1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8 
9 #ifndef _QED_CHAIN_H
10 #define _QED_CHAIN_H
11 
12 #include <linux/types.h>
13 #include <asm/byteorder.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/slab.h>
17 #include <linux/qed/common_hsi.h>
18 
19 /* dma_addr_t manip */
20 #define DMA_LO_LE(x)            cpu_to_le32(lower_32_bits(x))
21 #define DMA_HI_LE(x)            cpu_to_le32(upper_32_bits(x))
22 
23 #define HILO_GEN(hi, lo, type)  ((((type)(hi)) << 32) + (lo))
24 #define HILO_DMA(hi, lo)        HILO_GEN(hi, lo, dma_addr_t)
25 #define HILO_64(hi, lo) HILO_GEN((le32_to_cpu(hi)), (le32_to_cpu(lo)), u64)
26 #define HILO_DMA_REGPAIR(regpair)       (HILO_DMA(regpair.hi, regpair.lo))
27 #define HILO_64_REGPAIR(regpair)        (HILO_64(regpair.hi, regpair.lo))
28 
29 enum qed_chain_mode {
30 	/* Each Page contains a next pointer at its end */
31 	QED_CHAIN_MODE_NEXT_PTR,
32 
33 	/* Chain is a single page (next ptr) is unrequired */
34 	QED_CHAIN_MODE_SINGLE,
35 
36 	/* Page pointers are located in a side list */
37 	QED_CHAIN_MODE_PBL,
38 };
39 
40 enum qed_chain_use_mode {
41 	QED_CHAIN_USE_TO_PRODUCE,		/* Chain starts empty */
42 	QED_CHAIN_USE_TO_CONSUME,		/* Chain starts full */
43 	QED_CHAIN_USE_TO_CONSUME_PRODUCE,	/* Chain starts empty */
44 };
45 
46 struct qed_chain_next {
47 	struct regpair	next_phys;
48 	void		*next_virt;
49 };
50 
51 struct qed_chain_pbl {
52 	dma_addr_t	p_phys_table;
53 	void		*p_virt_table;
54 	u16		prod_page_idx;
55 	u16		cons_page_idx;
56 };
57 
58 struct qed_chain {
59 	void			*p_virt_addr;
60 	dma_addr_t		p_phys_addr;
61 	void			*p_prod_elem;
62 	void			*p_cons_elem;
63 	u16			page_cnt;
64 	enum qed_chain_mode	mode;
65 	enum qed_chain_use_mode intended_use; /* used to produce/consume */
66 	u16			capacity; /*< number of _usable_ elements */
67 	u16			size; /* number of elements */
68 	u16			prod_idx;
69 	u16			cons_idx;
70 	u16			elem_per_page;
71 	u16			elem_per_page_mask;
72 	u16			elem_unusable;
73 	u16			usable_per_page;
74 	u16			elem_size;
75 	u16			next_page_mask;
76 	struct qed_chain_pbl	pbl;
77 };
78 
79 #define QED_CHAIN_PBL_ENTRY_SIZE        (8)
80 #define QED_CHAIN_PAGE_SIZE             (0x1000)
81 #define ELEMS_PER_PAGE(elem_size)       (QED_CHAIN_PAGE_SIZE / (elem_size))
82 
83 #define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)     \
84 	((mode == QED_CHAIN_MODE_NEXT_PTR) ?	     \
85 	 (1 + ((sizeof(struct qed_chain_next) - 1) / \
86 	       (elem_size))) : 0)
87 
88 #define USABLE_ELEMS_PER_PAGE(elem_size, mode) \
89 	((u32)(ELEMS_PER_PAGE(elem_size) -     \
90 	       UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)))
91 
92 #define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \
93 	DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
94 
95 /* Accessors */
qed_chain_get_prod_idx(struct qed_chain * p_chain)96 static inline u16 qed_chain_get_prod_idx(struct qed_chain *p_chain)
97 {
98 	return p_chain->prod_idx;
99 }
100 
qed_chain_get_cons_idx(struct qed_chain * p_chain)101 static inline u16 qed_chain_get_cons_idx(struct qed_chain *p_chain)
102 {
103 	return p_chain->cons_idx;
104 }
105 
qed_chain_get_elem_left(struct qed_chain * p_chain)106 static inline u16 qed_chain_get_elem_left(struct qed_chain *p_chain)
107 {
108 	u16 used;
109 
110 	/* we don't need to trancate upon assignmet, as we assign u32->u16 */
111 	used = ((u32)0x10000u + (u32)(p_chain->prod_idx)) -
112 		(u32)p_chain->cons_idx;
113 	if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR)
114 		used -= p_chain->prod_idx / p_chain->elem_per_page -
115 			p_chain->cons_idx / p_chain->elem_per_page;
116 
117 	return p_chain->capacity - used;
118 }
119 
qed_chain_is_full(struct qed_chain * p_chain)120 static inline u8 qed_chain_is_full(struct qed_chain *p_chain)
121 {
122 	return qed_chain_get_elem_left(p_chain) == p_chain->capacity;
123 }
124 
qed_chain_is_empty(struct qed_chain * p_chain)125 static inline u8 qed_chain_is_empty(struct qed_chain *p_chain)
126 {
127 	return qed_chain_get_elem_left(p_chain) == 0;
128 }
129 
qed_chain_get_elem_per_page(struct qed_chain * p_chain)130 static inline u16 qed_chain_get_elem_per_page(
131 	struct qed_chain *p_chain)
132 {
133 	return p_chain->elem_per_page;
134 }
135 
qed_chain_get_usable_per_page(struct qed_chain * p_chain)136 static inline u16 qed_chain_get_usable_per_page(
137 	struct qed_chain *p_chain)
138 {
139 	return p_chain->usable_per_page;
140 }
141 
qed_chain_get_unusable_per_page(struct qed_chain * p_chain)142 static inline u16 qed_chain_get_unusable_per_page(
143 	struct qed_chain *p_chain)
144 {
145 	return p_chain->elem_unusable;
146 }
147 
qed_chain_get_size(struct qed_chain * p_chain)148 static inline u16 qed_chain_get_size(struct qed_chain *p_chain)
149 {
150 	return p_chain->size;
151 }
152 
153 static inline dma_addr_t
qed_chain_get_pbl_phys(struct qed_chain * p_chain)154 qed_chain_get_pbl_phys(struct qed_chain *p_chain)
155 {
156 	return p_chain->pbl.p_phys_table;
157 }
158 
159 /**
160  * @brief qed_chain_advance_page -
161  *
162  * Advance the next element accros pages for a linked chain
163  *
164  * @param p_chain
165  * @param p_next_elem
166  * @param idx_to_inc
167  * @param page_to_inc
168  */
169 static inline void
qed_chain_advance_page(struct qed_chain * p_chain,void ** p_next_elem,u16 * idx_to_inc,u16 * page_to_inc)170 qed_chain_advance_page(struct qed_chain *p_chain,
171 		       void **p_next_elem,
172 		       u16 *idx_to_inc,
173 		       u16 *page_to_inc)
174 
175 {
176 	switch (p_chain->mode) {
177 	case QED_CHAIN_MODE_NEXT_PTR:
178 	{
179 		struct qed_chain_next *p_next = *p_next_elem;
180 		*p_next_elem = p_next->next_virt;
181 		*idx_to_inc += p_chain->elem_unusable;
182 		break;
183 	}
184 	case QED_CHAIN_MODE_SINGLE:
185 		*p_next_elem = p_chain->p_virt_addr;
186 		break;
187 
188 	case QED_CHAIN_MODE_PBL:
189 		/* It is assumed pages are sequential, next element needs
190 		 * to change only when passing going back to first from last.
191 		 */
192 		if (++(*page_to_inc) == p_chain->page_cnt) {
193 			*page_to_inc = 0;
194 			*p_next_elem = p_chain->p_virt_addr;
195 		}
196 	}
197 }
198 
199 #define is_unusable_idx(p, idx)	\
200 	(((p)->idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
201 
202 #define is_unusable_next_idx(p, idx) \
203 	((((p)->idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page)
204 
205 #define test_ans_skip(p, idx)				\
206 	do {						\
207 		if (is_unusable_idx(p, idx)) {		\
208 			(p)->idx += (p)->elem_unusable;	\
209 		}					\
210 	} while (0)
211 
212 /**
213  * @brief qed_chain_return_multi_produced -
214  *
215  * A chain in which the driver "Produces" elements should use this API
216  * to indicate previous produced elements are now consumed.
217  *
218  * @param p_chain
219  * @param num
220  */
221 static inline void
qed_chain_return_multi_produced(struct qed_chain * p_chain,u16 num)222 qed_chain_return_multi_produced(struct qed_chain *p_chain,
223 				u16 num)
224 {
225 	p_chain->cons_idx += num;
226 	test_ans_skip(p_chain, cons_idx);
227 }
228 
229 /**
230  * @brief qed_chain_return_produced -
231  *
232  * A chain in which the driver "Produces" elements should use this API
233  * to indicate previous produced elements are now consumed.
234  *
235  * @param p_chain
236  */
qed_chain_return_produced(struct qed_chain * p_chain)237 static inline void qed_chain_return_produced(struct qed_chain *p_chain)
238 {
239 	p_chain->cons_idx++;
240 	test_ans_skip(p_chain, cons_idx);
241 }
242 
243 /**
244  * @brief qed_chain_produce -
245  *
246  * A chain in which the driver "Produces" elements should use this to get
247  * a pointer to the next element which can be "Produced". It's driver
248  * responsibility to validate that the chain has room for new element.
249  *
250  * @param p_chain
251  *
252  * @return void*, a pointer to next element
253  */
qed_chain_produce(struct qed_chain * p_chain)254 static inline void *qed_chain_produce(struct qed_chain *p_chain)
255 {
256 	void *ret = NULL;
257 
258 	if ((p_chain->prod_idx & p_chain->elem_per_page_mask) ==
259 	    p_chain->next_page_mask) {
260 		qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
261 				       &p_chain->prod_idx,
262 				       &p_chain->pbl.prod_page_idx);
263 	}
264 
265 	ret = p_chain->p_prod_elem;
266 	p_chain->prod_idx++;
267 	p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) +
268 					p_chain->elem_size);
269 
270 	return ret;
271 }
272 
273 /**
274  * @brief qed_chain_get_capacity -
275  *
276  * Get the maximum number of BDs in chain
277  *
278  * @param p_chain
279  * @param num
280  *
281  * @return u16, number of unusable BDs
282  */
qed_chain_get_capacity(struct qed_chain * p_chain)283 static inline u16 qed_chain_get_capacity(struct qed_chain *p_chain)
284 {
285 	return p_chain->capacity;
286 }
287 
288 /**
289  * @brief qed_chain_recycle_consumed -
290  *
291  * Returns an element which was previously consumed;
292  * Increments producers so they could be written to FW.
293  *
294  * @param p_chain
295  */
296 static inline void
qed_chain_recycle_consumed(struct qed_chain * p_chain)297 qed_chain_recycle_consumed(struct qed_chain *p_chain)
298 {
299 	test_ans_skip(p_chain, prod_idx);
300 	p_chain->prod_idx++;
301 }
302 
303 /**
304  * @brief qed_chain_consume -
305  *
306  * A Chain in which the driver utilizes data written by a different source
307  * (i.e., FW) should use this to access passed buffers.
308  *
309  * @param p_chain
310  *
311  * @return void*, a pointer to the next buffer written
312  */
qed_chain_consume(struct qed_chain * p_chain)313 static inline void *qed_chain_consume(struct qed_chain *p_chain)
314 {
315 	void *ret = NULL;
316 
317 	if ((p_chain->cons_idx & p_chain->elem_per_page_mask) ==
318 	    p_chain->next_page_mask) {
319 		qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
320 				       &p_chain->cons_idx,
321 				       &p_chain->pbl.cons_page_idx);
322 	}
323 
324 	ret = p_chain->p_cons_elem;
325 	p_chain->cons_idx++;
326 	p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) +
327 					p_chain->elem_size);
328 
329 	return ret;
330 }
331 
332 /**
333  * @brief qed_chain_reset - Resets the chain to its start state
334  *
335  * @param p_chain pointer to a previously allocted chain
336  */
qed_chain_reset(struct qed_chain * p_chain)337 static inline void qed_chain_reset(struct qed_chain *p_chain)
338 {
339 	int i;
340 
341 	p_chain->prod_idx	= 0;
342 	p_chain->cons_idx	= 0;
343 	p_chain->p_cons_elem	= p_chain->p_virt_addr;
344 	p_chain->p_prod_elem	= p_chain->p_virt_addr;
345 
346 	if (p_chain->mode == QED_CHAIN_MODE_PBL) {
347 		p_chain->pbl.prod_page_idx	= p_chain->page_cnt - 1;
348 		p_chain->pbl.cons_page_idx	= p_chain->page_cnt - 1;
349 	}
350 
351 	switch (p_chain->intended_use) {
352 	case QED_CHAIN_USE_TO_CONSUME_PRODUCE:
353 	case QED_CHAIN_USE_TO_PRODUCE:
354 		/* Do nothing */
355 		break;
356 
357 	case QED_CHAIN_USE_TO_CONSUME:
358 		/* produce empty elements */
359 		for (i = 0; i < p_chain->capacity; i++)
360 			qed_chain_recycle_consumed(p_chain);
361 		break;
362 	}
363 }
364 
365 /**
366  * @brief qed_chain_init - Initalizes a basic chain struct
367  *
368  * @param p_chain
369  * @param p_virt_addr
370  * @param p_phys_addr	physical address of allocated buffer's beginning
371  * @param page_cnt	number of pages in the allocated buffer
372  * @param elem_size	size of each element in the chain
373  * @param intended_use
374  * @param mode
375  */
qed_chain_init(struct qed_chain * p_chain,void * p_virt_addr,dma_addr_t p_phys_addr,u16 page_cnt,u8 elem_size,enum qed_chain_use_mode intended_use,enum qed_chain_mode mode)376 static inline void qed_chain_init(struct qed_chain *p_chain,
377 				  void *p_virt_addr,
378 				  dma_addr_t p_phys_addr,
379 				  u16 page_cnt,
380 				  u8 elem_size,
381 				  enum qed_chain_use_mode intended_use,
382 				  enum qed_chain_mode mode)
383 {
384 	/* chain fixed parameters */
385 	p_chain->p_virt_addr	= p_virt_addr;
386 	p_chain->p_phys_addr	= p_phys_addr;
387 	p_chain->elem_size	= elem_size;
388 	p_chain->page_cnt	= page_cnt;
389 	p_chain->mode		= mode;
390 
391 	p_chain->intended_use		= intended_use;
392 	p_chain->elem_per_page		= ELEMS_PER_PAGE(elem_size);
393 	p_chain->usable_per_page =
394 		USABLE_ELEMS_PER_PAGE(elem_size, mode);
395 	p_chain->capacity		= p_chain->usable_per_page * page_cnt;
396 	p_chain->size			= p_chain->elem_per_page * page_cnt;
397 	p_chain->elem_per_page_mask	= p_chain->elem_per_page - 1;
398 
399 	p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
400 
401 	p_chain->next_page_mask = (p_chain->usable_per_page &
402 				   p_chain->elem_per_page_mask);
403 
404 	if (mode == QED_CHAIN_MODE_NEXT_PTR) {
405 		struct qed_chain_next	*p_next;
406 		u16			i;
407 
408 		for (i = 0; i < page_cnt - 1; i++) {
409 			/* Increment mem_phy to the next page. */
410 			p_phys_addr += QED_CHAIN_PAGE_SIZE;
411 
412 			/* Initialize the physical address of the next page. */
413 			p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
414 							   elem_size *
415 							   p_chain->
416 							   usable_per_page);
417 
418 			p_next->next_phys.lo	= DMA_LO_LE(p_phys_addr);
419 			p_next->next_phys.hi	= DMA_HI_LE(p_phys_addr);
420 
421 			/* Initialize the virtual address of the next page. */
422 			p_next->next_virt = (void *)((u8 *)p_virt_addr +
423 						     QED_CHAIN_PAGE_SIZE);
424 
425 			/* Move to the next page. */
426 			p_virt_addr = p_next->next_virt;
427 		}
428 
429 		/* Last page's next should point to beginning of the chain */
430 		p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
431 						   elem_size *
432 						   p_chain->usable_per_page);
433 
434 		p_next->next_phys.lo	= DMA_LO_LE(p_chain->p_phys_addr);
435 		p_next->next_phys.hi	= DMA_HI_LE(p_chain->p_phys_addr);
436 		p_next->next_virt	= p_chain->p_virt_addr;
437 	}
438 	qed_chain_reset(p_chain);
439 }
440 
441 /**
442  * @brief qed_chain_pbl_init - Initalizes a basic pbl chain
443  *        struct
444  * @param p_chain
445  * @param p_virt_addr	virtual address of allocated buffer's beginning
446  * @param p_phys_addr	physical address of allocated buffer's beginning
447  * @param page_cnt	number of pages in the allocated buffer
448  * @param elem_size	size of each element in the chain
449  * @param use_mode
450  * @param p_phys_pbl	pointer to a pre-allocated side table
451  *                      which will hold physical page addresses.
452  * @param p_virt_pbl	pointer to a pre allocated side table
453  *                      which will hold virtual page addresses.
454  */
455 static inline void
qed_chain_pbl_init(struct qed_chain * p_chain,void * p_virt_addr,dma_addr_t p_phys_addr,u16 page_cnt,u8 elem_size,enum qed_chain_use_mode use_mode,dma_addr_t p_phys_pbl,dma_addr_t * p_virt_pbl)456 qed_chain_pbl_init(struct qed_chain *p_chain,
457 		   void *p_virt_addr,
458 		   dma_addr_t p_phys_addr,
459 		   u16 page_cnt,
460 		   u8 elem_size,
461 		   enum qed_chain_use_mode use_mode,
462 		   dma_addr_t p_phys_pbl,
463 		   dma_addr_t *p_virt_pbl)
464 {
465 	dma_addr_t *p_pbl_dma = p_virt_pbl;
466 	int i;
467 
468 	qed_chain_init(p_chain, p_virt_addr, p_phys_addr, page_cnt,
469 		       elem_size, use_mode, QED_CHAIN_MODE_PBL);
470 
471 	p_chain->pbl.p_phys_table = p_phys_pbl;
472 	p_chain->pbl.p_virt_table = p_virt_pbl;
473 
474 	/* Fill the PBL with physical addresses*/
475 	for (i = 0; i < page_cnt; i++) {
476 		*p_pbl_dma = p_phys_addr;
477 		p_phys_addr += QED_CHAIN_PAGE_SIZE;
478 		p_pbl_dma++;
479 	}
480 }
481 
482 /**
483  * @brief qed_chain_set_prod - sets the prod to the given
484  *        value
485  *
486  * @param prod_idx
487  * @param p_prod_elem
488  */
qed_chain_set_prod(struct qed_chain * p_chain,u16 prod_idx,void * p_prod_elem)489 static inline void qed_chain_set_prod(struct qed_chain *p_chain,
490 				      u16 prod_idx,
491 				      void *p_prod_elem)
492 {
493 	p_chain->prod_idx	= prod_idx;
494 	p_chain->p_prod_elem	= p_prod_elem;
495 }
496 
497 /**
498  * @brief qed_chain_get_elem -
499  *
500  * get a pointer to an element represented by absolute idx
501  *
502  * @param p_chain
503  * @assumption p_chain->size is a power of 2
504  *
505  * @return void*, a pointer to next element
506  */
qed_chain_sge_get_elem(struct qed_chain * p_chain,u16 idx)507 static inline void *qed_chain_sge_get_elem(struct qed_chain *p_chain,
508 					   u16 idx)
509 {
510 	void *ret = NULL;
511 
512 	if (idx >= p_chain->size)
513 		return NULL;
514 
515 	ret = (u8 *)p_chain->p_virt_addr + p_chain->elem_size * idx;
516 
517 	return ret;
518 }
519 
520 /**
521  * @brief qed_chain_sge_inc_cons_prod
522  *
523  * for sge chains, producer isn't increased serially, the ring
524  * is expected to be full at all times. Once elements are
525  * consumed, they are immediately produced.
526  *
527  * @param p_chain
528  * @param cnt
529  *
530  * @return inline void
531  */
532 static inline void
qed_chain_sge_inc_cons_prod(struct qed_chain * p_chain,u16 cnt)533 qed_chain_sge_inc_cons_prod(struct qed_chain *p_chain,
534 			    u16 cnt)
535 {
536 	p_chain->prod_idx += cnt;
537 	p_chain->cons_idx += cnt;
538 }
539 
540 #endif
541