1 #ifndef _LINUX_WAIT_H
2 #define _LINUX_WAIT_H
3 /*
4  * Linux wait queue related types and methods
5  */
6 #include <linux/list.h>
7 #include <linux/stddef.h>
8 #include <linux/spinlock.h>
9 #include <asm/current.h>
10 #include <uapi/linux/wait.h>
11 
12 typedef struct __wait_queue wait_queue_t;
13 typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
14 int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
15 
16 /* __wait_queue::flags */
17 #define WQ_FLAG_EXCLUSIVE	0x01
18 #define WQ_FLAG_WOKEN		0x02
19 
20 struct __wait_queue {
21 	unsigned int		flags;
22 	void			*private;
23 	wait_queue_func_t	func;
24 	struct list_head	task_list;
25 };
26 
27 struct wait_bit_key {
28 	void			*flags;
29 	int			bit_nr;
30 #define WAIT_ATOMIC_T_BIT_NR	-1
31 	unsigned long		timeout;
32 };
33 
34 struct wait_bit_queue {
35 	struct wait_bit_key	key;
36 	wait_queue_t		wait;
37 };
38 
39 struct __wait_queue_head {
40 	spinlock_t		lock;
41 	struct list_head	task_list;
42 };
43 typedef struct __wait_queue_head wait_queue_head_t;
44 
45 struct task_struct;
46 
47 /*
48  * Macros for declaration and initialisaton of the datatypes
49  */
50 
51 #define __WAITQUEUE_INITIALIZER(name, tsk) {				\
52 	.private	= tsk,						\
53 	.func		= default_wake_function,			\
54 	.task_list	= { NULL, NULL } }
55 
56 #define DECLARE_WAITQUEUE(name, tsk)					\
57 	wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
58 
59 #define __WAIT_QUEUE_HEAD_INITIALIZER(name) {				\
60 	.lock		= __SPIN_LOCK_UNLOCKED(name.lock),		\
61 	.task_list	= { &(name).task_list, &(name).task_list } }
62 
63 #define DECLARE_WAIT_QUEUE_HEAD(name) \
64 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
65 
66 #define __WAIT_BIT_KEY_INITIALIZER(word, bit)				\
67 	{ .flags = word, .bit_nr = bit, }
68 
69 #define __WAIT_ATOMIC_T_KEY_INITIALIZER(p)				\
70 	{ .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
71 
72 extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
73 
74 #define init_waitqueue_head(q)				\
75 	do {						\
76 		static struct lock_class_key __key;	\
77 							\
78 		__init_waitqueue_head((q), #q, &__key);	\
79 	} while (0)
80 
81 #ifdef CONFIG_LOCKDEP
82 # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
83 	({ init_waitqueue_head(&name); name; })
84 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
85 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
86 #else
87 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
88 #endif
89 
init_waitqueue_entry(wait_queue_t * q,struct task_struct * p)90 static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
91 {
92 	q->flags	= 0;
93 	q->private	= p;
94 	q->func		= default_wake_function;
95 }
96 
97 static inline void
init_waitqueue_func_entry(wait_queue_t * q,wait_queue_func_t func)98 init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
99 {
100 	q->flags	= 0;
101 	q->private	= NULL;
102 	q->func		= func;
103 }
104 
waitqueue_active(wait_queue_head_t * q)105 static inline int waitqueue_active(wait_queue_head_t *q)
106 {
107 	return !list_empty(&q->task_list);
108 }
109 
110 extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
111 extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
112 extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
113 
__add_wait_queue(wait_queue_head_t * head,wait_queue_t * new)114 static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
115 {
116 	list_add(&new->task_list, &head->task_list);
117 }
118 
119 /*
120  * Used for wake-one threads:
121  */
122 static inline void
__add_wait_queue_exclusive(wait_queue_head_t * q,wait_queue_t * wait)123 __add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
124 {
125 	wait->flags |= WQ_FLAG_EXCLUSIVE;
126 	__add_wait_queue(q, wait);
127 }
128 
__add_wait_queue_tail(wait_queue_head_t * head,wait_queue_t * new)129 static inline void __add_wait_queue_tail(wait_queue_head_t *head,
130 					 wait_queue_t *new)
131 {
132 	list_add_tail(&new->task_list, &head->task_list);
133 }
134 
135 static inline void
__add_wait_queue_tail_exclusive(wait_queue_head_t * q,wait_queue_t * wait)136 __add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
137 {
138 	wait->flags |= WQ_FLAG_EXCLUSIVE;
139 	__add_wait_queue_tail(q, wait);
140 }
141 
142 static inline void
__remove_wait_queue(wait_queue_head_t * head,wait_queue_t * old)143 __remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
144 {
145 	list_del(&old->task_list);
146 }
147 
148 typedef int wait_bit_action_f(struct wait_bit_key *, int mode);
149 void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
150 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
151 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
152 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
153 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
154 void __wake_up_bit(wait_queue_head_t *, void *, int);
155 int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
156 int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
157 void wake_up_bit(void *, int);
158 void wake_up_atomic_t(atomic_t *);
159 int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
160 int out_of_line_wait_on_bit_timeout(void *, int, wait_bit_action_f *, unsigned, unsigned long);
161 int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
162 int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
163 wait_queue_head_t *bit_waitqueue(void *, int);
164 
165 #define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)
166 #define wake_up_nr(x, nr)		__wake_up(x, TASK_NORMAL, nr, NULL)
167 #define wake_up_all(x)			__wake_up(x, TASK_NORMAL, 0, NULL)
168 #define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL, 1)
169 #define wake_up_all_locked(x)		__wake_up_locked((x), TASK_NORMAL, 0)
170 
171 #define wake_up_interruptible(x)	__wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
172 #define wake_up_interruptible_nr(x, nr)	__wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
173 #define wake_up_interruptible_all(x)	__wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
174 #define wake_up_interruptible_sync(x)	__wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
175 
176 /*
177  * Wakeup macros to be used to report events to the targets.
178  */
179 #define wake_up_poll(x, m)						\
180 	__wake_up(x, TASK_NORMAL, 1, (void *) (m))
181 #define wake_up_locked_poll(x, m)					\
182 	__wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
183 #define wake_up_interruptible_poll(x, m)				\
184 	__wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
185 #define wake_up_interruptible_sync_poll(x, m)				\
186 	__wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
187 
188 #define ___wait_cond_timeout(condition)					\
189 ({									\
190 	bool __cond = (condition);					\
191 	if (__cond && !__ret)						\
192 		__ret = 1;						\
193 	__cond || !__ret;						\
194 })
195 
196 #define ___wait_is_interruptible(state)					\
197 	(!__builtin_constant_p(state) ||				\
198 		state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE)	\
199 
200 /*
201  * The below macro ___wait_event() has an explicit shadow of the __ret
202  * variable when used from the wait_event_*() macros.
203  *
204  * This is so that both can use the ___wait_cond_timeout() construct
205  * to wrap the condition.
206  *
207  * The type inconsistency of the wait_event_*() __ret variable is also
208  * on purpose; we use long where we can return timeout values and int
209  * otherwise.
210  */
211 
212 #define ___wait_event(wq, condition, state, exclusive, ret, cmd)	\
213 ({									\
214 	__label__ __out;						\
215 	wait_queue_t __wait;						\
216 	long __ret = ret;	/* explicit shadow */			\
217 									\
218 	INIT_LIST_HEAD(&__wait.task_list);				\
219 	if (exclusive)							\
220 		__wait.flags = WQ_FLAG_EXCLUSIVE;			\
221 	else								\
222 		__wait.flags = 0;					\
223 									\
224 	for (;;) {							\
225 		long __int = prepare_to_wait_event(&wq, &__wait, state);\
226 									\
227 		if (condition)						\
228 			break;						\
229 									\
230 		if (___wait_is_interruptible(state) && __int) {		\
231 			__ret = __int;					\
232 			if (exclusive) {				\
233 				abort_exclusive_wait(&wq, &__wait,	\
234 						     state, NULL);	\
235 				goto __out;				\
236 			}						\
237 			break;						\
238 		}							\
239 									\
240 		cmd;							\
241 	}								\
242 	finish_wait(&wq, &__wait);					\
243 __out:	__ret;								\
244 })
245 
246 #define __wait_event(wq, condition)					\
247 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
248 			    schedule())
249 
250 /**
251  * wait_event - sleep until a condition gets true
252  * @wq: the waitqueue to wait on
253  * @condition: a C expression for the event to wait for
254  *
255  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
256  * @condition evaluates to true. The @condition is checked each time
257  * the waitqueue @wq is woken up.
258  *
259  * wake_up() has to be called after changing any variable that could
260  * change the result of the wait condition.
261  */
262 #define wait_event(wq, condition)					\
263 do {									\
264 	might_sleep();							\
265 	if (condition)							\
266 		break;							\
267 	__wait_event(wq, condition);					\
268 } while (0)
269 
270 #define __io_wait_event(wq, condition)					\
271 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
272 			    io_schedule())
273 
274 /*
275  * io_wait_event() -- like wait_event() but with io_schedule()
276  */
277 #define io_wait_event(wq, condition)					\
278 do {									\
279 	might_sleep();							\
280 	if (condition)							\
281 		break;							\
282 	__io_wait_event(wq, condition);					\
283 } while (0)
284 
285 #define __wait_event_freezable(wq, condition)				\
286 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
287 			    schedule(); try_to_freeze())
288 
289 /**
290  * wait_event - sleep (or freeze) until a condition gets true
291  * @wq: the waitqueue to wait on
292  * @condition: a C expression for the event to wait for
293  *
294  * The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute
295  * to system load) until the @condition evaluates to true. The
296  * @condition is checked each time the waitqueue @wq is woken up.
297  *
298  * wake_up() has to be called after changing any variable that could
299  * change the result of the wait condition.
300  */
301 #define wait_event_freezable(wq, condition)				\
302 ({									\
303 	int __ret = 0;							\
304 	might_sleep();							\
305 	if (!(condition))						\
306 		__ret = __wait_event_freezable(wq, condition);		\
307 	__ret;								\
308 })
309 
310 #define __wait_event_timeout(wq, condition, timeout)			\
311 	___wait_event(wq, ___wait_cond_timeout(condition),		\
312 		      TASK_UNINTERRUPTIBLE, 0, timeout,			\
313 		      __ret = schedule_timeout(__ret))
314 
315 /**
316  * wait_event_timeout - sleep until a condition gets true or a timeout elapses
317  * @wq: the waitqueue to wait on
318  * @condition: a C expression for the event to wait for
319  * @timeout: timeout, in jiffies
320  *
321  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
322  * @condition evaluates to true. The @condition is checked each time
323  * the waitqueue @wq is woken up.
324  *
325  * wake_up() has to be called after changing any variable that could
326  * change the result of the wait condition.
327  *
328  * Returns:
329  * 0 if the @condition evaluated to %false after the @timeout elapsed,
330  * 1 if the @condition evaluated to %true after the @timeout elapsed,
331  * or the remaining jiffies (at least 1) if the @condition evaluated
332  * to %true before the @timeout elapsed.
333  */
334 #define wait_event_timeout(wq, condition, timeout)			\
335 ({									\
336 	long __ret = timeout;						\
337 	might_sleep();							\
338 	if (!___wait_cond_timeout(condition))				\
339 		__ret = __wait_event_timeout(wq, condition, timeout);	\
340 	__ret;								\
341 })
342 
343 #define __wait_event_freezable_timeout(wq, condition, timeout)		\
344 	___wait_event(wq, ___wait_cond_timeout(condition),		\
345 		      TASK_INTERRUPTIBLE, 0, timeout,			\
346 		      __ret = schedule_timeout(__ret); try_to_freeze())
347 
348 /*
349  * like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid
350  * increasing load and is freezable.
351  */
352 #define wait_event_freezable_timeout(wq, condition, timeout)		\
353 ({									\
354 	long __ret = timeout;						\
355 	might_sleep();							\
356 	if (!___wait_cond_timeout(condition))				\
357 		__ret = __wait_event_freezable_timeout(wq, condition, timeout);	\
358 	__ret;								\
359 })
360 
361 #define __wait_event_exclusive_cmd(wq, condition, cmd1, cmd2)		\
362 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 1, 0,	\
363 			    cmd1; schedule(); cmd2)
364 /*
365  * Just like wait_event_cmd(), except it sets exclusive flag
366  */
367 #define wait_event_exclusive_cmd(wq, condition, cmd1, cmd2)		\
368 do {									\
369 	if (condition)							\
370 		break;							\
371 	__wait_event_exclusive_cmd(wq, condition, cmd1, cmd2);		\
372 } while (0)
373 
374 #define __wait_event_cmd(wq, condition, cmd1, cmd2)			\
375 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
376 			    cmd1; schedule(); cmd2)
377 
378 /**
379  * wait_event_cmd - sleep until a condition gets true
380  * @wq: the waitqueue to wait on
381  * @condition: a C expression for the event to wait for
382  * @cmd1: the command will be executed before sleep
383  * @cmd2: the command will be executed after sleep
384  *
385  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
386  * @condition evaluates to true. The @condition is checked each time
387  * the waitqueue @wq is woken up.
388  *
389  * wake_up() has to be called after changing any variable that could
390  * change the result of the wait condition.
391  */
392 #define wait_event_cmd(wq, condition, cmd1, cmd2)			\
393 do {									\
394 	if (condition)							\
395 		break;							\
396 	__wait_event_cmd(wq, condition, cmd1, cmd2);			\
397 } while (0)
398 
399 #define __wait_event_interruptible(wq, condition)			\
400 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
401 		      schedule())
402 
403 /**
404  * wait_event_interruptible - sleep until a condition gets true
405  * @wq: the waitqueue to wait on
406  * @condition: a C expression for the event to wait for
407  *
408  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
409  * @condition evaluates to true or a signal is received.
410  * The @condition is checked each time the waitqueue @wq is woken up.
411  *
412  * wake_up() has to be called after changing any variable that could
413  * change the result of the wait condition.
414  *
415  * The function will return -ERESTARTSYS if it was interrupted by a
416  * signal and 0 if @condition evaluated to true.
417  */
418 #define wait_event_interruptible(wq, condition)				\
419 ({									\
420 	int __ret = 0;							\
421 	might_sleep();							\
422 	if (!(condition))						\
423 		__ret = __wait_event_interruptible(wq, condition);	\
424 	__ret;								\
425 })
426 
427 #define __wait_event_interruptible_timeout(wq, condition, timeout)	\
428 	___wait_event(wq, ___wait_cond_timeout(condition),		\
429 		      TASK_INTERRUPTIBLE, 0, timeout,			\
430 		      __ret = schedule_timeout(__ret))
431 
432 /**
433  * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
434  * @wq: the waitqueue to wait on
435  * @condition: a C expression for the event to wait for
436  * @timeout: timeout, in jiffies
437  *
438  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
439  * @condition evaluates to true or a signal is received.
440  * The @condition is checked each time the waitqueue @wq is woken up.
441  *
442  * wake_up() has to be called after changing any variable that could
443  * change the result of the wait condition.
444  *
445  * Returns:
446  * 0 if the @condition evaluated to %false after the @timeout elapsed,
447  * 1 if the @condition evaluated to %true after the @timeout elapsed,
448  * the remaining jiffies (at least 1) if the @condition evaluated
449  * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
450  * interrupted by a signal.
451  */
452 #define wait_event_interruptible_timeout(wq, condition, timeout)	\
453 ({									\
454 	long __ret = timeout;						\
455 	might_sleep();							\
456 	if (!___wait_cond_timeout(condition))				\
457 		__ret = __wait_event_interruptible_timeout(wq,		\
458 						condition, timeout);	\
459 	__ret;								\
460 })
461 
462 #define __wait_event_hrtimeout(wq, condition, timeout, state)		\
463 ({									\
464 	int __ret = 0;							\
465 	struct hrtimer_sleeper __t;					\
466 									\
467 	hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC,		\
468 			      HRTIMER_MODE_REL);			\
469 	hrtimer_init_sleeper(&__t, current);				\
470 	if ((timeout).tv64 != KTIME_MAX)				\
471 		hrtimer_start_range_ns(&__t.timer, timeout,		\
472 				       current->timer_slack_ns,		\
473 				       HRTIMER_MODE_REL);		\
474 									\
475 	__ret = ___wait_event(wq, condition, state, 0, 0,		\
476 		if (!__t.task) {					\
477 			__ret = -ETIME;					\
478 			break;						\
479 		}							\
480 		schedule());						\
481 									\
482 	hrtimer_cancel(&__t.timer);					\
483 	destroy_hrtimer_on_stack(&__t.timer);				\
484 	__ret;								\
485 })
486 
487 /**
488  * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
489  * @wq: the waitqueue to wait on
490  * @condition: a C expression for the event to wait for
491  * @timeout: timeout, as a ktime_t
492  *
493  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
494  * @condition evaluates to true or a signal is received.
495  * The @condition is checked each time the waitqueue @wq is woken up.
496  *
497  * wake_up() has to be called after changing any variable that could
498  * change the result of the wait condition.
499  *
500  * The function returns 0 if @condition became true, or -ETIME if the timeout
501  * elapsed.
502  */
503 #define wait_event_hrtimeout(wq, condition, timeout)			\
504 ({									\
505 	int __ret = 0;							\
506 	might_sleep();							\
507 	if (!(condition))						\
508 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
509 					       TASK_UNINTERRUPTIBLE);	\
510 	__ret;								\
511 })
512 
513 /**
514  * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
515  * @wq: the waitqueue to wait on
516  * @condition: a C expression for the event to wait for
517  * @timeout: timeout, as a ktime_t
518  *
519  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
520  * @condition evaluates to true or a signal is received.
521  * The @condition is checked each time the waitqueue @wq is woken up.
522  *
523  * wake_up() has to be called after changing any variable that could
524  * change the result of the wait condition.
525  *
526  * The function returns 0 if @condition became true, -ERESTARTSYS if it was
527  * interrupted by a signal, or -ETIME if the timeout elapsed.
528  */
529 #define wait_event_interruptible_hrtimeout(wq, condition, timeout)	\
530 ({									\
531 	long __ret = 0;							\
532 	might_sleep();							\
533 	if (!(condition))						\
534 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
535 					       TASK_INTERRUPTIBLE);	\
536 	__ret;								\
537 })
538 
539 #define __wait_event_interruptible_exclusive(wq, condition)		\
540 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
541 		      schedule())
542 
543 #define wait_event_interruptible_exclusive(wq, condition)		\
544 ({									\
545 	int __ret = 0;							\
546 	might_sleep();							\
547 	if (!(condition))						\
548 		__ret = __wait_event_interruptible_exclusive(wq, condition);\
549 	__ret;								\
550 })
551 
552 
553 #define __wait_event_freezable_exclusive(wq, condition)			\
554 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
555 			schedule(); try_to_freeze())
556 
557 #define wait_event_freezable_exclusive(wq, condition)			\
558 ({									\
559 	int __ret = 0;							\
560 	might_sleep();							\
561 	if (!(condition))						\
562 		__ret = __wait_event_freezable_exclusive(wq, condition);\
563 	__ret;								\
564 })
565 
566 
567 #define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
568 ({									\
569 	int __ret = 0;							\
570 	DEFINE_WAIT(__wait);						\
571 	if (exclusive)							\
572 		__wait.flags |= WQ_FLAG_EXCLUSIVE;			\
573 	do {								\
574 		if (likely(list_empty(&__wait.task_list)))		\
575 			__add_wait_queue_tail(&(wq), &__wait);		\
576 		set_current_state(TASK_INTERRUPTIBLE);			\
577 		if (signal_pending(current)) {				\
578 			__ret = -ERESTARTSYS;				\
579 			break;						\
580 		}							\
581 		if (irq)						\
582 			spin_unlock_irq(&(wq).lock);			\
583 		else							\
584 			spin_unlock(&(wq).lock);			\
585 		schedule();						\
586 		if (irq)						\
587 			spin_lock_irq(&(wq).lock);			\
588 		else							\
589 			spin_lock(&(wq).lock);				\
590 	} while (!(condition));						\
591 	__remove_wait_queue(&(wq), &__wait);				\
592 	__set_current_state(TASK_RUNNING);				\
593 	__ret;								\
594 })
595 
596 
597 /**
598  * wait_event_interruptible_locked - sleep until a condition gets true
599  * @wq: the waitqueue to wait on
600  * @condition: a C expression for the event to wait for
601  *
602  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
603  * @condition evaluates to true or a signal is received.
604  * The @condition is checked each time the waitqueue @wq is woken up.
605  *
606  * It must be called with wq.lock being held.  This spinlock is
607  * unlocked while sleeping but @condition testing is done while lock
608  * is held and when this macro exits the lock is held.
609  *
610  * The lock is locked/unlocked using spin_lock()/spin_unlock()
611  * functions which must match the way they are locked/unlocked outside
612  * of this macro.
613  *
614  * wake_up_locked() has to be called after changing any variable that could
615  * change the result of the wait condition.
616  *
617  * The function will return -ERESTARTSYS if it was interrupted by a
618  * signal and 0 if @condition evaluated to true.
619  */
620 #define wait_event_interruptible_locked(wq, condition)			\
621 	((condition)							\
622 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))
623 
624 /**
625  * wait_event_interruptible_locked_irq - sleep until a condition gets true
626  * @wq: the waitqueue to wait on
627  * @condition: a C expression for the event to wait for
628  *
629  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
630  * @condition evaluates to true or a signal is received.
631  * The @condition is checked each time the waitqueue @wq is woken up.
632  *
633  * It must be called with wq.lock being held.  This spinlock is
634  * unlocked while sleeping but @condition testing is done while lock
635  * is held and when this macro exits the lock is held.
636  *
637  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
638  * functions which must match the way they are locked/unlocked outside
639  * of this macro.
640  *
641  * wake_up_locked() has to be called after changing any variable that could
642  * change the result of the wait condition.
643  *
644  * The function will return -ERESTARTSYS if it was interrupted by a
645  * signal and 0 if @condition evaluated to true.
646  */
647 #define wait_event_interruptible_locked_irq(wq, condition)		\
648 	((condition)							\
649 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))
650 
651 /**
652  * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
653  * @wq: the waitqueue to wait on
654  * @condition: a C expression for the event to wait for
655  *
656  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
657  * @condition evaluates to true or a signal is received.
658  * The @condition is checked each time the waitqueue @wq is woken up.
659  *
660  * It must be called with wq.lock being held.  This spinlock is
661  * unlocked while sleeping but @condition testing is done while lock
662  * is held and when this macro exits the lock is held.
663  *
664  * The lock is locked/unlocked using spin_lock()/spin_unlock()
665  * functions which must match the way they are locked/unlocked outside
666  * of this macro.
667  *
668  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
669  * set thus when other process waits process on the list if this
670  * process is awaken further processes are not considered.
671  *
672  * wake_up_locked() has to be called after changing any variable that could
673  * change the result of the wait condition.
674  *
675  * The function will return -ERESTARTSYS if it was interrupted by a
676  * signal and 0 if @condition evaluated to true.
677  */
678 #define wait_event_interruptible_exclusive_locked(wq, condition)	\
679 	((condition)							\
680 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))
681 
682 /**
683  * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
684  * @wq: the waitqueue to wait on
685  * @condition: a C expression for the event to wait for
686  *
687  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
688  * @condition evaluates to true or a signal is received.
689  * The @condition is checked each time the waitqueue @wq is woken up.
690  *
691  * It must be called with wq.lock being held.  This spinlock is
692  * unlocked while sleeping but @condition testing is done while lock
693  * is held and when this macro exits the lock is held.
694  *
695  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
696  * functions which must match the way they are locked/unlocked outside
697  * of this macro.
698  *
699  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
700  * set thus when other process waits process on the list if this
701  * process is awaken further processes are not considered.
702  *
703  * wake_up_locked() has to be called after changing any variable that could
704  * change the result of the wait condition.
705  *
706  * The function will return -ERESTARTSYS if it was interrupted by a
707  * signal and 0 if @condition evaluated to true.
708  */
709 #define wait_event_interruptible_exclusive_locked_irq(wq, condition)	\
710 	((condition)							\
711 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))
712 
713 
714 #define __wait_event_killable(wq, condition)				\
715 	___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
716 
717 /**
718  * wait_event_killable - sleep until a condition gets true
719  * @wq: the waitqueue to wait on
720  * @condition: a C expression for the event to wait for
721  *
722  * The process is put to sleep (TASK_KILLABLE) until the
723  * @condition evaluates to true or a signal is received.
724  * The @condition is checked each time the waitqueue @wq is woken up.
725  *
726  * wake_up() has to be called after changing any variable that could
727  * change the result of the wait condition.
728  *
729  * The function will return -ERESTARTSYS if it was interrupted by a
730  * signal and 0 if @condition evaluated to true.
731  */
732 #define wait_event_killable(wq, condition)				\
733 ({									\
734 	int __ret = 0;							\
735 	might_sleep();							\
736 	if (!(condition))						\
737 		__ret = __wait_event_killable(wq, condition);		\
738 	__ret;								\
739 })
740 
741 
742 #define __wait_event_lock_irq(wq, condition, lock, cmd)			\
743 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
744 			    spin_unlock_irq(&lock);			\
745 			    cmd;					\
746 			    schedule();					\
747 			    spin_lock_irq(&lock))
748 
749 /**
750  * wait_event_lock_irq_cmd - sleep until a condition gets true. The
751  *			     condition is checked under the lock. This
752  *			     is expected to be called with the lock
753  *			     taken.
754  * @wq: the waitqueue to wait on
755  * @condition: a C expression for the event to wait for
756  * @lock: a locked spinlock_t, which will be released before cmd
757  *	  and schedule() and reacquired afterwards.
758  * @cmd: a command which is invoked outside the critical section before
759  *	 sleep
760  *
761  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
762  * @condition evaluates to true. The @condition is checked each time
763  * the waitqueue @wq is woken up.
764  *
765  * wake_up() has to be called after changing any variable that could
766  * change the result of the wait condition.
767  *
768  * This is supposed to be called while holding the lock. The lock is
769  * dropped before invoking the cmd and going to sleep and is reacquired
770  * afterwards.
771  */
772 #define wait_event_lock_irq_cmd(wq, condition, lock, cmd)		\
773 do {									\
774 	if (condition)							\
775 		break;							\
776 	__wait_event_lock_irq(wq, condition, lock, cmd);		\
777 } while (0)
778 
779 /**
780  * wait_event_lock_irq - sleep until a condition gets true. The
781  *			 condition is checked under the lock. This
782  *			 is expected to be called with the lock
783  *			 taken.
784  * @wq: the waitqueue to wait on
785  * @condition: a C expression for the event to wait for
786  * @lock: a locked spinlock_t, which will be released before schedule()
787  *	  and reacquired afterwards.
788  *
789  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
790  * @condition evaluates to true. The @condition is checked each time
791  * the waitqueue @wq is woken up.
792  *
793  * wake_up() has to be called after changing any variable that could
794  * change the result of the wait condition.
795  *
796  * This is supposed to be called while holding the lock. The lock is
797  * dropped before going to sleep and is reacquired afterwards.
798  */
799 #define wait_event_lock_irq(wq, condition, lock)			\
800 do {									\
801 	if (condition)							\
802 		break;							\
803 	__wait_event_lock_irq(wq, condition, lock, );			\
804 } while (0)
805 
806 
807 #define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd)	\
808 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
809 		      spin_unlock_irq(&lock);				\
810 		      cmd;						\
811 		      schedule();					\
812 		      spin_lock_irq(&lock))
813 
814 /**
815  * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
816  *		The condition is checked under the lock. This is expected to
817  *		be called with the lock taken.
818  * @wq: the waitqueue to wait on
819  * @condition: a C expression for the event to wait for
820  * @lock: a locked spinlock_t, which will be released before cmd and
821  *	  schedule() and reacquired afterwards.
822  * @cmd: a command which is invoked outside the critical section before
823  *	 sleep
824  *
825  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
826  * @condition evaluates to true or a signal is received. The @condition is
827  * checked each time the waitqueue @wq is woken up.
828  *
829  * wake_up() has to be called after changing any variable that could
830  * change the result of the wait condition.
831  *
832  * This is supposed to be called while holding the lock. The lock is
833  * dropped before invoking the cmd and going to sleep and is reacquired
834  * afterwards.
835  *
836  * The macro will return -ERESTARTSYS if it was interrupted by a signal
837  * and 0 if @condition evaluated to true.
838  */
839 #define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd)	\
840 ({									\
841 	int __ret = 0;							\
842 	if (!(condition))						\
843 		__ret = __wait_event_interruptible_lock_irq(wq,		\
844 						condition, lock, cmd);	\
845 	__ret;								\
846 })
847 
848 /**
849  * wait_event_interruptible_lock_irq - sleep until a condition gets true.
850  *		The condition is checked under the lock. This is expected
851  *		to be called with the lock taken.
852  * @wq: the waitqueue to wait on
853  * @condition: a C expression for the event to wait for
854  * @lock: a locked spinlock_t, which will be released before schedule()
855  *	  and reacquired afterwards.
856  *
857  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
858  * @condition evaluates to true or signal is received. The @condition is
859  * checked each time the waitqueue @wq is woken up.
860  *
861  * wake_up() has to be called after changing any variable that could
862  * change the result of the wait condition.
863  *
864  * This is supposed to be called while holding the lock. The lock is
865  * dropped before going to sleep and is reacquired afterwards.
866  *
867  * The macro will return -ERESTARTSYS if it was interrupted by a signal
868  * and 0 if @condition evaluated to true.
869  */
870 #define wait_event_interruptible_lock_irq(wq, condition, lock)		\
871 ({									\
872 	int __ret = 0;							\
873 	if (!(condition))						\
874 		__ret = __wait_event_interruptible_lock_irq(wq,		\
875 						condition, lock,);	\
876 	__ret;								\
877 })
878 
879 #define __wait_event_interruptible_lock_irq_timeout(wq, condition,	\
880 						    lock, timeout)	\
881 	___wait_event(wq, ___wait_cond_timeout(condition),		\
882 		      TASK_INTERRUPTIBLE, 0, timeout,			\
883 		      spin_unlock_irq(&lock);				\
884 		      __ret = schedule_timeout(__ret);			\
885 		      spin_lock_irq(&lock));
886 
887 /**
888  * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
889  *		true or a timeout elapses. The condition is checked under
890  *		the lock. This is expected to be called with the lock taken.
891  * @wq: the waitqueue to wait on
892  * @condition: a C expression for the event to wait for
893  * @lock: a locked spinlock_t, which will be released before schedule()
894  *	  and reacquired afterwards.
895  * @timeout: timeout, in jiffies
896  *
897  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
898  * @condition evaluates to true or signal is received. The @condition is
899  * checked each time the waitqueue @wq is woken up.
900  *
901  * wake_up() has to be called after changing any variable that could
902  * change the result of the wait condition.
903  *
904  * This is supposed to be called while holding the lock. The lock is
905  * dropped before going to sleep and is reacquired afterwards.
906  *
907  * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
908  * was interrupted by a signal, and the remaining jiffies otherwise
909  * if the condition evaluated to true before the timeout elapsed.
910  */
911 #define wait_event_interruptible_lock_irq_timeout(wq, condition, lock,	\
912 						  timeout)		\
913 ({									\
914 	long __ret = timeout;						\
915 	if (!___wait_cond_timeout(condition))				\
916 		__ret = __wait_event_interruptible_lock_irq_timeout(	\
917 					wq, condition, lock, timeout);	\
918 	__ret;								\
919 })
920 
921 /*
922  * Waitqueues which are removed from the waitqueue_head at wakeup time
923  */
924 void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
925 void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
926 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
927 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
928 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key);
929 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout);
930 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
931 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
932 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
933 
934 #define DEFINE_WAIT_FUNC(name, function)				\
935 	wait_queue_t name = {						\
936 		.private	= current,				\
937 		.func		= function,				\
938 		.task_list	= LIST_HEAD_INIT((name).task_list),	\
939 	}
940 
941 #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
942 
943 #define DEFINE_WAIT_BIT(name, word, bit)				\
944 	struct wait_bit_queue name = {					\
945 		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),		\
946 		.wait	= {						\
947 			.private	= current,			\
948 			.func		= wake_bit_function,		\
949 			.task_list	=				\
950 				LIST_HEAD_INIT((name).wait.task_list),	\
951 		},							\
952 	}
953 
954 #define init_wait(wait)							\
955 	do {								\
956 		(wait)->private = current;				\
957 		(wait)->func = autoremove_wake_function;		\
958 		INIT_LIST_HEAD(&(wait)->task_list);			\
959 		(wait)->flags = 0;					\
960 	} while (0)
961 
962 
963 extern int bit_wait(struct wait_bit_key *, int);
964 extern int bit_wait_io(struct wait_bit_key *, int);
965 extern int bit_wait_timeout(struct wait_bit_key *, int);
966 extern int bit_wait_io_timeout(struct wait_bit_key *, int);
967 
968 /**
969  * wait_on_bit - wait for a bit to be cleared
970  * @word: the word being waited on, a kernel virtual address
971  * @bit: the bit of the word being waited on
972  * @mode: the task state to sleep in
973  *
974  * There is a standard hashed waitqueue table for generic use. This
975  * is the part of the hashtable's accessor API that waits on a bit.
976  * For instance, if one were to have waiters on a bitflag, one would
977  * call wait_on_bit() in threads waiting for the bit to clear.
978  * One uses wait_on_bit() where one is waiting for the bit to clear,
979  * but has no intention of setting it.
980  * Returned value will be zero if the bit was cleared, or non-zero
981  * if the process received a signal and the mode permitted wakeup
982  * on that signal.
983  */
984 static inline int
wait_on_bit(unsigned long * word,int bit,unsigned mode)985 wait_on_bit(unsigned long *word, int bit, unsigned mode)
986 {
987 	might_sleep();
988 	if (!test_bit(bit, word))
989 		return 0;
990 	return out_of_line_wait_on_bit(word, bit,
991 				       bit_wait,
992 				       mode);
993 }
994 
995 /**
996  * wait_on_bit_io - wait for a bit to be cleared
997  * @word: the word being waited on, a kernel virtual address
998  * @bit: the bit of the word being waited on
999  * @mode: the task state to sleep in
1000  *
1001  * Use the standard hashed waitqueue table to wait for a bit
1002  * to be cleared.  This is similar to wait_on_bit(), but calls
1003  * io_schedule() instead of schedule() for the actual waiting.
1004  *
1005  * Returned value will be zero if the bit was cleared, or non-zero
1006  * if the process received a signal and the mode permitted wakeup
1007  * on that signal.
1008  */
1009 static inline int
wait_on_bit_io(unsigned long * word,int bit,unsigned mode)1010 wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
1011 {
1012 	might_sleep();
1013 	if (!test_bit(bit, word))
1014 		return 0;
1015 	return out_of_line_wait_on_bit(word, bit,
1016 				       bit_wait_io,
1017 				       mode);
1018 }
1019 
1020 /**
1021  * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
1022  * @word: the word being waited on, a kernel virtual address
1023  * @bit: the bit of the word being waited on
1024  * @mode: the task state to sleep in
1025  * @timeout: timeout, in jiffies
1026  *
1027  * Use the standard hashed waitqueue table to wait for a bit
1028  * to be cleared. This is similar to wait_on_bit(), except also takes a
1029  * timeout parameter.
1030  *
1031  * Returned value will be zero if the bit was cleared before the
1032  * @timeout elapsed, or non-zero if the @timeout elapsed or process
1033  * received a signal and the mode permitted wakeup on that signal.
1034  */
1035 static inline int
wait_on_bit_timeout(unsigned long * word,int bit,unsigned mode,unsigned long timeout)1036 wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
1037 		    unsigned long timeout)
1038 {
1039 	might_sleep();
1040 	if (!test_bit(bit, word))
1041 		return 0;
1042 	return out_of_line_wait_on_bit_timeout(word, bit,
1043 					       bit_wait_timeout,
1044 					       mode, timeout);
1045 }
1046 
1047 /**
1048  * wait_on_bit_action - wait for a bit to be cleared
1049  * @word: the word being waited on, a kernel virtual address
1050  * @bit: the bit of the word being waited on
1051  * @action: the function used to sleep, which may take special actions
1052  * @mode: the task state to sleep in
1053  *
1054  * Use the standard hashed waitqueue table to wait for a bit
1055  * to be cleared, and allow the waiting action to be specified.
1056  * This is like wait_on_bit() but allows fine control of how the waiting
1057  * is done.
1058  *
1059  * Returned value will be zero if the bit was cleared, or non-zero
1060  * if the process received a signal and the mode permitted wakeup
1061  * on that signal.
1062  */
1063 static inline int
wait_on_bit_action(unsigned long * word,int bit,wait_bit_action_f * action,unsigned mode)1064 wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
1065 		   unsigned mode)
1066 {
1067 	might_sleep();
1068 	if (!test_bit(bit, word))
1069 		return 0;
1070 	return out_of_line_wait_on_bit(word, bit, action, mode);
1071 }
1072 
1073 /**
1074  * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
1075  * @word: the word being waited on, a kernel virtual address
1076  * @bit: the bit of the word being waited on
1077  * @mode: the task state to sleep in
1078  *
1079  * There is a standard hashed waitqueue table for generic use. This
1080  * is the part of the hashtable's accessor API that waits on a bit
1081  * when one intends to set it, for instance, trying to lock bitflags.
1082  * For instance, if one were to have waiters trying to set bitflag
1083  * and waiting for it to clear before setting it, one would call
1084  * wait_on_bit() in threads waiting to be able to set the bit.
1085  * One uses wait_on_bit_lock() where one is waiting for the bit to
1086  * clear with the intention of setting it, and when done, clearing it.
1087  *
1088  * Returns zero if the bit was (eventually) found to be clear and was
1089  * set.  Returns non-zero if a signal was delivered to the process and
1090  * the @mode allows that signal to wake the process.
1091  */
1092 static inline int
wait_on_bit_lock(unsigned long * word,int bit,unsigned mode)1093 wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
1094 {
1095 	might_sleep();
1096 	if (!test_and_set_bit(bit, word))
1097 		return 0;
1098 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
1099 }
1100 
1101 /**
1102  * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
1103  * @word: the word being waited on, a kernel virtual address
1104  * @bit: the bit of the word being waited on
1105  * @mode: the task state to sleep in
1106  *
1107  * Use the standard hashed waitqueue table to wait for a bit
1108  * to be cleared and then to atomically set it.  This is similar
1109  * to wait_on_bit(), but calls io_schedule() instead of schedule()
1110  * for the actual waiting.
1111  *
1112  * Returns zero if the bit was (eventually) found to be clear and was
1113  * set.  Returns non-zero if a signal was delivered to the process and
1114  * the @mode allows that signal to wake the process.
1115  */
1116 static inline int
wait_on_bit_lock_io(unsigned long * word,int bit,unsigned mode)1117 wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
1118 {
1119 	might_sleep();
1120 	if (!test_and_set_bit(bit, word))
1121 		return 0;
1122 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
1123 }
1124 
1125 /**
1126  * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
1127  * @word: the word being waited on, a kernel virtual address
1128  * @bit: the bit of the word being waited on
1129  * @action: the function used to sleep, which may take special actions
1130  * @mode: the task state to sleep in
1131  *
1132  * Use the standard hashed waitqueue table to wait for a bit
1133  * to be cleared and then to set it, and allow the waiting action
1134  * to be specified.
1135  * This is like wait_on_bit() but allows fine control of how the waiting
1136  * is done.
1137  *
1138  * Returns zero if the bit was (eventually) found to be clear and was
1139  * set.  Returns non-zero if a signal was delivered to the process and
1140  * the @mode allows that signal to wake the process.
1141  */
1142 static inline int
wait_on_bit_lock_action(unsigned long * word,int bit,wait_bit_action_f * action,unsigned mode)1143 wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
1144 			unsigned mode)
1145 {
1146 	might_sleep();
1147 	if (!test_and_set_bit(bit, word))
1148 		return 0;
1149 	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
1150 }
1151 
1152 /**
1153  * wait_on_atomic_t - Wait for an atomic_t to become 0
1154  * @val: The atomic value being waited on, a kernel virtual address
1155  * @action: the function used to sleep, which may take special actions
1156  * @mode: the task state to sleep in
1157  *
1158  * Wait for an atomic_t to become 0.  We abuse the bit-wait waitqueue table for
1159  * the purpose of getting a waitqueue, but we set the key to a bit number
1160  * outside of the target 'word'.
1161  */
1162 static inline
wait_on_atomic_t(atomic_t * val,int (* action)(atomic_t *),unsigned mode)1163 int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
1164 {
1165 	might_sleep();
1166 	if (atomic_read(val) == 0)
1167 		return 0;
1168 	return out_of_line_wait_on_atomic_t(val, action, mode);
1169 }
1170 
1171 #endif /* _LINUX_WAIT_H */
1172