1 /*
2  * Atmel SMC (Static Memory Controller) register offsets and bit definitions.
3  *
4  * Copyright (C) 2014 Atmel
5  * Copyright (C) 2014 Free Electrons
6  *
7  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #ifndef _LINUX_MFD_SYSCON_ATMEL_SMC_H_
15 #define _LINUX_MFD_SYSCON_ATMEL_SMC_H_
16 
17 #include <linux/kernel.h>
18 #include <linux/regmap.h>
19 
20 #define AT91SAM9_SMC_GENERIC		0x00
21 #define AT91SAM9_SMC_GENERIC_BLK_SZ	0x10
22 
23 #define SAMA5_SMC_GENERIC		0x600
24 #define SAMA5_SMC_GENERIC_BLK_SZ	0x14
25 
26 #define AT91SAM9_SMC_SETUP(o)		((o) + 0x00)
27 #define AT91SAM9_SMC_NWESETUP(x)	(x)
28 #define AT91SAM9_SMC_NCS_WRSETUP(x)	((x) << 8)
29 #define AT91SAM9_SMC_NRDSETUP(x)	((x) << 16)
30 #define AT91SAM9_SMC_NCS_NRDSETUP(x)	((x) << 24)
31 
32 #define AT91SAM9_SMC_PULSE(o)		((o) + 0x04)
33 #define AT91SAM9_SMC_NWEPULSE(x)	(x)
34 #define AT91SAM9_SMC_NCS_WRPULSE(x)	((x) << 8)
35 #define AT91SAM9_SMC_NRDPULSE(x)	((x) << 16)
36 #define AT91SAM9_SMC_NCS_NRDPULSE(x)	((x) << 24)
37 
38 #define AT91SAM9_SMC_CYCLE(o)		((o) + 0x08)
39 #define AT91SAM9_SMC_NWECYCLE(x)	(x)
40 #define AT91SAM9_SMC_NRDCYCLE(x)	((x) << 16)
41 
42 #define AT91SAM9_SMC_MODE(o)		((o) + 0x0c)
43 #define SAMA5_SMC_MODE(o)		((o) + 0x10)
44 #define AT91_SMC_READMODE		BIT(0)
45 #define AT91_SMC_READMODE_NCS		(0 << 0)
46 #define AT91_SMC_READMODE_NRD		(1 << 0)
47 #define AT91_SMC_WRITEMODE		BIT(1)
48 #define AT91_SMC_WRITEMODE_NCS		(0 << 1)
49 #define AT91_SMC_WRITEMODE_NWE		(1 << 1)
50 #define AT91_SMC_EXNWMODE		GENMASK(5, 4)
51 #define AT91_SMC_EXNWMODE_DISABLE	(0 << 4)
52 #define AT91_SMC_EXNWMODE_FROZEN	(2 << 4)
53 #define AT91_SMC_EXNWMODE_READY		(3 << 4)
54 #define AT91_SMC_BAT			BIT(8)
55 #define AT91_SMC_BAT_SELECT		(0 << 8)
56 #define AT91_SMC_BAT_WRITE		(1 << 8)
57 #define AT91_SMC_DBW			GENMASK(13, 12)
58 #define AT91_SMC_DBW_8			(0 << 12)
59 #define AT91_SMC_DBW_16			(1 << 12)
60 #define AT91_SMC_DBW_32			(2 << 12)
61 #define AT91_SMC_TDF			GENMASK(19, 16)
62 #define AT91_SMC_TDF_(x)		((((x) - 1) << 16) & AT91_SMC_TDF)
63 #define AT91_SMC_TDF_MAX		16
64 #define AT91_SMC_TDFMODE_OPTIMIZED	BIT(20)
65 #define AT91_SMC_PMEN			BIT(24)
66 #define AT91_SMC_PS			GENMASK(29, 28)
67 #define AT91_SMC_PS_4			(0 << 28)
68 #define AT91_SMC_PS_8			(1 << 28)
69 #define AT91_SMC_PS_16			(2 << 28)
70 #define AT91_SMC_PS_32			(3 << 28)
71 
72 
73 /*
74  * This function converts a setup timing expressed in nanoseconds into an
75  * encoded value that can be written in the SMC_SETUP register.
76  *
77  * The following formula is described in atmel datasheets (section
78  * "SMC Setup Register"):
79  *
80  * setup length = (128* SETUP[5] + SETUP[4:0])
81  *
82  * where setup length is the timing expressed in cycles.
83  */
at91sam9_smc_setup_ns_to_cycles(unsigned int clk_rate,u32 timing_ns)84 static inline u32 at91sam9_smc_setup_ns_to_cycles(unsigned int clk_rate,
85 						  u32 timing_ns)
86 {
87 	u32 clk_period = DIV_ROUND_UP(NSEC_PER_SEC, clk_rate);
88 	u32 coded_cycles = 0;
89 	u32 cycles;
90 
91 	cycles = DIV_ROUND_UP(timing_ns, clk_period);
92 	if (cycles / 32) {
93 		coded_cycles |= 1 << 5;
94 		if (cycles < 128)
95 			cycles = 0;
96 	}
97 
98 	coded_cycles |= cycles % 32;
99 
100 	return coded_cycles;
101 }
102 
103 /*
104  * This function converts a pulse timing expressed in nanoseconds into an
105  * encoded value that can be written in the SMC_PULSE register.
106  *
107  * The following formula is described in atmel datasheets (section
108  * "SMC Pulse Register"):
109  *
110  * pulse length = (256* PULSE[6] + PULSE[5:0])
111  *
112  * where pulse length is the timing expressed in cycles.
113  */
at91sam9_smc_pulse_ns_to_cycles(unsigned int clk_rate,u32 timing_ns)114 static inline u32 at91sam9_smc_pulse_ns_to_cycles(unsigned int clk_rate,
115 						  u32 timing_ns)
116 {
117 	u32 clk_period = DIV_ROUND_UP(NSEC_PER_SEC, clk_rate);
118 	u32 coded_cycles = 0;
119 	u32 cycles;
120 
121 	cycles = DIV_ROUND_UP(timing_ns, clk_period);
122 	if (cycles / 64) {
123 		coded_cycles |= 1 << 6;
124 		if (cycles < 256)
125 			cycles = 0;
126 	}
127 
128 	coded_cycles |= cycles % 64;
129 
130 	return coded_cycles;
131 }
132 
133 /*
134  * This function converts a cycle timing expressed in nanoseconds into an
135  * encoded value that can be written in the SMC_CYCLE register.
136  *
137  * The following formula is described in atmel datasheets (section
138  * "SMC Cycle Register"):
139  *
140  * cycle length = (CYCLE[8:7]*256 + CYCLE[6:0])
141  *
142  * where cycle length is the timing expressed in cycles.
143  */
at91sam9_smc_cycle_ns_to_cycles(unsigned int clk_rate,u32 timing_ns)144 static inline u32 at91sam9_smc_cycle_ns_to_cycles(unsigned int clk_rate,
145 						  u32 timing_ns)
146 {
147 	u32 clk_period = DIV_ROUND_UP(NSEC_PER_SEC, clk_rate);
148 	u32 coded_cycles = 0;
149 	u32 cycles;
150 
151 	cycles = DIV_ROUND_UP(timing_ns, clk_period);
152 	if (cycles / 128) {
153 		coded_cycles = cycles / 256;
154 		cycles %= 256;
155 		if (cycles >= 128) {
156 			coded_cycles++;
157 			cycles = 0;
158 		}
159 
160 		if (coded_cycles > 0x3) {
161 			coded_cycles = 0x3;
162 			cycles = 0x7f;
163 		}
164 
165 		coded_cycles <<= 7;
166 	}
167 
168 	coded_cycles |= cycles % 128;
169 
170 	return coded_cycles;
171 }
172 
173 #endif /* _LINUX_MFD_SYSCON_ATMEL_SMC_H_ */
174