1 /*
2  *  OMAP GPMC (General Purpose Memory Controller) defines
3  *
4  *  This program is free software; you can redistribute  it and/or modify it
5  *  under  the terms of  the GNU General  Public License as published by the
6  *  Free Software Foundation;  either version 2 of the  License, or (at your
7  *  option) any later version.
8  */
9 
10 /* Maximum Number of Chip Selects */
11 #define GPMC_CS_NUM		8
12 
13 #define GPMC_CONFIG_WP		0x00000005
14 
15 #define GPMC_IRQ_FIFOEVENTENABLE	0x01
16 #define GPMC_IRQ_COUNT_EVENT		0x02
17 
18 #define GPMC_BURST_4			4	/* 4 word burst */
19 #define GPMC_BURST_8			8	/* 8 word burst */
20 #define GPMC_BURST_16			16	/* 16 word burst */
21 #define GPMC_DEVWIDTH_8BIT		1	/* 8-bit device width */
22 #define GPMC_DEVWIDTH_16BIT		2	/* 16-bit device width */
23 #define GPMC_MUX_AAD			1	/* Addr-Addr-Data multiplex */
24 #define GPMC_MUX_AD			2	/* Addr-Data multiplex */
25 
26 /* bool type time settings */
27 struct gpmc_bool_timings {
28 	bool cycle2cyclediffcsen;
29 	bool cycle2cyclesamecsen;
30 	bool we_extra_delay;
31 	bool oe_extra_delay;
32 	bool adv_extra_delay;
33 	bool cs_extra_delay;
34 	bool time_para_granularity;
35 };
36 
37 /*
38  * Note that all values in this struct are in nanoseconds except sync_clk
39  * (which is in picoseconds), while the register values are in gpmc_fck cycles.
40  */
41 struct gpmc_timings {
42 	/* Minimum clock period for synchronous mode (in picoseconds) */
43 	u32 sync_clk;
44 
45 	/* Chip-select signal timings corresponding to GPMC_CS_CONFIG2 */
46 	u32 cs_on;		/* Assertion time */
47 	u32 cs_rd_off;		/* Read deassertion time */
48 	u32 cs_wr_off;		/* Write deassertion time */
49 
50 	/* ADV signal timings corresponding to GPMC_CONFIG3 */
51 	u32 adv_on;		/* Assertion time */
52 	u32 adv_rd_off;		/* Read deassertion time */
53 	u32 adv_wr_off;		/* Write deassertion time */
54 
55 	/* WE signals timings corresponding to GPMC_CONFIG4 */
56 	u32 we_on;		/* WE assertion time */
57 	u32 we_off;		/* WE deassertion time */
58 
59 	/* OE signals timings corresponding to GPMC_CONFIG4 */
60 	u32 oe_on;		/* OE assertion time */
61 	u32 oe_off;		/* OE deassertion time */
62 
63 	/* Access time and cycle time timings corresponding to GPMC_CONFIG5 */
64 	u32 page_burst_access;	/* Multiple access word delay */
65 	u32 access;		/* Start-cycle to first data valid delay */
66 	u32 rd_cycle;		/* Total read cycle time */
67 	u32 wr_cycle;		/* Total write cycle time */
68 
69 	u32 bus_turnaround;
70 	u32 cycle2cycle_delay;
71 
72 	u32 wait_monitoring;
73 	u32 clk_activation;
74 
75 	/* The following are only on OMAP3430 */
76 	u32 wr_access;		/* WRACCESSTIME */
77 	u32 wr_data_mux_bus;	/* WRDATAONADMUXBUS */
78 
79 	struct gpmc_bool_timings bool_timings;
80 };
81 
82 /* Device timings in picoseconds */
83 struct gpmc_device_timings {
84 	u32 t_ceasu;	/* address setup to CS valid */
85 	u32 t_avdasu;	/* address setup to ADV valid */
86 	/* XXX: try to combine t_avdp_r & t_avdp_w. Issue is
87 	 * of tusb using these timings even for sync whilst
88 	 * ideally for adv_rd/(wr)_off it should have considered
89 	 * t_avdh instead. This indirectly necessitates r/w
90 	 * variations of t_avdp as it is possible to have one
91 	 * sync & other async
92 	 */
93 	u32 t_avdp_r;	/* ADV low time (what about t_cer ?) */
94 	u32 t_avdp_w;
95 	u32 t_aavdh;	/* address hold time */
96 	u32 t_oeasu;	/* address setup to OE valid */
97 	u32 t_aa;	/* access time from ADV assertion */
98 	u32 t_iaa;	/* initial access time */
99 	u32 t_oe;	/* access time from OE assertion */
100 	u32 t_ce;	/* access time from CS asertion */
101 	u32 t_rd_cycle;	/* read cycle time */
102 	u32 t_cez_r;	/* read CS deassertion to high Z */
103 	u32 t_cez_w;	/* write CS deassertion to high Z */
104 	u32 t_oez;	/* OE deassertion to high Z */
105 	u32 t_weasu;	/* address setup to WE valid */
106 	u32 t_wpl;	/* write assertion time */
107 	u32 t_wph;	/* write deassertion time */
108 	u32 t_wr_cycle;	/* write cycle time */
109 
110 	u32 clk;
111 	u32 t_bacc;	/* burst access valid clock to output delay */
112 	u32 t_ces;	/* CS setup time to clk */
113 	u32 t_avds;	/* ADV setup time to clk */
114 	u32 t_avdh;	/* ADV hold time from clk */
115 	u32 t_ach;	/* address hold time from clk */
116 	u32 t_rdyo;	/* clk to ready valid */
117 
118 	u32 t_ce_rdyz;	/* XXX: description ?, or use t_cez instead */
119 	u32 t_ce_avd;	/* CS on to ADV on delay */
120 
121 	/* XXX: check the possibility of combining
122 	 * cyc_aavhd_oe & cyc_aavdh_we
123 	 */
124 	u8 cyc_aavdh_oe;/* read address hold time in cycles */
125 	u8 cyc_aavdh_we;/* write address hold time in cycles */
126 	u8 cyc_oe;	/* access time from OE assertion in cycles */
127 	u8 cyc_wpl;	/* write deassertion time in cycles */
128 	u32 cyc_iaa;	/* initial access time in cycles */
129 
130 	/* extra delays */
131 	bool ce_xdelay;
132 	bool avd_xdelay;
133 	bool oe_xdelay;
134 	bool we_xdelay;
135 };
136 
137 struct gpmc_settings {
138 	bool burst_wrap;	/* enables wrap bursting */
139 	bool burst_read;	/* enables read page/burst mode */
140 	bool burst_write;	/* enables write page/burst mode */
141 	bool device_nand;	/* device is NAND */
142 	bool sync_read;		/* enables synchronous reads */
143 	bool sync_write;	/* enables synchronous writes */
144 	bool wait_on_read;	/* monitor wait on reads */
145 	bool wait_on_write;	/* monitor wait on writes */
146 	u32 burst_len;		/* page/burst length */
147 	u32 device_width;	/* device bus width (8 or 16 bit) */
148 	u32 mux_add_data;	/* multiplex address & data */
149 	u32 wait_pin;		/* wait-pin to be used */
150 };
151 
152 extern int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
153 			     struct gpmc_settings *gpmc_s,
154 			     struct gpmc_device_timings *dev_t);
155 
156 struct gpmc_nand_regs;
157 struct device_node;
158 
159 extern void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs);
160 extern int gpmc_get_client_irq(unsigned irq_config);
161 
162 extern unsigned int gpmc_ticks_to_ns(unsigned int ticks);
163 
164 extern void gpmc_cs_write_reg(int cs, int idx, u32 val);
165 extern int gpmc_calc_divider(unsigned int sync_clk);
166 extern int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
167 			       const struct gpmc_settings *s);
168 extern int gpmc_cs_program_settings(int cs, struct gpmc_settings *p);
169 extern int gpmc_cs_request(int cs, unsigned long size, unsigned long *base);
170 extern void gpmc_cs_free(int cs);
171 extern int gpmc_configure(int cmd, int wval);
172 extern void gpmc_read_settings_dt(struct device_node *np,
173 				  struct gpmc_settings *p);
174 
175 extern void omap3_gpmc_save_context(void);
176 extern void omap3_gpmc_restore_context(void);
177 
178 struct gpmc_timings;
179 struct omap_nand_platform_data;
180 struct omap_onenand_platform_data;
181 
182 #if IS_ENABLED(CONFIG_MTD_NAND_OMAP2)
183 extern int gpmc_nand_init(struct omap_nand_platform_data *d,
184 			  struct gpmc_timings *gpmc_t);
185 #else
gpmc_nand_init(struct omap_nand_platform_data * d,struct gpmc_timings * gpmc_t)186 static inline int gpmc_nand_init(struct omap_nand_platform_data *d,
187 				 struct gpmc_timings *gpmc_t)
188 {
189 	return 0;
190 }
191 #endif
192 
193 #if IS_ENABLED(CONFIG_MTD_ONENAND_OMAP2)
194 extern void gpmc_onenand_init(struct omap_onenand_platform_data *d);
195 #else
196 #define board_onenand_data	NULL
gpmc_onenand_init(struct omap_onenand_platform_data * d)197 static inline void gpmc_onenand_init(struct omap_onenand_platform_data *d)
198 {
199 }
200 #endif
201