1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17 */
18
19
20/*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24#include "ext4_jbd2.h"
25#include "mballoc.h"
26#include <linux/log2.h>
27#include <linux/module.h>
28#include <linux/slab.h>
29#include <linux/backing-dev.h>
30#include <trace/events/ext4.h>
31
32#ifdef CONFIG_EXT4_DEBUG
33ushort ext4_mballoc_debug __read_mostly;
34
35module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37#endif
38
39/*
40 * MUSTDO:
41 *   - test ext4_ext_search_left() and ext4_ext_search_right()
42 *   - search for metadata in few groups
43 *
44 * TODO v4:
45 *   - normalization should take into account whether file is still open
46 *   - discard preallocations if no free space left (policy?)
47 *   - don't normalize tails
48 *   - quota
49 *   - reservation for superuser
50 *
51 * TODO v3:
52 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
53 *   - track min/max extents in each group for better group selection
54 *   - mb_mark_used() may allocate chunk right after splitting buddy
55 *   - tree of groups sorted by number of free blocks
56 *   - error handling
57 */
58
59/*
60 * The allocation request involve request for multiple number of blocks
61 * near to the goal(block) value specified.
62 *
63 * During initialization phase of the allocator we decide to use the
64 * group preallocation or inode preallocation depending on the size of
65 * the file. The size of the file could be the resulting file size we
66 * would have after allocation, or the current file size, which ever
67 * is larger. If the size is less than sbi->s_mb_stream_request we
68 * select to use the group preallocation. The default value of
69 * s_mb_stream_request is 16 blocks. This can also be tuned via
70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71 * terms of number of blocks.
72 *
73 * The main motivation for having small file use group preallocation is to
74 * ensure that we have small files closer together on the disk.
75 *
76 * First stage the allocator looks at the inode prealloc list,
77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78 * spaces for this particular inode. The inode prealloc space is
79 * represented as:
80 *
81 * pa_lstart -> the logical start block for this prealloc space
82 * pa_pstart -> the physical start block for this prealloc space
83 * pa_len    -> length for this prealloc space (in clusters)
84 * pa_free   ->  free space available in this prealloc space (in clusters)
85 *
86 * The inode preallocation space is used looking at the _logical_ start
87 * block. If only the logical file block falls within the range of prealloc
88 * space we will consume the particular prealloc space. This makes sure that
89 * we have contiguous physical blocks representing the file blocks
90 *
91 * The important thing to be noted in case of inode prealloc space is that
92 * we don't modify the values associated to inode prealloc space except
93 * pa_free.
94 *
95 * If we are not able to find blocks in the inode prealloc space and if we
96 * have the group allocation flag set then we look at the locality group
97 * prealloc space. These are per CPU prealloc list represented as
98 *
99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 *
101 * The reason for having a per cpu locality group is to reduce the contention
102 * between CPUs. It is possible to get scheduled at this point.
103 *
104 * The locality group prealloc space is used looking at whether we have
105 * enough free space (pa_free) within the prealloc space.
106 *
107 * If we can't allocate blocks via inode prealloc or/and locality group
108 * prealloc then we look at the buddy cache. The buddy cache is represented
109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110 * mapped to the buddy and bitmap information regarding different
111 * groups. The buddy information is attached to buddy cache inode so that
112 * we can access them through the page cache. The information regarding
113 * each group is loaded via ext4_mb_load_buddy.  The information involve
114 * block bitmap and buddy information. The information are stored in the
115 * inode as:
116 *
117 *  {                        page                        }
118 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119 *
120 *
121 * one block each for bitmap and buddy information.  So for each group we
122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
123 * blocksize) blocks.  So it can have information regarding groups_per_page
124 * which is blocks_per_page/2
125 *
126 * The buddy cache inode is not stored on disk. The inode is thrown
127 * away when the filesystem is unmounted.
128 *
129 * We look for count number of blocks in the buddy cache. If we were able
130 * to locate that many free blocks we return with additional information
131 * regarding rest of the contiguous physical block available
132 *
133 * Before allocating blocks via buddy cache we normalize the request
134 * blocks. This ensure we ask for more blocks that we needed. The extra
135 * blocks that we get after allocation is added to the respective prealloc
136 * list. In case of inode preallocation we follow a list of heuristics
137 * based on file size. This can be found in ext4_mb_normalize_request. If
138 * we are doing a group prealloc we try to normalize the request to
139 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
140 * dependent on the cluster size; for non-bigalloc file systems, it is
141 * 512 blocks. This can be tuned via
142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 * terms of number of blocks. If we have mounted the file system with -O
144 * stripe=<value> option the group prealloc request is normalized to the
145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
146 * greater than the default mb_group_prealloc.
147 *
148 * The regular allocator (using the buddy cache) supports a few tunables.
149 *
150 * /sys/fs/ext4/<partition>/mb_min_to_scan
151 * /sys/fs/ext4/<partition>/mb_max_to_scan
152 * /sys/fs/ext4/<partition>/mb_order2_req
153 *
154 * The regular allocator uses buddy scan only if the request len is power of
155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156 * value of s_mb_order2_reqs can be tuned via
157 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
159 * stripe size. This should result in better allocation on RAID setups. If
160 * not, we search in the specific group using bitmap for best extents. The
161 * tunable min_to_scan and max_to_scan control the behaviour here.
162 * min_to_scan indicate how long the mballoc __must__ look for a best
163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 * best extent in the found extents. Searching for the blocks starts with
165 * the group specified as the goal value in allocation context via
166 * ac_g_ex. Each group is first checked based on the criteria whether it
167 * can be used for allocation. ext4_mb_good_group explains how the groups are
168 * checked.
169 *
170 * Both the prealloc space are getting populated as above. So for the first
171 * request we will hit the buddy cache which will result in this prealloc
172 * space getting filled. The prealloc space is then later used for the
173 * subsequent request.
174 */
175
176/*
177 * mballoc operates on the following data:
178 *  - on-disk bitmap
179 *  - in-core buddy (actually includes buddy and bitmap)
180 *  - preallocation descriptors (PAs)
181 *
182 * there are two types of preallocations:
183 *  - inode
184 *    assiged to specific inode and can be used for this inode only.
185 *    it describes part of inode's space preallocated to specific
186 *    physical blocks. any block from that preallocated can be used
187 *    independent. the descriptor just tracks number of blocks left
188 *    unused. so, before taking some block from descriptor, one must
189 *    make sure corresponded logical block isn't allocated yet. this
190 *    also means that freeing any block within descriptor's range
191 *    must discard all preallocated blocks.
192 *  - locality group
193 *    assigned to specific locality group which does not translate to
194 *    permanent set of inodes: inode can join and leave group. space
195 *    from this type of preallocation can be used for any inode. thus
196 *    it's consumed from the beginning to the end.
197 *
198 * relation between them can be expressed as:
199 *    in-core buddy = on-disk bitmap + preallocation descriptors
200 *
201 * this mean blocks mballoc considers used are:
202 *  - allocated blocks (persistent)
203 *  - preallocated blocks (non-persistent)
204 *
205 * consistency in mballoc world means that at any time a block is either
206 * free or used in ALL structures. notice: "any time" should not be read
207 * literally -- time is discrete and delimited by locks.
208 *
209 *  to keep it simple, we don't use block numbers, instead we count number of
210 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 *
212 * all operations can be expressed as:
213 *  - init buddy:			buddy = on-disk + PAs
214 *  - new PA:				buddy += N; PA = N
215 *  - use inode PA:			on-disk += N; PA -= N
216 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
217 *  - use locality group PA		on-disk += N; PA -= N
218 *  - discard locality group PA		buddy -= PA; PA = 0
219 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220 *        is used in real operation because we can't know actual used
221 *        bits from PA, only from on-disk bitmap
222 *
223 * if we follow this strict logic, then all operations above should be atomic.
224 * given some of them can block, we'd have to use something like semaphores
225 * killing performance on high-end SMP hardware. let's try to relax it using
226 * the following knowledge:
227 *  1) if buddy is referenced, it's already initialized
228 *  2) while block is used in buddy and the buddy is referenced,
229 *     nobody can re-allocate that block
230 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
232 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233 *     block
234 *
235 * so, now we're building a concurrency table:
236 *  - init buddy vs.
237 *    - new PA
238 *      blocks for PA are allocated in the buddy, buddy must be referenced
239 *      until PA is linked to allocation group to avoid concurrent buddy init
240 *    - use inode PA
241 *      we need to make sure that either on-disk bitmap or PA has uptodate data
242 *      given (3) we care that PA-=N operation doesn't interfere with init
243 *    - discard inode PA
244 *      the simplest way would be to have buddy initialized by the discard
245 *    - use locality group PA
246 *      again PA-=N must be serialized with init
247 *    - discard locality group PA
248 *      the simplest way would be to have buddy initialized by the discard
249 *  - new PA vs.
250 *    - use inode PA
251 *      i_data_sem serializes them
252 *    - discard inode PA
253 *      discard process must wait until PA isn't used by another process
254 *    - use locality group PA
255 *      some mutex should serialize them
256 *    - discard locality group PA
257 *      discard process must wait until PA isn't used by another process
258 *  - use inode PA
259 *    - use inode PA
260 *      i_data_sem or another mutex should serializes them
261 *    - discard inode PA
262 *      discard process must wait until PA isn't used by another process
263 *    - use locality group PA
264 *      nothing wrong here -- they're different PAs covering different blocks
265 *    - discard locality group PA
266 *      discard process must wait until PA isn't used by another process
267 *
268 * now we're ready to make few consequences:
269 *  - PA is referenced and while it is no discard is possible
270 *  - PA is referenced until block isn't marked in on-disk bitmap
271 *  - PA changes only after on-disk bitmap
272 *  - discard must not compete with init. either init is done before
273 *    any discard or they're serialized somehow
274 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
275 *
276 * a special case when we've used PA to emptiness. no need to modify buddy
277 * in this case, but we should care about concurrent init
278 *
279 */
280
281 /*
282 * Logic in few words:
283 *
284 *  - allocation:
285 *    load group
286 *    find blocks
287 *    mark bits in on-disk bitmap
288 *    release group
289 *
290 *  - use preallocation:
291 *    find proper PA (per-inode or group)
292 *    load group
293 *    mark bits in on-disk bitmap
294 *    release group
295 *    release PA
296 *
297 *  - free:
298 *    load group
299 *    mark bits in on-disk bitmap
300 *    release group
301 *
302 *  - discard preallocations in group:
303 *    mark PAs deleted
304 *    move them onto local list
305 *    load on-disk bitmap
306 *    load group
307 *    remove PA from object (inode or locality group)
308 *    mark free blocks in-core
309 *
310 *  - discard inode's preallocations:
311 */
312
313/*
314 * Locking rules
315 *
316 * Locks:
317 *  - bitlock on a group	(group)
318 *  - object (inode/locality)	(object)
319 *  - per-pa lock		(pa)
320 *
321 * Paths:
322 *  - new pa
323 *    object
324 *    group
325 *
326 *  - find and use pa:
327 *    pa
328 *
329 *  - release consumed pa:
330 *    pa
331 *    group
332 *    object
333 *
334 *  - generate in-core bitmap:
335 *    group
336 *        pa
337 *
338 *  - discard all for given object (inode, locality group):
339 *    object
340 *        pa
341 *    group
342 *
343 *  - discard all for given group:
344 *    group
345 *        pa
346 *    group
347 *        object
348 *
349 */
350static struct kmem_cache *ext4_pspace_cachep;
351static struct kmem_cache *ext4_ac_cachep;
352static struct kmem_cache *ext4_free_data_cachep;
353
354/* We create slab caches for groupinfo data structures based on the
355 * superblock block size.  There will be one per mounted filesystem for
356 * each unique s_blocksize_bits */
357#define NR_GRPINFO_CACHES 8
358static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359
360static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
364};
365
366static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367					ext4_group_t group);
368static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369						ext4_group_t group);
370static void ext4_free_data_callback(struct super_block *sb,
371				struct ext4_journal_cb_entry *jce, int rc);
372
373static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374{
375#if BITS_PER_LONG == 64
376	*bit += ((unsigned long) addr & 7UL) << 3;
377	addr = (void *) ((unsigned long) addr & ~7UL);
378#elif BITS_PER_LONG == 32
379	*bit += ((unsigned long) addr & 3UL) << 3;
380	addr = (void *) ((unsigned long) addr & ~3UL);
381#else
382#error "how many bits you are?!"
383#endif
384	return addr;
385}
386
387static inline int mb_test_bit(int bit, void *addr)
388{
389	/*
390	 * ext4_test_bit on architecture like powerpc
391	 * needs unsigned long aligned address
392	 */
393	addr = mb_correct_addr_and_bit(&bit, addr);
394	return ext4_test_bit(bit, addr);
395}
396
397static inline void mb_set_bit(int bit, void *addr)
398{
399	addr = mb_correct_addr_and_bit(&bit, addr);
400	ext4_set_bit(bit, addr);
401}
402
403static inline void mb_clear_bit(int bit, void *addr)
404{
405	addr = mb_correct_addr_and_bit(&bit, addr);
406	ext4_clear_bit(bit, addr);
407}
408
409static inline int mb_test_and_clear_bit(int bit, void *addr)
410{
411	addr = mb_correct_addr_and_bit(&bit, addr);
412	return ext4_test_and_clear_bit(bit, addr);
413}
414
415static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416{
417	int fix = 0, ret, tmpmax;
418	addr = mb_correct_addr_and_bit(&fix, addr);
419	tmpmax = max + fix;
420	start += fix;
421
422	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423	if (ret > max)
424		return max;
425	return ret;
426}
427
428static inline int mb_find_next_bit(void *addr, int max, int start)
429{
430	int fix = 0, ret, tmpmax;
431	addr = mb_correct_addr_and_bit(&fix, addr);
432	tmpmax = max + fix;
433	start += fix;
434
435	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436	if (ret > max)
437		return max;
438	return ret;
439}
440
441static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442{
443	char *bb;
444
445	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446	BUG_ON(max == NULL);
447
448	if (order > e4b->bd_blkbits + 1) {
449		*max = 0;
450		return NULL;
451	}
452
453	/* at order 0 we see each particular block */
454	if (order == 0) {
455		*max = 1 << (e4b->bd_blkbits + 3);
456		return e4b->bd_bitmap;
457	}
458
459	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461
462	return bb;
463}
464
465#ifdef DOUBLE_CHECK
466static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467			   int first, int count)
468{
469	int i;
470	struct super_block *sb = e4b->bd_sb;
471
472	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473		return;
474	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475	for (i = 0; i < count; i++) {
476		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477			ext4_fsblk_t blocknr;
478
479			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481			ext4_grp_locked_error(sb, e4b->bd_group,
482					      inode ? inode->i_ino : 0,
483					      blocknr,
484					      "freeing block already freed "
485					      "(bit %u)",
486					      first + i);
487		}
488		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
489	}
490}
491
492static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493{
494	int i;
495
496	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497		return;
498	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499	for (i = 0; i < count; i++) {
500		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
502	}
503}
504
505static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506{
507	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508		unsigned char *b1, *b2;
509		int i;
510		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511		b2 = (unsigned char *) bitmap;
512		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513			if (b1[i] != b2[i]) {
514				ext4_msg(e4b->bd_sb, KERN_ERR,
515					 "corruption in group %u "
516					 "at byte %u(%u): %x in copy != %x "
517					 "on disk/prealloc",
518					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519				BUG();
520			}
521		}
522	}
523}
524
525#else
526static inline void mb_free_blocks_double(struct inode *inode,
527				struct ext4_buddy *e4b, int first, int count)
528{
529	return;
530}
531static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532						int first, int count)
533{
534	return;
535}
536static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537{
538	return;
539}
540#endif
541
542#ifdef AGGRESSIVE_CHECK
543
544#define MB_CHECK_ASSERT(assert)						\
545do {									\
546	if (!(assert)) {						\
547		printk(KERN_EMERG					\
548			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
549			function, file, line, # assert);		\
550		BUG();							\
551	}								\
552} while (0)
553
554static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555				const char *function, int line)
556{
557	struct super_block *sb = e4b->bd_sb;
558	int order = e4b->bd_blkbits + 1;
559	int max;
560	int max2;
561	int i;
562	int j;
563	int k;
564	int count;
565	struct ext4_group_info *grp;
566	int fragments = 0;
567	int fstart;
568	struct list_head *cur;
569	void *buddy;
570	void *buddy2;
571
572	{
573		static int mb_check_counter;
574		if (mb_check_counter++ % 100 != 0)
575			return 0;
576	}
577
578	while (order > 1) {
579		buddy = mb_find_buddy(e4b, order, &max);
580		MB_CHECK_ASSERT(buddy);
581		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582		MB_CHECK_ASSERT(buddy2);
583		MB_CHECK_ASSERT(buddy != buddy2);
584		MB_CHECK_ASSERT(max * 2 == max2);
585
586		count = 0;
587		for (i = 0; i < max; i++) {
588
589			if (mb_test_bit(i, buddy)) {
590				/* only single bit in buddy2 may be 1 */
591				if (!mb_test_bit(i << 1, buddy2)) {
592					MB_CHECK_ASSERT(
593						mb_test_bit((i<<1)+1, buddy2));
594				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595					MB_CHECK_ASSERT(
596						mb_test_bit(i << 1, buddy2));
597				}
598				continue;
599			}
600
601			/* both bits in buddy2 must be 1 */
602			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604
605			for (j = 0; j < (1 << order); j++) {
606				k = (i * (1 << order)) + j;
607				MB_CHECK_ASSERT(
608					!mb_test_bit(k, e4b->bd_bitmap));
609			}
610			count++;
611		}
612		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613		order--;
614	}
615
616	fstart = -1;
617	buddy = mb_find_buddy(e4b, 0, &max);
618	for (i = 0; i < max; i++) {
619		if (!mb_test_bit(i, buddy)) {
620			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621			if (fstart == -1) {
622				fragments++;
623				fstart = i;
624			}
625			continue;
626		}
627		fstart = -1;
628		/* check used bits only */
629		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630			buddy2 = mb_find_buddy(e4b, j, &max2);
631			k = i >> j;
632			MB_CHECK_ASSERT(k < max2);
633			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
634		}
635	}
636	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638
639	grp = ext4_get_group_info(sb, e4b->bd_group);
640	list_for_each(cur, &grp->bb_prealloc_list) {
641		ext4_group_t groupnr;
642		struct ext4_prealloc_space *pa;
643		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646		for (i = 0; i < pa->pa_len; i++)
647			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648	}
649	return 0;
650}
651#undef MB_CHECK_ASSERT
652#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
653					__FILE__, __func__, __LINE__)
654#else
655#define mb_check_buddy(e4b)
656#endif
657
658/*
659 * Divide blocks started from @first with length @len into
660 * smaller chunks with power of 2 blocks.
661 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662 * then increase bb_counters[] for corresponded chunk size.
663 */
664static void ext4_mb_mark_free_simple(struct super_block *sb,
665				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666					struct ext4_group_info *grp)
667{
668	struct ext4_sb_info *sbi = EXT4_SB(sb);
669	ext4_grpblk_t min;
670	ext4_grpblk_t max;
671	ext4_grpblk_t chunk;
672	unsigned short border;
673
674	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675
676	border = 2 << sb->s_blocksize_bits;
677
678	while (len > 0) {
679		/* find how many blocks can be covered since this position */
680		max = ffs(first | border) - 1;
681
682		/* find how many blocks of power 2 we need to mark */
683		min = fls(len) - 1;
684
685		if (max < min)
686			min = max;
687		chunk = 1 << min;
688
689		/* mark multiblock chunks only */
690		grp->bb_counters[min]++;
691		if (min > 0)
692			mb_clear_bit(first >> min,
693				     buddy + sbi->s_mb_offsets[min]);
694
695		len -= chunk;
696		first += chunk;
697	}
698}
699
700/*
701 * Cache the order of the largest free extent we have available in this block
702 * group.
703 */
704static void
705mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706{
707	int i;
708	int bits;
709
710	grp->bb_largest_free_order = -1; /* uninit */
711
712	bits = sb->s_blocksize_bits + 1;
713	for (i = bits; i >= 0; i--) {
714		if (grp->bb_counters[i] > 0) {
715			grp->bb_largest_free_order = i;
716			break;
717		}
718	}
719}
720
721static noinline_for_stack
722void ext4_mb_generate_buddy(struct super_block *sb,
723				void *buddy, void *bitmap, ext4_group_t group)
724{
725	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726	struct ext4_sb_info *sbi = EXT4_SB(sb);
727	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728	ext4_grpblk_t i = 0;
729	ext4_grpblk_t first;
730	ext4_grpblk_t len;
731	unsigned free = 0;
732	unsigned fragments = 0;
733	unsigned long long period = get_cycles();
734
735	/* initialize buddy from bitmap which is aggregation
736	 * of on-disk bitmap and preallocations */
737	i = mb_find_next_zero_bit(bitmap, max, 0);
738	grp->bb_first_free = i;
739	while (i < max) {
740		fragments++;
741		first = i;
742		i = mb_find_next_bit(bitmap, max, i);
743		len = i - first;
744		free += len;
745		if (len > 1)
746			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747		else
748			grp->bb_counters[0]++;
749		if (i < max)
750			i = mb_find_next_zero_bit(bitmap, max, i);
751	}
752	grp->bb_fragments = fragments;
753
754	if (free != grp->bb_free) {
755		ext4_grp_locked_error(sb, group, 0, 0,
756				      "block bitmap and bg descriptor "
757				      "inconsistent: %u vs %u free clusters",
758				      free, grp->bb_free);
759		/*
760		 * If we intend to continue, we consider group descriptor
761		 * corrupt and update bb_free using bitmap value
762		 */
763		grp->bb_free = free;
764		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765			percpu_counter_sub(&sbi->s_freeclusters_counter,
766					   grp->bb_free);
767		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768	}
769	mb_set_largest_free_order(sb, grp);
770
771	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772
773	period = get_cycles() - period;
774	spin_lock(&EXT4_SB(sb)->s_bal_lock);
775	EXT4_SB(sb)->s_mb_buddies_generated++;
776	EXT4_SB(sb)->s_mb_generation_time += period;
777	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
778}
779
780static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781{
782	int count;
783	int order = 1;
784	void *buddy;
785
786	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787		ext4_set_bits(buddy, 0, count);
788	}
789	e4b->bd_info->bb_fragments = 0;
790	memset(e4b->bd_info->bb_counters, 0,
791		sizeof(*e4b->bd_info->bb_counters) *
792		(e4b->bd_sb->s_blocksize_bits + 2));
793
794	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795		e4b->bd_bitmap, e4b->bd_group);
796}
797
798/* The buddy information is attached the buddy cache inode
799 * for convenience. The information regarding each group
800 * is loaded via ext4_mb_load_buddy. The information involve
801 * block bitmap and buddy information. The information are
802 * stored in the inode as
803 *
804 * {                        page                        }
805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806 *
807 *
808 * one block each for bitmap and buddy information.
809 * So for each group we take up 2 blocks. A page can
810 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
811 * So it can have information regarding groups_per_page which
812 * is blocks_per_page/2
813 *
814 * Locking note:  This routine takes the block group lock of all groups
815 * for this page; do not hold this lock when calling this routine!
816 */
817
818static int ext4_mb_init_cache(struct page *page, char *incore)
819{
820	ext4_group_t ngroups;
821	int blocksize;
822	int blocks_per_page;
823	int groups_per_page;
824	int err = 0;
825	int i;
826	ext4_group_t first_group, group;
827	int first_block;
828	struct super_block *sb;
829	struct buffer_head *bhs;
830	struct buffer_head **bh = NULL;
831	struct inode *inode;
832	char *data;
833	char *bitmap;
834	struct ext4_group_info *grinfo;
835
836	mb_debug(1, "init page %lu\n", page->index);
837
838	inode = page->mapping->host;
839	sb = inode->i_sb;
840	ngroups = ext4_get_groups_count(sb);
841	blocksize = 1 << inode->i_blkbits;
842	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
843
844	groups_per_page = blocks_per_page >> 1;
845	if (groups_per_page == 0)
846		groups_per_page = 1;
847
848	/* allocate buffer_heads to read bitmaps */
849	if (groups_per_page > 1) {
850		i = sizeof(struct buffer_head *) * groups_per_page;
851		bh = kzalloc(i, GFP_NOFS);
852		if (bh == NULL) {
853			err = -ENOMEM;
854			goto out;
855		}
856	} else
857		bh = &bhs;
858
859	first_group = page->index * blocks_per_page / 2;
860
861	/* read all groups the page covers into the cache */
862	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863		if (group >= ngroups)
864			break;
865
866		grinfo = ext4_get_group_info(sb, group);
867		/*
868		 * If page is uptodate then we came here after online resize
869		 * which added some new uninitialized group info structs, so
870		 * we must skip all initialized uptodate buddies on the page,
871		 * which may be currently in use by an allocating task.
872		 */
873		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874			bh[i] = NULL;
875			continue;
876		}
877		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
878		if (IS_ERR(bh[i])) {
879			err = PTR_ERR(bh[i]);
880			bh[i] = NULL;
881			goto out;
882		}
883		mb_debug(1, "read bitmap for group %u\n", group);
884	}
885
886	/* wait for I/O completion */
887	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888		int err2;
889
890		if (!bh[i])
891			continue;
892		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
893		if (!err)
894			err = err2;
895	}
896
897	first_block = page->index * blocks_per_page;
898	for (i = 0; i < blocks_per_page; i++) {
899		group = (first_block + i) >> 1;
900		if (group >= ngroups)
901			break;
902
903		if (!bh[group - first_group])
904			/* skip initialized uptodate buddy */
905			continue;
906
907		if (!buffer_verified(bh[group - first_group]))
908			/* Skip faulty bitmaps */
909			continue;
910		err = 0;
911
912		/*
913		 * data carry information regarding this
914		 * particular group in the format specified
915		 * above
916		 *
917		 */
918		data = page_address(page) + (i * blocksize);
919		bitmap = bh[group - first_group]->b_data;
920
921		/*
922		 * We place the buddy block and bitmap block
923		 * close together
924		 */
925		if ((first_block + i) & 1) {
926			/* this is block of buddy */
927			BUG_ON(incore == NULL);
928			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929				group, page->index, i * blocksize);
930			trace_ext4_mb_buddy_bitmap_load(sb, group);
931			grinfo = ext4_get_group_info(sb, group);
932			grinfo->bb_fragments = 0;
933			memset(grinfo->bb_counters, 0,
934			       sizeof(*grinfo->bb_counters) *
935				(sb->s_blocksize_bits+2));
936			/*
937			 * incore got set to the group block bitmap below
938			 */
939			ext4_lock_group(sb, group);
940			/* init the buddy */
941			memset(data, 0xff, blocksize);
942			ext4_mb_generate_buddy(sb, data, incore, group);
943			ext4_unlock_group(sb, group);
944			incore = NULL;
945		} else {
946			/* this is block of bitmap */
947			BUG_ON(incore != NULL);
948			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949				group, page->index, i * blocksize);
950			trace_ext4_mb_bitmap_load(sb, group);
951
952			/* see comments in ext4_mb_put_pa() */
953			ext4_lock_group(sb, group);
954			memcpy(data, bitmap, blocksize);
955
956			/* mark all preallocated blks used in in-core bitmap */
957			ext4_mb_generate_from_pa(sb, data, group);
958			ext4_mb_generate_from_freelist(sb, data, group);
959			ext4_unlock_group(sb, group);
960
961			/* set incore so that the buddy information can be
962			 * generated using this
963			 */
964			incore = data;
965		}
966	}
967	SetPageUptodate(page);
968
969out:
970	if (bh) {
971		for (i = 0; i < groups_per_page; i++)
972			brelse(bh[i]);
973		if (bh != &bhs)
974			kfree(bh);
975	}
976	return err;
977}
978
979/*
980 * Lock the buddy and bitmap pages. This make sure other parallel init_group
981 * on the same buddy page doesn't happen whild holding the buddy page lock.
982 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984 */
985static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986		ext4_group_t group, struct ext4_buddy *e4b)
987{
988	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
989	int block, pnum, poff;
990	int blocks_per_page;
991	struct page *page;
992
993	e4b->bd_buddy_page = NULL;
994	e4b->bd_bitmap_page = NULL;
995
996	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
997	/*
998	 * the buddy cache inode stores the block bitmap
999	 * and buddy information in consecutive blocks.
1000	 * So for each group we need two blocks.
1001	 */
1002	block = group * 2;
1003	pnum = block / blocks_per_page;
1004	poff = block % blocks_per_page;
1005	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1006	if (!page)
1007		return -ENOMEM;
1008	BUG_ON(page->mapping != inode->i_mapping);
1009	e4b->bd_bitmap_page = page;
1010	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011
1012	if (blocks_per_page >= 2) {
1013		/* buddy and bitmap are on the same page */
1014		return 0;
1015	}
1016
1017	block++;
1018	pnum = block / blocks_per_page;
1019	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1020	if (!page)
1021		return -ENOMEM;
1022	BUG_ON(page->mapping != inode->i_mapping);
1023	e4b->bd_buddy_page = page;
1024	return 0;
1025}
1026
1027static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028{
1029	if (e4b->bd_bitmap_page) {
1030		unlock_page(e4b->bd_bitmap_page);
1031		page_cache_release(e4b->bd_bitmap_page);
1032	}
1033	if (e4b->bd_buddy_page) {
1034		unlock_page(e4b->bd_buddy_page);
1035		page_cache_release(e4b->bd_buddy_page);
1036	}
1037}
1038
1039/*
1040 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1043 */
1044static noinline_for_stack
1045int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1046{
1047
1048	struct ext4_group_info *this_grp;
1049	struct ext4_buddy e4b;
1050	struct page *page;
1051	int ret = 0;
1052
1053	might_sleep();
1054	mb_debug(1, "init group %u\n", group);
1055	this_grp = ext4_get_group_info(sb, group);
1056	/*
1057	 * This ensures that we don't reinit the buddy cache
1058	 * page which map to the group from which we are already
1059	 * allocating. If we are looking at the buddy cache we would
1060	 * have taken a reference using ext4_mb_load_buddy and that
1061	 * would have pinned buddy page to page cache.
1062	 * The call to ext4_mb_get_buddy_page_lock will mark the
1063	 * page accessed.
1064	 */
1065	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1066	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067		/*
1068		 * somebody initialized the group
1069		 * return without doing anything
1070		 */
1071		goto err;
1072	}
1073
1074	page = e4b.bd_bitmap_page;
1075	ret = ext4_mb_init_cache(page, NULL);
1076	if (ret)
1077		goto err;
1078	if (!PageUptodate(page)) {
1079		ret = -EIO;
1080		goto err;
1081	}
1082
1083	if (e4b.bd_buddy_page == NULL) {
1084		/*
1085		 * If both the bitmap and buddy are in
1086		 * the same page we don't need to force
1087		 * init the buddy
1088		 */
1089		ret = 0;
1090		goto err;
1091	}
1092	/* init buddy cache */
1093	page = e4b.bd_buddy_page;
1094	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1095	if (ret)
1096		goto err;
1097	if (!PageUptodate(page)) {
1098		ret = -EIO;
1099		goto err;
1100	}
1101err:
1102	ext4_mb_put_buddy_page_lock(&e4b);
1103	return ret;
1104}
1105
1106/*
1107 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1108 * block group lock of all groups for this page; do not hold the BG lock when
1109 * calling this routine!
1110 */
1111static noinline_for_stack int
1112ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1113					struct ext4_buddy *e4b)
1114{
1115	int blocks_per_page;
1116	int block;
1117	int pnum;
1118	int poff;
1119	struct page *page;
1120	int ret;
1121	struct ext4_group_info *grp;
1122	struct ext4_sb_info *sbi = EXT4_SB(sb);
1123	struct inode *inode = sbi->s_buddy_cache;
1124
1125	might_sleep();
1126	mb_debug(1, "load group %u\n", group);
1127
1128	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1129	grp = ext4_get_group_info(sb, group);
1130
1131	e4b->bd_blkbits = sb->s_blocksize_bits;
1132	e4b->bd_info = grp;
1133	e4b->bd_sb = sb;
1134	e4b->bd_group = group;
1135	e4b->bd_buddy_page = NULL;
1136	e4b->bd_bitmap_page = NULL;
1137
1138	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139		/*
1140		 * we need full data about the group
1141		 * to make a good selection
1142		 */
1143		ret = ext4_mb_init_group(sb, group);
1144		if (ret)
1145			return ret;
1146	}
1147
1148	/*
1149	 * the buddy cache inode stores the block bitmap
1150	 * and buddy information in consecutive blocks.
1151	 * So for each group we need two blocks.
1152	 */
1153	block = group * 2;
1154	pnum = block / blocks_per_page;
1155	poff = block % blocks_per_page;
1156
1157	/* we could use find_or_create_page(), but it locks page
1158	 * what we'd like to avoid in fast path ... */
1159	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160	if (page == NULL || !PageUptodate(page)) {
1161		if (page)
1162			/*
1163			 * drop the page reference and try
1164			 * to get the page with lock. If we
1165			 * are not uptodate that implies
1166			 * somebody just created the page but
1167			 * is yet to initialize the same. So
1168			 * wait for it to initialize.
1169			 */
1170			page_cache_release(page);
1171		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1172		if (page) {
1173			BUG_ON(page->mapping != inode->i_mapping);
1174			if (!PageUptodate(page)) {
1175				ret = ext4_mb_init_cache(page, NULL);
1176				if (ret) {
1177					unlock_page(page);
1178					goto err;
1179				}
1180				mb_cmp_bitmaps(e4b, page_address(page) +
1181					       (poff * sb->s_blocksize));
1182			}
1183			unlock_page(page);
1184		}
1185	}
1186	if (page == NULL) {
1187		ret = -ENOMEM;
1188		goto err;
1189	}
1190	if (!PageUptodate(page)) {
1191		ret = -EIO;
1192		goto err;
1193	}
1194
1195	/* Pages marked accessed already */
1196	e4b->bd_bitmap_page = page;
1197	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198
1199	block++;
1200	pnum = block / blocks_per_page;
1201	poff = block % blocks_per_page;
1202
1203	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204	if (page == NULL || !PageUptodate(page)) {
1205		if (page)
1206			page_cache_release(page);
1207		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1208		if (page) {
1209			BUG_ON(page->mapping != inode->i_mapping);
1210			if (!PageUptodate(page)) {
1211				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1212				if (ret) {
1213					unlock_page(page);
1214					goto err;
1215				}
1216			}
1217			unlock_page(page);
1218		}
1219	}
1220	if (page == NULL) {
1221		ret = -ENOMEM;
1222		goto err;
1223	}
1224	if (!PageUptodate(page)) {
1225		ret = -EIO;
1226		goto err;
1227	}
1228
1229	/* Pages marked accessed already */
1230	e4b->bd_buddy_page = page;
1231	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1232
1233	BUG_ON(e4b->bd_bitmap_page == NULL);
1234	BUG_ON(e4b->bd_buddy_page == NULL);
1235
1236	return 0;
1237
1238err:
1239	if (page)
1240		page_cache_release(page);
1241	if (e4b->bd_bitmap_page)
1242		page_cache_release(e4b->bd_bitmap_page);
1243	if (e4b->bd_buddy_page)
1244		page_cache_release(e4b->bd_buddy_page);
1245	e4b->bd_buddy = NULL;
1246	e4b->bd_bitmap = NULL;
1247	return ret;
1248}
1249
1250static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1251{
1252	if (e4b->bd_bitmap_page)
1253		page_cache_release(e4b->bd_bitmap_page);
1254	if (e4b->bd_buddy_page)
1255		page_cache_release(e4b->bd_buddy_page);
1256}
1257
1258
1259static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1260{
1261	int order = 1;
1262	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1263	void *bb;
1264
1265	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1266	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1267
1268	bb = e4b->bd_buddy;
1269	while (order <= e4b->bd_blkbits + 1) {
1270		block = block >> 1;
1271		if (!mb_test_bit(block, bb)) {
1272			/* this block is part of buddy of order 'order' */
1273			return order;
1274		}
1275		bb += bb_incr;
1276		bb_incr >>= 1;
1277		order++;
1278	}
1279	return 0;
1280}
1281
1282static void mb_clear_bits(void *bm, int cur, int len)
1283{
1284	__u32 *addr;
1285
1286	len = cur + len;
1287	while (cur < len) {
1288		if ((cur & 31) == 0 && (len - cur) >= 32) {
1289			/* fast path: clear whole word at once */
1290			addr = bm + (cur >> 3);
1291			*addr = 0;
1292			cur += 32;
1293			continue;
1294		}
1295		mb_clear_bit(cur, bm);
1296		cur++;
1297	}
1298}
1299
1300/* clear bits in given range
1301 * will return first found zero bit if any, -1 otherwise
1302 */
1303static int mb_test_and_clear_bits(void *bm, int cur, int len)
1304{
1305	__u32 *addr;
1306	int zero_bit = -1;
1307
1308	len = cur + len;
1309	while (cur < len) {
1310		if ((cur & 31) == 0 && (len - cur) >= 32) {
1311			/* fast path: clear whole word at once */
1312			addr = bm + (cur >> 3);
1313			if (*addr != (__u32)(-1) && zero_bit == -1)
1314				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1315			*addr = 0;
1316			cur += 32;
1317			continue;
1318		}
1319		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1320			zero_bit = cur;
1321		cur++;
1322	}
1323
1324	return zero_bit;
1325}
1326
1327void ext4_set_bits(void *bm, int cur, int len)
1328{
1329	__u32 *addr;
1330
1331	len = cur + len;
1332	while (cur < len) {
1333		if ((cur & 31) == 0 && (len - cur) >= 32) {
1334			/* fast path: set whole word at once */
1335			addr = bm + (cur >> 3);
1336			*addr = 0xffffffff;
1337			cur += 32;
1338			continue;
1339		}
1340		mb_set_bit(cur, bm);
1341		cur++;
1342	}
1343}
1344
1345/*
1346 * _________________________________________________________________ */
1347
1348static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1349{
1350	if (mb_test_bit(*bit + side, bitmap)) {
1351		mb_clear_bit(*bit, bitmap);
1352		(*bit) -= side;
1353		return 1;
1354	}
1355	else {
1356		(*bit) += side;
1357		mb_set_bit(*bit, bitmap);
1358		return -1;
1359	}
1360}
1361
1362static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1363{
1364	int max;
1365	int order = 1;
1366	void *buddy = mb_find_buddy(e4b, order, &max);
1367
1368	while (buddy) {
1369		void *buddy2;
1370
1371		/* Bits in range [first; last] are known to be set since
1372		 * corresponding blocks were allocated. Bits in range
1373		 * (first; last) will stay set because they form buddies on
1374		 * upper layer. We just deal with borders if they don't
1375		 * align with upper layer and then go up.
1376		 * Releasing entire group is all about clearing
1377		 * single bit of highest order buddy.
1378		 */
1379
1380		/* Example:
1381		 * ---------------------------------
1382		 * |   1   |   1   |   1   |   1   |
1383		 * ---------------------------------
1384		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1385		 * ---------------------------------
1386		 *   0   1   2   3   4   5   6   7
1387		 *      \_____________________/
1388		 *
1389		 * Neither [1] nor [6] is aligned to above layer.
1390		 * Left neighbour [0] is free, so mark it busy,
1391		 * decrease bb_counters and extend range to
1392		 * [0; 6]
1393		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1394		 * mark [6] free, increase bb_counters and shrink range to
1395		 * [0; 5].
1396		 * Then shift range to [0; 2], go up and do the same.
1397		 */
1398
1399
1400		if (first & 1)
1401			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1402		if (!(last & 1))
1403			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1404		if (first > last)
1405			break;
1406		order++;
1407
1408		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1409			mb_clear_bits(buddy, first, last - first + 1);
1410			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1411			break;
1412		}
1413		first >>= 1;
1414		last >>= 1;
1415		buddy = buddy2;
1416	}
1417}
1418
1419static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1420			   int first, int count)
1421{
1422	int left_is_free = 0;
1423	int right_is_free = 0;
1424	int block;
1425	int last = first + count - 1;
1426	struct super_block *sb = e4b->bd_sb;
1427
1428	if (WARN_ON(count == 0))
1429		return;
1430	BUG_ON(last >= (sb->s_blocksize << 3));
1431	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1432	/* Don't bother if the block group is corrupt. */
1433	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1434		return;
1435
1436	mb_check_buddy(e4b);
1437	mb_free_blocks_double(inode, e4b, first, count);
1438
1439	e4b->bd_info->bb_free += count;
1440	if (first < e4b->bd_info->bb_first_free)
1441		e4b->bd_info->bb_first_free = first;
1442
1443	/* access memory sequentially: check left neighbour,
1444	 * clear range and then check right neighbour
1445	 */
1446	if (first != 0)
1447		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1448	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1449	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1450		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1451
1452	if (unlikely(block != -1)) {
1453		struct ext4_sb_info *sbi = EXT4_SB(sb);
1454		ext4_fsblk_t blocknr;
1455
1456		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1457		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1458		ext4_grp_locked_error(sb, e4b->bd_group,
1459				      inode ? inode->i_ino : 0,
1460				      blocknr,
1461				      "freeing already freed block "
1462				      "(bit %u); block bitmap corrupt.",
1463				      block);
1464		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1465			percpu_counter_sub(&sbi->s_freeclusters_counter,
1466					   e4b->bd_info->bb_free);
1467		/* Mark the block group as corrupt. */
1468		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1469			&e4b->bd_info->bb_state);
1470		mb_regenerate_buddy(e4b);
1471		goto done;
1472	}
1473
1474	/* let's maintain fragments counter */
1475	if (left_is_free && right_is_free)
1476		e4b->bd_info->bb_fragments--;
1477	else if (!left_is_free && !right_is_free)
1478		e4b->bd_info->bb_fragments++;
1479
1480	/* buddy[0] == bd_bitmap is a special case, so handle
1481	 * it right away and let mb_buddy_mark_free stay free of
1482	 * zero order checks.
1483	 * Check if neighbours are to be coaleasced,
1484	 * adjust bitmap bb_counters and borders appropriately.
1485	 */
1486	if (first & 1) {
1487		first += !left_is_free;
1488		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1489	}
1490	if (!(last & 1)) {
1491		last -= !right_is_free;
1492		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1493	}
1494
1495	if (first <= last)
1496		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1497
1498done:
1499	mb_set_largest_free_order(sb, e4b->bd_info);
1500	mb_check_buddy(e4b);
1501}
1502
1503static int mb_find_extent(struct ext4_buddy *e4b, int block,
1504				int needed, struct ext4_free_extent *ex)
1505{
1506	int next = block;
1507	int max, order;
1508	void *buddy;
1509
1510	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1511	BUG_ON(ex == NULL);
1512
1513	buddy = mb_find_buddy(e4b, 0, &max);
1514	BUG_ON(buddy == NULL);
1515	BUG_ON(block >= max);
1516	if (mb_test_bit(block, buddy)) {
1517		ex->fe_len = 0;
1518		ex->fe_start = 0;
1519		ex->fe_group = 0;
1520		return 0;
1521	}
1522
1523	/* find actual order */
1524	order = mb_find_order_for_block(e4b, block);
1525	block = block >> order;
1526
1527	ex->fe_len = 1 << order;
1528	ex->fe_start = block << order;
1529	ex->fe_group = e4b->bd_group;
1530
1531	/* calc difference from given start */
1532	next = next - ex->fe_start;
1533	ex->fe_len -= next;
1534	ex->fe_start += next;
1535
1536	while (needed > ex->fe_len &&
1537	       mb_find_buddy(e4b, order, &max)) {
1538
1539		if (block + 1 >= max)
1540			break;
1541
1542		next = (block + 1) * (1 << order);
1543		if (mb_test_bit(next, e4b->bd_bitmap))
1544			break;
1545
1546		order = mb_find_order_for_block(e4b, next);
1547
1548		block = next >> order;
1549		ex->fe_len += 1 << order;
1550	}
1551
1552	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1553	return ex->fe_len;
1554}
1555
1556static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1557{
1558	int ord;
1559	int mlen = 0;
1560	int max = 0;
1561	int cur;
1562	int start = ex->fe_start;
1563	int len = ex->fe_len;
1564	unsigned ret = 0;
1565	int len0 = len;
1566	void *buddy;
1567
1568	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1569	BUG_ON(e4b->bd_group != ex->fe_group);
1570	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1571	mb_check_buddy(e4b);
1572	mb_mark_used_double(e4b, start, len);
1573
1574	e4b->bd_info->bb_free -= len;
1575	if (e4b->bd_info->bb_first_free == start)
1576		e4b->bd_info->bb_first_free += len;
1577
1578	/* let's maintain fragments counter */
1579	if (start != 0)
1580		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1581	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1582		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1583	if (mlen && max)
1584		e4b->bd_info->bb_fragments++;
1585	else if (!mlen && !max)
1586		e4b->bd_info->bb_fragments--;
1587
1588	/* let's maintain buddy itself */
1589	while (len) {
1590		ord = mb_find_order_for_block(e4b, start);
1591
1592		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1593			/* the whole chunk may be allocated at once! */
1594			mlen = 1 << ord;
1595			buddy = mb_find_buddy(e4b, ord, &max);
1596			BUG_ON((start >> ord) >= max);
1597			mb_set_bit(start >> ord, buddy);
1598			e4b->bd_info->bb_counters[ord]--;
1599			start += mlen;
1600			len -= mlen;
1601			BUG_ON(len < 0);
1602			continue;
1603		}
1604
1605		/* store for history */
1606		if (ret == 0)
1607			ret = len | (ord << 16);
1608
1609		/* we have to split large buddy */
1610		BUG_ON(ord <= 0);
1611		buddy = mb_find_buddy(e4b, ord, &max);
1612		mb_set_bit(start >> ord, buddy);
1613		e4b->bd_info->bb_counters[ord]--;
1614
1615		ord--;
1616		cur = (start >> ord) & ~1U;
1617		buddy = mb_find_buddy(e4b, ord, &max);
1618		mb_clear_bit(cur, buddy);
1619		mb_clear_bit(cur + 1, buddy);
1620		e4b->bd_info->bb_counters[ord]++;
1621		e4b->bd_info->bb_counters[ord]++;
1622	}
1623	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1624
1625	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1626	mb_check_buddy(e4b);
1627
1628	return ret;
1629}
1630
1631/*
1632 * Must be called under group lock!
1633 */
1634static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1635					struct ext4_buddy *e4b)
1636{
1637	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1638	int ret;
1639
1640	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1641	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1642
1643	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1644	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1645	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1646
1647	/* preallocation can change ac_b_ex, thus we store actually
1648	 * allocated blocks for history */
1649	ac->ac_f_ex = ac->ac_b_ex;
1650
1651	ac->ac_status = AC_STATUS_FOUND;
1652	ac->ac_tail = ret & 0xffff;
1653	ac->ac_buddy = ret >> 16;
1654
1655	/*
1656	 * take the page reference. We want the page to be pinned
1657	 * so that we don't get a ext4_mb_init_cache_call for this
1658	 * group until we update the bitmap. That would mean we
1659	 * double allocate blocks. The reference is dropped
1660	 * in ext4_mb_release_context
1661	 */
1662	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1663	get_page(ac->ac_bitmap_page);
1664	ac->ac_buddy_page = e4b->bd_buddy_page;
1665	get_page(ac->ac_buddy_page);
1666	/* store last allocated for subsequent stream allocation */
1667	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1668		spin_lock(&sbi->s_md_lock);
1669		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1670		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1671		spin_unlock(&sbi->s_md_lock);
1672	}
1673}
1674
1675/*
1676 * regular allocator, for general purposes allocation
1677 */
1678
1679static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1680					struct ext4_buddy *e4b,
1681					int finish_group)
1682{
1683	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1684	struct ext4_free_extent *bex = &ac->ac_b_ex;
1685	struct ext4_free_extent *gex = &ac->ac_g_ex;
1686	struct ext4_free_extent ex;
1687	int max;
1688
1689	if (ac->ac_status == AC_STATUS_FOUND)
1690		return;
1691	/*
1692	 * We don't want to scan for a whole year
1693	 */
1694	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1695			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1696		ac->ac_status = AC_STATUS_BREAK;
1697		return;
1698	}
1699
1700	/*
1701	 * Haven't found good chunk so far, let's continue
1702	 */
1703	if (bex->fe_len < gex->fe_len)
1704		return;
1705
1706	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1707			&& bex->fe_group == e4b->bd_group) {
1708		/* recheck chunk's availability - we don't know
1709		 * when it was found (within this lock-unlock
1710		 * period or not) */
1711		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1712		if (max >= gex->fe_len) {
1713			ext4_mb_use_best_found(ac, e4b);
1714			return;
1715		}
1716	}
1717}
1718
1719/*
1720 * The routine checks whether found extent is good enough. If it is,
1721 * then the extent gets marked used and flag is set to the context
1722 * to stop scanning. Otherwise, the extent is compared with the
1723 * previous found extent and if new one is better, then it's stored
1724 * in the context. Later, the best found extent will be used, if
1725 * mballoc can't find good enough extent.
1726 *
1727 * FIXME: real allocation policy is to be designed yet!
1728 */
1729static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1730					struct ext4_free_extent *ex,
1731					struct ext4_buddy *e4b)
1732{
1733	struct ext4_free_extent *bex = &ac->ac_b_ex;
1734	struct ext4_free_extent *gex = &ac->ac_g_ex;
1735
1736	BUG_ON(ex->fe_len <= 0);
1737	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1738	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1739	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1740
1741	ac->ac_found++;
1742
1743	/*
1744	 * The special case - take what you catch first
1745	 */
1746	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1747		*bex = *ex;
1748		ext4_mb_use_best_found(ac, e4b);
1749		return;
1750	}
1751
1752	/*
1753	 * Let's check whether the chuck is good enough
1754	 */
1755	if (ex->fe_len == gex->fe_len) {
1756		*bex = *ex;
1757		ext4_mb_use_best_found(ac, e4b);
1758		return;
1759	}
1760
1761	/*
1762	 * If this is first found extent, just store it in the context
1763	 */
1764	if (bex->fe_len == 0) {
1765		*bex = *ex;
1766		return;
1767	}
1768
1769	/*
1770	 * If new found extent is better, store it in the context
1771	 */
1772	if (bex->fe_len < gex->fe_len) {
1773		/* if the request isn't satisfied, any found extent
1774		 * larger than previous best one is better */
1775		if (ex->fe_len > bex->fe_len)
1776			*bex = *ex;
1777	} else if (ex->fe_len > gex->fe_len) {
1778		/* if the request is satisfied, then we try to find
1779		 * an extent that still satisfy the request, but is
1780		 * smaller than previous one */
1781		if (ex->fe_len < bex->fe_len)
1782			*bex = *ex;
1783	}
1784
1785	ext4_mb_check_limits(ac, e4b, 0);
1786}
1787
1788static noinline_for_stack
1789int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1790					struct ext4_buddy *e4b)
1791{
1792	struct ext4_free_extent ex = ac->ac_b_ex;
1793	ext4_group_t group = ex.fe_group;
1794	int max;
1795	int err;
1796
1797	BUG_ON(ex.fe_len <= 0);
1798	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1799	if (err)
1800		return err;
1801
1802	ext4_lock_group(ac->ac_sb, group);
1803	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1804
1805	if (max > 0) {
1806		ac->ac_b_ex = ex;
1807		ext4_mb_use_best_found(ac, e4b);
1808	}
1809
1810	ext4_unlock_group(ac->ac_sb, group);
1811	ext4_mb_unload_buddy(e4b);
1812
1813	return 0;
1814}
1815
1816static noinline_for_stack
1817int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1818				struct ext4_buddy *e4b)
1819{
1820	ext4_group_t group = ac->ac_g_ex.fe_group;
1821	int max;
1822	int err;
1823	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1824	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1825	struct ext4_free_extent ex;
1826
1827	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1828		return 0;
1829	if (grp->bb_free == 0)
1830		return 0;
1831
1832	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1833	if (err)
1834		return err;
1835
1836	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1837		ext4_mb_unload_buddy(e4b);
1838		return 0;
1839	}
1840
1841	ext4_lock_group(ac->ac_sb, group);
1842	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1843			     ac->ac_g_ex.fe_len, &ex);
1844	ex.fe_logical = 0xDEADFA11; /* debug value */
1845
1846	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1847		ext4_fsblk_t start;
1848
1849		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1850			ex.fe_start;
1851		/* use do_div to get remainder (would be 64-bit modulo) */
1852		if (do_div(start, sbi->s_stripe) == 0) {
1853			ac->ac_found++;
1854			ac->ac_b_ex = ex;
1855			ext4_mb_use_best_found(ac, e4b);
1856		}
1857	} else if (max >= ac->ac_g_ex.fe_len) {
1858		BUG_ON(ex.fe_len <= 0);
1859		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1860		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1861		ac->ac_found++;
1862		ac->ac_b_ex = ex;
1863		ext4_mb_use_best_found(ac, e4b);
1864	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1865		/* Sometimes, caller may want to merge even small
1866		 * number of blocks to an existing extent */
1867		BUG_ON(ex.fe_len <= 0);
1868		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1869		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1870		ac->ac_found++;
1871		ac->ac_b_ex = ex;
1872		ext4_mb_use_best_found(ac, e4b);
1873	}
1874	ext4_unlock_group(ac->ac_sb, group);
1875	ext4_mb_unload_buddy(e4b);
1876
1877	return 0;
1878}
1879
1880/*
1881 * The routine scans buddy structures (not bitmap!) from given order
1882 * to max order and tries to find big enough chunk to satisfy the req
1883 */
1884static noinline_for_stack
1885void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1886					struct ext4_buddy *e4b)
1887{
1888	struct super_block *sb = ac->ac_sb;
1889	struct ext4_group_info *grp = e4b->bd_info;
1890	void *buddy;
1891	int i;
1892	int k;
1893	int max;
1894
1895	BUG_ON(ac->ac_2order <= 0);
1896	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1897		if (grp->bb_counters[i] == 0)
1898			continue;
1899
1900		buddy = mb_find_buddy(e4b, i, &max);
1901		BUG_ON(buddy == NULL);
1902
1903		k = mb_find_next_zero_bit(buddy, max, 0);
1904		BUG_ON(k >= max);
1905
1906		ac->ac_found++;
1907
1908		ac->ac_b_ex.fe_len = 1 << i;
1909		ac->ac_b_ex.fe_start = k << i;
1910		ac->ac_b_ex.fe_group = e4b->bd_group;
1911
1912		ext4_mb_use_best_found(ac, e4b);
1913
1914		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1915
1916		if (EXT4_SB(sb)->s_mb_stats)
1917			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1918
1919		break;
1920	}
1921}
1922
1923/*
1924 * The routine scans the group and measures all found extents.
1925 * In order to optimize scanning, caller must pass number of
1926 * free blocks in the group, so the routine can know upper limit.
1927 */
1928static noinline_for_stack
1929void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1930					struct ext4_buddy *e4b)
1931{
1932	struct super_block *sb = ac->ac_sb;
1933	void *bitmap = e4b->bd_bitmap;
1934	struct ext4_free_extent ex;
1935	int i;
1936	int free;
1937
1938	free = e4b->bd_info->bb_free;
1939	BUG_ON(free <= 0);
1940
1941	i = e4b->bd_info->bb_first_free;
1942
1943	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1944		i = mb_find_next_zero_bit(bitmap,
1945						EXT4_CLUSTERS_PER_GROUP(sb), i);
1946		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1947			/*
1948			 * IF we have corrupt bitmap, we won't find any
1949			 * free blocks even though group info says we
1950			 * we have free blocks
1951			 */
1952			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1953					"%d free clusters as per "
1954					"group info. But bitmap says 0",
1955					free);
1956			break;
1957		}
1958
1959		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1960		BUG_ON(ex.fe_len <= 0);
1961		if (free < ex.fe_len) {
1962			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1963					"%d free clusters as per "
1964					"group info. But got %d blocks",
1965					free, ex.fe_len);
1966			/*
1967			 * The number of free blocks differs. This mostly
1968			 * indicate that the bitmap is corrupt. So exit
1969			 * without claiming the space.
1970			 */
1971			break;
1972		}
1973		ex.fe_logical = 0xDEADC0DE; /* debug value */
1974		ext4_mb_measure_extent(ac, &ex, e4b);
1975
1976		i += ex.fe_len;
1977		free -= ex.fe_len;
1978	}
1979
1980	ext4_mb_check_limits(ac, e4b, 1);
1981}
1982
1983/*
1984 * This is a special case for storages like raid5
1985 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1986 */
1987static noinline_for_stack
1988void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1989				 struct ext4_buddy *e4b)
1990{
1991	struct super_block *sb = ac->ac_sb;
1992	struct ext4_sb_info *sbi = EXT4_SB(sb);
1993	void *bitmap = e4b->bd_bitmap;
1994	struct ext4_free_extent ex;
1995	ext4_fsblk_t first_group_block;
1996	ext4_fsblk_t a;
1997	ext4_grpblk_t i;
1998	int max;
1999
2000	BUG_ON(sbi->s_stripe == 0);
2001
2002	/* find first stripe-aligned block in group */
2003	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2004
2005	a = first_group_block + sbi->s_stripe - 1;
2006	do_div(a, sbi->s_stripe);
2007	i = (a * sbi->s_stripe) - first_group_block;
2008
2009	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2010		if (!mb_test_bit(i, bitmap)) {
2011			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2012			if (max >= sbi->s_stripe) {
2013				ac->ac_found++;
2014				ex.fe_logical = 0xDEADF00D; /* debug value */
2015				ac->ac_b_ex = ex;
2016				ext4_mb_use_best_found(ac, e4b);
2017				break;
2018			}
2019		}
2020		i += sbi->s_stripe;
2021	}
2022}
2023
2024/*
2025 * This is now called BEFORE we load the buddy bitmap.
2026 * Returns either 1 or 0 indicating that the group is either suitable
2027 * for the allocation or not. In addition it can also return negative
2028 * error code when something goes wrong.
2029 */
2030static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2031				ext4_group_t group, int cr)
2032{
2033	unsigned free, fragments;
2034	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2035	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2036
2037	BUG_ON(cr < 0 || cr >= 4);
2038
2039	free = grp->bb_free;
2040	if (free == 0)
2041		return 0;
2042	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2043		return 0;
2044
2045	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2046		return 0;
2047
2048	/* We only do this if the grp has never been initialized */
2049	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2050		int ret = ext4_mb_init_group(ac->ac_sb, group);
2051		if (ret)
2052			return ret;
2053	}
2054
2055	fragments = grp->bb_fragments;
2056	if (fragments == 0)
2057		return 0;
2058
2059	switch (cr) {
2060	case 0:
2061		BUG_ON(ac->ac_2order == 0);
2062
2063		/* Avoid using the first bg of a flexgroup for data files */
2064		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2065		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2066		    ((group % flex_size) == 0))
2067			return 0;
2068
2069		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2070		    (free / fragments) >= ac->ac_g_ex.fe_len)
2071			return 1;
2072
2073		if (grp->bb_largest_free_order < ac->ac_2order)
2074			return 0;
2075
2076		return 1;
2077	case 1:
2078		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2079			return 1;
2080		break;
2081	case 2:
2082		if (free >= ac->ac_g_ex.fe_len)
2083			return 1;
2084		break;
2085	case 3:
2086		return 1;
2087	default:
2088		BUG();
2089	}
2090
2091	return 0;
2092}
2093
2094static noinline_for_stack int
2095ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2096{
2097	ext4_group_t ngroups, group, i;
2098	int cr;
2099	int err = 0, first_err = 0;
2100	struct ext4_sb_info *sbi;
2101	struct super_block *sb;
2102	struct ext4_buddy e4b;
2103
2104	sb = ac->ac_sb;
2105	sbi = EXT4_SB(sb);
2106	ngroups = ext4_get_groups_count(sb);
2107	/* non-extent files are limited to low blocks/groups */
2108	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2109		ngroups = sbi->s_blockfile_groups;
2110
2111	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2112
2113	/* first, try the goal */
2114	err = ext4_mb_find_by_goal(ac, &e4b);
2115	if (err || ac->ac_status == AC_STATUS_FOUND)
2116		goto out;
2117
2118	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2119		goto out;
2120
2121	/*
2122	 * ac->ac2_order is set only if the fe_len is a power of 2
2123	 * if ac2_order is set we also set criteria to 0 so that we
2124	 * try exact allocation using buddy.
2125	 */
2126	i = fls(ac->ac_g_ex.fe_len);
2127	ac->ac_2order = 0;
2128	/*
2129	 * We search using buddy data only if the order of the request
2130	 * is greater than equal to the sbi_s_mb_order2_reqs
2131	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2132	 */
2133	if (i >= sbi->s_mb_order2_reqs) {
2134		/*
2135		 * This should tell if fe_len is exactly power of 2
2136		 */
2137		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2138			ac->ac_2order = i - 1;
2139	}
2140
2141	/* if stream allocation is enabled, use global goal */
2142	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2143		/* TBD: may be hot point */
2144		spin_lock(&sbi->s_md_lock);
2145		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2146		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2147		spin_unlock(&sbi->s_md_lock);
2148	}
2149
2150	/* Let's just scan groups to find more-less suitable blocks */
2151	cr = ac->ac_2order ? 0 : 1;
2152	/*
2153	 * cr == 0 try to get exact allocation,
2154	 * cr == 3  try to get anything
2155	 */
2156repeat:
2157	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2158		ac->ac_criteria = cr;
2159		/*
2160		 * searching for the right group start
2161		 * from the goal value specified
2162		 */
2163		group = ac->ac_g_ex.fe_group;
2164
2165		for (i = 0; i < ngroups; group++, i++) {
2166			int ret = 0;
2167			cond_resched();
2168			/*
2169			 * Artificially restricted ngroups for non-extent
2170			 * files makes group > ngroups possible on first loop.
2171			 */
2172			if (group >= ngroups)
2173				group = 0;
2174
2175			/* This now checks without needing the buddy page */
2176			ret = ext4_mb_good_group(ac, group, cr);
2177			if (ret <= 0) {
2178				if (!first_err)
2179					first_err = ret;
2180				continue;
2181			}
2182
2183			err = ext4_mb_load_buddy(sb, group, &e4b);
2184			if (err)
2185				goto out;
2186
2187			ext4_lock_group(sb, group);
2188
2189			/*
2190			 * We need to check again after locking the
2191			 * block group
2192			 */
2193			ret = ext4_mb_good_group(ac, group, cr);
2194			if (ret <= 0) {
2195				ext4_unlock_group(sb, group);
2196				ext4_mb_unload_buddy(&e4b);
2197				if (!first_err)
2198					first_err = ret;
2199				continue;
2200			}
2201
2202			ac->ac_groups_scanned++;
2203			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2204				ext4_mb_simple_scan_group(ac, &e4b);
2205			else if (cr == 1 && sbi->s_stripe &&
2206					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2207				ext4_mb_scan_aligned(ac, &e4b);
2208			else
2209				ext4_mb_complex_scan_group(ac, &e4b);
2210
2211			ext4_unlock_group(sb, group);
2212			ext4_mb_unload_buddy(&e4b);
2213
2214			if (ac->ac_status != AC_STATUS_CONTINUE)
2215				break;
2216		}
2217	}
2218
2219	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2220	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2221		/*
2222		 * We've been searching too long. Let's try to allocate
2223		 * the best chunk we've found so far
2224		 */
2225
2226		ext4_mb_try_best_found(ac, &e4b);
2227		if (ac->ac_status != AC_STATUS_FOUND) {
2228			/*
2229			 * Someone more lucky has already allocated it.
2230			 * The only thing we can do is just take first
2231			 * found block(s)
2232			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2233			 */
2234			ac->ac_b_ex.fe_group = 0;
2235			ac->ac_b_ex.fe_start = 0;
2236			ac->ac_b_ex.fe_len = 0;
2237			ac->ac_status = AC_STATUS_CONTINUE;
2238			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2239			cr = 3;
2240			atomic_inc(&sbi->s_mb_lost_chunks);
2241			goto repeat;
2242		}
2243	}
2244out:
2245	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2246		err = first_err;
2247	return err;
2248}
2249
2250static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2251{
2252	struct super_block *sb = seq->private;
2253	ext4_group_t group;
2254
2255	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2256		return NULL;
2257	group = *pos + 1;
2258	return (void *) ((unsigned long) group);
2259}
2260
2261static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2262{
2263	struct super_block *sb = seq->private;
2264	ext4_group_t group;
2265
2266	++*pos;
2267	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2268		return NULL;
2269	group = *pos + 1;
2270	return (void *) ((unsigned long) group);
2271}
2272
2273static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2274{
2275	struct super_block *sb = seq->private;
2276	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2277	int i;
2278	int err, buddy_loaded = 0;
2279	struct ext4_buddy e4b;
2280	struct ext4_group_info *grinfo;
2281	struct sg {
2282		struct ext4_group_info info;
2283		ext4_grpblk_t counters[16];
2284	} sg;
2285
2286	group--;
2287	if (group == 0)
2288		seq_puts(seq, "#group: free  frags first ["
2289			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2290			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]");
2291
2292	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2293		sizeof(struct ext4_group_info);
2294	grinfo = ext4_get_group_info(sb, group);
2295	/* Load the group info in memory only if not already loaded. */
2296	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2297		err = ext4_mb_load_buddy(sb, group, &e4b);
2298		if (err) {
2299			seq_printf(seq, "#%-5u: I/O error\n", group);
2300			return 0;
2301		}
2302		buddy_loaded = 1;
2303	}
2304
2305	memcpy(&sg, ext4_get_group_info(sb, group), i);
2306
2307	if (buddy_loaded)
2308		ext4_mb_unload_buddy(&e4b);
2309
2310	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2311			sg.info.bb_fragments, sg.info.bb_first_free);
2312	for (i = 0; i <= 13; i++)
2313		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2314				sg.info.bb_counters[i] : 0);
2315	seq_printf(seq, " ]\n");
2316
2317	return 0;
2318}
2319
2320static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2321{
2322}
2323
2324static const struct seq_operations ext4_mb_seq_groups_ops = {
2325	.start  = ext4_mb_seq_groups_start,
2326	.next   = ext4_mb_seq_groups_next,
2327	.stop   = ext4_mb_seq_groups_stop,
2328	.show   = ext4_mb_seq_groups_show,
2329};
2330
2331static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2332{
2333	struct super_block *sb = PDE_DATA(inode);
2334	int rc;
2335
2336	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2337	if (rc == 0) {
2338		struct seq_file *m = file->private_data;
2339		m->private = sb;
2340	}
2341	return rc;
2342
2343}
2344
2345const struct file_operations ext4_seq_mb_groups_fops = {
2346	.owner		= THIS_MODULE,
2347	.open		= ext4_mb_seq_groups_open,
2348	.read		= seq_read,
2349	.llseek		= seq_lseek,
2350	.release	= seq_release,
2351};
2352
2353static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2354{
2355	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2356	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2357
2358	BUG_ON(!cachep);
2359	return cachep;
2360}
2361
2362/*
2363 * Allocate the top-level s_group_info array for the specified number
2364 * of groups
2365 */
2366int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2367{
2368	struct ext4_sb_info *sbi = EXT4_SB(sb);
2369	unsigned size;
2370	struct ext4_group_info ***new_groupinfo;
2371
2372	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2373		EXT4_DESC_PER_BLOCK_BITS(sb);
2374	if (size <= sbi->s_group_info_size)
2375		return 0;
2376
2377	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2378	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2379	if (!new_groupinfo) {
2380		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2381		return -ENOMEM;
2382	}
2383	if (sbi->s_group_info) {
2384		memcpy(new_groupinfo, sbi->s_group_info,
2385		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2386		kvfree(sbi->s_group_info);
2387	}
2388	sbi->s_group_info = new_groupinfo;
2389	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2390	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2391		   sbi->s_group_info_size);
2392	return 0;
2393}
2394
2395/* Create and initialize ext4_group_info data for the given group. */
2396int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2397			  struct ext4_group_desc *desc)
2398{
2399	int i;
2400	int metalen = 0;
2401	struct ext4_sb_info *sbi = EXT4_SB(sb);
2402	struct ext4_group_info **meta_group_info;
2403	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2404
2405	/*
2406	 * First check if this group is the first of a reserved block.
2407	 * If it's true, we have to allocate a new table of pointers
2408	 * to ext4_group_info structures
2409	 */
2410	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2411		metalen = sizeof(*meta_group_info) <<
2412			EXT4_DESC_PER_BLOCK_BITS(sb);
2413		meta_group_info = kmalloc(metalen, GFP_NOFS);
2414		if (meta_group_info == NULL) {
2415			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2416				 "for a buddy group");
2417			goto exit_meta_group_info;
2418		}
2419		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2420			meta_group_info;
2421	}
2422
2423	meta_group_info =
2424		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2425	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2426
2427	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2428	if (meta_group_info[i] == NULL) {
2429		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2430		goto exit_group_info;
2431	}
2432	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2433		&(meta_group_info[i]->bb_state));
2434
2435	/*
2436	 * initialize bb_free to be able to skip
2437	 * empty groups without initialization
2438	 */
2439	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2440		meta_group_info[i]->bb_free =
2441			ext4_free_clusters_after_init(sb, group, desc);
2442	} else {
2443		meta_group_info[i]->bb_free =
2444			ext4_free_group_clusters(sb, desc);
2445	}
2446
2447	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2448	init_rwsem(&meta_group_info[i]->alloc_sem);
2449	meta_group_info[i]->bb_free_root = RB_ROOT;
2450	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2451
2452#ifdef DOUBLE_CHECK
2453	{
2454		struct buffer_head *bh;
2455		meta_group_info[i]->bb_bitmap =
2456			kmalloc(sb->s_blocksize, GFP_NOFS);
2457		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2458		bh = ext4_read_block_bitmap(sb, group);
2459		BUG_ON(IS_ERR_OR_NULL(bh));
2460		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2461			sb->s_blocksize);
2462		put_bh(bh);
2463	}
2464#endif
2465
2466	return 0;
2467
2468exit_group_info:
2469	/* If a meta_group_info table has been allocated, release it now */
2470	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2471		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2472		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2473	}
2474exit_meta_group_info:
2475	return -ENOMEM;
2476} /* ext4_mb_add_groupinfo */
2477
2478static int ext4_mb_init_backend(struct super_block *sb)
2479{
2480	ext4_group_t ngroups = ext4_get_groups_count(sb);
2481	ext4_group_t i;
2482	struct ext4_sb_info *sbi = EXT4_SB(sb);
2483	int err;
2484	struct ext4_group_desc *desc;
2485	struct kmem_cache *cachep;
2486
2487	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2488	if (err)
2489		return err;
2490
2491	sbi->s_buddy_cache = new_inode(sb);
2492	if (sbi->s_buddy_cache == NULL) {
2493		ext4_msg(sb, KERN_ERR, "can't get new inode");
2494		goto err_freesgi;
2495	}
2496	/* To avoid potentially colliding with an valid on-disk inode number,
2497	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2498	 * not in the inode hash, so it should never be found by iget(), but
2499	 * this will avoid confusion if it ever shows up during debugging. */
2500	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2501	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2502	for (i = 0; i < ngroups; i++) {
2503		desc = ext4_get_group_desc(sb, i, NULL);
2504		if (desc == NULL) {
2505			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2506			goto err_freebuddy;
2507		}
2508		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2509			goto err_freebuddy;
2510	}
2511
2512	return 0;
2513
2514err_freebuddy:
2515	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2516	while (i-- > 0)
2517		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2518	i = sbi->s_group_info_size;
2519	while (i-- > 0)
2520		kfree(sbi->s_group_info[i]);
2521	iput(sbi->s_buddy_cache);
2522err_freesgi:
2523	kvfree(sbi->s_group_info);
2524	return -ENOMEM;
2525}
2526
2527static void ext4_groupinfo_destroy_slabs(void)
2528{
2529	int i;
2530
2531	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2532		if (ext4_groupinfo_caches[i])
2533			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2534		ext4_groupinfo_caches[i] = NULL;
2535	}
2536}
2537
2538static int ext4_groupinfo_create_slab(size_t size)
2539{
2540	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2541	int slab_size;
2542	int blocksize_bits = order_base_2(size);
2543	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2544	struct kmem_cache *cachep;
2545
2546	if (cache_index >= NR_GRPINFO_CACHES)
2547		return -EINVAL;
2548
2549	if (unlikely(cache_index < 0))
2550		cache_index = 0;
2551
2552	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2553	if (ext4_groupinfo_caches[cache_index]) {
2554		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2555		return 0;	/* Already created */
2556	}
2557
2558	slab_size = offsetof(struct ext4_group_info,
2559				bb_counters[blocksize_bits + 2]);
2560
2561	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2562					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2563					NULL);
2564
2565	ext4_groupinfo_caches[cache_index] = cachep;
2566
2567	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2568	if (!cachep) {
2569		printk(KERN_EMERG
2570		       "EXT4-fs: no memory for groupinfo slab cache\n");
2571		return -ENOMEM;
2572	}
2573
2574	return 0;
2575}
2576
2577int ext4_mb_init(struct super_block *sb)
2578{
2579	struct ext4_sb_info *sbi = EXT4_SB(sb);
2580	unsigned i, j;
2581	unsigned offset, offset_incr;
2582	unsigned max;
2583	int ret;
2584
2585	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2586
2587	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2588	if (sbi->s_mb_offsets == NULL) {
2589		ret = -ENOMEM;
2590		goto out;
2591	}
2592
2593	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2594	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2595	if (sbi->s_mb_maxs == NULL) {
2596		ret = -ENOMEM;
2597		goto out;
2598	}
2599
2600	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2601	if (ret < 0)
2602		goto out;
2603
2604	/* order 0 is regular bitmap */
2605	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2606	sbi->s_mb_offsets[0] = 0;
2607
2608	i = 1;
2609	offset = 0;
2610	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2611	max = sb->s_blocksize << 2;
2612	do {
2613		sbi->s_mb_offsets[i] = offset;
2614		sbi->s_mb_maxs[i] = max;
2615		offset += offset_incr;
2616		offset_incr = offset_incr >> 1;
2617		max = max >> 1;
2618		i++;
2619	} while (i <= sb->s_blocksize_bits + 1);
2620
2621	spin_lock_init(&sbi->s_md_lock);
2622	spin_lock_init(&sbi->s_bal_lock);
2623
2624	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2625	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2626	sbi->s_mb_stats = MB_DEFAULT_STATS;
2627	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2628	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2629	/*
2630	 * The default group preallocation is 512, which for 4k block
2631	 * sizes translates to 2 megabytes.  However for bigalloc file
2632	 * systems, this is probably too big (i.e, if the cluster size
2633	 * is 1 megabyte, then group preallocation size becomes half a
2634	 * gigabyte!).  As a default, we will keep a two megabyte
2635	 * group pralloc size for cluster sizes up to 64k, and after
2636	 * that, we will force a minimum group preallocation size of
2637	 * 32 clusters.  This translates to 8 megs when the cluster
2638	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2639	 * which seems reasonable as a default.
2640	 */
2641	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2642				       sbi->s_cluster_bits, 32);
2643	/*
2644	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2645	 * to the lowest multiple of s_stripe which is bigger than
2646	 * the s_mb_group_prealloc as determined above. We want
2647	 * the preallocation size to be an exact multiple of the
2648	 * RAID stripe size so that preallocations don't fragment
2649	 * the stripes.
2650	 */
2651	if (sbi->s_stripe > 1) {
2652		sbi->s_mb_group_prealloc = roundup(
2653			sbi->s_mb_group_prealloc, sbi->s_stripe);
2654	}
2655
2656	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2657	if (sbi->s_locality_groups == NULL) {
2658		ret = -ENOMEM;
2659		goto out;
2660	}
2661	for_each_possible_cpu(i) {
2662		struct ext4_locality_group *lg;
2663		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2664		mutex_init(&lg->lg_mutex);
2665		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2666			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2667		spin_lock_init(&lg->lg_prealloc_lock);
2668	}
2669
2670	/* init file for buddy data */
2671	ret = ext4_mb_init_backend(sb);
2672	if (ret != 0)
2673		goto out_free_locality_groups;
2674
2675	return 0;
2676
2677out_free_locality_groups:
2678	free_percpu(sbi->s_locality_groups);
2679	sbi->s_locality_groups = NULL;
2680out:
2681	kfree(sbi->s_mb_offsets);
2682	sbi->s_mb_offsets = NULL;
2683	kfree(sbi->s_mb_maxs);
2684	sbi->s_mb_maxs = NULL;
2685	return ret;
2686}
2687
2688/* need to called with the ext4 group lock held */
2689static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2690{
2691	struct ext4_prealloc_space *pa;
2692	struct list_head *cur, *tmp;
2693	int count = 0;
2694
2695	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2696		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2697		list_del(&pa->pa_group_list);
2698		count++;
2699		kmem_cache_free(ext4_pspace_cachep, pa);
2700	}
2701	if (count)
2702		mb_debug(1, "mballoc: %u PAs left\n", count);
2703
2704}
2705
2706int ext4_mb_release(struct super_block *sb)
2707{
2708	ext4_group_t ngroups = ext4_get_groups_count(sb);
2709	ext4_group_t i;
2710	int num_meta_group_infos;
2711	struct ext4_group_info *grinfo;
2712	struct ext4_sb_info *sbi = EXT4_SB(sb);
2713	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2714
2715	if (sbi->s_group_info) {
2716		for (i = 0; i < ngroups; i++) {
2717			grinfo = ext4_get_group_info(sb, i);
2718#ifdef DOUBLE_CHECK
2719			kfree(grinfo->bb_bitmap);
2720#endif
2721			ext4_lock_group(sb, i);
2722			ext4_mb_cleanup_pa(grinfo);
2723			ext4_unlock_group(sb, i);
2724			kmem_cache_free(cachep, grinfo);
2725		}
2726		num_meta_group_infos = (ngroups +
2727				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2728			EXT4_DESC_PER_BLOCK_BITS(sb);
2729		for (i = 0; i < num_meta_group_infos; i++)
2730			kfree(sbi->s_group_info[i]);
2731		kvfree(sbi->s_group_info);
2732	}
2733	kfree(sbi->s_mb_offsets);
2734	kfree(sbi->s_mb_maxs);
2735	iput(sbi->s_buddy_cache);
2736	if (sbi->s_mb_stats) {
2737		ext4_msg(sb, KERN_INFO,
2738		       "mballoc: %u blocks %u reqs (%u success)",
2739				atomic_read(&sbi->s_bal_allocated),
2740				atomic_read(&sbi->s_bal_reqs),
2741				atomic_read(&sbi->s_bal_success));
2742		ext4_msg(sb, KERN_INFO,
2743		      "mballoc: %u extents scanned, %u goal hits, "
2744				"%u 2^N hits, %u breaks, %u lost",
2745				atomic_read(&sbi->s_bal_ex_scanned),
2746				atomic_read(&sbi->s_bal_goals),
2747				atomic_read(&sbi->s_bal_2orders),
2748				atomic_read(&sbi->s_bal_breaks),
2749				atomic_read(&sbi->s_mb_lost_chunks));
2750		ext4_msg(sb, KERN_INFO,
2751		       "mballoc: %lu generated and it took %Lu",
2752				sbi->s_mb_buddies_generated,
2753				sbi->s_mb_generation_time);
2754		ext4_msg(sb, KERN_INFO,
2755		       "mballoc: %u preallocated, %u discarded",
2756				atomic_read(&sbi->s_mb_preallocated),
2757				atomic_read(&sbi->s_mb_discarded));
2758	}
2759
2760	free_percpu(sbi->s_locality_groups);
2761
2762	return 0;
2763}
2764
2765static inline int ext4_issue_discard(struct super_block *sb,
2766		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2767{
2768	ext4_fsblk_t discard_block;
2769
2770	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2771			 ext4_group_first_block_no(sb, block_group));
2772	count = EXT4_C2B(EXT4_SB(sb), count);
2773	trace_ext4_discard_blocks(sb,
2774			(unsigned long long) discard_block, count);
2775	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2776}
2777
2778/*
2779 * This function is called by the jbd2 layer once the commit has finished,
2780 * so we know we can free the blocks that were released with that commit.
2781 */
2782static void ext4_free_data_callback(struct super_block *sb,
2783				    struct ext4_journal_cb_entry *jce,
2784				    int rc)
2785{
2786	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2787	struct ext4_buddy e4b;
2788	struct ext4_group_info *db;
2789	int err, count = 0, count2 = 0;
2790
2791	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2792		 entry->efd_count, entry->efd_group, entry);
2793
2794	if (test_opt(sb, DISCARD)) {
2795		err = ext4_issue_discard(sb, entry->efd_group,
2796					 entry->efd_start_cluster,
2797					 entry->efd_count);
2798		if (err && err != -EOPNOTSUPP)
2799			ext4_msg(sb, KERN_WARNING, "discard request in"
2800				 " group:%d block:%d count:%d failed"
2801				 " with %d", entry->efd_group,
2802				 entry->efd_start_cluster,
2803				 entry->efd_count, err);
2804	}
2805
2806	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2807	/* we expect to find existing buddy because it's pinned */
2808	BUG_ON(err != 0);
2809
2810
2811	db = e4b.bd_info;
2812	/* there are blocks to put in buddy to make them really free */
2813	count += entry->efd_count;
2814	count2++;
2815	ext4_lock_group(sb, entry->efd_group);
2816	/* Take it out of per group rb tree */
2817	rb_erase(&entry->efd_node, &(db->bb_free_root));
2818	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2819
2820	/*
2821	 * Clear the trimmed flag for the group so that the next
2822	 * ext4_trim_fs can trim it.
2823	 * If the volume is mounted with -o discard, online discard
2824	 * is supported and the free blocks will be trimmed online.
2825	 */
2826	if (!test_opt(sb, DISCARD))
2827		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2828
2829	if (!db->bb_free_root.rb_node) {
2830		/* No more items in the per group rb tree
2831		 * balance refcounts from ext4_mb_free_metadata()
2832		 */
2833		page_cache_release(e4b.bd_buddy_page);
2834		page_cache_release(e4b.bd_bitmap_page);
2835	}
2836	ext4_unlock_group(sb, entry->efd_group);
2837	kmem_cache_free(ext4_free_data_cachep, entry);
2838	ext4_mb_unload_buddy(&e4b);
2839
2840	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2841}
2842
2843int __init ext4_init_mballoc(void)
2844{
2845	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2846					SLAB_RECLAIM_ACCOUNT);
2847	if (ext4_pspace_cachep == NULL)
2848		return -ENOMEM;
2849
2850	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2851				    SLAB_RECLAIM_ACCOUNT);
2852	if (ext4_ac_cachep == NULL) {
2853		kmem_cache_destroy(ext4_pspace_cachep);
2854		return -ENOMEM;
2855	}
2856
2857	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2858					   SLAB_RECLAIM_ACCOUNT);
2859	if (ext4_free_data_cachep == NULL) {
2860		kmem_cache_destroy(ext4_pspace_cachep);
2861		kmem_cache_destroy(ext4_ac_cachep);
2862		return -ENOMEM;
2863	}
2864	return 0;
2865}
2866
2867void ext4_exit_mballoc(void)
2868{
2869	/*
2870	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2871	 * before destroying the slab cache.
2872	 */
2873	rcu_barrier();
2874	kmem_cache_destroy(ext4_pspace_cachep);
2875	kmem_cache_destroy(ext4_ac_cachep);
2876	kmem_cache_destroy(ext4_free_data_cachep);
2877	ext4_groupinfo_destroy_slabs();
2878}
2879
2880
2881/*
2882 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2883 * Returns 0 if success or error code
2884 */
2885static noinline_for_stack int
2886ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2887				handle_t *handle, unsigned int reserv_clstrs)
2888{
2889	struct buffer_head *bitmap_bh = NULL;
2890	struct ext4_group_desc *gdp;
2891	struct buffer_head *gdp_bh;
2892	struct ext4_sb_info *sbi;
2893	struct super_block *sb;
2894	ext4_fsblk_t block;
2895	int err, len;
2896
2897	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2898	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2899
2900	sb = ac->ac_sb;
2901	sbi = EXT4_SB(sb);
2902
2903	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2904	if (IS_ERR(bitmap_bh)) {
2905		err = PTR_ERR(bitmap_bh);
2906		bitmap_bh = NULL;
2907		goto out_err;
2908	}
2909
2910	BUFFER_TRACE(bitmap_bh, "getting write access");
2911	err = ext4_journal_get_write_access(handle, bitmap_bh);
2912	if (err)
2913		goto out_err;
2914
2915	err = -EIO;
2916	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2917	if (!gdp)
2918		goto out_err;
2919
2920	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2921			ext4_free_group_clusters(sb, gdp));
2922
2923	BUFFER_TRACE(gdp_bh, "get_write_access");
2924	err = ext4_journal_get_write_access(handle, gdp_bh);
2925	if (err)
2926		goto out_err;
2927
2928	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2929
2930	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2931	if (!ext4_data_block_valid(sbi, block, len)) {
2932		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2933			   "fs metadata", block, block+len);
2934		/* File system mounted not to panic on error
2935		 * Fix the bitmap and repeat the block allocation
2936		 * We leak some of the blocks here.
2937		 */
2938		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2939		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2940			      ac->ac_b_ex.fe_len);
2941		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2942		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2943		if (!err)
2944			err = -EAGAIN;
2945		goto out_err;
2946	}
2947
2948	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2949#ifdef AGGRESSIVE_CHECK
2950	{
2951		int i;
2952		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2953			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2954						bitmap_bh->b_data));
2955		}
2956	}
2957#endif
2958	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2959		      ac->ac_b_ex.fe_len);
2960	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2961		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2962		ext4_free_group_clusters_set(sb, gdp,
2963					     ext4_free_clusters_after_init(sb,
2964						ac->ac_b_ex.fe_group, gdp));
2965	}
2966	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2967	ext4_free_group_clusters_set(sb, gdp, len);
2968	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2969	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2970
2971	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2972	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2973	/*
2974	 * Now reduce the dirty block count also. Should not go negative
2975	 */
2976	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2977		/* release all the reserved blocks if non delalloc */
2978		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2979				   reserv_clstrs);
2980
2981	if (sbi->s_log_groups_per_flex) {
2982		ext4_group_t flex_group = ext4_flex_group(sbi,
2983							  ac->ac_b_ex.fe_group);
2984		atomic64_sub(ac->ac_b_ex.fe_len,
2985			     &sbi->s_flex_groups[flex_group].free_clusters);
2986	}
2987
2988	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2989	if (err)
2990		goto out_err;
2991	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2992
2993out_err:
2994	brelse(bitmap_bh);
2995	return err;
2996}
2997
2998/*
2999 * here we normalize request for locality group
3000 * Group request are normalized to s_mb_group_prealloc, which goes to
3001 * s_strip if we set the same via mount option.
3002 * s_mb_group_prealloc can be configured via
3003 * /sys/fs/ext4/<partition>/mb_group_prealloc
3004 *
3005 * XXX: should we try to preallocate more than the group has now?
3006 */
3007static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3008{
3009	struct super_block *sb = ac->ac_sb;
3010	struct ext4_locality_group *lg = ac->ac_lg;
3011
3012	BUG_ON(lg == NULL);
3013	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3014	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3015		current->pid, ac->ac_g_ex.fe_len);
3016}
3017
3018/*
3019 * Normalization means making request better in terms of
3020 * size and alignment
3021 */
3022static noinline_for_stack void
3023ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3024				struct ext4_allocation_request *ar)
3025{
3026	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3027	int bsbits, max;
3028	ext4_lblk_t end;
3029	loff_t size, start_off;
3030	loff_t orig_size __maybe_unused;
3031	ext4_lblk_t start;
3032	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3033	struct ext4_prealloc_space *pa;
3034
3035	/* do normalize only data requests, metadata requests
3036	   do not need preallocation */
3037	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3038		return;
3039
3040	/* sometime caller may want exact blocks */
3041	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3042		return;
3043
3044	/* caller may indicate that preallocation isn't
3045	 * required (it's a tail, for example) */
3046	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3047		return;
3048
3049	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3050		ext4_mb_normalize_group_request(ac);
3051		return ;
3052	}
3053
3054	bsbits = ac->ac_sb->s_blocksize_bits;
3055
3056	/* first, let's learn actual file size
3057	 * given current request is allocated */
3058	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3059	size = size << bsbits;
3060	if (size < i_size_read(ac->ac_inode))
3061		size = i_size_read(ac->ac_inode);
3062	orig_size = size;
3063
3064	/* max size of free chunks */
3065	max = 2 << bsbits;
3066
3067#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3068		(req <= (size) || max <= (chunk_size))
3069
3070	/* first, try to predict filesize */
3071	/* XXX: should this table be tunable? */
3072	start_off = 0;
3073	if (size <= 16 * 1024) {
3074		size = 16 * 1024;
3075	} else if (size <= 32 * 1024) {
3076		size = 32 * 1024;
3077	} else if (size <= 64 * 1024) {
3078		size = 64 * 1024;
3079	} else if (size <= 128 * 1024) {
3080		size = 128 * 1024;
3081	} else if (size <= 256 * 1024) {
3082		size = 256 * 1024;
3083	} else if (size <= 512 * 1024) {
3084		size = 512 * 1024;
3085	} else if (size <= 1024 * 1024) {
3086		size = 1024 * 1024;
3087	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3088		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3089						(21 - bsbits)) << 21;
3090		size = 2 * 1024 * 1024;
3091	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3092		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3093							(22 - bsbits)) << 22;
3094		size = 4 * 1024 * 1024;
3095	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3096					(8<<20)>>bsbits, max, 8 * 1024)) {
3097		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3098							(23 - bsbits)) << 23;
3099		size = 8 * 1024 * 1024;
3100	} else {
3101		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3102		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3103					      ac->ac_o_ex.fe_len) << bsbits;
3104	}
3105	size = size >> bsbits;
3106	start = start_off >> bsbits;
3107
3108	/* don't cover already allocated blocks in selected range */
3109	if (ar->pleft && start <= ar->lleft) {
3110		size -= ar->lleft + 1 - start;
3111		start = ar->lleft + 1;
3112	}
3113	if (ar->pright && start + size - 1 >= ar->lright)
3114		size -= start + size - ar->lright;
3115
3116	end = start + size;
3117
3118	/* check we don't cross already preallocated blocks */
3119	rcu_read_lock();
3120	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3121		ext4_lblk_t pa_end;
3122
3123		if (pa->pa_deleted)
3124			continue;
3125		spin_lock(&pa->pa_lock);
3126		if (pa->pa_deleted) {
3127			spin_unlock(&pa->pa_lock);
3128			continue;
3129		}
3130
3131		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3132						  pa->pa_len);
3133
3134		/* PA must not overlap original request */
3135		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3136			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3137
3138		/* skip PAs this normalized request doesn't overlap with */
3139		if (pa->pa_lstart >= end || pa_end <= start) {
3140			spin_unlock(&pa->pa_lock);
3141			continue;
3142		}
3143		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3144
3145		/* adjust start or end to be adjacent to this pa */
3146		if (pa_end <= ac->ac_o_ex.fe_logical) {
3147			BUG_ON(pa_end < start);
3148			start = pa_end;
3149		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3150			BUG_ON(pa->pa_lstart > end);
3151			end = pa->pa_lstart;
3152		}
3153		spin_unlock(&pa->pa_lock);
3154	}
3155	rcu_read_unlock();
3156	size = end - start;
3157
3158	/* XXX: extra loop to check we really don't overlap preallocations */
3159	rcu_read_lock();
3160	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3161		ext4_lblk_t pa_end;
3162
3163		spin_lock(&pa->pa_lock);
3164		if (pa->pa_deleted == 0) {
3165			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3166							  pa->pa_len);
3167			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3168		}
3169		spin_unlock(&pa->pa_lock);
3170	}
3171	rcu_read_unlock();
3172
3173	if (start + size <= ac->ac_o_ex.fe_logical &&
3174			start > ac->ac_o_ex.fe_logical) {
3175		ext4_msg(ac->ac_sb, KERN_ERR,
3176			 "start %lu, size %lu, fe_logical %lu",
3177			 (unsigned long) start, (unsigned long) size,
3178			 (unsigned long) ac->ac_o_ex.fe_logical);
3179		BUG();
3180	}
3181	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3182
3183	/* now prepare goal request */
3184
3185	/* XXX: is it better to align blocks WRT to logical
3186	 * placement or satisfy big request as is */
3187	ac->ac_g_ex.fe_logical = start;
3188	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3189
3190	/* define goal start in order to merge */
3191	if (ar->pright && (ar->lright == (start + size))) {
3192		/* merge to the right */
3193		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3194						&ac->ac_f_ex.fe_group,
3195						&ac->ac_f_ex.fe_start);
3196		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3197	}
3198	if (ar->pleft && (ar->lleft + 1 == start)) {
3199		/* merge to the left */
3200		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3201						&ac->ac_f_ex.fe_group,
3202						&ac->ac_f_ex.fe_start);
3203		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3204	}
3205
3206	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3207		(unsigned) orig_size, (unsigned) start);
3208}
3209
3210static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3211{
3212	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3213
3214	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3215		atomic_inc(&sbi->s_bal_reqs);
3216		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3217		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3218			atomic_inc(&sbi->s_bal_success);
3219		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3220		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3221				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3222			atomic_inc(&sbi->s_bal_goals);
3223		if (ac->ac_found > sbi->s_mb_max_to_scan)
3224			atomic_inc(&sbi->s_bal_breaks);
3225	}
3226
3227	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3228		trace_ext4_mballoc_alloc(ac);
3229	else
3230		trace_ext4_mballoc_prealloc(ac);
3231}
3232
3233/*
3234 * Called on failure; free up any blocks from the inode PA for this
3235 * context.  We don't need this for MB_GROUP_PA because we only change
3236 * pa_free in ext4_mb_release_context(), but on failure, we've already
3237 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3238 */
3239static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3240{
3241	struct ext4_prealloc_space *pa = ac->ac_pa;
3242	struct ext4_buddy e4b;
3243	int err;
3244
3245	if (pa == NULL) {
3246		if (ac->ac_f_ex.fe_len == 0)
3247			return;
3248		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3249		if (err) {
3250			/*
3251			 * This should never happen since we pin the
3252			 * pages in the ext4_allocation_context so
3253			 * ext4_mb_load_buddy() should never fail.
3254			 */
3255			WARN(1, "mb_load_buddy failed (%d)", err);
3256			return;
3257		}
3258		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3259		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3260			       ac->ac_f_ex.fe_len);
3261		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3262		ext4_mb_unload_buddy(&e4b);
3263		return;
3264	}
3265	if (pa->pa_type == MB_INODE_PA)
3266		pa->pa_free += ac->ac_b_ex.fe_len;
3267}
3268
3269/*
3270 * use blocks preallocated to inode
3271 */
3272static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3273				struct ext4_prealloc_space *pa)
3274{
3275	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3276	ext4_fsblk_t start;
3277	ext4_fsblk_t end;
3278	int len;
3279
3280	/* found preallocated blocks, use them */
3281	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3282	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3283		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3284	len = EXT4_NUM_B2C(sbi, end - start);
3285	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3286					&ac->ac_b_ex.fe_start);
3287	ac->ac_b_ex.fe_len = len;
3288	ac->ac_status = AC_STATUS_FOUND;
3289	ac->ac_pa = pa;
3290
3291	BUG_ON(start < pa->pa_pstart);
3292	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3293	BUG_ON(pa->pa_free < len);
3294	pa->pa_free -= len;
3295
3296	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3297}
3298
3299/*
3300 * use blocks preallocated to locality group
3301 */
3302static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3303				struct ext4_prealloc_space *pa)
3304{
3305	unsigned int len = ac->ac_o_ex.fe_len;
3306
3307	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3308					&ac->ac_b_ex.fe_group,
3309					&ac->ac_b_ex.fe_start);
3310	ac->ac_b_ex.fe_len = len;
3311	ac->ac_status = AC_STATUS_FOUND;
3312	ac->ac_pa = pa;
3313
3314	/* we don't correct pa_pstart or pa_plen here to avoid
3315	 * possible race when the group is being loaded concurrently
3316	 * instead we correct pa later, after blocks are marked
3317	 * in on-disk bitmap -- see ext4_mb_release_context()
3318	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3319	 */
3320	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3321}
3322
3323/*
3324 * Return the prealloc space that have minimal distance
3325 * from the goal block. @cpa is the prealloc
3326 * space that is having currently known minimal distance
3327 * from the goal block.
3328 */
3329static struct ext4_prealloc_space *
3330ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3331			struct ext4_prealloc_space *pa,
3332			struct ext4_prealloc_space *cpa)
3333{
3334	ext4_fsblk_t cur_distance, new_distance;
3335
3336	if (cpa == NULL) {
3337		atomic_inc(&pa->pa_count);
3338		return pa;
3339	}
3340	cur_distance = abs(goal_block - cpa->pa_pstart);
3341	new_distance = abs(goal_block - pa->pa_pstart);
3342
3343	if (cur_distance <= new_distance)
3344		return cpa;
3345
3346	/* drop the previous reference */
3347	atomic_dec(&cpa->pa_count);
3348	atomic_inc(&pa->pa_count);
3349	return pa;
3350}
3351
3352/*
3353 * search goal blocks in preallocated space
3354 */
3355static noinline_for_stack int
3356ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3357{
3358	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3359	int order, i;
3360	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3361	struct ext4_locality_group *lg;
3362	struct ext4_prealloc_space *pa, *cpa = NULL;
3363	ext4_fsblk_t goal_block;
3364
3365	/* only data can be preallocated */
3366	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3367		return 0;
3368
3369	/* first, try per-file preallocation */
3370	rcu_read_lock();
3371	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3372
3373		/* all fields in this condition don't change,
3374		 * so we can skip locking for them */
3375		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3376		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3377					       EXT4_C2B(sbi, pa->pa_len)))
3378			continue;
3379
3380		/* non-extent files can't have physical blocks past 2^32 */
3381		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3382		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3383		     EXT4_MAX_BLOCK_FILE_PHYS))
3384			continue;
3385
3386		/* found preallocated blocks, use them */
3387		spin_lock(&pa->pa_lock);
3388		if (pa->pa_deleted == 0 && pa->pa_free) {
3389			atomic_inc(&pa->pa_count);
3390			ext4_mb_use_inode_pa(ac, pa);
3391			spin_unlock(&pa->pa_lock);
3392			ac->ac_criteria = 10;
3393			rcu_read_unlock();
3394			return 1;
3395		}
3396		spin_unlock(&pa->pa_lock);
3397	}
3398	rcu_read_unlock();
3399
3400	/* can we use group allocation? */
3401	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3402		return 0;
3403
3404	/* inode may have no locality group for some reason */
3405	lg = ac->ac_lg;
3406	if (lg == NULL)
3407		return 0;
3408	order  = fls(ac->ac_o_ex.fe_len) - 1;
3409	if (order > PREALLOC_TB_SIZE - 1)
3410		/* The max size of hash table is PREALLOC_TB_SIZE */
3411		order = PREALLOC_TB_SIZE - 1;
3412
3413	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3414	/*
3415	 * search for the prealloc space that is having
3416	 * minimal distance from the goal block.
3417	 */
3418	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3419		rcu_read_lock();
3420		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3421					pa_inode_list) {
3422			spin_lock(&pa->pa_lock);
3423			if (pa->pa_deleted == 0 &&
3424					pa->pa_free >= ac->ac_o_ex.fe_len) {
3425
3426				cpa = ext4_mb_check_group_pa(goal_block,
3427								pa, cpa);
3428			}
3429			spin_unlock(&pa->pa_lock);
3430		}
3431		rcu_read_unlock();
3432	}
3433	if (cpa) {
3434		ext4_mb_use_group_pa(ac, cpa);
3435		ac->ac_criteria = 20;
3436		return 1;
3437	}
3438	return 0;
3439}
3440
3441/*
3442 * the function goes through all block freed in the group
3443 * but not yet committed and marks them used in in-core bitmap.
3444 * buddy must be generated from this bitmap
3445 * Need to be called with the ext4 group lock held
3446 */
3447static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3448						ext4_group_t group)
3449{
3450	struct rb_node *n;
3451	struct ext4_group_info *grp;
3452	struct ext4_free_data *entry;
3453
3454	grp = ext4_get_group_info(sb, group);
3455	n = rb_first(&(grp->bb_free_root));
3456
3457	while (n) {
3458		entry = rb_entry(n, struct ext4_free_data, efd_node);
3459		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3460		n = rb_next(n);
3461	}
3462	return;
3463}
3464
3465/*
3466 * the function goes through all preallocation in this group and marks them
3467 * used in in-core bitmap. buddy must be generated from this bitmap
3468 * Need to be called with ext4 group lock held
3469 */
3470static noinline_for_stack
3471void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3472					ext4_group_t group)
3473{
3474	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3475	struct ext4_prealloc_space *pa;
3476	struct list_head *cur;
3477	ext4_group_t groupnr;
3478	ext4_grpblk_t start;
3479	int preallocated = 0;
3480	int len;
3481
3482	/* all form of preallocation discards first load group,
3483	 * so the only competing code is preallocation use.
3484	 * we don't need any locking here
3485	 * notice we do NOT ignore preallocations with pa_deleted
3486	 * otherwise we could leave used blocks available for
3487	 * allocation in buddy when concurrent ext4_mb_put_pa()
3488	 * is dropping preallocation
3489	 */
3490	list_for_each(cur, &grp->bb_prealloc_list) {
3491		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3492		spin_lock(&pa->pa_lock);
3493		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3494					     &groupnr, &start);
3495		len = pa->pa_len;
3496		spin_unlock(&pa->pa_lock);
3497		if (unlikely(len == 0))
3498			continue;
3499		BUG_ON(groupnr != group);
3500		ext4_set_bits(bitmap, start, len);
3501		preallocated += len;
3502	}
3503	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3504}
3505
3506static void ext4_mb_pa_callback(struct rcu_head *head)
3507{
3508	struct ext4_prealloc_space *pa;
3509	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3510
3511	BUG_ON(atomic_read(&pa->pa_count));
3512	BUG_ON(pa->pa_deleted == 0);
3513	kmem_cache_free(ext4_pspace_cachep, pa);
3514}
3515
3516/*
3517 * drops a reference to preallocated space descriptor
3518 * if this was the last reference and the space is consumed
3519 */
3520static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3521			struct super_block *sb, struct ext4_prealloc_space *pa)
3522{
3523	ext4_group_t grp;
3524	ext4_fsblk_t grp_blk;
3525
3526	/* in this short window concurrent discard can set pa_deleted */
3527	spin_lock(&pa->pa_lock);
3528	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3529		spin_unlock(&pa->pa_lock);
3530		return;
3531	}
3532
3533	if (pa->pa_deleted == 1) {
3534		spin_unlock(&pa->pa_lock);
3535		return;
3536	}
3537
3538	pa->pa_deleted = 1;
3539	spin_unlock(&pa->pa_lock);
3540
3541	grp_blk = pa->pa_pstart;
3542	/*
3543	 * If doing group-based preallocation, pa_pstart may be in the
3544	 * next group when pa is used up
3545	 */
3546	if (pa->pa_type == MB_GROUP_PA)
3547		grp_blk--;
3548
3549	grp = ext4_get_group_number(sb, grp_blk);
3550
3551	/*
3552	 * possible race:
3553	 *
3554	 *  P1 (buddy init)			P2 (regular allocation)
3555	 *					find block B in PA
3556	 *  copy on-disk bitmap to buddy
3557	 *  					mark B in on-disk bitmap
3558	 *					drop PA from group
3559	 *  mark all PAs in buddy
3560	 *
3561	 * thus, P1 initializes buddy with B available. to prevent this
3562	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3563	 * against that pair
3564	 */
3565	ext4_lock_group(sb, grp);
3566	list_del(&pa->pa_group_list);
3567	ext4_unlock_group(sb, grp);
3568
3569	spin_lock(pa->pa_obj_lock);
3570	list_del_rcu(&pa->pa_inode_list);
3571	spin_unlock(pa->pa_obj_lock);
3572
3573	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3574}
3575
3576/*
3577 * creates new preallocated space for given inode
3578 */
3579static noinline_for_stack int
3580ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3581{
3582	struct super_block *sb = ac->ac_sb;
3583	struct ext4_sb_info *sbi = EXT4_SB(sb);
3584	struct ext4_prealloc_space *pa;
3585	struct ext4_group_info *grp;
3586	struct ext4_inode_info *ei;
3587
3588	/* preallocate only when found space is larger then requested */
3589	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3590	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3591	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3592
3593	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3594	if (pa == NULL)
3595		return -ENOMEM;
3596
3597	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3598		int winl;
3599		int wins;
3600		int win;
3601		int offs;
3602
3603		/* we can't allocate as much as normalizer wants.
3604		 * so, found space must get proper lstart
3605		 * to cover original request */
3606		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3607		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3608
3609		/* we're limited by original request in that
3610		 * logical block must be covered any way
3611		 * winl is window we can move our chunk within */
3612		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3613
3614		/* also, we should cover whole original request */
3615		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3616
3617		/* the smallest one defines real window */
3618		win = min(winl, wins);
3619
3620		offs = ac->ac_o_ex.fe_logical %
3621			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3622		if (offs && offs < win)
3623			win = offs;
3624
3625		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3626			EXT4_NUM_B2C(sbi, win);
3627		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3628		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3629	}
3630
3631	/* preallocation can change ac_b_ex, thus we store actually
3632	 * allocated blocks for history */
3633	ac->ac_f_ex = ac->ac_b_ex;
3634
3635	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3636	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3637	pa->pa_len = ac->ac_b_ex.fe_len;
3638	pa->pa_free = pa->pa_len;
3639	atomic_set(&pa->pa_count, 1);
3640	spin_lock_init(&pa->pa_lock);
3641	INIT_LIST_HEAD(&pa->pa_inode_list);
3642	INIT_LIST_HEAD(&pa->pa_group_list);
3643	pa->pa_deleted = 0;
3644	pa->pa_type = MB_INODE_PA;
3645
3646	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3647			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3648	trace_ext4_mb_new_inode_pa(ac, pa);
3649
3650	ext4_mb_use_inode_pa(ac, pa);
3651	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3652
3653	ei = EXT4_I(ac->ac_inode);
3654	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3655
3656	pa->pa_obj_lock = &ei->i_prealloc_lock;
3657	pa->pa_inode = ac->ac_inode;
3658
3659	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3660	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3661	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3662
3663	spin_lock(pa->pa_obj_lock);
3664	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3665	spin_unlock(pa->pa_obj_lock);
3666
3667	return 0;
3668}
3669
3670/*
3671 * creates new preallocated space for locality group inodes belongs to
3672 */
3673static noinline_for_stack int
3674ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3675{
3676	struct super_block *sb = ac->ac_sb;
3677	struct ext4_locality_group *lg;
3678	struct ext4_prealloc_space *pa;
3679	struct ext4_group_info *grp;
3680
3681	/* preallocate only when found space is larger then requested */
3682	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3683	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3684	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3685
3686	BUG_ON(ext4_pspace_cachep == NULL);
3687	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3688	if (pa == NULL)
3689		return -ENOMEM;
3690
3691	/* preallocation can change ac_b_ex, thus we store actually
3692	 * allocated blocks for history */
3693	ac->ac_f_ex = ac->ac_b_ex;
3694
3695	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3696	pa->pa_lstart = pa->pa_pstart;
3697	pa->pa_len = ac->ac_b_ex.fe_len;
3698	pa->pa_free = pa->pa_len;
3699	atomic_set(&pa->pa_count, 1);
3700	spin_lock_init(&pa->pa_lock);
3701	INIT_LIST_HEAD(&pa->pa_inode_list);
3702	INIT_LIST_HEAD(&pa->pa_group_list);
3703	pa->pa_deleted = 0;
3704	pa->pa_type = MB_GROUP_PA;
3705
3706	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3707			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3708	trace_ext4_mb_new_group_pa(ac, pa);
3709
3710	ext4_mb_use_group_pa(ac, pa);
3711	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3712
3713	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3714	lg = ac->ac_lg;
3715	BUG_ON(lg == NULL);
3716
3717	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3718	pa->pa_inode = NULL;
3719
3720	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3721	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3722	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3723
3724	/*
3725	 * We will later add the new pa to the right bucket
3726	 * after updating the pa_free in ext4_mb_release_context
3727	 */
3728	return 0;
3729}
3730
3731static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3732{
3733	int err;
3734
3735	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3736		err = ext4_mb_new_group_pa(ac);
3737	else
3738		err = ext4_mb_new_inode_pa(ac);
3739	return err;
3740}
3741
3742/*
3743 * finds all unused blocks in on-disk bitmap, frees them in
3744 * in-core bitmap and buddy.
3745 * @pa must be unlinked from inode and group lists, so that
3746 * nobody else can find/use it.
3747 * the caller MUST hold group/inode locks.
3748 * TODO: optimize the case when there are no in-core structures yet
3749 */
3750static noinline_for_stack int
3751ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3752			struct ext4_prealloc_space *pa)
3753{
3754	struct super_block *sb = e4b->bd_sb;
3755	struct ext4_sb_info *sbi = EXT4_SB(sb);
3756	unsigned int end;
3757	unsigned int next;
3758	ext4_group_t group;
3759	ext4_grpblk_t bit;
3760	unsigned long long grp_blk_start;
3761	int err = 0;
3762	int free = 0;
3763
3764	BUG_ON(pa->pa_deleted == 0);
3765	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3766	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3767	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3768	end = bit + pa->pa_len;
3769
3770	while (bit < end) {
3771		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3772		if (bit >= end)
3773			break;
3774		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3775		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3776			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3777			 (unsigned) next - bit, (unsigned) group);
3778		free += next - bit;
3779
3780		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3781		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3782						    EXT4_C2B(sbi, bit)),
3783					       next - bit);
3784		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3785		bit = next + 1;
3786	}
3787	if (free != pa->pa_free) {
3788		ext4_msg(e4b->bd_sb, KERN_CRIT,
3789			 "pa %p: logic %lu, phys. %lu, len %lu",
3790			 pa, (unsigned long) pa->pa_lstart,
3791			 (unsigned long) pa->pa_pstart,
3792			 (unsigned long) pa->pa_len);
3793		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3794					free, pa->pa_free);
3795		/*
3796		 * pa is already deleted so we use the value obtained
3797		 * from the bitmap and continue.
3798		 */
3799	}
3800	atomic_add(free, &sbi->s_mb_discarded);
3801
3802	return err;
3803}
3804
3805static noinline_for_stack int
3806ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3807				struct ext4_prealloc_space *pa)
3808{
3809	struct super_block *sb = e4b->bd_sb;
3810	ext4_group_t group;
3811	ext4_grpblk_t bit;
3812
3813	trace_ext4_mb_release_group_pa(sb, pa);
3814	BUG_ON(pa->pa_deleted == 0);
3815	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3816	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3817	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3818	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3819	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3820
3821	return 0;
3822}
3823
3824/*
3825 * releases all preallocations in given group
3826 *
3827 * first, we need to decide discard policy:
3828 * - when do we discard
3829 *   1) ENOSPC
3830 * - how many do we discard
3831 *   1) how many requested
3832 */
3833static noinline_for_stack int
3834ext4_mb_discard_group_preallocations(struct super_block *sb,
3835					ext4_group_t group, int needed)
3836{
3837	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3838	struct buffer_head *bitmap_bh = NULL;
3839	struct ext4_prealloc_space *pa, *tmp;
3840	struct list_head list;
3841	struct ext4_buddy e4b;
3842	int err;
3843	int busy = 0;
3844	int free = 0;
3845
3846	mb_debug(1, "discard preallocation for group %u\n", group);
3847
3848	if (list_empty(&grp->bb_prealloc_list))
3849		return 0;
3850
3851	bitmap_bh = ext4_read_block_bitmap(sb, group);
3852	if (IS_ERR(bitmap_bh)) {
3853		err = PTR_ERR(bitmap_bh);
3854		ext4_error(sb, "Error %d reading block bitmap for %u",
3855			   err, group);
3856		return 0;
3857	}
3858
3859	err = ext4_mb_load_buddy(sb, group, &e4b);
3860	if (err) {
3861		ext4_error(sb, "Error loading buddy information for %u", group);
3862		put_bh(bitmap_bh);
3863		return 0;
3864	}
3865
3866	if (needed == 0)
3867		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3868
3869	INIT_LIST_HEAD(&list);
3870repeat:
3871	ext4_lock_group(sb, group);
3872	list_for_each_entry_safe(pa, tmp,
3873				&grp->bb_prealloc_list, pa_group_list) {
3874		spin_lock(&pa->pa_lock);
3875		if (atomic_read(&pa->pa_count)) {
3876			spin_unlock(&pa->pa_lock);
3877			busy = 1;
3878			continue;
3879		}
3880		if (pa->pa_deleted) {
3881			spin_unlock(&pa->pa_lock);
3882			continue;
3883		}
3884
3885		/* seems this one can be freed ... */
3886		pa->pa_deleted = 1;
3887
3888		/* we can trust pa_free ... */
3889		free += pa->pa_free;
3890
3891		spin_unlock(&pa->pa_lock);
3892
3893		list_del(&pa->pa_group_list);
3894		list_add(&pa->u.pa_tmp_list, &list);
3895	}
3896
3897	/* if we still need more blocks and some PAs were used, try again */
3898	if (free < needed && busy) {
3899		busy = 0;
3900		ext4_unlock_group(sb, group);
3901		cond_resched();
3902		goto repeat;
3903	}
3904
3905	/* found anything to free? */
3906	if (list_empty(&list)) {
3907		BUG_ON(free != 0);
3908		goto out;
3909	}
3910
3911	/* now free all selected PAs */
3912	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3913
3914		/* remove from object (inode or locality group) */
3915		spin_lock(pa->pa_obj_lock);
3916		list_del_rcu(&pa->pa_inode_list);
3917		spin_unlock(pa->pa_obj_lock);
3918
3919		if (pa->pa_type == MB_GROUP_PA)
3920			ext4_mb_release_group_pa(&e4b, pa);
3921		else
3922			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3923
3924		list_del(&pa->u.pa_tmp_list);
3925		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3926	}
3927
3928out:
3929	ext4_unlock_group(sb, group);
3930	ext4_mb_unload_buddy(&e4b);
3931	put_bh(bitmap_bh);
3932	return free;
3933}
3934
3935/*
3936 * releases all non-used preallocated blocks for given inode
3937 *
3938 * It's important to discard preallocations under i_data_sem
3939 * We don't want another block to be served from the prealloc
3940 * space when we are discarding the inode prealloc space.
3941 *
3942 * FIXME!! Make sure it is valid at all the call sites
3943 */
3944void ext4_discard_preallocations(struct inode *inode)
3945{
3946	struct ext4_inode_info *ei = EXT4_I(inode);
3947	struct super_block *sb = inode->i_sb;
3948	struct buffer_head *bitmap_bh = NULL;
3949	struct ext4_prealloc_space *pa, *tmp;
3950	ext4_group_t group = 0;
3951	struct list_head list;
3952	struct ext4_buddy e4b;
3953	int err;
3954
3955	if (!S_ISREG(inode->i_mode)) {
3956		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3957		return;
3958	}
3959
3960	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3961	trace_ext4_discard_preallocations(inode);
3962
3963	INIT_LIST_HEAD(&list);
3964
3965repeat:
3966	/* first, collect all pa's in the inode */
3967	spin_lock(&ei->i_prealloc_lock);
3968	while (!list_empty(&ei->i_prealloc_list)) {
3969		pa = list_entry(ei->i_prealloc_list.next,
3970				struct ext4_prealloc_space, pa_inode_list);
3971		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3972		spin_lock(&pa->pa_lock);
3973		if (atomic_read(&pa->pa_count)) {
3974			/* this shouldn't happen often - nobody should
3975			 * use preallocation while we're discarding it */
3976			spin_unlock(&pa->pa_lock);
3977			spin_unlock(&ei->i_prealloc_lock);
3978			ext4_msg(sb, KERN_ERR,
3979				 "uh-oh! used pa while discarding");
3980			WARN_ON(1);
3981			schedule_timeout_uninterruptible(HZ);
3982			goto repeat;
3983
3984		}
3985		if (pa->pa_deleted == 0) {
3986			pa->pa_deleted = 1;
3987			spin_unlock(&pa->pa_lock);
3988			list_del_rcu(&pa->pa_inode_list);
3989			list_add(&pa->u.pa_tmp_list, &list);
3990			continue;
3991		}
3992
3993		/* someone is deleting pa right now */
3994		spin_unlock(&pa->pa_lock);
3995		spin_unlock(&ei->i_prealloc_lock);
3996
3997		/* we have to wait here because pa_deleted
3998		 * doesn't mean pa is already unlinked from
3999		 * the list. as we might be called from
4000		 * ->clear_inode() the inode will get freed
4001		 * and concurrent thread which is unlinking
4002		 * pa from inode's list may access already
4003		 * freed memory, bad-bad-bad */
4004
4005		/* XXX: if this happens too often, we can
4006		 * add a flag to force wait only in case
4007		 * of ->clear_inode(), but not in case of
4008		 * regular truncate */
4009		schedule_timeout_uninterruptible(HZ);
4010		goto repeat;
4011	}
4012	spin_unlock(&ei->i_prealloc_lock);
4013
4014	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4015		BUG_ON(pa->pa_type != MB_INODE_PA);
4016		group = ext4_get_group_number(sb, pa->pa_pstart);
4017
4018		err = ext4_mb_load_buddy(sb, group, &e4b);
4019		if (err) {
4020			ext4_error(sb, "Error loading buddy information for %u",
4021					group);
4022			continue;
4023		}
4024
4025		bitmap_bh = ext4_read_block_bitmap(sb, group);
4026		if (IS_ERR(bitmap_bh)) {
4027			err = PTR_ERR(bitmap_bh);
4028			ext4_error(sb, "Error %d reading block bitmap for %u",
4029					err, group);
4030			ext4_mb_unload_buddy(&e4b);
4031			continue;
4032		}
4033
4034		ext4_lock_group(sb, group);
4035		list_del(&pa->pa_group_list);
4036		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4037		ext4_unlock_group(sb, group);
4038
4039		ext4_mb_unload_buddy(&e4b);
4040		put_bh(bitmap_bh);
4041
4042		list_del(&pa->u.pa_tmp_list);
4043		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4044	}
4045}
4046
4047#ifdef CONFIG_EXT4_DEBUG
4048static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4049{
4050	struct super_block *sb = ac->ac_sb;
4051	ext4_group_t ngroups, i;
4052
4053	if (!ext4_mballoc_debug ||
4054	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4055		return;
4056
4057	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4058			" Allocation context details:");
4059	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4060			ac->ac_status, ac->ac_flags);
4061	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4062		 	"goal %lu/%lu/%lu@%lu, "
4063			"best %lu/%lu/%lu@%lu cr %d",
4064			(unsigned long)ac->ac_o_ex.fe_group,
4065			(unsigned long)ac->ac_o_ex.fe_start,
4066			(unsigned long)ac->ac_o_ex.fe_len,
4067			(unsigned long)ac->ac_o_ex.fe_logical,
4068			(unsigned long)ac->ac_g_ex.fe_group,
4069			(unsigned long)ac->ac_g_ex.fe_start,
4070			(unsigned long)ac->ac_g_ex.fe_len,
4071			(unsigned long)ac->ac_g_ex.fe_logical,
4072			(unsigned long)ac->ac_b_ex.fe_group,
4073			(unsigned long)ac->ac_b_ex.fe_start,
4074			(unsigned long)ac->ac_b_ex.fe_len,
4075			(unsigned long)ac->ac_b_ex.fe_logical,
4076			(int)ac->ac_criteria);
4077	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4078	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4079	ngroups = ext4_get_groups_count(sb);
4080	for (i = 0; i < ngroups; i++) {
4081		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4082		struct ext4_prealloc_space *pa;
4083		ext4_grpblk_t start;
4084		struct list_head *cur;
4085		ext4_lock_group(sb, i);
4086		list_for_each(cur, &grp->bb_prealloc_list) {
4087			pa = list_entry(cur, struct ext4_prealloc_space,
4088					pa_group_list);
4089			spin_lock(&pa->pa_lock);
4090			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4091						     NULL, &start);
4092			spin_unlock(&pa->pa_lock);
4093			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4094			       start, pa->pa_len);
4095		}
4096		ext4_unlock_group(sb, i);
4097
4098		if (grp->bb_free == 0)
4099			continue;
4100		printk(KERN_ERR "%u: %d/%d \n",
4101		       i, grp->bb_free, grp->bb_fragments);
4102	}
4103	printk(KERN_ERR "\n");
4104}
4105#else
4106static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4107{
4108	return;
4109}
4110#endif
4111
4112/*
4113 * We use locality group preallocation for small size file. The size of the
4114 * file is determined by the current size or the resulting size after
4115 * allocation which ever is larger
4116 *
4117 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4118 */
4119static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4120{
4121	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4122	int bsbits = ac->ac_sb->s_blocksize_bits;
4123	loff_t size, isize;
4124
4125	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4126		return;
4127
4128	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4129		return;
4130
4131	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4132	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4133		>> bsbits;
4134
4135	if ((size == isize) &&
4136	    !ext4_fs_is_busy(sbi) &&
4137	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4138		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4139		return;
4140	}
4141
4142	if (sbi->s_mb_group_prealloc <= 0) {
4143		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4144		return;
4145	}
4146
4147	/* don't use group allocation for large files */
4148	size = max(size, isize);
4149	if (size > sbi->s_mb_stream_request) {
4150		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4151		return;
4152	}
4153
4154	BUG_ON(ac->ac_lg != NULL);
4155	/*
4156	 * locality group prealloc space are per cpu. The reason for having
4157	 * per cpu locality group is to reduce the contention between block
4158	 * request from multiple CPUs.
4159	 */
4160	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4161
4162	/* we're going to use group allocation */
4163	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4164
4165	/* serialize all allocations in the group */
4166	mutex_lock(&ac->ac_lg->lg_mutex);
4167}
4168
4169static noinline_for_stack int
4170ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4171				struct ext4_allocation_request *ar)
4172{
4173	struct super_block *sb = ar->inode->i_sb;
4174	struct ext4_sb_info *sbi = EXT4_SB(sb);
4175	struct ext4_super_block *es = sbi->s_es;
4176	ext4_group_t group;
4177	unsigned int len;
4178	ext4_fsblk_t goal;
4179	ext4_grpblk_t block;
4180
4181	/* we can't allocate > group size */
4182	len = ar->len;
4183
4184	/* just a dirty hack to filter too big requests  */
4185	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4186		len = EXT4_CLUSTERS_PER_GROUP(sb);
4187
4188	/* start searching from the goal */
4189	goal = ar->goal;
4190	if (goal < le32_to_cpu(es->s_first_data_block) ||
4191			goal >= ext4_blocks_count(es))
4192		goal = le32_to_cpu(es->s_first_data_block);
4193	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4194
4195	/* set up allocation goals */
4196	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4197	ac->ac_status = AC_STATUS_CONTINUE;
4198	ac->ac_sb = sb;
4199	ac->ac_inode = ar->inode;
4200	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4201	ac->ac_o_ex.fe_group = group;
4202	ac->ac_o_ex.fe_start = block;
4203	ac->ac_o_ex.fe_len = len;
4204	ac->ac_g_ex = ac->ac_o_ex;
4205	ac->ac_flags = ar->flags;
4206
4207	/* we have to define context: we'll we work with a file or
4208	 * locality group. this is a policy, actually */
4209	ext4_mb_group_or_file(ac);
4210
4211	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4212			"left: %u/%u, right %u/%u to %swritable\n",
4213			(unsigned) ar->len, (unsigned) ar->logical,
4214			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4215			(unsigned) ar->lleft, (unsigned) ar->pleft,
4216			(unsigned) ar->lright, (unsigned) ar->pright,
4217			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4218	return 0;
4219
4220}
4221
4222static noinline_for_stack void
4223ext4_mb_discard_lg_preallocations(struct super_block *sb,
4224					struct ext4_locality_group *lg,
4225					int order, int total_entries)
4226{
4227	ext4_group_t group = 0;
4228	struct ext4_buddy e4b;
4229	struct list_head discard_list;
4230	struct ext4_prealloc_space *pa, *tmp;
4231
4232	mb_debug(1, "discard locality group preallocation\n");
4233
4234	INIT_LIST_HEAD(&discard_list);
4235
4236	spin_lock(&lg->lg_prealloc_lock);
4237	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4238						pa_inode_list) {
4239		spin_lock(&pa->pa_lock);
4240		if (atomic_read(&pa->pa_count)) {
4241			/*
4242			 * This is the pa that we just used
4243			 * for block allocation. So don't
4244			 * free that
4245			 */
4246			spin_unlock(&pa->pa_lock);
4247			continue;
4248		}
4249		if (pa->pa_deleted) {
4250			spin_unlock(&pa->pa_lock);
4251			continue;
4252		}
4253		/* only lg prealloc space */
4254		BUG_ON(pa->pa_type != MB_GROUP_PA);
4255
4256		/* seems this one can be freed ... */
4257		pa->pa_deleted = 1;
4258		spin_unlock(&pa->pa_lock);
4259
4260		list_del_rcu(&pa->pa_inode_list);
4261		list_add(&pa->u.pa_tmp_list, &discard_list);
4262
4263		total_entries--;
4264		if (total_entries <= 5) {
4265			/*
4266			 * we want to keep only 5 entries
4267			 * allowing it to grow to 8. This
4268			 * mak sure we don't call discard
4269			 * soon for this list.
4270			 */
4271			break;
4272		}
4273	}
4274	spin_unlock(&lg->lg_prealloc_lock);
4275
4276	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4277
4278		group = ext4_get_group_number(sb, pa->pa_pstart);
4279		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4280			ext4_error(sb, "Error loading buddy information for %u",
4281					group);
4282			continue;
4283		}
4284		ext4_lock_group(sb, group);
4285		list_del(&pa->pa_group_list);
4286		ext4_mb_release_group_pa(&e4b, pa);
4287		ext4_unlock_group(sb, group);
4288
4289		ext4_mb_unload_buddy(&e4b);
4290		list_del(&pa->u.pa_tmp_list);
4291		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4292	}
4293}
4294
4295/*
4296 * We have incremented pa_count. So it cannot be freed at this
4297 * point. Also we hold lg_mutex. So no parallel allocation is
4298 * possible from this lg. That means pa_free cannot be updated.
4299 *
4300 * A parallel ext4_mb_discard_group_preallocations is possible.
4301 * which can cause the lg_prealloc_list to be updated.
4302 */
4303
4304static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4305{
4306	int order, added = 0, lg_prealloc_count = 1;
4307	struct super_block *sb = ac->ac_sb;
4308	struct ext4_locality_group *lg = ac->ac_lg;
4309	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4310
4311	order = fls(pa->pa_free) - 1;
4312	if (order > PREALLOC_TB_SIZE - 1)
4313		/* The max size of hash table is PREALLOC_TB_SIZE */
4314		order = PREALLOC_TB_SIZE - 1;
4315	/* Add the prealloc space to lg */
4316	spin_lock(&lg->lg_prealloc_lock);
4317	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4318						pa_inode_list) {
4319		spin_lock(&tmp_pa->pa_lock);
4320		if (tmp_pa->pa_deleted) {
4321			spin_unlock(&tmp_pa->pa_lock);
4322			continue;
4323		}
4324		if (!added && pa->pa_free < tmp_pa->pa_free) {
4325			/* Add to the tail of the previous entry */
4326			list_add_tail_rcu(&pa->pa_inode_list,
4327						&tmp_pa->pa_inode_list);
4328			added = 1;
4329			/*
4330			 * we want to count the total
4331			 * number of entries in the list
4332			 */
4333		}
4334		spin_unlock(&tmp_pa->pa_lock);
4335		lg_prealloc_count++;
4336	}
4337	if (!added)
4338		list_add_tail_rcu(&pa->pa_inode_list,
4339					&lg->lg_prealloc_list[order]);
4340	spin_unlock(&lg->lg_prealloc_lock);
4341
4342	/* Now trim the list to be not more than 8 elements */
4343	if (lg_prealloc_count > 8) {
4344		ext4_mb_discard_lg_preallocations(sb, lg,
4345						  order, lg_prealloc_count);
4346		return;
4347	}
4348	return ;
4349}
4350
4351/*
4352 * release all resource we used in allocation
4353 */
4354static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4355{
4356	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4357	struct ext4_prealloc_space *pa = ac->ac_pa;
4358	if (pa) {
4359		if (pa->pa_type == MB_GROUP_PA) {
4360			/* see comment in ext4_mb_use_group_pa() */
4361			spin_lock(&pa->pa_lock);
4362			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4363			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4364			pa->pa_free -= ac->ac_b_ex.fe_len;
4365			pa->pa_len -= ac->ac_b_ex.fe_len;
4366			spin_unlock(&pa->pa_lock);
4367		}
4368	}
4369	if (pa) {
4370		/*
4371		 * We want to add the pa to the right bucket.
4372		 * Remove it from the list and while adding
4373		 * make sure the list to which we are adding
4374		 * doesn't grow big.
4375		 */
4376		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4377			spin_lock(pa->pa_obj_lock);
4378			list_del_rcu(&pa->pa_inode_list);
4379			spin_unlock(pa->pa_obj_lock);
4380			ext4_mb_add_n_trim(ac);
4381		}
4382		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4383	}
4384	if (ac->ac_bitmap_page)
4385		page_cache_release(ac->ac_bitmap_page);
4386	if (ac->ac_buddy_page)
4387		page_cache_release(ac->ac_buddy_page);
4388	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4389		mutex_unlock(&ac->ac_lg->lg_mutex);
4390	ext4_mb_collect_stats(ac);
4391	return 0;
4392}
4393
4394static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4395{
4396	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4397	int ret;
4398	int freed = 0;
4399
4400	trace_ext4_mb_discard_preallocations(sb, needed);
4401	for (i = 0; i < ngroups && needed > 0; i++) {
4402		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4403		freed += ret;
4404		needed -= ret;
4405	}
4406
4407	return freed;
4408}
4409
4410/*
4411 * Main entry point into mballoc to allocate blocks
4412 * it tries to use preallocation first, then falls back
4413 * to usual allocation
4414 */
4415ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4416				struct ext4_allocation_request *ar, int *errp)
4417{
4418	int freed;
4419	struct ext4_allocation_context *ac = NULL;
4420	struct ext4_sb_info *sbi;
4421	struct super_block *sb;
4422	ext4_fsblk_t block = 0;
4423	unsigned int inquota = 0;
4424	unsigned int reserv_clstrs = 0;
4425
4426	might_sleep();
4427	sb = ar->inode->i_sb;
4428	sbi = EXT4_SB(sb);
4429
4430	trace_ext4_request_blocks(ar);
4431
4432	/* Allow to use superuser reservation for quota file */
4433	if (IS_NOQUOTA(ar->inode))
4434		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4435
4436	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4437		/* Without delayed allocation we need to verify
4438		 * there is enough free blocks to do block allocation
4439		 * and verify allocation doesn't exceed the quota limits.
4440		 */
4441		while (ar->len &&
4442			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4443
4444			/* let others to free the space */
4445			cond_resched();
4446			ar->len = ar->len >> 1;
4447		}
4448		if (!ar->len) {
4449			*errp = -ENOSPC;
4450			return 0;
4451		}
4452		reserv_clstrs = ar->len;
4453		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4454			dquot_alloc_block_nofail(ar->inode,
4455						 EXT4_C2B(sbi, ar->len));
4456		} else {
4457			while (ar->len &&
4458				dquot_alloc_block(ar->inode,
4459						  EXT4_C2B(sbi, ar->len))) {
4460
4461				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4462				ar->len--;
4463			}
4464		}
4465		inquota = ar->len;
4466		if (ar->len == 0) {
4467			*errp = -EDQUOT;
4468			goto out;
4469		}
4470	}
4471
4472	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4473	if (!ac) {
4474		ar->len = 0;
4475		*errp = -ENOMEM;
4476		goto out;
4477	}
4478
4479	*errp = ext4_mb_initialize_context(ac, ar);
4480	if (*errp) {
4481		ar->len = 0;
4482		goto out;
4483	}
4484
4485	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4486	if (!ext4_mb_use_preallocated(ac)) {
4487		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4488		ext4_mb_normalize_request(ac, ar);
4489repeat:
4490		/* allocate space in core */
4491		*errp = ext4_mb_regular_allocator(ac);
4492		if (*errp)
4493			goto discard_and_exit;
4494
4495		/* as we've just preallocated more space than
4496		 * user requested originally, we store allocated
4497		 * space in a special descriptor */
4498		if (ac->ac_status == AC_STATUS_FOUND &&
4499		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4500			*errp = ext4_mb_new_preallocation(ac);
4501		if (*errp) {
4502		discard_and_exit:
4503			ext4_discard_allocated_blocks(ac);
4504			goto errout;
4505		}
4506	}
4507	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4508		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4509		if (*errp == -EAGAIN) {
4510			/*
4511			 * drop the reference that we took
4512			 * in ext4_mb_use_best_found
4513			 */
4514			ext4_mb_release_context(ac);
4515			ac->ac_b_ex.fe_group = 0;
4516			ac->ac_b_ex.fe_start = 0;
4517			ac->ac_b_ex.fe_len = 0;
4518			ac->ac_status = AC_STATUS_CONTINUE;
4519			goto repeat;
4520		} else if (*errp) {
4521			ext4_discard_allocated_blocks(ac);
4522			goto errout;
4523		} else {
4524			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4525			ar->len = ac->ac_b_ex.fe_len;
4526		}
4527	} else {
4528		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4529		if (freed)
4530			goto repeat;
4531		*errp = -ENOSPC;
4532	}
4533
4534errout:
4535	if (*errp) {
4536		ac->ac_b_ex.fe_len = 0;
4537		ar->len = 0;
4538		ext4_mb_show_ac(ac);
4539	}
4540	ext4_mb_release_context(ac);
4541out:
4542	if (ac)
4543		kmem_cache_free(ext4_ac_cachep, ac);
4544	if (inquota && ar->len < inquota)
4545		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4546	if (!ar->len) {
4547		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4548			/* release all the reserved blocks if non delalloc */
4549			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4550						reserv_clstrs);
4551	}
4552
4553	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4554
4555	return block;
4556}
4557
4558/*
4559 * We can merge two free data extents only if the physical blocks
4560 * are contiguous, AND the extents were freed by the same transaction,
4561 * AND the blocks are associated with the same group.
4562 */
4563static int can_merge(struct ext4_free_data *entry1,
4564			struct ext4_free_data *entry2)
4565{
4566	if ((entry1->efd_tid == entry2->efd_tid) &&
4567	    (entry1->efd_group == entry2->efd_group) &&
4568	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4569		return 1;
4570	return 0;
4571}
4572
4573static noinline_for_stack int
4574ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4575		      struct ext4_free_data *new_entry)
4576{
4577	ext4_group_t group = e4b->bd_group;
4578	ext4_grpblk_t cluster;
4579	struct ext4_free_data *entry;
4580	struct ext4_group_info *db = e4b->bd_info;
4581	struct super_block *sb = e4b->bd_sb;
4582	struct ext4_sb_info *sbi = EXT4_SB(sb);
4583	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4584	struct rb_node *parent = NULL, *new_node;
4585
4586	BUG_ON(!ext4_handle_valid(handle));
4587	BUG_ON(e4b->bd_bitmap_page == NULL);
4588	BUG_ON(e4b->bd_buddy_page == NULL);
4589
4590	new_node = &new_entry->efd_node;
4591	cluster = new_entry->efd_start_cluster;
4592
4593	if (!*n) {
4594		/* first free block exent. We need to
4595		   protect buddy cache from being freed,
4596		 * otherwise we'll refresh it from
4597		 * on-disk bitmap and lose not-yet-available
4598		 * blocks */
4599		page_cache_get(e4b->bd_buddy_page);
4600		page_cache_get(e4b->bd_bitmap_page);
4601	}
4602	while (*n) {
4603		parent = *n;
4604		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4605		if (cluster < entry->efd_start_cluster)
4606			n = &(*n)->rb_left;
4607		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4608			n = &(*n)->rb_right;
4609		else {
4610			ext4_grp_locked_error(sb, group, 0,
4611				ext4_group_first_block_no(sb, group) +
4612				EXT4_C2B(sbi, cluster),
4613				"Block already on to-be-freed list");
4614			return 0;
4615		}
4616	}
4617
4618	rb_link_node(new_node, parent, n);
4619	rb_insert_color(new_node, &db->bb_free_root);
4620
4621	/* Now try to see the extent can be merged to left and right */
4622	node = rb_prev(new_node);
4623	if (node) {
4624		entry = rb_entry(node, struct ext4_free_data, efd_node);
4625		if (can_merge(entry, new_entry) &&
4626		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4627			new_entry->efd_start_cluster = entry->efd_start_cluster;
4628			new_entry->efd_count += entry->efd_count;
4629			rb_erase(node, &(db->bb_free_root));
4630			kmem_cache_free(ext4_free_data_cachep, entry);
4631		}
4632	}
4633
4634	node = rb_next(new_node);
4635	if (node) {
4636		entry = rb_entry(node, struct ext4_free_data, efd_node);
4637		if (can_merge(new_entry, entry) &&
4638		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4639			new_entry->efd_count += entry->efd_count;
4640			rb_erase(node, &(db->bb_free_root));
4641			kmem_cache_free(ext4_free_data_cachep, entry);
4642		}
4643	}
4644	/* Add the extent to transaction's private list */
4645	ext4_journal_callback_add(handle, ext4_free_data_callback,
4646				  &new_entry->efd_jce);
4647	return 0;
4648}
4649
4650/**
4651 * ext4_free_blocks() -- Free given blocks and update quota
4652 * @handle:		handle for this transaction
4653 * @inode:		inode
4654 * @block:		start physical block to free
4655 * @count:		number of blocks to count
4656 * @flags:		flags used by ext4_free_blocks
4657 */
4658void ext4_free_blocks(handle_t *handle, struct inode *inode,
4659		      struct buffer_head *bh, ext4_fsblk_t block,
4660		      unsigned long count, int flags)
4661{
4662	struct buffer_head *bitmap_bh = NULL;
4663	struct super_block *sb = inode->i_sb;
4664	struct ext4_group_desc *gdp;
4665	unsigned int overflow;
4666	ext4_grpblk_t bit;
4667	struct buffer_head *gd_bh;
4668	ext4_group_t block_group;
4669	struct ext4_sb_info *sbi;
4670	struct ext4_buddy e4b;
4671	unsigned int count_clusters;
4672	int err = 0;
4673	int ret;
4674
4675	might_sleep();
4676	if (bh) {
4677		if (block)
4678			BUG_ON(block != bh->b_blocknr);
4679		else
4680			block = bh->b_blocknr;
4681	}
4682
4683	sbi = EXT4_SB(sb);
4684	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4685	    !ext4_data_block_valid(sbi, block, count)) {
4686		ext4_error(sb, "Freeing blocks not in datazone - "
4687			   "block = %llu, count = %lu", block, count);
4688		goto error_return;
4689	}
4690
4691	ext4_debug("freeing block %llu\n", block);
4692	trace_ext4_free_blocks(inode, block, count, flags);
4693
4694	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4695		BUG_ON(count > 1);
4696
4697		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4698			    inode, bh, block);
4699	}
4700
4701	/*
4702	 * We need to make sure we don't reuse the freed block until
4703	 * after the transaction is committed, which we can do by
4704	 * treating the block as metadata, below.  We make an
4705	 * exception if the inode is to be written in writeback mode
4706	 * since writeback mode has weak data consistency guarantees.
4707	 */
4708	if (!ext4_should_writeback_data(inode))
4709		flags |= EXT4_FREE_BLOCKS_METADATA;
4710
4711	/*
4712	 * If the extent to be freed does not begin on a cluster
4713	 * boundary, we need to deal with partial clusters at the
4714	 * beginning and end of the extent.  Normally we will free
4715	 * blocks at the beginning or the end unless we are explicitly
4716	 * requested to avoid doing so.
4717	 */
4718	overflow = EXT4_PBLK_COFF(sbi, block);
4719	if (overflow) {
4720		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4721			overflow = sbi->s_cluster_ratio - overflow;
4722			block += overflow;
4723			if (count > overflow)
4724				count -= overflow;
4725			else
4726				return;
4727		} else {
4728			block -= overflow;
4729			count += overflow;
4730		}
4731	}
4732	overflow = EXT4_LBLK_COFF(sbi, count);
4733	if (overflow) {
4734		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4735			if (count > overflow)
4736				count -= overflow;
4737			else
4738				return;
4739		} else
4740			count += sbi->s_cluster_ratio - overflow;
4741	}
4742
4743	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4744		int i;
4745
4746		for (i = 0; i < count; i++) {
4747			cond_resched();
4748			bh = sb_find_get_block(inode->i_sb, block + i);
4749			if (!bh)
4750				continue;
4751			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4752				    inode, bh, block + i);
4753		}
4754	}
4755
4756do_more:
4757	overflow = 0;
4758	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4759
4760	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4761			ext4_get_group_info(sb, block_group))))
4762		return;
4763
4764	/*
4765	 * Check to see if we are freeing blocks across a group
4766	 * boundary.
4767	 */
4768	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4769		overflow = EXT4_C2B(sbi, bit) + count -
4770			EXT4_BLOCKS_PER_GROUP(sb);
4771		count -= overflow;
4772	}
4773	count_clusters = EXT4_NUM_B2C(sbi, count);
4774	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4775	if (IS_ERR(bitmap_bh)) {
4776		err = PTR_ERR(bitmap_bh);
4777		bitmap_bh = NULL;
4778		goto error_return;
4779	}
4780	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4781	if (!gdp) {
4782		err = -EIO;
4783		goto error_return;
4784	}
4785
4786	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4787	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4788	    in_range(block, ext4_inode_table(sb, gdp),
4789		     EXT4_SB(sb)->s_itb_per_group) ||
4790	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4791		     EXT4_SB(sb)->s_itb_per_group)) {
4792
4793		ext4_error(sb, "Freeing blocks in system zone - "
4794			   "Block = %llu, count = %lu", block, count);
4795		/* err = 0. ext4_std_error should be a no op */
4796		goto error_return;
4797	}
4798
4799	BUFFER_TRACE(bitmap_bh, "getting write access");
4800	err = ext4_journal_get_write_access(handle, bitmap_bh);
4801	if (err)
4802		goto error_return;
4803
4804	/*
4805	 * We are about to modify some metadata.  Call the journal APIs
4806	 * to unshare ->b_data if a currently-committing transaction is
4807	 * using it
4808	 */
4809	BUFFER_TRACE(gd_bh, "get_write_access");
4810	err = ext4_journal_get_write_access(handle, gd_bh);
4811	if (err)
4812		goto error_return;
4813#ifdef AGGRESSIVE_CHECK
4814	{
4815		int i;
4816		for (i = 0; i < count_clusters; i++)
4817			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4818	}
4819#endif
4820	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4821
4822	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4823	if (err)
4824		goto error_return;
4825
4826	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4827		struct ext4_free_data *new_entry;
4828		/*
4829		 * blocks being freed are metadata. these blocks shouldn't
4830		 * be used until this transaction is committed
4831		 *
4832		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4833		 * to fail.
4834		 */
4835		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4836				GFP_NOFS|__GFP_NOFAIL);
4837		new_entry->efd_start_cluster = bit;
4838		new_entry->efd_group = block_group;
4839		new_entry->efd_count = count_clusters;
4840		new_entry->efd_tid = handle->h_transaction->t_tid;
4841
4842		ext4_lock_group(sb, block_group);
4843		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4844		ext4_mb_free_metadata(handle, &e4b, new_entry);
4845	} else {
4846		/* need to update group_info->bb_free and bitmap
4847		 * with group lock held. generate_buddy look at
4848		 * them with group lock_held
4849		 */
4850		if (test_opt(sb, DISCARD)) {
4851			err = ext4_issue_discard(sb, block_group, bit, count);
4852			if (err && err != -EOPNOTSUPP)
4853				ext4_msg(sb, KERN_WARNING, "discard request in"
4854					 " group:%d block:%d count:%lu failed"
4855					 " with %d", block_group, bit, count,
4856					 err);
4857		} else
4858			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4859
4860		ext4_lock_group(sb, block_group);
4861		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4862		mb_free_blocks(inode, &e4b, bit, count_clusters);
4863	}
4864
4865	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4866	ext4_free_group_clusters_set(sb, gdp, ret);
4867	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4868	ext4_group_desc_csum_set(sb, block_group, gdp);
4869	ext4_unlock_group(sb, block_group);
4870
4871	if (sbi->s_log_groups_per_flex) {
4872		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4873		atomic64_add(count_clusters,
4874			     &sbi->s_flex_groups[flex_group].free_clusters);
4875	}
4876
4877	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4878		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4879	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4880
4881	ext4_mb_unload_buddy(&e4b);
4882
4883	/* We dirtied the bitmap block */
4884	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4885	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4886
4887	/* And the group descriptor block */
4888	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4889	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4890	if (!err)
4891		err = ret;
4892
4893	if (overflow && !err) {
4894		block += count;
4895		count = overflow;
4896		put_bh(bitmap_bh);
4897		goto do_more;
4898	}
4899error_return:
4900	brelse(bitmap_bh);
4901	ext4_std_error(sb, err);
4902	return;
4903}
4904
4905/**
4906 * ext4_group_add_blocks() -- Add given blocks to an existing group
4907 * @handle:			handle to this transaction
4908 * @sb:				super block
4909 * @block:			start physical block to add to the block group
4910 * @count:			number of blocks to free
4911 *
4912 * This marks the blocks as free in the bitmap and buddy.
4913 */
4914int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4915			 ext4_fsblk_t block, unsigned long count)
4916{
4917	struct buffer_head *bitmap_bh = NULL;
4918	struct buffer_head *gd_bh;
4919	ext4_group_t block_group;
4920	ext4_grpblk_t bit;
4921	unsigned int i;
4922	struct ext4_group_desc *desc;
4923	struct ext4_sb_info *sbi = EXT4_SB(sb);
4924	struct ext4_buddy e4b;
4925	int err = 0, ret, blk_free_count;
4926	ext4_grpblk_t blocks_freed;
4927
4928	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4929
4930	if (count == 0)
4931		return 0;
4932
4933	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4934	/*
4935	 * Check to see if we are freeing blocks across a group
4936	 * boundary.
4937	 */
4938	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4939		ext4_warning(sb, "too much blocks added to group %u\n",
4940			     block_group);
4941		err = -EINVAL;
4942		goto error_return;
4943	}
4944
4945	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4946	if (IS_ERR(bitmap_bh)) {
4947		err = PTR_ERR(bitmap_bh);
4948		bitmap_bh = NULL;
4949		goto error_return;
4950	}
4951
4952	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4953	if (!desc) {
4954		err = -EIO;
4955		goto error_return;
4956	}
4957
4958	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4959	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4960	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4961	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4962		     sbi->s_itb_per_group)) {
4963		ext4_error(sb, "Adding blocks in system zones - "
4964			   "Block = %llu, count = %lu",
4965			   block, count);
4966		err = -EINVAL;
4967		goto error_return;
4968	}
4969
4970	BUFFER_TRACE(bitmap_bh, "getting write access");
4971	err = ext4_journal_get_write_access(handle, bitmap_bh);
4972	if (err)
4973		goto error_return;
4974
4975	/*
4976	 * We are about to modify some metadata.  Call the journal APIs
4977	 * to unshare ->b_data if a currently-committing transaction is
4978	 * using it
4979	 */
4980	BUFFER_TRACE(gd_bh, "get_write_access");
4981	err = ext4_journal_get_write_access(handle, gd_bh);
4982	if (err)
4983		goto error_return;
4984
4985	for (i = 0, blocks_freed = 0; i < count; i++) {
4986		BUFFER_TRACE(bitmap_bh, "clear bit");
4987		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4988			ext4_error(sb, "bit already cleared for block %llu",
4989				   (ext4_fsblk_t)(block + i));
4990			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4991		} else {
4992			blocks_freed++;
4993		}
4994	}
4995
4996	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4997	if (err)
4998		goto error_return;
4999
5000	/*
5001	 * need to update group_info->bb_free and bitmap
5002	 * with group lock held. generate_buddy look at
5003	 * them with group lock_held
5004	 */
5005	ext4_lock_group(sb, block_group);
5006	mb_clear_bits(bitmap_bh->b_data, bit, count);
5007	mb_free_blocks(NULL, &e4b, bit, count);
5008	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5009	ext4_free_group_clusters_set(sb, desc, blk_free_count);
5010	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5011	ext4_group_desc_csum_set(sb, block_group, desc);
5012	ext4_unlock_group(sb, block_group);
5013	percpu_counter_add(&sbi->s_freeclusters_counter,
5014			   EXT4_NUM_B2C(sbi, blocks_freed));
5015
5016	if (sbi->s_log_groups_per_flex) {
5017		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5018		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5019			     &sbi->s_flex_groups[flex_group].free_clusters);
5020	}
5021
5022	ext4_mb_unload_buddy(&e4b);
5023
5024	/* We dirtied the bitmap block */
5025	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5026	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5027
5028	/* And the group descriptor block */
5029	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5030	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5031	if (!err)
5032		err = ret;
5033
5034error_return:
5035	brelse(bitmap_bh);
5036	ext4_std_error(sb, err);
5037	return err;
5038}
5039
5040/**
5041 * ext4_trim_extent -- function to TRIM one single free extent in the group
5042 * @sb:		super block for the file system
5043 * @start:	starting block of the free extent in the alloc. group
5044 * @count:	number of blocks to TRIM
5045 * @group:	alloc. group we are working with
5046 * @e4b:	ext4 buddy for the group
5047 *
5048 * Trim "count" blocks starting at "start" in the "group". To assure that no
5049 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5050 * be called with under the group lock.
5051 */
5052static int ext4_trim_extent(struct super_block *sb, int start, int count,
5053			     ext4_group_t group, struct ext4_buddy *e4b)
5054__releases(bitlock)
5055__acquires(bitlock)
5056{
5057	struct ext4_free_extent ex;
5058	int ret = 0;
5059
5060	trace_ext4_trim_extent(sb, group, start, count);
5061
5062	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5063
5064	ex.fe_start = start;
5065	ex.fe_group = group;
5066	ex.fe_len = count;
5067
5068	/*
5069	 * Mark blocks used, so no one can reuse them while
5070	 * being trimmed.
5071	 */
5072	mb_mark_used(e4b, &ex);
5073	ext4_unlock_group(sb, group);
5074	ret = ext4_issue_discard(sb, group, start, count);
5075	ext4_lock_group(sb, group);
5076	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5077	return ret;
5078}
5079
5080/**
5081 * ext4_trim_all_free -- function to trim all free space in alloc. group
5082 * @sb:			super block for file system
5083 * @group:		group to be trimmed
5084 * @start:		first group block to examine
5085 * @max:		last group block to examine
5086 * @minblocks:		minimum extent block count
5087 *
5088 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5089 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5090 * the extent.
5091 *
5092 *
5093 * ext4_trim_all_free walks through group's block bitmap searching for free
5094 * extents. When the free extent is found, mark it as used in group buddy
5095 * bitmap. Then issue a TRIM command on this extent and free the extent in
5096 * the group buddy bitmap. This is done until whole group is scanned.
5097 */
5098static ext4_grpblk_t
5099ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5100		   ext4_grpblk_t start, ext4_grpblk_t max,
5101		   ext4_grpblk_t minblocks)
5102{
5103	void *bitmap;
5104	ext4_grpblk_t next, count = 0, free_count = 0;
5105	struct ext4_buddy e4b;
5106	int ret = 0;
5107
5108	trace_ext4_trim_all_free(sb, group, start, max);
5109
5110	ret = ext4_mb_load_buddy(sb, group, &e4b);
5111	if (ret) {
5112		ext4_error(sb, "Error in loading buddy "
5113				"information for %u", group);
5114		return ret;
5115	}
5116	bitmap = e4b.bd_bitmap;
5117
5118	ext4_lock_group(sb, group);
5119	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5120	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5121		goto out;
5122
5123	start = (e4b.bd_info->bb_first_free > start) ?
5124		e4b.bd_info->bb_first_free : start;
5125
5126	while (start <= max) {
5127		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5128		if (start > max)
5129			break;
5130		next = mb_find_next_bit(bitmap, max + 1, start);
5131
5132		if ((next - start) >= minblocks) {
5133			ret = ext4_trim_extent(sb, start,
5134					       next - start, group, &e4b);
5135			if (ret && ret != -EOPNOTSUPP)
5136				break;
5137			ret = 0;
5138			count += next - start;
5139		}
5140		free_count += next - start;
5141		start = next + 1;
5142
5143		if (fatal_signal_pending(current)) {
5144			count = -ERESTARTSYS;
5145			break;
5146		}
5147
5148		if (need_resched()) {
5149			ext4_unlock_group(sb, group);
5150			cond_resched();
5151			ext4_lock_group(sb, group);
5152		}
5153
5154		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5155			break;
5156	}
5157
5158	if (!ret) {
5159		ret = count;
5160		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5161	}
5162out:
5163	ext4_unlock_group(sb, group);
5164	ext4_mb_unload_buddy(&e4b);
5165
5166	ext4_debug("trimmed %d blocks in the group %d\n",
5167		count, group);
5168
5169	return ret;
5170}
5171
5172/**
5173 * ext4_trim_fs() -- trim ioctl handle function
5174 * @sb:			superblock for filesystem
5175 * @range:		fstrim_range structure
5176 *
5177 * start:	First Byte to trim
5178 * len:		number of Bytes to trim from start
5179 * minlen:	minimum extent length in Bytes
5180 * ext4_trim_fs goes through all allocation groups containing Bytes from
5181 * start to start+len. For each such a group ext4_trim_all_free function
5182 * is invoked to trim all free space.
5183 */
5184int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5185{
5186	struct ext4_group_info *grp;
5187	ext4_group_t group, first_group, last_group;
5188	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5189	uint64_t start, end, minlen, trimmed = 0;
5190	ext4_fsblk_t first_data_blk =
5191			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5192	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5193	int ret = 0;
5194
5195	start = range->start >> sb->s_blocksize_bits;
5196	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5197	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5198			      range->minlen >> sb->s_blocksize_bits);
5199
5200	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5201	    start >= max_blks ||
5202	    range->len < sb->s_blocksize)
5203		return -EINVAL;
5204	if (end >= max_blks)
5205		end = max_blks - 1;
5206	if (end <= first_data_blk)
5207		goto out;
5208	if (start < first_data_blk)
5209		start = first_data_blk;
5210
5211	/* Determine first and last group to examine based on start and end */
5212	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5213				     &first_group, &first_cluster);
5214	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5215				     &last_group, &last_cluster);
5216
5217	/* end now represents the last cluster to discard in this group */
5218	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5219
5220	for (group = first_group; group <= last_group; group++) {
5221		grp = ext4_get_group_info(sb, group);
5222		/* We only do this if the grp has never been initialized */
5223		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5224			ret = ext4_mb_init_group(sb, group);
5225			if (ret)
5226				break;
5227		}
5228
5229		/*
5230		 * For all the groups except the last one, last cluster will
5231		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5232		 * change it for the last group, note that last_cluster is
5233		 * already computed earlier by ext4_get_group_no_and_offset()
5234		 */
5235		if (group == last_group)
5236			end = last_cluster;
5237
5238		if (grp->bb_free >= minlen) {
5239			cnt = ext4_trim_all_free(sb, group, first_cluster,
5240						end, minlen);
5241			if (cnt < 0) {
5242				ret = cnt;
5243				break;
5244			}
5245			trimmed += cnt;
5246		}
5247
5248		/*
5249		 * For every group except the first one, we are sure
5250		 * that the first cluster to discard will be cluster #0.
5251		 */
5252		first_cluster = 0;
5253	}
5254
5255	if (!ret)
5256		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5257
5258out:
5259	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5260	return ret;
5261}
5262