1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 *          Artem Bityutskiy (���������������� ����������)
21 */
22
23/*
24 * This file contains journal replay code. It runs when the file-system is being
25 * mounted and requires no locking.
26 *
27 * The larger is the journal, the longer it takes to scan it, so the longer it
28 * takes to mount UBIFS. This is why the journal has limited size which may be
29 * changed depending on the system requirements. But a larger journal gives
30 * faster I/O speed because it writes the index less frequently. So this is a
31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32 * larger is the journal, the more memory its index may consume.
33 */
34
35#include "ubifs.h"
36#include <linux/list_sort.h>
37
38/**
39 * struct replay_entry - replay list entry.
40 * @lnum: logical eraseblock number of the node
41 * @offs: node offset
42 * @len: node length
43 * @deletion: non-zero if this entry corresponds to a node deletion
44 * @sqnum: node sequence number
45 * @list: links the replay list
46 * @key: node key
47 * @nm: directory entry name
48 * @old_size: truncation old size
49 * @new_size: truncation new size
50 *
51 * The replay process first scans all buds and builds the replay list, then
52 * sorts the replay list in nodes sequence number order, and then inserts all
53 * the replay entries to the TNC.
54 */
55struct replay_entry {
56	int lnum;
57	int offs;
58	int len;
59	unsigned int deletion:1;
60	unsigned long long sqnum;
61	struct list_head list;
62	union ubifs_key key;
63	union {
64		struct qstr nm;
65		struct {
66			loff_t old_size;
67			loff_t new_size;
68		};
69	};
70};
71
72/**
73 * struct bud_entry - entry in the list of buds to replay.
74 * @list: next bud in the list
75 * @bud: bud description object
76 * @sqnum: reference node sequence number
77 * @free: free bytes in the bud
78 * @dirty: dirty bytes in the bud
79 */
80struct bud_entry {
81	struct list_head list;
82	struct ubifs_bud *bud;
83	unsigned long long sqnum;
84	int free;
85	int dirty;
86};
87
88/**
89 * set_bud_lprops - set free and dirty space used by a bud.
90 * @c: UBIFS file-system description object
91 * @b: bud entry which describes the bud
92 *
93 * This function makes sure the LEB properties of bud @b are set correctly
94 * after the replay. Returns zero in case of success and a negative error code
95 * in case of failure.
96 */
97static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
98{
99	const struct ubifs_lprops *lp;
100	int err = 0, dirty;
101
102	ubifs_get_lprops(c);
103
104	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
105	if (IS_ERR(lp)) {
106		err = PTR_ERR(lp);
107		goto out;
108	}
109
110	dirty = lp->dirty;
111	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
112		/*
113		 * The LEB was added to the journal with a starting offset of
114		 * zero which means the LEB must have been empty. The LEB
115		 * property values should be @lp->free == @c->leb_size and
116		 * @lp->dirty == 0, but that is not the case. The reason is that
117		 * the LEB had been garbage collected before it became the bud,
118		 * and there was not commit inbetween. The garbage collector
119		 * resets the free and dirty space without recording it
120		 * anywhere except lprops, so if there was no commit then
121		 * lprops does not have that information.
122		 *
123		 * We do not need to adjust free space because the scan has told
124		 * us the exact value which is recorded in the replay entry as
125		 * @b->free.
126		 *
127		 * However we do need to subtract from the dirty space the
128		 * amount of space that the garbage collector reclaimed, which
129		 * is the whole LEB minus the amount of space that was free.
130		 */
131		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
132			lp->free, lp->dirty);
133		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
134			lp->free, lp->dirty);
135		dirty -= c->leb_size - lp->free;
136		/*
137		 * If the replay order was perfect the dirty space would now be
138		 * zero. The order is not perfect because the journal heads
139		 * race with each other. This is not a problem but is does mean
140		 * that the dirty space may temporarily exceed c->leb_size
141		 * during the replay.
142		 */
143		if (dirty != 0)
144			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
145				b->bud->lnum, lp->free, lp->dirty, b->free,
146				b->dirty);
147	}
148	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
149			     lp->flags | LPROPS_TAKEN, 0);
150	if (IS_ERR(lp)) {
151		err = PTR_ERR(lp);
152		goto out;
153	}
154
155	/* Make sure the journal head points to the latest bud */
156	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
157				     b->bud->lnum, c->leb_size - b->free);
158
159out:
160	ubifs_release_lprops(c);
161	return err;
162}
163
164/**
165 * set_buds_lprops - set free and dirty space for all replayed buds.
166 * @c: UBIFS file-system description object
167 *
168 * This function sets LEB properties for all replayed buds. Returns zero in
169 * case of success and a negative error code in case of failure.
170 */
171static int set_buds_lprops(struct ubifs_info *c)
172{
173	struct bud_entry *b;
174	int err;
175
176	list_for_each_entry(b, &c->replay_buds, list) {
177		err = set_bud_lprops(c, b);
178		if (err)
179			return err;
180	}
181
182	return 0;
183}
184
185/**
186 * trun_remove_range - apply a replay entry for a truncation to the TNC.
187 * @c: UBIFS file-system description object
188 * @r: replay entry of truncation
189 */
190static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
191{
192	unsigned min_blk, max_blk;
193	union ubifs_key min_key, max_key;
194	ino_t ino;
195
196	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
197	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
198		min_blk += 1;
199
200	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
201	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
202		max_blk -= 1;
203
204	ino = key_inum(c, &r->key);
205
206	data_key_init(c, &min_key, ino, min_blk);
207	data_key_init(c, &max_key, ino, max_blk);
208
209	return ubifs_tnc_remove_range(c, &min_key, &max_key);
210}
211
212/**
213 * apply_replay_entry - apply a replay entry to the TNC.
214 * @c: UBIFS file-system description object
215 * @r: replay entry to apply
216 *
217 * Apply a replay entry to the TNC.
218 */
219static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
220{
221	int err;
222
223	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
224		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
225
226	/* Set c->replay_sqnum to help deal with dangling branches. */
227	c->replay_sqnum = r->sqnum;
228
229	if (is_hash_key(c, &r->key)) {
230		if (r->deletion)
231			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
232		else
233			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
234					       r->len, &r->nm);
235	} else {
236		if (r->deletion)
237			switch (key_type(c, &r->key)) {
238			case UBIFS_INO_KEY:
239			{
240				ino_t inum = key_inum(c, &r->key);
241
242				err = ubifs_tnc_remove_ino(c, inum);
243				break;
244			}
245			case UBIFS_TRUN_KEY:
246				err = trun_remove_range(c, r);
247				break;
248			default:
249				err = ubifs_tnc_remove(c, &r->key);
250				break;
251			}
252		else
253			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
254					    r->len);
255		if (err)
256			return err;
257
258		if (c->need_recovery)
259			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
260						       r->new_size);
261	}
262
263	return err;
264}
265
266/**
267 * replay_entries_cmp - compare 2 replay entries.
268 * @priv: UBIFS file-system description object
269 * @a: first replay entry
270 * @a: second replay entry
271 *
272 * This is a comparios function for 'list_sort()' which compares 2 replay
273 * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
274 * greater sequence number and %-1 otherwise.
275 */
276static int replay_entries_cmp(void *priv, struct list_head *a,
277			      struct list_head *b)
278{
279	struct replay_entry *ra, *rb;
280
281	cond_resched();
282	if (a == b)
283		return 0;
284
285	ra = list_entry(a, struct replay_entry, list);
286	rb = list_entry(b, struct replay_entry, list);
287	ubifs_assert(ra->sqnum != rb->sqnum);
288	if (ra->sqnum > rb->sqnum)
289		return 1;
290	return -1;
291}
292
293/**
294 * apply_replay_list - apply the replay list to the TNC.
295 * @c: UBIFS file-system description object
296 *
297 * Apply all entries in the replay list to the TNC. Returns zero in case of
298 * success and a negative error code in case of failure.
299 */
300static int apply_replay_list(struct ubifs_info *c)
301{
302	struct replay_entry *r;
303	int err;
304
305	list_sort(c, &c->replay_list, &replay_entries_cmp);
306
307	list_for_each_entry(r, &c->replay_list, list) {
308		cond_resched();
309
310		err = apply_replay_entry(c, r);
311		if (err)
312			return err;
313	}
314
315	return 0;
316}
317
318/**
319 * destroy_replay_list - destroy the replay.
320 * @c: UBIFS file-system description object
321 *
322 * Destroy the replay list.
323 */
324static void destroy_replay_list(struct ubifs_info *c)
325{
326	struct replay_entry *r, *tmp;
327
328	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
329		if (is_hash_key(c, &r->key))
330			kfree(r->nm.name);
331		list_del(&r->list);
332		kfree(r);
333	}
334}
335
336/**
337 * insert_node - insert a node to the replay list
338 * @c: UBIFS file-system description object
339 * @lnum: node logical eraseblock number
340 * @offs: node offset
341 * @len: node length
342 * @key: node key
343 * @sqnum: sequence number
344 * @deletion: non-zero if this is a deletion
345 * @used: number of bytes in use in a LEB
346 * @old_size: truncation old size
347 * @new_size: truncation new size
348 *
349 * This function inserts a scanned non-direntry node to the replay list. The
350 * replay list contains @struct replay_entry elements, and we sort this list in
351 * sequence number order before applying it. The replay list is applied at the
352 * very end of the replay process. Since the list is sorted in sequence number
353 * order, the older modifications are applied first. This function returns zero
354 * in case of success and a negative error code in case of failure.
355 */
356static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
357		       union ubifs_key *key, unsigned long long sqnum,
358		       int deletion, int *used, loff_t old_size,
359		       loff_t new_size)
360{
361	struct replay_entry *r;
362
363	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
364
365	if (key_inum(c, key) >= c->highest_inum)
366		c->highest_inum = key_inum(c, key);
367
368	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
369	if (!r)
370		return -ENOMEM;
371
372	if (!deletion)
373		*used += ALIGN(len, 8);
374	r->lnum = lnum;
375	r->offs = offs;
376	r->len = len;
377	r->deletion = !!deletion;
378	r->sqnum = sqnum;
379	key_copy(c, key, &r->key);
380	r->old_size = old_size;
381	r->new_size = new_size;
382
383	list_add_tail(&r->list, &c->replay_list);
384	return 0;
385}
386
387/**
388 * insert_dent - insert a directory entry node into the replay list.
389 * @c: UBIFS file-system description object
390 * @lnum: node logical eraseblock number
391 * @offs: node offset
392 * @len: node length
393 * @key: node key
394 * @name: directory entry name
395 * @nlen: directory entry name length
396 * @sqnum: sequence number
397 * @deletion: non-zero if this is a deletion
398 * @used: number of bytes in use in a LEB
399 *
400 * This function inserts a scanned directory entry node or an extended
401 * attribute entry to the replay list. Returns zero in case of success and a
402 * negative error code in case of failure.
403 */
404static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
405		       union ubifs_key *key, const char *name, int nlen,
406		       unsigned long long sqnum, int deletion, int *used)
407{
408	struct replay_entry *r;
409	char *nbuf;
410
411	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
412	if (key_inum(c, key) >= c->highest_inum)
413		c->highest_inum = key_inum(c, key);
414
415	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
416	if (!r)
417		return -ENOMEM;
418
419	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
420	if (!nbuf) {
421		kfree(r);
422		return -ENOMEM;
423	}
424
425	if (!deletion)
426		*used += ALIGN(len, 8);
427	r->lnum = lnum;
428	r->offs = offs;
429	r->len = len;
430	r->deletion = !!deletion;
431	r->sqnum = sqnum;
432	key_copy(c, key, &r->key);
433	r->nm.len = nlen;
434	memcpy(nbuf, name, nlen);
435	nbuf[nlen] = '\0';
436	r->nm.name = nbuf;
437
438	list_add_tail(&r->list, &c->replay_list);
439	return 0;
440}
441
442/**
443 * ubifs_validate_entry - validate directory or extended attribute entry node.
444 * @c: UBIFS file-system description object
445 * @dent: the node to validate
446 *
447 * This function validates directory or extended attribute entry node @dent.
448 * Returns zero if the node is all right and a %-EINVAL if not.
449 */
450int ubifs_validate_entry(struct ubifs_info *c,
451			 const struct ubifs_dent_node *dent)
452{
453	int key_type = key_type_flash(c, dent->key);
454	int nlen = le16_to_cpu(dent->nlen);
455
456	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
457	    dent->type >= UBIFS_ITYPES_CNT ||
458	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
459	    strnlen(dent->name, nlen) != nlen ||
460	    le64_to_cpu(dent->inum) > MAX_INUM) {
461		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
462			  "directory entry" : "extended attribute entry");
463		return -EINVAL;
464	}
465
466	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
467		ubifs_err(c, "bad key type %d", key_type);
468		return -EINVAL;
469	}
470
471	return 0;
472}
473
474/**
475 * is_last_bud - check if the bud is the last in the journal head.
476 * @c: UBIFS file-system description object
477 * @bud: bud description object
478 *
479 * This function checks if bud @bud is the last bud in its journal head. This
480 * information is then used by 'replay_bud()' to decide whether the bud can
481 * have corruptions or not. Indeed, only last buds can be corrupted by power
482 * cuts. Returns %1 if this is the last bud, and %0 if not.
483 */
484static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
485{
486	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
487	struct ubifs_bud *next;
488	uint32_t data;
489	int err;
490
491	if (list_is_last(&bud->list, &jh->buds_list))
492		return 1;
493
494	/*
495	 * The following is a quirk to make sure we work correctly with UBIFS
496	 * images used with older UBIFS.
497	 *
498	 * Normally, the last bud will be the last in the journal head's list
499	 * of bud. However, there is one exception if the UBIFS image belongs
500	 * to older UBIFS. This is fairly unlikely: one would need to use old
501	 * UBIFS, then have a power cut exactly at the right point, and then
502	 * try to mount this image with new UBIFS.
503	 *
504	 * The exception is: it is possible to have 2 buds A and B, A goes
505	 * before B, and B is the last, bud B is contains no data, and bud A is
506	 * corrupted at the end. The reason is that in older versions when the
507	 * journal code switched the next bud (from A to B), it first added a
508	 * log reference node for the new bud (B), and only after this it
509	 * synchronized the write-buffer of current bud (A). But later this was
510	 * changed and UBIFS started to always synchronize the write-buffer of
511	 * the bud (A) before writing the log reference for the new bud (B).
512	 *
513	 * But because older UBIFS always synchronized A's write-buffer before
514	 * writing to B, we can recognize this exceptional situation but
515	 * checking the contents of bud B - if it is empty, then A can be
516	 * treated as the last and we can recover it.
517	 *
518	 * TODO: remove this piece of code in a couple of years (today it is
519	 * 16.05.2011).
520	 */
521	next = list_entry(bud->list.next, struct ubifs_bud, list);
522	if (!list_is_last(&next->list, &jh->buds_list))
523		return 0;
524
525	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
526	if (err)
527		return 0;
528
529	return data == 0xFFFFFFFF;
530}
531
532/**
533 * replay_bud - replay a bud logical eraseblock.
534 * @c: UBIFS file-system description object
535 * @b: bud entry which describes the bud
536 *
537 * This function replays bud @bud, recovers it if needed, and adds all nodes
538 * from this bud to the replay list. Returns zero in case of success and a
539 * negative error code in case of failure.
540 */
541static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
542{
543	int is_last = is_last_bud(c, b->bud);
544	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
545	struct ubifs_scan_leb *sleb;
546	struct ubifs_scan_node *snod;
547
548	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
549		lnum, b->bud->jhead, offs, is_last);
550
551	if (c->need_recovery && is_last)
552		/*
553		 * Recover only last LEBs in the journal heads, because power
554		 * cuts may cause corruptions only in these LEBs, because only
555		 * these LEBs could possibly be written to at the power cut
556		 * time.
557		 */
558		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
559	else
560		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
561	if (IS_ERR(sleb))
562		return PTR_ERR(sleb);
563
564	/*
565	 * The bud does not have to start from offset zero - the beginning of
566	 * the 'lnum' LEB may contain previously committed data. One of the
567	 * things we have to do in replay is to correctly update lprops with
568	 * newer information about this LEB.
569	 *
570	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
571	 * bytes of free space because it only contain information about
572	 * committed data.
573	 *
574	 * But we know that real amount of free space is 'c->leb_size -
575	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
576	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
577	 * how much of these data are dirty and update lprops with this
578	 * information.
579	 *
580	 * The dirt in that LEB region is comprised of padding nodes, deletion
581	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
582	 * nodes in this LEB. So instead of calculating clean space, we
583	 * calculate used space ('used' variable).
584	 */
585
586	list_for_each_entry(snod, &sleb->nodes, list) {
587		int deletion = 0;
588
589		cond_resched();
590
591		if (snod->sqnum >= SQNUM_WATERMARK) {
592			ubifs_err(c, "file system's life ended");
593			goto out_dump;
594		}
595
596		if (snod->sqnum > c->max_sqnum)
597			c->max_sqnum = snod->sqnum;
598
599		switch (snod->type) {
600		case UBIFS_INO_NODE:
601		{
602			struct ubifs_ino_node *ino = snod->node;
603			loff_t new_size = le64_to_cpu(ino->size);
604
605			if (le32_to_cpu(ino->nlink) == 0)
606				deletion = 1;
607			err = insert_node(c, lnum, snod->offs, snod->len,
608					  &snod->key, snod->sqnum, deletion,
609					  &used, 0, new_size);
610			break;
611		}
612		case UBIFS_DATA_NODE:
613		{
614			struct ubifs_data_node *dn = snod->node;
615			loff_t new_size = le32_to_cpu(dn->size) +
616					  key_block(c, &snod->key) *
617					  UBIFS_BLOCK_SIZE;
618
619			err = insert_node(c, lnum, snod->offs, snod->len,
620					  &snod->key, snod->sqnum, deletion,
621					  &used, 0, new_size);
622			break;
623		}
624		case UBIFS_DENT_NODE:
625		case UBIFS_XENT_NODE:
626		{
627			struct ubifs_dent_node *dent = snod->node;
628
629			err = ubifs_validate_entry(c, dent);
630			if (err)
631				goto out_dump;
632
633			err = insert_dent(c, lnum, snod->offs, snod->len,
634					  &snod->key, dent->name,
635					  le16_to_cpu(dent->nlen), snod->sqnum,
636					  !le64_to_cpu(dent->inum), &used);
637			break;
638		}
639		case UBIFS_TRUN_NODE:
640		{
641			struct ubifs_trun_node *trun = snod->node;
642			loff_t old_size = le64_to_cpu(trun->old_size);
643			loff_t new_size = le64_to_cpu(trun->new_size);
644			union ubifs_key key;
645
646			/* Validate truncation node */
647			if (old_size < 0 || old_size > c->max_inode_sz ||
648			    new_size < 0 || new_size > c->max_inode_sz ||
649			    old_size <= new_size) {
650				ubifs_err(c, "bad truncation node");
651				goto out_dump;
652			}
653
654			/*
655			 * Create a fake truncation key just to use the same
656			 * functions which expect nodes to have keys.
657			 */
658			trun_key_init(c, &key, le32_to_cpu(trun->inum));
659			err = insert_node(c, lnum, snod->offs, snod->len,
660					  &key, snod->sqnum, 1, &used,
661					  old_size, new_size);
662			break;
663		}
664		default:
665			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
666				  snod->type, lnum, snod->offs);
667			err = -EINVAL;
668			goto out_dump;
669		}
670		if (err)
671			goto out;
672	}
673
674	ubifs_assert(ubifs_search_bud(c, lnum));
675	ubifs_assert(sleb->endpt - offs >= used);
676	ubifs_assert(sleb->endpt % c->min_io_size == 0);
677
678	b->dirty = sleb->endpt - offs - used;
679	b->free = c->leb_size - sleb->endpt;
680	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
681		lnum, b->dirty, b->free);
682
683out:
684	ubifs_scan_destroy(sleb);
685	return err;
686
687out_dump:
688	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
689	ubifs_dump_node(c, snod->node);
690	ubifs_scan_destroy(sleb);
691	return -EINVAL;
692}
693
694/**
695 * replay_buds - replay all buds.
696 * @c: UBIFS file-system description object
697 *
698 * This function returns zero in case of success and a negative error code in
699 * case of failure.
700 */
701static int replay_buds(struct ubifs_info *c)
702{
703	struct bud_entry *b;
704	int err;
705	unsigned long long prev_sqnum = 0;
706
707	list_for_each_entry(b, &c->replay_buds, list) {
708		err = replay_bud(c, b);
709		if (err)
710			return err;
711
712		ubifs_assert(b->sqnum > prev_sqnum);
713		prev_sqnum = b->sqnum;
714	}
715
716	return 0;
717}
718
719/**
720 * destroy_bud_list - destroy the list of buds to replay.
721 * @c: UBIFS file-system description object
722 */
723static void destroy_bud_list(struct ubifs_info *c)
724{
725	struct bud_entry *b;
726
727	while (!list_empty(&c->replay_buds)) {
728		b = list_entry(c->replay_buds.next, struct bud_entry, list);
729		list_del(&b->list);
730		kfree(b);
731	}
732}
733
734/**
735 * add_replay_bud - add a bud to the list of buds to replay.
736 * @c: UBIFS file-system description object
737 * @lnum: bud logical eraseblock number to replay
738 * @offs: bud start offset
739 * @jhead: journal head to which this bud belongs
740 * @sqnum: reference node sequence number
741 *
742 * This function returns zero in case of success and a negative error code in
743 * case of failure.
744 */
745static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
746			  unsigned long long sqnum)
747{
748	struct ubifs_bud *bud;
749	struct bud_entry *b;
750
751	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
752
753	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
754	if (!bud)
755		return -ENOMEM;
756
757	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
758	if (!b) {
759		kfree(bud);
760		return -ENOMEM;
761	}
762
763	bud->lnum = lnum;
764	bud->start = offs;
765	bud->jhead = jhead;
766	ubifs_add_bud(c, bud);
767
768	b->bud = bud;
769	b->sqnum = sqnum;
770	list_add_tail(&b->list, &c->replay_buds);
771
772	return 0;
773}
774
775/**
776 * validate_ref - validate a reference node.
777 * @c: UBIFS file-system description object
778 * @ref: the reference node to validate
779 * @ref_lnum: LEB number of the reference node
780 * @ref_offs: reference node offset
781 *
782 * This function returns %1 if a bud reference already exists for the LEB. %0 is
783 * returned if the reference node is new, otherwise %-EINVAL is returned if
784 * validation failed.
785 */
786static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
787{
788	struct ubifs_bud *bud;
789	int lnum = le32_to_cpu(ref->lnum);
790	unsigned int offs = le32_to_cpu(ref->offs);
791	unsigned int jhead = le32_to_cpu(ref->jhead);
792
793	/*
794	 * ref->offs may point to the end of LEB when the journal head points
795	 * to the end of LEB and we write reference node for it during commit.
796	 * So this is why we require 'offs > c->leb_size'.
797	 */
798	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
799	    lnum < c->main_first || offs > c->leb_size ||
800	    offs & (c->min_io_size - 1))
801		return -EINVAL;
802
803	/* Make sure we have not already looked at this bud */
804	bud = ubifs_search_bud(c, lnum);
805	if (bud) {
806		if (bud->jhead == jhead && bud->start <= offs)
807			return 1;
808		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
809		return -EINVAL;
810	}
811
812	return 0;
813}
814
815/**
816 * replay_log_leb - replay a log logical eraseblock.
817 * @c: UBIFS file-system description object
818 * @lnum: log logical eraseblock to replay
819 * @offs: offset to start replaying from
820 * @sbuf: scan buffer
821 *
822 * This function replays a log LEB and returns zero in case of success, %1 if
823 * this is the last LEB in the log, and a negative error code in case of
824 * failure.
825 */
826static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
827{
828	int err;
829	struct ubifs_scan_leb *sleb;
830	struct ubifs_scan_node *snod;
831	const struct ubifs_cs_node *node;
832
833	dbg_mnt("replay log LEB %d:%d", lnum, offs);
834	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
835	if (IS_ERR(sleb)) {
836		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
837			return PTR_ERR(sleb);
838		/*
839		 * Note, the below function will recover this log LEB only if
840		 * it is the last, because unclean reboots can possibly corrupt
841		 * only the tail of the log.
842		 */
843		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
844		if (IS_ERR(sleb))
845			return PTR_ERR(sleb);
846	}
847
848	if (sleb->nodes_cnt == 0) {
849		err = 1;
850		goto out;
851	}
852
853	node = sleb->buf;
854	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
855	if (c->cs_sqnum == 0) {
856		/*
857		 * This is the first log LEB we are looking at, make sure that
858		 * the first node is a commit start node. Also record its
859		 * sequence number so that UBIFS can determine where the log
860		 * ends, because all nodes which were have higher sequence
861		 * numbers.
862		 */
863		if (snod->type != UBIFS_CS_NODE) {
864			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
865				  lnum, offs);
866			goto out_dump;
867		}
868		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
869			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
870				  lnum, offs,
871				  (unsigned long long)le64_to_cpu(node->cmt_no),
872				  c->cmt_no);
873			goto out_dump;
874		}
875
876		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
877		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
878	}
879
880	if (snod->sqnum < c->cs_sqnum) {
881		/*
882		 * This means that we reached end of log and now
883		 * look to the older log data, which was already
884		 * committed but the eraseblock was not erased (UBIFS
885		 * only un-maps it). So this basically means we have to
886		 * exit with "end of log" code.
887		 */
888		err = 1;
889		goto out;
890	}
891
892	/* Make sure the first node sits at offset zero of the LEB */
893	if (snod->offs != 0) {
894		ubifs_err(c, "first node is not at zero offset");
895		goto out_dump;
896	}
897
898	list_for_each_entry(snod, &sleb->nodes, list) {
899		cond_resched();
900
901		if (snod->sqnum >= SQNUM_WATERMARK) {
902			ubifs_err(c, "file system's life ended");
903			goto out_dump;
904		}
905
906		if (snod->sqnum < c->cs_sqnum) {
907			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
908				  snod->sqnum, c->cs_sqnum);
909			goto out_dump;
910		}
911
912		if (snod->sqnum > c->max_sqnum)
913			c->max_sqnum = snod->sqnum;
914
915		switch (snod->type) {
916		case UBIFS_REF_NODE: {
917			const struct ubifs_ref_node *ref = snod->node;
918
919			err = validate_ref(c, ref);
920			if (err == 1)
921				break; /* Already have this bud */
922			if (err)
923				goto out_dump;
924
925			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
926					     le32_to_cpu(ref->offs),
927					     le32_to_cpu(ref->jhead),
928					     snod->sqnum);
929			if (err)
930				goto out;
931
932			break;
933		}
934		case UBIFS_CS_NODE:
935			/* Make sure it sits at the beginning of LEB */
936			if (snod->offs != 0) {
937				ubifs_err(c, "unexpected node in log");
938				goto out_dump;
939			}
940			break;
941		default:
942			ubifs_err(c, "unexpected node in log");
943			goto out_dump;
944		}
945	}
946
947	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
948		c->lhead_lnum = lnum;
949		c->lhead_offs = sleb->endpt;
950	}
951
952	err = !sleb->endpt;
953out:
954	ubifs_scan_destroy(sleb);
955	return err;
956
957out_dump:
958	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
959		  lnum, offs + snod->offs);
960	ubifs_dump_node(c, snod->node);
961	ubifs_scan_destroy(sleb);
962	return -EINVAL;
963}
964
965/**
966 * take_ihead - update the status of the index head in lprops to 'taken'.
967 * @c: UBIFS file-system description object
968 *
969 * This function returns the amount of free space in the index head LEB or a
970 * negative error code.
971 */
972static int take_ihead(struct ubifs_info *c)
973{
974	const struct ubifs_lprops *lp;
975	int err, free;
976
977	ubifs_get_lprops(c);
978
979	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
980	if (IS_ERR(lp)) {
981		err = PTR_ERR(lp);
982		goto out;
983	}
984
985	free = lp->free;
986
987	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
988			     lp->flags | LPROPS_TAKEN, 0);
989	if (IS_ERR(lp)) {
990		err = PTR_ERR(lp);
991		goto out;
992	}
993
994	err = free;
995out:
996	ubifs_release_lprops(c);
997	return err;
998}
999
1000/**
1001 * ubifs_replay_journal - replay journal.
1002 * @c: UBIFS file-system description object
1003 *
1004 * This function scans the journal, replays and cleans it up. It makes sure all
1005 * memory data structures related to uncommitted journal are built (dirty TNC
1006 * tree, tree of buds, modified lprops, etc).
1007 */
1008int ubifs_replay_journal(struct ubifs_info *c)
1009{
1010	int err, lnum, free;
1011
1012	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1013
1014	/* Update the status of the index head in lprops to 'taken' */
1015	free = take_ihead(c);
1016	if (free < 0)
1017		return free; /* Error code */
1018
1019	if (c->ihead_offs != c->leb_size - free) {
1020		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1021			  c->ihead_offs);
1022		return -EINVAL;
1023	}
1024
1025	dbg_mnt("start replaying the journal");
1026	c->replaying = 1;
1027	lnum = c->ltail_lnum = c->lhead_lnum;
1028
1029	do {
1030		err = replay_log_leb(c, lnum, 0, c->sbuf);
1031		if (err == 1) {
1032			if (lnum != c->lhead_lnum)
1033				/* We hit the end of the log */
1034				break;
1035
1036			/*
1037			 * The head of the log must always start with the
1038			 * "commit start" node on a properly formatted UBIFS.
1039			 * But we found no nodes at all, which means that
1040			 * someting went wrong and we cannot proceed mounting
1041			 * the file-system.
1042			 */
1043			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1044				  lnum, 0);
1045			err = -EINVAL;
1046		}
1047		if (err)
1048			goto out;
1049		lnum = ubifs_next_log_lnum(c, lnum);
1050	} while (lnum != c->ltail_lnum);
1051
1052	err = replay_buds(c);
1053	if (err)
1054		goto out;
1055
1056	err = apply_replay_list(c);
1057	if (err)
1058		goto out;
1059
1060	err = set_buds_lprops(c);
1061	if (err)
1062		goto out;
1063
1064	/*
1065	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1066	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1067	 * depend on it. This means we have to initialize it to make sure
1068	 * budgeting works properly.
1069	 */
1070	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1071	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1072
1073	ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1074	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1075		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1076		(unsigned long)c->highest_inum);
1077out:
1078	destroy_replay_list(c);
1079	destroy_bud_list(c);
1080	c->replaying = 0;
1081	return err;
1082}
1083