safely.
545 	 */
546 	atomic_set(&rb->aux_refcount, 1);
547 
548 	rb->aux_overwrite = overwrite;
549 	rb->aux_watermark = watermark;
550 
551 	if (!rb->aux_watermark && !rb->aux_overwrite)
552 		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
553 
554 out:
555 	if (!ret)
556 		rb->aux_pgoff = pgoff;
557 	else
558 		rb_free_aux(rb);
559 
560 	return ret;
561 }
562 
__rb_free_aux(struct ring_buffer * rb)563 static void __rb_free_aux(struct ring_buffer *rb)
564 {
565 	int pg;
566 
567 	if (rb->aux_priv) {
568 		rb->free_aux(rb->aux_priv);
569 		rb->free_aux = NULL;
570 		rb->aux_priv = NULL;
571 	}
572 
573 	if (rb->aux_nr_pages) {
574 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
575 			rb_free_aux_page(rb, pg);
576 
577 		kfree(rb->aux_pages);
578 		rb->aux_nr_pages = 0;
579 	}
580 }
581 
rb_free_aux(struct ring_buffer * rb)582 void rb_free_aux(struct ring_buffer *rb)
583 {
584 	if (atomic_dec_and_test(&rb->aux_refcount))
585 		irq_work_queue(&rb->irq_work);
586 }
587 
rb_irq_work(struct irq_work * work)588 static void rb_irq_work(struct irq_work *work)
589 {
590 	struct ring_buffer *rb = container_of(work, struct ring_buffer, irq_work);
591 
592 	if (!atomic_read(&rb->aux_refcount))
593 		__rb_free_aux(rb);
594 
595 	if (rb->rcu_head.next == (void *)rb)
596 		call_rcu(&rb->rcu_head, rb_free_rcu);
597 }
598 
599 #ifndef CONFIG_PERF_USE_VMALLOC
600 
601 /*
602  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
603  */
604 
605 static struct page *
__perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)606 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
607 {
608 	if (pgoff > rb->nr_pages)
609 		return NULL;
610 
611 	if (pgoff == 0)
612 		return virt_to_page(rb->user_page);
613 
614 	return virt_to_page(rb->data_pages[pgoff - 1]);
615 }
616 
perf_mmap_alloc_page(int cpu)617 static void *perf_mmap_alloc_page(int cpu)
618 {
619 	struct page *page;
620 	int node;
621 
622 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
623 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
624 	if (!page)
625 		return NULL;
626 
627 	return page_address(page);
628 }
629 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)630 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
631 {
632 	struct ring_buffer *rb;
633 	unsigned long size;
634 	int i;
635 
636 	size = sizeof(struct ring_buffer);
637 	size += nr_pages * sizeof(void *);
638 
639 	rb = kzalloc(size, GFP_KERNEL);
640 	if (!rb)
641 		goto fail;
642 
643 	rb->user_page = perf_mmap_alloc_page(cpu);
644 	if (!rb->user_page)
645 		goto fail_user_page;
646 
647 	for (i = 0; i < nr_pages; i++) {
648 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
649 		if (!rb->data_pages[i])
650 			goto fail_data_pages;
651 	}
652 
653 	rb->nr_pages = nr_pages;
654 
655 	ring_buffer_init(rb, watermark, flags);
656 
657 	return rb;
658 
659 fail_data_pages:
660 	for (i--; i >= 0; i--)
661 		free_page((unsigned long)rb->data_pages[i]);
662 
663 	free_page((unsigned long)rb->user_page);
664 
665 fail_user_page:
666 	kfree(rb);
667 
668 fail:
669 	return NULL;
670 }
671 
perf_mmap_free_page(unsigned long addr)672 static void perf_mmap_free_page(unsigned long addr)
673 {
674 	struct page *page = virt_to_page((void *)addr);
675 
676 	page->mapping = NULL;
677 	__free_page(page);
678 }
679 
rb_free(struct ring_buffer * rb)680 void rb_free(struct ring_buffer *rb)
681 {
682 	int i;
683 
684 	perf_mmap_free_page((unsigned long)rb->user_page);
685 	for (i = 0; i < rb->nr_pages; i++)
686 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
687 	kfree(rb);
688 }
689 
690 #else
data_page_nr(struct ring_buffer * rb)691 static int data_page_nr(struct ring_buffer *rb)
692 {
693 	return rb->nr_pages << page_order(rb);
694 }
695 
696 static struct page *
__perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)697 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
698 {
699 	/* The '>' counts in the user page. */
700 	if (pgoff > data_page_nr(rb))
701 		return NULL;
702 
703 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
704 }
705 
perf_mmap_unmark_page(void * addr)706 static void perf_mmap_unmark_page(void *addr)
707 {
708 	struct page *page = vmalloc_to_page(addr);
709 
710 	page->mapping = NULL;
711 }
712 
rb_free_work(struct work_struct * work)713 static void rb_free_work(struct work_struct *work)
714 {
715 	struct ring_buffer *rb;
716 	void *base;
717 	int i, nr;
718 
719 	rb = container_of(work, struct ring_buffer, work);
720 	nr = data_page_nr(rb);
721 
722 	base = rb->user_page;
723 	/* The '<=' counts in the user page. */
724 	for (i = 0; i <= nr; i++)
725 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
726 
727 	vfree(base);
728 	kfree(rb);
729 }
730 
rb_free(struct ring_buffer * rb)731 void rb_free(struct ring_buffer *rb)
732 {
733 	schedule_work(&rb->work);
734 }
735 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)736 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
737 {
738 	struct ring_buffer *rb;
739 	unsigned long size;
740 	void *all_buf;
741 
742 	size = sizeof(struct ring_buffer);
743 	size += sizeof(void *);
744 
745 	rb = kzalloc(size, GFP_KERNEL);
746 	if (!rb)
747 		goto fail;
748 
749 	INIT_WORK(&rb->work, rb_free_work);
750 
751 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
752 	if (!all_buf)
753 		goto fail_all_buf;
754 
755 	rb->user_page = all_buf;
756 	rb->data_pages[0] = all_buf + PAGE_SIZE;
757 	rb->page_order = ilog2(nr_pages);
758 	rb->nr_pages = !!nr_pages;
759 
760 	ring_buffer_init(rb, watermark, flags);
761 
762 	return rb;
763 
764 fail_all_buf:
765 	kfree(rb);
766 
767 fail:
768 	return NULL;
769 }
770 
771 #endif
772 
773 struct page *
perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)774 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
775 {
776 	if (rb->aux_nr_pages) {
777 		/* above AUX space */
778 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
779 			return NULL;
780 
781 		/* AUX space */
782 		if (pgoff >= rb->aux_pgoff)
783 			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
784 	}
785 
786 	return __perf_mmap_to_page(rb, pgoff);
787 }
788