1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 
74 	return csum;
75 }
76 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !ext4_has_metadata_csum(inode->i_sb))
85 		return 1;
86 
87 	provided = le16_to_cpu(raw->i_checksum_lo);
88 	calculated = ext4_inode_csum(inode, raw, ei);
89 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 	else
93 		calculated &= 0xFFFF;
94 
95 	return provided == calculated;
96 }
97 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 				struct ext4_inode_info *ei)
100 {
101 	__u32 csum;
102 
103 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 	    cpu_to_le32(EXT4_OS_LINUX) ||
105 	    !ext4_has_metadata_csum(inode->i_sb))
106 		return;
107 
108 	csum = ext4_inode_csum(inode, raw, ei);
109 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 					      loff_t new_size)
117 {
118 	trace_ext4_begin_ordered_truncate(inode, new_size);
119 	/*
120 	 * If jinode is zero, then we never opened the file for
121 	 * writing, so there's no need to call
122 	 * jbd2_journal_begin_ordered_truncate() since there's no
123 	 * outstanding writes we need to flush.
124 	 */
125 	if (!EXT4_I(inode)->jinode)
126 		return 0;
127 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 						   EXT4_I(inode)->jinode,
129 						   new_size);
130 }
131 
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 				unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 				  int pextents);
138 
139 /*
140  * Test whether an inode is a fast symlink.
141  */
ext4_inode_is_fast_symlink(struct inode * inode)142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 
147 	if (ext4_has_inline_data(inode))
148 		return 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
ext4_evict_inode(struct inode * inode)182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages_final(&inode->i_data);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (is_bad_inode(inode))
224 		goto no_delete;
225 	dquot_initialize(inode);
226 
227 	if (ext4_should_order_data(inode))
228 		ext4_begin_ordered_truncate(inode, 0);
229 	truncate_inode_pages_final(&inode->i_data);
230 
231 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 				    ext4_blocks_for_truncate(inode)+3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks)
262 		ext4_truncate(inode);
263 
264 	/*
265 	 * ext4_ext_truncate() doesn't reserve any slop when it
266 	 * restarts journal transactions; therefore there may not be
267 	 * enough credits left in the handle to remove the inode from
268 	 * the orphan list and set the dtime field.
269 	 */
270 	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 		err = ext4_journal_extend(handle, 3);
272 		if (err > 0)
273 			err = ext4_journal_restart(handle, 3);
274 		if (err != 0) {
275 			ext4_warning(inode->i_sb,
276 				     "couldn't extend journal (err %d)", err);
277 		stop_handle:
278 			ext4_journal_stop(handle);
279 			ext4_orphan_del(NULL, inode);
280 			sb_end_intwrite(inode->i_sb);
281 			goto no_delete;
282 		}
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= get_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	sb_end_intwrite(inode->i_sb);
310 	return;
311 no_delete:
312 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 }
314 
315 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 	return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321 
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)326 void ext4_da_update_reserve_space(struct inode *inode,
327 					int used, int quota_claim)
328 {
329 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 	struct ext4_inode_info *ei = EXT4_I(inode);
331 
332 	spin_lock(&ei->i_block_reservation_lock);
333 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 	if (unlikely(used > ei->i_reserved_data_blocks)) {
335 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 			 "with only %d reserved data blocks",
337 			 __func__, inode->i_ino, used,
338 			 ei->i_reserved_data_blocks);
339 		WARN_ON(1);
340 		used = ei->i_reserved_data_blocks;
341 	}
342 
343 	/* Update per-inode reservations */
344 	ei->i_reserved_data_blocks -= used;
345 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346 
347 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348 
349 	/* Update quota subsystem for data blocks */
350 	if (quota_claim)
351 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
352 	else {
353 		/*
354 		 * We did fallocate with an offset that is already delayed
355 		 * allocated. So on delayed allocated writeback we should
356 		 * not re-claim the quota for fallocated blocks.
357 		 */
358 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 	}
360 
361 	/*
362 	 * If we have done all the pending block allocations and if
363 	 * there aren't any writers on the inode, we can discard the
364 	 * inode's preallocations.
365 	 */
366 	if ((ei->i_reserved_data_blocks == 0) &&
367 	    (atomic_read(&inode->i_writecount) == 0))
368 		ext4_discard_preallocations(inode);
369 }
370 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)371 static int __check_block_validity(struct inode *inode, const char *func,
372 				unsigned int line,
373 				struct ext4_map_blocks *map)
374 {
375 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 				   map->m_len)) {
377 		ext4_error_inode(inode, func, line, map->m_pblk,
378 				 "lblock %lu mapped to illegal pblock "
379 				 "(length %d)", (unsigned long) map->m_lblk,
380 				 map->m_len);
381 		return -EFSCORRUPTED;
382 	}
383 	return 0;
384 }
385 
386 #define check_block_validity(inode, map)	\
387 	__check_block_validity((inode), __func__, __LINE__, (map))
388 
389 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)390 static void ext4_map_blocks_es_recheck(handle_t *handle,
391 				       struct inode *inode,
392 				       struct ext4_map_blocks *es_map,
393 				       struct ext4_map_blocks *map,
394 				       int flags)
395 {
396 	int retval;
397 
398 	map->m_flags = 0;
399 	/*
400 	 * There is a race window that the result is not the same.
401 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
402 	 * is that we lookup a block mapping in extent status tree with
403 	 * out taking i_data_sem.  So at the time the unwritten extent
404 	 * could be converted.
405 	 */
406 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407 		down_read(&EXT4_I(inode)->i_data_sem);
408 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
410 					     EXT4_GET_BLOCKS_KEEP_SIZE);
411 	} else {
412 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
413 					     EXT4_GET_BLOCKS_KEEP_SIZE);
414 	}
415 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 		up_read((&EXT4_I(inode)->i_data_sem));
417 
418 	/*
419 	 * We don't check m_len because extent will be collpased in status
420 	 * tree.  So the m_len might not equal.
421 	 */
422 	if (es_map->m_lblk != map->m_lblk ||
423 	    es_map->m_flags != map->m_flags ||
424 	    es_map->m_pblk != map->m_pblk) {
425 		printk("ES cache assertion failed for inode: %lu "
426 		       "es_cached ex [%d/%d/%llu/%x] != "
427 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
429 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
430 		       map->m_len, map->m_pblk, map->m_flags,
431 		       retval, flags);
432 	}
433 }
434 #endif /* ES_AGGRESSIVE_TEST */
435 
436 /*
437  * The ext4_map_blocks() function tries to look up the requested blocks,
438  * and returns if the blocks are already mapped.
439  *
440  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441  * and store the allocated blocks in the result buffer head and mark it
442  * mapped.
443  *
444  * If file type is extents based, it will call ext4_ext_map_blocks(),
445  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
446  * based files
447  *
448  * On success, it returns the number of blocks being mapped or allocated.
449  * if create==0 and the blocks are pre-allocated and unwritten block,
450  * the result buffer head is unmapped. If the create ==1, it will make sure
451  * the buffer head is mapped.
452  *
453  * It returns 0 if plain look up failed (blocks have not been allocated), in
454  * that case, buffer head is unmapped
455  *
456  * It returns the error in case of allocation failure.
457  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459 		    struct ext4_map_blocks *map, int flags)
460 {
461 	struct extent_status es;
462 	int retval;
463 	int ret = 0;
464 #ifdef ES_AGGRESSIVE_TEST
465 	struct ext4_map_blocks orig_map;
466 
467 	memcpy(&orig_map, map, sizeof(*map));
468 #endif
469 
470 	map->m_flags = 0;
471 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 		  (unsigned long) map->m_lblk);
474 
475 	/*
476 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 	 */
478 	if (unlikely(map->m_len > INT_MAX))
479 		map->m_len = INT_MAX;
480 
481 	/* We can handle the block number less than EXT_MAX_BLOCKS */
482 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483 		return -EFSCORRUPTED;
484 
485 	/* Lookup extent status tree firstly */
486 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488 			map->m_pblk = ext4_es_pblock(&es) +
489 					map->m_lblk - es.es_lblk;
490 			map->m_flags |= ext4_es_is_written(&es) ?
491 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492 			retval = es.es_len - (map->m_lblk - es.es_lblk);
493 			if (retval > map->m_len)
494 				retval = map->m_len;
495 			map->m_len = retval;
496 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497 			retval = 0;
498 		} else {
499 			BUG_ON(1);
500 		}
501 #ifdef ES_AGGRESSIVE_TEST
502 		ext4_map_blocks_es_recheck(handle, inode, map,
503 					   &orig_map, flags);
504 #endif
505 		goto found;
506 	}
507 
508 	/*
509 	 * Try to see if we can get the block without requesting a new
510 	 * file system block.
511 	 */
512 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 		down_read(&EXT4_I(inode)->i_data_sem);
514 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
516 					     EXT4_GET_BLOCKS_KEEP_SIZE);
517 	} else {
518 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
519 					     EXT4_GET_BLOCKS_KEEP_SIZE);
520 	}
521 	if (retval > 0) {
522 		unsigned int status;
523 
524 		if (unlikely(retval != map->m_len)) {
525 			ext4_warning(inode->i_sb,
526 				     "ES len assertion failed for inode "
527 				     "%lu: retval %d != map->m_len %d",
528 				     inode->i_ino, retval, map->m_len);
529 			WARN_ON(1);
530 		}
531 
532 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535 		    !(status & EXTENT_STATUS_WRITTEN) &&
536 		    ext4_find_delalloc_range(inode, map->m_lblk,
537 					     map->m_lblk + map->m_len - 1))
538 			status |= EXTENT_STATUS_DELAYED;
539 		ret = ext4_es_insert_extent(inode, map->m_lblk,
540 					    map->m_len, map->m_pblk, status);
541 		if (ret < 0)
542 			retval = ret;
543 	}
544 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 		up_read((&EXT4_I(inode)->i_data_sem));
546 
547 found:
548 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549 		ret = check_block_validity(inode, map);
550 		if (ret != 0)
551 			return ret;
552 	}
553 
554 	/* If it is only a block(s) look up */
555 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556 		return retval;
557 
558 	/*
559 	 * Returns if the blocks have already allocated
560 	 *
561 	 * Note that if blocks have been preallocated
562 	 * ext4_ext_get_block() returns the create = 0
563 	 * with buffer head unmapped.
564 	 */
565 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566 		/*
567 		 * If we need to convert extent to unwritten
568 		 * we continue and do the actual work in
569 		 * ext4_ext_map_blocks()
570 		 */
571 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572 			return retval;
573 
574 	/*
575 	 * Here we clear m_flags because after allocating an new extent,
576 	 * it will be set again.
577 	 */
578 	map->m_flags &= ~EXT4_MAP_FLAGS;
579 
580 	/*
581 	 * New blocks allocate and/or writing to unwritten extent
582 	 * will possibly result in updating i_data, so we take
583 	 * the write lock of i_data_sem, and call get_block()
584 	 * with create == 1 flag.
585 	 */
586 	down_write(&EXT4_I(inode)->i_data_sem);
587 
588 	/*
589 	 * We need to check for EXT4 here because migrate
590 	 * could have changed the inode type in between
591 	 */
592 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
594 	} else {
595 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
596 
597 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598 			/*
599 			 * We allocated new blocks which will result in
600 			 * i_data's format changing.  Force the migrate
601 			 * to fail by clearing migrate flags
602 			 */
603 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604 		}
605 
606 		/*
607 		 * Update reserved blocks/metadata blocks after successful
608 		 * block allocation which had been deferred till now. We don't
609 		 * support fallocate for non extent files. So we can update
610 		 * reserve space here.
611 		 */
612 		if ((retval > 0) &&
613 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614 			ext4_da_update_reserve_space(inode, retval, 1);
615 	}
616 
617 	if (retval > 0) {
618 		unsigned int status;
619 
620 		if (unlikely(retval != map->m_len)) {
621 			ext4_warning(inode->i_sb,
622 				     "ES len assertion failed for inode "
623 				     "%lu: retval %d != map->m_len %d",
624 				     inode->i_ino, retval, map->m_len);
625 			WARN_ON(1);
626 		}
627 
628 		/*
629 		 * If the extent has been zeroed out, we don't need to update
630 		 * extent status tree.
631 		 */
632 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 			if (ext4_es_is_written(&es))
635 				goto has_zeroout;
636 		}
637 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640 		    !(status & EXTENT_STATUS_WRITTEN) &&
641 		    ext4_find_delalloc_range(inode, map->m_lblk,
642 					     map->m_lblk + map->m_len - 1))
643 			status |= EXTENT_STATUS_DELAYED;
644 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 					    map->m_pblk, status);
646 		if (ret < 0)
647 			retval = ret;
648 	}
649 
650 has_zeroout:
651 	up_write((&EXT4_I(inode)->i_data_sem));
652 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 		ret = check_block_validity(inode, map);
654 		if (ret != 0)
655 			return ret;
656 	}
657 	return retval;
658 }
659 
660 /*
661  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
662  * we have to be careful as someone else may be manipulating b_state as well.
663  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)664 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
665 {
666 	unsigned long old_state;
667 	unsigned long new_state;
668 
669 	flags &= EXT4_MAP_FLAGS;
670 
671 	/* Dummy buffer_head? Set non-atomically. */
672 	if (!bh->b_page) {
673 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
674 		return;
675 	}
676 	/*
677 	 * Someone else may be modifying b_state. Be careful! This is ugly but
678 	 * once we get rid of using bh as a container for mapping information
679 	 * to pass to / from get_block functions, this can go away.
680 	 */
681 	do {
682 		old_state = READ_ONCE(bh->b_state);
683 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
684 	} while (unlikely(
685 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
686 }
687 
688 /* Maximum number of blocks we map for direct IO at once. */
689 #define DIO_MAX_BLOCKS 4096
690 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)691 static int _ext4_get_block(struct inode *inode, sector_t iblock,
692 			   struct buffer_head *bh, int flags)
693 {
694 	handle_t *handle = ext4_journal_current_handle();
695 	struct ext4_map_blocks map;
696 	int ret = 0, started = 0;
697 	int dio_credits;
698 
699 	if (ext4_has_inline_data(inode))
700 		return -ERANGE;
701 
702 	map.m_lblk = iblock;
703 	map.m_len = bh->b_size >> inode->i_blkbits;
704 
705 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
706 		/* Direct IO write... */
707 		if (map.m_len > DIO_MAX_BLOCKS)
708 			map.m_len = DIO_MAX_BLOCKS;
709 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
710 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
711 					    dio_credits);
712 		if (IS_ERR(handle)) {
713 			ret = PTR_ERR(handle);
714 			return ret;
715 		}
716 		started = 1;
717 	}
718 
719 	ret = ext4_map_blocks(handle, inode, &map, flags);
720 	if (ret > 0) {
721 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
722 
723 		map_bh(bh, inode->i_sb, map.m_pblk);
724 		ext4_update_bh_state(bh, map.m_flags);
725 		if (IS_DAX(inode) && buffer_unwritten(bh)) {
726 			/*
727 			 * dgc: I suspect unwritten conversion on ext4+DAX is
728 			 * fundamentally broken here when there are concurrent
729 			 * read/write in progress on this inode.
730 			 */
731 			WARN_ON_ONCE(io_end);
732 			bh->b_assoc_map = inode->i_mapping;
733 			bh->b_private = (void *)(unsigned long)iblock;
734 		}
735 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
736 			set_buffer_defer_completion(bh);
737 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
738 		ret = 0;
739 	}
740 	if (started)
741 		ext4_journal_stop(handle);
742 	return ret;
743 }
744 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)745 int ext4_get_block(struct inode *inode, sector_t iblock,
746 		   struct buffer_head *bh, int create)
747 {
748 	return _ext4_get_block(inode, iblock, bh,
749 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
750 }
751 
752 /*
753  * `handle' can be NULL if create is zero
754  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)755 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
756 				ext4_lblk_t block, int map_flags)
757 {
758 	struct ext4_map_blocks map;
759 	struct buffer_head *bh;
760 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
761 	int err;
762 
763 	J_ASSERT(handle != NULL || create == 0);
764 
765 	map.m_lblk = block;
766 	map.m_len = 1;
767 	err = ext4_map_blocks(handle, inode, &map, map_flags);
768 
769 	if (err == 0)
770 		return create ? ERR_PTR(-ENOSPC) : NULL;
771 	if (err < 0)
772 		return ERR_PTR(err);
773 
774 	bh = sb_getblk(inode->i_sb, map.m_pblk);
775 	if (unlikely(!bh))
776 		return ERR_PTR(-ENOMEM);
777 	if (map.m_flags & EXT4_MAP_NEW) {
778 		J_ASSERT(create != 0);
779 		J_ASSERT(handle != NULL);
780 
781 		/*
782 		 * Now that we do not always journal data, we should
783 		 * keep in mind whether this should always journal the
784 		 * new buffer as metadata.  For now, regular file
785 		 * writes use ext4_get_block instead, so it's not a
786 		 * problem.
787 		 */
788 		lock_buffer(bh);
789 		BUFFER_TRACE(bh, "call get_create_access");
790 		err = ext4_journal_get_create_access(handle, bh);
791 		if (unlikely(err)) {
792 			unlock_buffer(bh);
793 			goto errout;
794 		}
795 		if (!buffer_uptodate(bh)) {
796 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
797 			set_buffer_uptodate(bh);
798 		}
799 		unlock_buffer(bh);
800 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
801 		err = ext4_handle_dirty_metadata(handle, inode, bh);
802 		if (unlikely(err))
803 			goto errout;
804 	} else
805 		BUFFER_TRACE(bh, "not a new buffer");
806 	return bh;
807 errout:
808 	brelse(bh);
809 	return ERR_PTR(err);
810 }
811 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)812 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
813 			       ext4_lblk_t block, int map_flags)
814 {
815 	struct buffer_head *bh;
816 
817 	bh = ext4_getblk(handle, inode, block, map_flags);
818 	if (IS_ERR(bh))
819 		return bh;
820 	if (!bh || buffer_uptodate(bh))
821 		return bh;
822 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
823 	wait_on_buffer(bh);
824 	if (buffer_uptodate(bh))
825 		return bh;
826 	put_bh(bh);
827 	return ERR_PTR(-EIO);
828 }
829 
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))830 int ext4_walk_page_buffers(handle_t *handle,
831 			   struct buffer_head *head,
832 			   unsigned from,
833 			   unsigned to,
834 			   int *partial,
835 			   int (*fn)(handle_t *handle,
836 				     struct buffer_head *bh))
837 {
838 	struct buffer_head *bh;
839 	unsigned block_start, block_end;
840 	unsigned blocksize = head->b_size;
841 	int err, ret = 0;
842 	struct buffer_head *next;
843 
844 	for (bh = head, block_start = 0;
845 	     ret == 0 && (bh != head || !block_start);
846 	     block_start = block_end, bh = next) {
847 		next = bh->b_this_page;
848 		block_end = block_start + blocksize;
849 		if (block_end <= from || block_start >= to) {
850 			if (partial && !buffer_uptodate(bh))
851 				*partial = 1;
852 			continue;
853 		}
854 		err = (*fn)(handle, bh);
855 		if (!ret)
856 			ret = err;
857 	}
858 	return ret;
859 }
860 
861 /*
862  * To preserve ordering, it is essential that the hole instantiation and
863  * the data write be encapsulated in a single transaction.  We cannot
864  * close off a transaction and start a new one between the ext4_get_block()
865  * and the commit_write().  So doing the jbd2_journal_start at the start of
866  * prepare_write() is the right place.
867  *
868  * Also, this function can nest inside ext4_writepage().  In that case, we
869  * *know* that ext4_writepage() has generated enough buffer credits to do the
870  * whole page.  So we won't block on the journal in that case, which is good,
871  * because the caller may be PF_MEMALLOC.
872  *
873  * By accident, ext4 can be reentered when a transaction is open via
874  * quota file writes.  If we were to commit the transaction while thus
875  * reentered, there can be a deadlock - we would be holding a quota
876  * lock, and the commit would never complete if another thread had a
877  * transaction open and was blocking on the quota lock - a ranking
878  * violation.
879  *
880  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
881  * will _not_ run commit under these circumstances because handle->h_ref
882  * is elevated.  We'll still have enough credits for the tiny quotafile
883  * write.
884  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)885 int do_journal_get_write_access(handle_t *handle,
886 				struct buffer_head *bh)
887 {
888 	int dirty = buffer_dirty(bh);
889 	int ret;
890 
891 	if (!buffer_mapped(bh) || buffer_freed(bh))
892 		return 0;
893 	/*
894 	 * __block_write_begin() could have dirtied some buffers. Clean
895 	 * the dirty bit as jbd2_journal_get_write_access() could complain
896 	 * otherwise about fs integrity issues. Setting of the dirty bit
897 	 * by __block_write_begin() isn't a real problem here as we clear
898 	 * the bit before releasing a page lock and thus writeback cannot
899 	 * ever write the buffer.
900 	 */
901 	if (dirty)
902 		clear_buffer_dirty(bh);
903 	BUFFER_TRACE(bh, "get write access");
904 	ret = ext4_journal_get_write_access(handle, bh);
905 	if (!ret && dirty)
906 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
907 	return ret;
908 }
909 
910 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
911 		   struct buffer_head *bh_result, int create);
912 
913 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)914 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
915 				  get_block_t *get_block)
916 {
917 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
918 	unsigned to = from + len;
919 	struct inode *inode = page->mapping->host;
920 	unsigned block_start, block_end;
921 	sector_t block;
922 	int err = 0;
923 	unsigned blocksize = inode->i_sb->s_blocksize;
924 	unsigned bbits;
925 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
926 	bool decrypt = false;
927 
928 	BUG_ON(!PageLocked(page));
929 	BUG_ON(from > PAGE_CACHE_SIZE);
930 	BUG_ON(to > PAGE_CACHE_SIZE);
931 	BUG_ON(from > to);
932 
933 	if (!page_has_buffers(page))
934 		create_empty_buffers(page, blocksize, 0);
935 	head = page_buffers(page);
936 	bbits = ilog2(blocksize);
937 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
938 
939 	for (bh = head, block_start = 0; bh != head || !block_start;
940 	    block++, block_start = block_end, bh = bh->b_this_page) {
941 		block_end = block_start + blocksize;
942 		if (block_end <= from || block_start >= to) {
943 			if (PageUptodate(page)) {
944 				if (!buffer_uptodate(bh))
945 					set_buffer_uptodate(bh);
946 			}
947 			continue;
948 		}
949 		if (buffer_new(bh))
950 			clear_buffer_new(bh);
951 		if (!buffer_mapped(bh)) {
952 			WARN_ON(bh->b_size != blocksize);
953 			err = get_block(inode, block, bh, 1);
954 			if (err)
955 				break;
956 			if (buffer_new(bh)) {
957 				unmap_underlying_metadata(bh->b_bdev,
958 							  bh->b_blocknr);
959 				if (PageUptodate(page)) {
960 					clear_buffer_new(bh);
961 					set_buffer_uptodate(bh);
962 					mark_buffer_dirty(bh);
963 					continue;
964 				}
965 				if (block_end > to || block_start < from)
966 					zero_user_segments(page, to, block_end,
967 							   block_start, from);
968 				continue;
969 			}
970 		}
971 		if (PageUptodate(page)) {
972 			if (!buffer_uptodate(bh))
973 				set_buffer_uptodate(bh);
974 			continue;
975 		}
976 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
977 		    !buffer_unwritten(bh) &&
978 		    (block_start < from || block_end > to)) {
979 			ll_rw_block(READ, 1, &bh);
980 			*wait_bh++ = bh;
981 			decrypt = ext4_encrypted_inode(inode) &&
982 				S_ISREG(inode->i_mode);
983 		}
984 	}
985 	/*
986 	 * If we issued read requests, let them complete.
987 	 */
988 	while (wait_bh > wait) {
989 		wait_on_buffer(*--wait_bh);
990 		if (!buffer_uptodate(*wait_bh))
991 			err = -EIO;
992 	}
993 	if (unlikely(err))
994 		page_zero_new_buffers(page, from, to);
995 	else if (decrypt)
996 		err = ext4_decrypt(page);
997 	return err;
998 }
999 #endif
1000 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1001 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1002 			    loff_t pos, unsigned len, unsigned flags,
1003 			    struct page **pagep, void **fsdata)
1004 {
1005 	struct inode *inode = mapping->host;
1006 	int ret, needed_blocks;
1007 	handle_t *handle;
1008 	int retries = 0;
1009 	struct page *page;
1010 	pgoff_t index;
1011 	unsigned from, to;
1012 
1013 	trace_ext4_write_begin(inode, pos, len, flags);
1014 	/*
1015 	 * Reserve one block more for addition to orphan list in case
1016 	 * we allocate blocks but write fails for some reason
1017 	 */
1018 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1019 	index = pos >> PAGE_CACHE_SHIFT;
1020 	from = pos & (PAGE_CACHE_SIZE - 1);
1021 	to = from + len;
1022 
1023 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1024 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1025 						    flags, pagep);
1026 		if (ret < 0)
1027 			return ret;
1028 		if (ret == 1)
1029 			return 0;
1030 	}
1031 
1032 	/*
1033 	 * grab_cache_page_write_begin() can take a long time if the
1034 	 * system is thrashing due to memory pressure, or if the page
1035 	 * is being written back.  So grab it first before we start
1036 	 * the transaction handle.  This also allows us to allocate
1037 	 * the page (if needed) without using GFP_NOFS.
1038 	 */
1039 retry_grab:
1040 	page = grab_cache_page_write_begin(mapping, index, flags);
1041 	if (!page)
1042 		return -ENOMEM;
1043 	unlock_page(page);
1044 
1045 retry_journal:
1046 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1047 	if (IS_ERR(handle)) {
1048 		page_cache_release(page);
1049 		return PTR_ERR(handle);
1050 	}
1051 
1052 	lock_page(page);
1053 	if (page->mapping != mapping) {
1054 		/* The page got truncated from under us */
1055 		unlock_page(page);
1056 		page_cache_release(page);
1057 		ext4_journal_stop(handle);
1058 		goto retry_grab;
1059 	}
1060 	/* In case writeback began while the page was unlocked */
1061 	wait_for_stable_page(page);
1062 
1063 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1064 	if (ext4_should_dioread_nolock(inode))
1065 		ret = ext4_block_write_begin(page, pos, len,
1066 					     ext4_get_block_write);
1067 	else
1068 		ret = ext4_block_write_begin(page, pos, len,
1069 					     ext4_get_block);
1070 #else
1071 	if (ext4_should_dioread_nolock(inode))
1072 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1073 	else
1074 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1075 #endif
1076 	if (!ret && ext4_should_journal_data(inode)) {
1077 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1078 					     from, to, NULL,
1079 					     do_journal_get_write_access);
1080 	}
1081 
1082 	if (ret) {
1083 		unlock_page(page);
1084 		/*
1085 		 * __block_write_begin may have instantiated a few blocks
1086 		 * outside i_size.  Trim these off again. Don't need
1087 		 * i_size_read because we hold i_mutex.
1088 		 *
1089 		 * Add inode to orphan list in case we crash before
1090 		 * truncate finishes
1091 		 */
1092 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1093 			ext4_orphan_add(handle, inode);
1094 
1095 		ext4_journal_stop(handle);
1096 		if (pos + len > inode->i_size) {
1097 			ext4_truncate_failed_write(inode);
1098 			/*
1099 			 * If truncate failed early the inode might
1100 			 * still be on the orphan list; we need to
1101 			 * make sure the inode is removed from the
1102 			 * orphan list in that case.
1103 			 */
1104 			if (inode->i_nlink)
1105 				ext4_orphan_del(NULL, inode);
1106 		}
1107 
1108 		if (ret == -ENOSPC &&
1109 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1110 			goto retry_journal;
1111 		page_cache_release(page);
1112 		return ret;
1113 	}
1114 	*pagep = page;
1115 	return ret;
1116 }
1117 
1118 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1119 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1120 {
1121 	int ret;
1122 	if (!buffer_mapped(bh) || buffer_freed(bh))
1123 		return 0;
1124 	set_buffer_uptodate(bh);
1125 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1126 	clear_buffer_meta(bh);
1127 	clear_buffer_prio(bh);
1128 	return ret;
1129 }
1130 
1131 /*
1132  * We need to pick up the new inode size which generic_commit_write gave us
1133  * `file' can be NULL - eg, when called from page_symlink().
1134  *
1135  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1136  * buffers are managed internally.
1137  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1138 static int ext4_write_end(struct file *file,
1139 			  struct address_space *mapping,
1140 			  loff_t pos, unsigned len, unsigned copied,
1141 			  struct page *page, void *fsdata)
1142 {
1143 	handle_t *handle = ext4_journal_current_handle();
1144 	struct inode *inode = mapping->host;
1145 	loff_t old_size = inode->i_size;
1146 	int ret = 0, ret2;
1147 	int i_size_changed = 0;
1148 
1149 	trace_ext4_write_end(inode, pos, len, copied);
1150 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1151 		ret = ext4_jbd2_file_inode(handle, inode);
1152 		if (ret) {
1153 			unlock_page(page);
1154 			page_cache_release(page);
1155 			goto errout;
1156 		}
1157 	}
1158 
1159 	if (ext4_has_inline_data(inode)) {
1160 		ret = ext4_write_inline_data_end(inode, pos, len,
1161 						 copied, page);
1162 		if (ret < 0)
1163 			goto errout;
1164 		copied = ret;
1165 	} else
1166 		copied = block_write_end(file, mapping, pos,
1167 					 len, copied, page, fsdata);
1168 	/*
1169 	 * it's important to update i_size while still holding page lock:
1170 	 * page writeout could otherwise come in and zero beyond i_size.
1171 	 */
1172 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1173 	unlock_page(page);
1174 	page_cache_release(page);
1175 
1176 	if (old_size < pos)
1177 		pagecache_isize_extended(inode, old_size, pos);
1178 	/*
1179 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1180 	 * makes the holding time of page lock longer. Second, it forces lock
1181 	 * ordering of page lock and transaction start for journaling
1182 	 * filesystems.
1183 	 */
1184 	if (i_size_changed)
1185 		ext4_mark_inode_dirty(handle, inode);
1186 
1187 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1188 		/* if we have allocated more blocks and copied
1189 		 * less. We will have blocks allocated outside
1190 		 * inode->i_size. So truncate them
1191 		 */
1192 		ext4_orphan_add(handle, inode);
1193 errout:
1194 	ret2 = ext4_journal_stop(handle);
1195 	if (!ret)
1196 		ret = ret2;
1197 
1198 	if (pos + len > inode->i_size) {
1199 		ext4_truncate_failed_write(inode);
1200 		/*
1201 		 * If truncate failed early the inode might still be
1202 		 * on the orphan list; we need to make sure the inode
1203 		 * is removed from the orphan list in that case.
1204 		 */
1205 		if (inode->i_nlink)
1206 			ext4_orphan_del(NULL, inode);
1207 	}
1208 
1209 	return ret ? ret : copied;
1210 }
1211 
1212 /*
1213  * This is a private version of page_zero_new_buffers() which doesn't
1214  * set the buffer to be dirty, since in data=journalled mode we need
1215  * to call ext4_handle_dirty_metadata() instead.
1216  */
zero_new_buffers(struct page * page,unsigned from,unsigned to)1217 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1218 {
1219 	unsigned int block_start = 0, block_end;
1220 	struct buffer_head *head, *bh;
1221 
1222 	bh = head = page_buffers(page);
1223 	do {
1224 		block_end = block_start + bh->b_size;
1225 		if (buffer_new(bh)) {
1226 			if (block_end > from && block_start < to) {
1227 				if (!PageUptodate(page)) {
1228 					unsigned start, size;
1229 
1230 					start = max(from, block_start);
1231 					size = min(to, block_end) - start;
1232 
1233 					zero_user(page, start, size);
1234 					set_buffer_uptodate(bh);
1235 				}
1236 				clear_buffer_new(bh);
1237 			}
1238 		}
1239 		block_start = block_end;
1240 		bh = bh->b_this_page;
1241 	} while (bh != head);
1242 }
1243 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1244 static int ext4_journalled_write_end(struct file *file,
1245 				     struct address_space *mapping,
1246 				     loff_t pos, unsigned len, unsigned copied,
1247 				     struct page *page, void *fsdata)
1248 {
1249 	handle_t *handle = ext4_journal_current_handle();
1250 	struct inode *inode = mapping->host;
1251 	loff_t old_size = inode->i_size;
1252 	int ret = 0, ret2;
1253 	int partial = 0;
1254 	unsigned from, to;
1255 	int size_changed = 0;
1256 
1257 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1258 	from = pos & (PAGE_CACHE_SIZE - 1);
1259 	to = from + len;
1260 
1261 	BUG_ON(!ext4_handle_valid(handle));
1262 
1263 	if (ext4_has_inline_data(inode))
1264 		copied = ext4_write_inline_data_end(inode, pos, len,
1265 						    copied, page);
1266 	else {
1267 		if (copied < len) {
1268 			if (!PageUptodate(page))
1269 				copied = 0;
1270 			zero_new_buffers(page, from+copied, to);
1271 		}
1272 
1273 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1274 					     to, &partial, write_end_fn);
1275 		if (!partial)
1276 			SetPageUptodate(page);
1277 	}
1278 	size_changed = ext4_update_inode_size(inode, pos + copied);
1279 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1280 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1281 	unlock_page(page);
1282 	page_cache_release(page);
1283 
1284 	if (old_size < pos)
1285 		pagecache_isize_extended(inode, old_size, pos);
1286 
1287 	if (size_changed) {
1288 		ret2 = ext4_mark_inode_dirty(handle, inode);
1289 		if (!ret)
1290 			ret = ret2;
1291 	}
1292 
1293 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1294 		/* if we have allocated more blocks and copied
1295 		 * less. We will have blocks allocated outside
1296 		 * inode->i_size. So truncate them
1297 		 */
1298 		ext4_orphan_add(handle, inode);
1299 
1300 	ret2 = ext4_journal_stop(handle);
1301 	if (!ret)
1302 		ret = ret2;
1303 	if (pos + len > inode->i_size) {
1304 		ext4_truncate_failed_write(inode);
1305 		/*
1306 		 * If truncate failed early the inode might still be
1307 		 * on the orphan list; we need to make sure the inode
1308 		 * is removed from the orphan list in that case.
1309 		 */
1310 		if (inode->i_nlink)
1311 			ext4_orphan_del(NULL, inode);
1312 	}
1313 
1314 	return ret ? ret : copied;
1315 }
1316 
1317 /*
1318  * Reserve space for a single cluster
1319  */
ext4_da_reserve_space(struct inode * inode)1320 static int ext4_da_reserve_space(struct inode *inode)
1321 {
1322 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1323 	struct ext4_inode_info *ei = EXT4_I(inode);
1324 	int ret;
1325 
1326 	/*
1327 	 * We will charge metadata quota at writeout time; this saves
1328 	 * us from metadata over-estimation, though we may go over by
1329 	 * a small amount in the end.  Here we just reserve for data.
1330 	 */
1331 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1332 	if (ret)
1333 		return ret;
1334 
1335 	spin_lock(&ei->i_block_reservation_lock);
1336 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1337 		spin_unlock(&ei->i_block_reservation_lock);
1338 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1339 		return -ENOSPC;
1340 	}
1341 	ei->i_reserved_data_blocks++;
1342 	trace_ext4_da_reserve_space(inode);
1343 	spin_unlock(&ei->i_block_reservation_lock);
1344 
1345 	return 0;       /* success */
1346 }
1347 
ext4_da_release_space(struct inode * inode,int to_free)1348 static void ext4_da_release_space(struct inode *inode, int to_free)
1349 {
1350 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1351 	struct ext4_inode_info *ei = EXT4_I(inode);
1352 
1353 	if (!to_free)
1354 		return;		/* Nothing to release, exit */
1355 
1356 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1357 
1358 	trace_ext4_da_release_space(inode, to_free);
1359 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1360 		/*
1361 		 * if there aren't enough reserved blocks, then the
1362 		 * counter is messed up somewhere.  Since this
1363 		 * function is called from invalidate page, it's
1364 		 * harmless to return without any action.
1365 		 */
1366 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1367 			 "ino %lu, to_free %d with only %d reserved "
1368 			 "data blocks", inode->i_ino, to_free,
1369 			 ei->i_reserved_data_blocks);
1370 		WARN_ON(1);
1371 		to_free = ei->i_reserved_data_blocks;
1372 	}
1373 	ei->i_reserved_data_blocks -= to_free;
1374 
1375 	/* update fs dirty data blocks counter */
1376 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1377 
1378 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1379 
1380 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1381 }
1382 
ext4_da_page_release_reservation(struct page * page,unsigned int offset,unsigned int length)1383 static void ext4_da_page_release_reservation(struct page *page,
1384 					     unsigned int offset,
1385 					     unsigned int length)
1386 {
1387 	int to_release = 0, contiguous_blks = 0;
1388 	struct buffer_head *head, *bh;
1389 	unsigned int curr_off = 0;
1390 	struct inode *inode = page->mapping->host;
1391 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1392 	unsigned int stop = offset + length;
1393 	int num_clusters;
1394 	ext4_fsblk_t lblk;
1395 
1396 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1397 
1398 	head = page_buffers(page);
1399 	bh = head;
1400 	do {
1401 		unsigned int next_off = curr_off + bh->b_size;
1402 
1403 		if (next_off > stop)
1404 			break;
1405 
1406 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1407 			to_release++;
1408 			contiguous_blks++;
1409 			clear_buffer_delay(bh);
1410 		} else if (contiguous_blks) {
1411 			lblk = page->index <<
1412 			       (PAGE_CACHE_SHIFT - inode->i_blkbits);
1413 			lblk += (curr_off >> inode->i_blkbits) -
1414 				contiguous_blks;
1415 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1416 			contiguous_blks = 0;
1417 		}
1418 		curr_off = next_off;
1419 	} while ((bh = bh->b_this_page) != head);
1420 
1421 	if (contiguous_blks) {
1422 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1423 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1424 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1425 	}
1426 
1427 	/* If we have released all the blocks belonging to a cluster, then we
1428 	 * need to release the reserved space for that cluster. */
1429 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1430 	while (num_clusters > 0) {
1431 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1432 			((num_clusters - 1) << sbi->s_cluster_bits);
1433 		if (sbi->s_cluster_ratio == 1 ||
1434 		    !ext4_find_delalloc_cluster(inode, lblk))
1435 			ext4_da_release_space(inode, 1);
1436 
1437 		num_clusters--;
1438 	}
1439 }
1440 
1441 /*
1442  * Delayed allocation stuff
1443  */
1444 
1445 struct mpage_da_data {
1446 	struct inode *inode;
1447 	struct writeback_control *wbc;
1448 
1449 	pgoff_t first_page;	/* The first page to write */
1450 	pgoff_t next_page;	/* Current page to examine */
1451 	pgoff_t last_page;	/* Last page to examine */
1452 	/*
1453 	 * Extent to map - this can be after first_page because that can be
1454 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1455 	 * is delalloc or unwritten.
1456 	 */
1457 	struct ext4_map_blocks map;
1458 	struct ext4_io_submit io_submit;	/* IO submission data */
1459 };
1460 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1461 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1462 				       bool invalidate)
1463 {
1464 	int nr_pages, i;
1465 	pgoff_t index, end;
1466 	struct pagevec pvec;
1467 	struct inode *inode = mpd->inode;
1468 	struct address_space *mapping = inode->i_mapping;
1469 
1470 	/* This is necessary when next_page == 0. */
1471 	if (mpd->first_page >= mpd->next_page)
1472 		return;
1473 
1474 	index = mpd->first_page;
1475 	end   = mpd->next_page - 1;
1476 	if (invalidate) {
1477 		ext4_lblk_t start, last;
1478 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1479 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1480 		ext4_es_remove_extent(inode, start, last - start + 1);
1481 	}
1482 
1483 	pagevec_init(&pvec, 0);
1484 	while (index <= end) {
1485 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1486 		if (nr_pages == 0)
1487 			break;
1488 		for (i = 0; i < nr_pages; i++) {
1489 			struct page *page = pvec.pages[i];
1490 			if (page->index > end)
1491 				break;
1492 			BUG_ON(!PageLocked(page));
1493 			BUG_ON(PageWriteback(page));
1494 			if (invalidate) {
1495 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1496 				ClearPageUptodate(page);
1497 			}
1498 			unlock_page(page);
1499 		}
1500 		index = pvec.pages[nr_pages - 1]->index + 1;
1501 		pagevec_release(&pvec);
1502 	}
1503 }
1504 
ext4_print_free_blocks(struct inode * inode)1505 static void ext4_print_free_blocks(struct inode *inode)
1506 {
1507 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1508 	struct super_block *sb = inode->i_sb;
1509 	struct ext4_inode_info *ei = EXT4_I(inode);
1510 
1511 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1512 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1513 			ext4_count_free_clusters(sb)));
1514 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1515 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1516 	       (long long) EXT4_C2B(EXT4_SB(sb),
1517 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1518 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1519 	       (long long) EXT4_C2B(EXT4_SB(sb),
1520 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1521 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1522 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1523 		 ei->i_reserved_data_blocks);
1524 	return;
1525 }
1526 
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1527 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1528 {
1529 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1530 }
1531 
1532 /*
1533  * This function is grabs code from the very beginning of
1534  * ext4_map_blocks, but assumes that the caller is from delayed write
1535  * time. This function looks up the requested blocks and sets the
1536  * buffer delay bit under the protection of i_data_sem.
1537  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1538 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1539 			      struct ext4_map_blocks *map,
1540 			      struct buffer_head *bh)
1541 {
1542 	struct extent_status es;
1543 	int retval;
1544 	sector_t invalid_block = ~((sector_t) 0xffff);
1545 #ifdef ES_AGGRESSIVE_TEST
1546 	struct ext4_map_blocks orig_map;
1547 
1548 	memcpy(&orig_map, map, sizeof(*map));
1549 #endif
1550 
1551 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1552 		invalid_block = ~0;
1553 
1554 	map->m_flags = 0;
1555 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1556 		  "logical block %lu\n", inode->i_ino, map->m_len,
1557 		  (unsigned long) map->m_lblk);
1558 
1559 	/* Lookup extent status tree firstly */
1560 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1561 		if (ext4_es_is_hole(&es)) {
1562 			retval = 0;
1563 			down_read(&EXT4_I(inode)->i_data_sem);
1564 			goto add_delayed;
1565 		}
1566 
1567 		/*
1568 		 * Delayed extent could be allocated by fallocate.
1569 		 * So we need to check it.
1570 		 */
1571 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1572 			map_bh(bh, inode->i_sb, invalid_block);
1573 			set_buffer_new(bh);
1574 			set_buffer_delay(bh);
1575 			return 0;
1576 		}
1577 
1578 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1579 		retval = es.es_len - (iblock - es.es_lblk);
1580 		if (retval > map->m_len)
1581 			retval = map->m_len;
1582 		map->m_len = retval;
1583 		if (ext4_es_is_written(&es))
1584 			map->m_flags |= EXT4_MAP_MAPPED;
1585 		else if (ext4_es_is_unwritten(&es))
1586 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1587 		else
1588 			BUG_ON(1);
1589 
1590 #ifdef ES_AGGRESSIVE_TEST
1591 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1592 #endif
1593 		return retval;
1594 	}
1595 
1596 	/*
1597 	 * Try to see if we can get the block without requesting a new
1598 	 * file system block.
1599 	 */
1600 	down_read(&EXT4_I(inode)->i_data_sem);
1601 	if (ext4_has_inline_data(inode))
1602 		retval = 0;
1603 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1604 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1605 	else
1606 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1607 
1608 add_delayed:
1609 	if (retval == 0) {
1610 		int ret;
1611 		/*
1612 		 * XXX: __block_prepare_write() unmaps passed block,
1613 		 * is it OK?
1614 		 */
1615 		/*
1616 		 * If the block was allocated from previously allocated cluster,
1617 		 * then we don't need to reserve it again. However we still need
1618 		 * to reserve metadata for every block we're going to write.
1619 		 */
1620 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1621 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1622 			ret = ext4_da_reserve_space(inode);
1623 			if (ret) {
1624 				/* not enough space to reserve */
1625 				retval = ret;
1626 				goto out_unlock;
1627 			}
1628 		}
1629 
1630 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1631 					    ~0, EXTENT_STATUS_DELAYED);
1632 		if (ret) {
1633 			retval = ret;
1634 			goto out_unlock;
1635 		}
1636 
1637 		map_bh(bh, inode->i_sb, invalid_block);
1638 		set_buffer_new(bh);
1639 		set_buffer_delay(bh);
1640 	} else if (retval > 0) {
1641 		int ret;
1642 		unsigned int status;
1643 
1644 		if (unlikely(retval != map->m_len)) {
1645 			ext4_warning(inode->i_sb,
1646 				     "ES len assertion failed for inode "
1647 				     "%lu: retval %d != map->m_len %d",
1648 				     inode->i_ino, retval, map->m_len);
1649 			WARN_ON(1);
1650 		}
1651 
1652 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1653 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1654 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1655 					    map->m_pblk, status);
1656 		if (ret != 0)
1657 			retval = ret;
1658 	}
1659 
1660 out_unlock:
1661 	up_read((&EXT4_I(inode)->i_data_sem));
1662 
1663 	return retval;
1664 }
1665 
1666 /*
1667  * This is a special get_block_t callback which is used by
1668  * ext4_da_write_begin().  It will either return mapped block or
1669  * reserve space for a single block.
1670  *
1671  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1672  * We also have b_blocknr = -1 and b_bdev initialized properly
1673  *
1674  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1675  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1676  * initialized properly.
1677  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1678 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1679 			   struct buffer_head *bh, int create)
1680 {
1681 	struct ext4_map_blocks map;
1682 	int ret = 0;
1683 
1684 	BUG_ON(create == 0);
1685 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1686 
1687 	map.m_lblk = iblock;
1688 	map.m_len = 1;
1689 
1690 	/*
1691 	 * first, we need to know whether the block is allocated already
1692 	 * preallocated blocks are unmapped but should treated
1693 	 * the same as allocated blocks.
1694 	 */
1695 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1696 	if (ret <= 0)
1697 		return ret;
1698 
1699 	map_bh(bh, inode->i_sb, map.m_pblk);
1700 	ext4_update_bh_state(bh, map.m_flags);
1701 
1702 	if (buffer_unwritten(bh)) {
1703 		/* A delayed write to unwritten bh should be marked
1704 		 * new and mapped.  Mapped ensures that we don't do
1705 		 * get_block multiple times when we write to the same
1706 		 * offset and new ensures that we do proper zero out
1707 		 * for partial write.
1708 		 */
1709 		set_buffer_new(bh);
1710 		set_buffer_mapped(bh);
1711 	}
1712 	return 0;
1713 }
1714 
bget_one(handle_t * handle,struct buffer_head * bh)1715 static int bget_one(handle_t *handle, struct buffer_head *bh)
1716 {
1717 	get_bh(bh);
1718 	return 0;
1719 }
1720 
bput_one(handle_t * handle,struct buffer_head * bh)1721 static int bput_one(handle_t *handle, struct buffer_head *bh)
1722 {
1723 	put_bh(bh);
1724 	return 0;
1725 }
1726 
__ext4_journalled_writepage(struct page * page,unsigned int len)1727 static int __ext4_journalled_writepage(struct page *page,
1728 				       unsigned int len)
1729 {
1730 	struct address_space *mapping = page->mapping;
1731 	struct inode *inode = mapping->host;
1732 	struct buffer_head *page_bufs = NULL;
1733 	handle_t *handle = NULL;
1734 	int ret = 0, err = 0;
1735 	int inline_data = ext4_has_inline_data(inode);
1736 	struct buffer_head *inode_bh = NULL;
1737 
1738 	ClearPageChecked(page);
1739 
1740 	if (inline_data) {
1741 		BUG_ON(page->index != 0);
1742 		BUG_ON(len > ext4_get_max_inline_size(inode));
1743 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1744 		if (inode_bh == NULL)
1745 			goto out;
1746 	} else {
1747 		page_bufs = page_buffers(page);
1748 		if (!page_bufs) {
1749 			BUG();
1750 			goto out;
1751 		}
1752 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1753 				       NULL, bget_one);
1754 	}
1755 	/*
1756 	 * We need to release the page lock before we start the
1757 	 * journal, so grab a reference so the page won't disappear
1758 	 * out from under us.
1759 	 */
1760 	get_page(page);
1761 	unlock_page(page);
1762 
1763 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1764 				    ext4_writepage_trans_blocks(inode));
1765 	if (IS_ERR(handle)) {
1766 		ret = PTR_ERR(handle);
1767 		put_page(page);
1768 		goto out_no_pagelock;
1769 	}
1770 	BUG_ON(!ext4_handle_valid(handle));
1771 
1772 	lock_page(page);
1773 	put_page(page);
1774 	if (page->mapping != mapping) {
1775 		/* The page got truncated from under us */
1776 		ext4_journal_stop(handle);
1777 		ret = 0;
1778 		goto out;
1779 	}
1780 
1781 	if (inline_data) {
1782 		BUFFER_TRACE(inode_bh, "get write access");
1783 		ret = ext4_journal_get_write_access(handle, inode_bh);
1784 
1785 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1786 
1787 	} else {
1788 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1789 					     do_journal_get_write_access);
1790 
1791 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1792 					     write_end_fn);
1793 	}
1794 	if (ret == 0)
1795 		ret = err;
1796 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1797 	err = ext4_journal_stop(handle);
1798 	if (!ret)
1799 		ret = err;
1800 
1801 	if (!ext4_has_inline_data(inode))
1802 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1803 				       NULL, bput_one);
1804 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1805 out:
1806 	unlock_page(page);
1807 out_no_pagelock:
1808 	brelse(inode_bh);
1809 	return ret;
1810 }
1811 
1812 /*
1813  * Note that we don't need to start a transaction unless we're journaling data
1814  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1815  * need to file the inode to the transaction's list in ordered mode because if
1816  * we are writing back data added by write(), the inode is already there and if
1817  * we are writing back data modified via mmap(), no one guarantees in which
1818  * transaction the data will hit the disk. In case we are journaling data, we
1819  * cannot start transaction directly because transaction start ranks above page
1820  * lock so we have to do some magic.
1821  *
1822  * This function can get called via...
1823  *   - ext4_writepages after taking page lock (have journal handle)
1824  *   - journal_submit_inode_data_buffers (no journal handle)
1825  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1826  *   - grab_page_cache when doing write_begin (have journal handle)
1827  *
1828  * We don't do any block allocation in this function. If we have page with
1829  * multiple blocks we need to write those buffer_heads that are mapped. This
1830  * is important for mmaped based write. So if we do with blocksize 1K
1831  * truncate(f, 1024);
1832  * a = mmap(f, 0, 4096);
1833  * a[0] = 'a';
1834  * truncate(f, 4096);
1835  * we have in the page first buffer_head mapped via page_mkwrite call back
1836  * but other buffer_heads would be unmapped but dirty (dirty done via the
1837  * do_wp_page). So writepage should write the first block. If we modify
1838  * the mmap area beyond 1024 we will again get a page_fault and the
1839  * page_mkwrite callback will do the block allocation and mark the
1840  * buffer_heads mapped.
1841  *
1842  * We redirty the page if we have any buffer_heads that is either delay or
1843  * unwritten in the page.
1844  *
1845  * We can get recursively called as show below.
1846  *
1847  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1848  *		ext4_writepage()
1849  *
1850  * But since we don't do any block allocation we should not deadlock.
1851  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1852  */
ext4_writepage(struct page * page,struct writeback_control * wbc)1853 static int ext4_writepage(struct page *page,
1854 			  struct writeback_control *wbc)
1855 {
1856 	int ret = 0;
1857 	loff_t size;
1858 	unsigned int len;
1859 	struct buffer_head *page_bufs = NULL;
1860 	struct inode *inode = page->mapping->host;
1861 	struct ext4_io_submit io_submit;
1862 	bool keep_towrite = false;
1863 
1864 	trace_ext4_writepage(page);
1865 	size = i_size_read(inode);
1866 	if (page->index == size >> PAGE_CACHE_SHIFT)
1867 		len = size & ~PAGE_CACHE_MASK;
1868 	else
1869 		len = PAGE_CACHE_SIZE;
1870 
1871 	page_bufs = page_buffers(page);
1872 	/*
1873 	 * We cannot do block allocation or other extent handling in this
1874 	 * function. If there are buffers needing that, we have to redirty
1875 	 * the page. But we may reach here when we do a journal commit via
1876 	 * journal_submit_inode_data_buffers() and in that case we must write
1877 	 * allocated buffers to achieve data=ordered mode guarantees.
1878 	 *
1879 	 * Also, if there is only one buffer per page (the fs block
1880 	 * size == the page size), if one buffer needs block
1881 	 * allocation or needs to modify the extent tree to clear the
1882 	 * unwritten flag, we know that the page can't be written at
1883 	 * all, so we might as well refuse the write immediately.
1884 	 * Unfortunately if the block size != page size, we can't as
1885 	 * easily detect this case using ext4_walk_page_buffers(), but
1886 	 * for the extremely common case, this is an optimization that
1887 	 * skips a useless round trip through ext4_bio_write_page().
1888 	 */
1889 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1890 				   ext4_bh_delay_or_unwritten)) {
1891 		redirty_page_for_writepage(wbc, page);
1892 		if ((current->flags & PF_MEMALLOC) ||
1893 		    (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1894 			/*
1895 			 * For memory cleaning there's no point in writing only
1896 			 * some buffers. So just bail out. Warn if we came here
1897 			 * from direct reclaim.
1898 			 */
1899 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1900 							== PF_MEMALLOC);
1901 			unlock_page(page);
1902 			return 0;
1903 		}
1904 		keep_towrite = true;
1905 	}
1906 
1907 	if (PageChecked(page) && ext4_should_journal_data(inode))
1908 		/*
1909 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1910 		 * doesn't seem much point in redirtying the page here.
1911 		 */
1912 		return __ext4_journalled_writepage(page, len);
1913 
1914 	ext4_io_submit_init(&io_submit, wbc);
1915 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1916 	if (!io_submit.io_end) {
1917 		redirty_page_for_writepage(wbc, page);
1918 		unlock_page(page);
1919 		return -ENOMEM;
1920 	}
1921 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1922 	ext4_io_submit(&io_submit);
1923 	/* Drop io_end reference we got from init */
1924 	ext4_put_io_end_defer(io_submit.io_end);
1925 	return ret;
1926 }
1927 
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)1928 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1929 {
1930 	int len;
1931 	loff_t size = i_size_read(mpd->inode);
1932 	int err;
1933 
1934 	BUG_ON(page->index != mpd->first_page);
1935 	if (page->index == size >> PAGE_CACHE_SHIFT)
1936 		len = size & ~PAGE_CACHE_MASK;
1937 	else
1938 		len = PAGE_CACHE_SIZE;
1939 	clear_page_dirty_for_io(page);
1940 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1941 	if (!err)
1942 		mpd->wbc->nr_to_write--;
1943 	mpd->first_page++;
1944 
1945 	return err;
1946 }
1947 
1948 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1949 
1950 /*
1951  * mballoc gives us at most this number of blocks...
1952  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1953  * The rest of mballoc seems to handle chunks up to full group size.
1954  */
1955 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1956 
1957 /*
1958  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1959  *
1960  * @mpd - extent of blocks
1961  * @lblk - logical number of the block in the file
1962  * @bh - buffer head we want to add to the extent
1963  *
1964  * The function is used to collect contig. blocks in the same state. If the
1965  * buffer doesn't require mapping for writeback and we haven't started the
1966  * extent of buffers to map yet, the function returns 'true' immediately - the
1967  * caller can write the buffer right away. Otherwise the function returns true
1968  * if the block has been added to the extent, false if the block couldn't be
1969  * added.
1970  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1971 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1972 				   struct buffer_head *bh)
1973 {
1974 	struct ext4_map_blocks *map = &mpd->map;
1975 
1976 	/* Buffer that doesn't need mapping for writeback? */
1977 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1978 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1979 		/* So far no extent to map => we write the buffer right away */
1980 		if (map->m_len == 0)
1981 			return true;
1982 		return false;
1983 	}
1984 
1985 	/* First block in the extent? */
1986 	if (map->m_len == 0) {
1987 		map->m_lblk = lblk;
1988 		map->m_len = 1;
1989 		map->m_flags = bh->b_state & BH_FLAGS;
1990 		return true;
1991 	}
1992 
1993 	/* Don't go larger than mballoc is willing to allocate */
1994 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1995 		return false;
1996 
1997 	/* Can we merge the block to our big extent? */
1998 	if (lblk == map->m_lblk + map->m_len &&
1999 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2000 		map->m_len++;
2001 		return true;
2002 	}
2003 	return false;
2004 }
2005 
2006 /*
2007  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2008  *
2009  * @mpd - extent of blocks for mapping
2010  * @head - the first buffer in the page
2011  * @bh - buffer we should start processing from
2012  * @lblk - logical number of the block in the file corresponding to @bh
2013  *
2014  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2015  * the page for IO if all buffers in this page were mapped and there's no
2016  * accumulated extent of buffers to map or add buffers in the page to the
2017  * extent of buffers to map. The function returns 1 if the caller can continue
2018  * by processing the next page, 0 if it should stop adding buffers to the
2019  * extent to map because we cannot extend it anymore. It can also return value
2020  * < 0 in case of error during IO submission.
2021  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2022 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2023 				   struct buffer_head *head,
2024 				   struct buffer_head *bh,
2025 				   ext4_lblk_t lblk)
2026 {
2027 	struct inode *inode = mpd->inode;
2028 	int err;
2029 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2030 							>> inode->i_blkbits;
2031 
2032 	do {
2033 		BUG_ON(buffer_locked(bh));
2034 
2035 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2036 			/* Found extent to map? */
2037 			if (mpd->map.m_len)
2038 				return 0;
2039 			/* Everything mapped so far and we hit EOF */
2040 			break;
2041 		}
2042 	} while (lblk++, (bh = bh->b_this_page) != head);
2043 	/* So far everything mapped? Submit the page for IO. */
2044 	if (mpd->map.m_len == 0) {
2045 		err = mpage_submit_page(mpd, head->b_page);
2046 		if (err < 0)
2047 			return err;
2048 	}
2049 	return lblk < blocks;
2050 }
2051 
2052 /*
2053  * mpage_map_buffers - update buffers corresponding to changed extent and
2054  *		       submit fully mapped pages for IO
2055  *
2056  * @mpd - description of extent to map, on return next extent to map
2057  *
2058  * Scan buffers corresponding to changed extent (we expect corresponding pages
2059  * to be already locked) and update buffer state according to new extent state.
2060  * We map delalloc buffers to their physical location, clear unwritten bits,
2061  * and mark buffers as uninit when we perform writes to unwritten extents
2062  * and do extent conversion after IO is finished. If the last page is not fully
2063  * mapped, we update @map to the next extent in the last page that needs
2064  * mapping. Otherwise we submit the page for IO.
2065  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2066 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2067 {
2068 	struct pagevec pvec;
2069 	int nr_pages, i;
2070 	struct inode *inode = mpd->inode;
2071 	struct buffer_head *head, *bh;
2072 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2073 	pgoff_t start, end;
2074 	ext4_lblk_t lblk;
2075 	sector_t pblock;
2076 	int err;
2077 
2078 	start = mpd->map.m_lblk >> bpp_bits;
2079 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2080 	lblk = start << bpp_bits;
2081 	pblock = mpd->map.m_pblk;
2082 
2083 	pagevec_init(&pvec, 0);
2084 	while (start <= end) {
2085 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2086 					  PAGEVEC_SIZE);
2087 		if (nr_pages == 0)
2088 			break;
2089 		for (i = 0; i < nr_pages; i++) {
2090 			struct page *page = pvec.pages[i];
2091 
2092 			if (page->index > end)
2093 				break;
2094 			/* Up to 'end' pages must be contiguous */
2095 			BUG_ON(page->index != start);
2096 			bh = head = page_buffers(page);
2097 			do {
2098 				if (lblk < mpd->map.m_lblk)
2099 					continue;
2100 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2101 					/*
2102 					 * Buffer after end of mapped extent.
2103 					 * Find next buffer in the page to map.
2104 					 */
2105 					mpd->map.m_len = 0;
2106 					mpd->map.m_flags = 0;
2107 					/*
2108 					 * FIXME: If dioread_nolock supports
2109 					 * blocksize < pagesize, we need to make
2110 					 * sure we add size mapped so far to
2111 					 * io_end->size as the following call
2112 					 * can submit the page for IO.
2113 					 */
2114 					err = mpage_process_page_bufs(mpd, head,
2115 								      bh, lblk);
2116 					pagevec_release(&pvec);
2117 					if (err > 0)
2118 						err = 0;
2119 					return err;
2120 				}
2121 				if (buffer_delay(bh)) {
2122 					clear_buffer_delay(bh);
2123 					bh->b_blocknr = pblock++;
2124 				}
2125 				clear_buffer_unwritten(bh);
2126 			} while (lblk++, (bh = bh->b_this_page) != head);
2127 
2128 			/*
2129 			 * FIXME: This is going to break if dioread_nolock
2130 			 * supports blocksize < pagesize as we will try to
2131 			 * convert potentially unmapped parts of inode.
2132 			 */
2133 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2134 			/* Page fully mapped - let IO run! */
2135 			err = mpage_submit_page(mpd, page);
2136 			if (err < 0) {
2137 				pagevec_release(&pvec);
2138 				return err;
2139 			}
2140 			start++;
2141 		}
2142 		pagevec_release(&pvec);
2143 	}
2144 	/* Extent fully mapped and matches with page boundary. We are done. */
2145 	mpd->map.m_len = 0;
2146 	mpd->map.m_flags = 0;
2147 	return 0;
2148 }
2149 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2150 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2151 {
2152 	struct inode *inode = mpd->inode;
2153 	struct ext4_map_blocks *map = &mpd->map;
2154 	int get_blocks_flags;
2155 	int err, dioread_nolock;
2156 
2157 	trace_ext4_da_write_pages_extent(inode, map);
2158 	/*
2159 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2160 	 * to convert an unwritten extent to be initialized (in the case
2161 	 * where we have written into one or more preallocated blocks).  It is
2162 	 * possible that we're going to need more metadata blocks than
2163 	 * previously reserved. However we must not fail because we're in
2164 	 * writeback and there is nothing we can do about it so it might result
2165 	 * in data loss.  So use reserved blocks to allocate metadata if
2166 	 * possible.
2167 	 *
2168 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2169 	 * the blocks in question are delalloc blocks.  This indicates
2170 	 * that the blocks and quotas has already been checked when
2171 	 * the data was copied into the page cache.
2172 	 */
2173 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2174 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2175 	dioread_nolock = ext4_should_dioread_nolock(inode);
2176 	if (dioread_nolock)
2177 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2178 	if (map->m_flags & (1 << BH_Delay))
2179 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2180 
2181 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2182 	if (err < 0)
2183 		return err;
2184 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2185 		if (!mpd->io_submit.io_end->handle &&
2186 		    ext4_handle_valid(handle)) {
2187 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2188 			handle->h_rsv_handle = NULL;
2189 		}
2190 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2191 	}
2192 
2193 	BUG_ON(map->m_len == 0);
2194 	if (map->m_flags & EXT4_MAP_NEW) {
2195 		struct block_device *bdev = inode->i_sb->s_bdev;
2196 		int i;
2197 
2198 		for (i = 0; i < map->m_len; i++)
2199 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2200 	}
2201 	return 0;
2202 }
2203 
2204 /*
2205  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2206  *				 mpd->len and submit pages underlying it for IO
2207  *
2208  * @handle - handle for journal operations
2209  * @mpd - extent to map
2210  * @give_up_on_write - we set this to true iff there is a fatal error and there
2211  *                     is no hope of writing the data. The caller should discard
2212  *                     dirty pages to avoid infinite loops.
2213  *
2214  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2215  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2216  * them to initialized or split the described range from larger unwritten
2217  * extent. Note that we need not map all the described range since allocation
2218  * can return less blocks or the range is covered by more unwritten extents. We
2219  * cannot map more because we are limited by reserved transaction credits. On
2220  * the other hand we always make sure that the last touched page is fully
2221  * mapped so that it can be written out (and thus forward progress is
2222  * guaranteed). After mapping we submit all mapped pages for IO.
2223  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2224 static int mpage_map_and_submit_extent(handle_t *handle,
2225 				       struct mpage_da_data *mpd,
2226 				       bool *give_up_on_write)
2227 {
2228 	struct inode *inode = mpd->inode;
2229 	struct ext4_map_blocks *map = &mpd->map;
2230 	int err;
2231 	loff_t disksize;
2232 	int progress = 0;
2233 
2234 	mpd->io_submit.io_end->offset =
2235 				((loff_t)map->m_lblk) << inode->i_blkbits;
2236 	do {
2237 		err = mpage_map_one_extent(handle, mpd);
2238 		if (err < 0) {
2239 			struct super_block *sb = inode->i_sb;
2240 
2241 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2242 				goto invalidate_dirty_pages;
2243 			/*
2244 			 * Let the uper layers retry transient errors.
2245 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2246 			 * is non-zero, a commit should free up blocks.
2247 			 */
2248 			if ((err == -ENOMEM) ||
2249 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2250 				if (progress)
2251 					goto update_disksize;
2252 				return err;
2253 			}
2254 			ext4_msg(sb, KERN_CRIT,
2255 				 "Delayed block allocation failed for "
2256 				 "inode %lu at logical offset %llu with"
2257 				 " max blocks %u with error %d",
2258 				 inode->i_ino,
2259 				 (unsigned long long)map->m_lblk,
2260 				 (unsigned)map->m_len, -err);
2261 			ext4_msg(sb, KERN_CRIT,
2262 				 "This should not happen!! Data will "
2263 				 "be lost\n");
2264 			if (err == -ENOSPC)
2265 				ext4_print_free_blocks(inode);
2266 		invalidate_dirty_pages:
2267 			*give_up_on_write = true;
2268 			return err;
2269 		}
2270 		progress = 1;
2271 		/*
2272 		 * Update buffer state, submit mapped pages, and get us new
2273 		 * extent to map
2274 		 */
2275 		err = mpage_map_and_submit_buffers(mpd);
2276 		if (err < 0)
2277 			goto update_disksize;
2278 	} while (map->m_len);
2279 
2280 update_disksize:
2281 	/*
2282 	 * Update on-disk size after IO is submitted.  Races with
2283 	 * truncate are avoided by checking i_size under i_data_sem.
2284 	 */
2285 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2286 	if (disksize > EXT4_I(inode)->i_disksize) {
2287 		int err2;
2288 		loff_t i_size;
2289 
2290 		down_write(&EXT4_I(inode)->i_data_sem);
2291 		i_size = i_size_read(inode);
2292 		if (disksize > i_size)
2293 			disksize = i_size;
2294 		if (disksize > EXT4_I(inode)->i_disksize)
2295 			EXT4_I(inode)->i_disksize = disksize;
2296 		err2 = ext4_mark_inode_dirty(handle, inode);
2297 		up_write(&EXT4_I(inode)->i_data_sem);
2298 		if (err2)
2299 			ext4_error(inode->i_sb,
2300 				   "Failed to mark inode %lu dirty",
2301 				   inode->i_ino);
2302 		if (!err)
2303 			err = err2;
2304 	}
2305 	return err;
2306 }
2307 
2308 /*
2309  * Calculate the total number of credits to reserve for one writepages
2310  * iteration. This is called from ext4_writepages(). We map an extent of
2311  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2312  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2313  * bpp - 1 blocks in bpp different extents.
2314  */
ext4_da_writepages_trans_blocks(struct inode * inode)2315 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2316 {
2317 	int bpp = ext4_journal_blocks_per_page(inode);
2318 
2319 	return ext4_meta_trans_blocks(inode,
2320 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2321 }
2322 
2323 /*
2324  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2325  * 				 and underlying extent to map
2326  *
2327  * @mpd - where to look for pages
2328  *
2329  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2330  * IO immediately. When we find a page which isn't mapped we start accumulating
2331  * extent of buffers underlying these pages that needs mapping (formed by
2332  * either delayed or unwritten buffers). We also lock the pages containing
2333  * these buffers. The extent found is returned in @mpd structure (starting at
2334  * mpd->lblk with length mpd->len blocks).
2335  *
2336  * Note that this function can attach bios to one io_end structure which are
2337  * neither logically nor physically contiguous. Although it may seem as an
2338  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2339  * case as we need to track IO to all buffers underlying a page in one io_end.
2340  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2341 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2342 {
2343 	struct address_space *mapping = mpd->inode->i_mapping;
2344 	struct pagevec pvec;
2345 	unsigned int nr_pages;
2346 	long left = mpd->wbc->nr_to_write;
2347 	pgoff_t index = mpd->first_page;
2348 	pgoff_t end = mpd->last_page;
2349 	int tag;
2350 	int i, err = 0;
2351 	int blkbits = mpd->inode->i_blkbits;
2352 	ext4_lblk_t lblk;
2353 	struct buffer_head *head;
2354 
2355 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2356 		tag = PAGECACHE_TAG_TOWRITE;
2357 	else
2358 		tag = PAGECACHE_TAG_DIRTY;
2359 
2360 	pagevec_init(&pvec, 0);
2361 	mpd->map.m_len = 0;
2362 	mpd->next_page = index;
2363 	while (index <= end) {
2364 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2365 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2366 		if (nr_pages == 0)
2367 			goto out;
2368 
2369 		for (i = 0; i < nr_pages; i++) {
2370 			struct page *page = pvec.pages[i];
2371 
2372 			/*
2373 			 * At this point, the page may be truncated or
2374 			 * invalidated (changing page->mapping to NULL), or
2375 			 * even swizzled back from swapper_space to tmpfs file
2376 			 * mapping. However, page->index will not change
2377 			 * because we have a reference on the page.
2378 			 */
2379 			if (page->index > end)
2380 				goto out;
2381 
2382 			/*
2383 			 * Accumulated enough dirty pages? This doesn't apply
2384 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2385 			 * keep going because someone may be concurrently
2386 			 * dirtying pages, and we might have synced a lot of
2387 			 * newly appeared dirty pages, but have not synced all
2388 			 * of the old dirty pages.
2389 			 */
2390 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2391 				goto out;
2392 
2393 			/* If we can't merge this page, we are done. */
2394 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2395 				goto out;
2396 
2397 			lock_page(page);
2398 			/*
2399 			 * If the page is no longer dirty, or its mapping no
2400 			 * longer corresponds to inode we are writing (which
2401 			 * means it has been truncated or invalidated), or the
2402 			 * page is already under writeback and we are not doing
2403 			 * a data integrity writeback, skip the page
2404 			 */
2405 			if (!PageDirty(page) ||
2406 			    (PageWriteback(page) &&
2407 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2408 			    unlikely(page->mapping != mapping)) {
2409 				unlock_page(page);
2410 				continue;
2411 			}
2412 
2413 			wait_on_page_writeback(page);
2414 			BUG_ON(PageWriteback(page));
2415 
2416 			if (mpd->map.m_len == 0)
2417 				mpd->first_page = page->index;
2418 			mpd->next_page = page->index + 1;
2419 			/* Add all dirty buffers to mpd */
2420 			lblk = ((ext4_lblk_t)page->index) <<
2421 				(PAGE_CACHE_SHIFT - blkbits);
2422 			head = page_buffers(page);
2423 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2424 			if (err <= 0)
2425 				goto out;
2426 			err = 0;
2427 			left--;
2428 		}
2429 		pagevec_release(&pvec);
2430 		cond_resched();
2431 	}
2432 	return 0;
2433 out:
2434 	pagevec_release(&pvec);
2435 	return err;
2436 }
2437 
__writepage(struct page * page,struct writeback_control * wbc,void * data)2438 static int __writepage(struct page *page, struct writeback_control *wbc,
2439 		       void *data)
2440 {
2441 	struct address_space *mapping = data;
2442 	int ret = ext4_writepage(page, wbc);
2443 	mapping_set_error(mapping, ret);
2444 	return ret;
2445 }
2446 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2447 static int ext4_writepages(struct address_space *mapping,
2448 			   struct writeback_control *wbc)
2449 {
2450 	pgoff_t	writeback_index = 0;
2451 	long nr_to_write = wbc->nr_to_write;
2452 	int range_whole = 0;
2453 	int cycled = 1;
2454 	handle_t *handle = NULL;
2455 	struct mpage_da_data mpd;
2456 	struct inode *inode = mapping->host;
2457 	int needed_blocks, rsv_blocks = 0, ret = 0;
2458 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2459 	bool done;
2460 	struct blk_plug plug;
2461 	bool give_up_on_write = false;
2462 
2463 	trace_ext4_writepages(inode, wbc);
2464 
2465 	/*
2466 	 * No pages to write? This is mainly a kludge to avoid starting
2467 	 * a transaction for special inodes like journal inode on last iput()
2468 	 * because that could violate lock ordering on umount
2469 	 */
2470 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2471 		goto out_writepages;
2472 
2473 	if (ext4_should_journal_data(inode)) {
2474 		struct blk_plug plug;
2475 
2476 		blk_start_plug(&plug);
2477 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2478 		blk_finish_plug(&plug);
2479 		goto out_writepages;
2480 	}
2481 
2482 	/*
2483 	 * If the filesystem has aborted, it is read-only, so return
2484 	 * right away instead of dumping stack traces later on that
2485 	 * will obscure the real source of the problem.  We test
2486 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2487 	 * the latter could be true if the filesystem is mounted
2488 	 * read-only, and in that case, ext4_writepages should
2489 	 * *never* be called, so if that ever happens, we would want
2490 	 * the stack trace.
2491 	 */
2492 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2493 		ret = -EROFS;
2494 		goto out_writepages;
2495 	}
2496 
2497 	if (ext4_should_dioread_nolock(inode)) {
2498 		/*
2499 		 * We may need to convert up to one extent per block in
2500 		 * the page and we may dirty the inode.
2501 		 */
2502 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2503 	}
2504 
2505 	/*
2506 	 * If we have inline data and arrive here, it means that
2507 	 * we will soon create the block for the 1st page, so
2508 	 * we'd better clear the inline data here.
2509 	 */
2510 	if (ext4_has_inline_data(inode)) {
2511 		/* Just inode will be modified... */
2512 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2513 		if (IS_ERR(handle)) {
2514 			ret = PTR_ERR(handle);
2515 			goto out_writepages;
2516 		}
2517 		BUG_ON(ext4_test_inode_state(inode,
2518 				EXT4_STATE_MAY_INLINE_DATA));
2519 		ext4_destroy_inline_data(handle, inode);
2520 		ext4_journal_stop(handle);
2521 	}
2522 
2523 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2524 		range_whole = 1;
2525 
2526 	if (wbc->range_cyclic) {
2527 		writeback_index = mapping->writeback_index;
2528 		if (writeback_index)
2529 			cycled = 0;
2530 		mpd.first_page = writeback_index;
2531 		mpd.last_page = -1;
2532 	} else {
2533 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2534 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2535 	}
2536 
2537 	mpd.inode = inode;
2538 	mpd.wbc = wbc;
2539 	ext4_io_submit_init(&mpd.io_submit, wbc);
2540 retry:
2541 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2542 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2543 	done = false;
2544 	blk_start_plug(&plug);
2545 	while (!done && mpd.first_page <= mpd.last_page) {
2546 		/* For each extent of pages we use new io_end */
2547 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2548 		if (!mpd.io_submit.io_end) {
2549 			ret = -ENOMEM;
2550 			break;
2551 		}
2552 
2553 		/*
2554 		 * We have two constraints: We find one extent to map and we
2555 		 * must always write out whole page (makes a difference when
2556 		 * blocksize < pagesize) so that we don't block on IO when we
2557 		 * try to write out the rest of the page. Journalled mode is
2558 		 * not supported by delalloc.
2559 		 */
2560 		BUG_ON(ext4_should_journal_data(inode));
2561 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2562 
2563 		/* start a new transaction */
2564 		handle = ext4_journal_start_with_reserve(inode,
2565 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2566 		if (IS_ERR(handle)) {
2567 			ret = PTR_ERR(handle);
2568 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2569 			       "%ld pages, ino %lu; err %d", __func__,
2570 				wbc->nr_to_write, inode->i_ino, ret);
2571 			/* Release allocated io_end */
2572 			ext4_put_io_end(mpd.io_submit.io_end);
2573 			break;
2574 		}
2575 
2576 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2577 		ret = mpage_prepare_extent_to_map(&mpd);
2578 		if (!ret) {
2579 			if (mpd.map.m_len)
2580 				ret = mpage_map_and_submit_extent(handle, &mpd,
2581 					&give_up_on_write);
2582 			else {
2583 				/*
2584 				 * We scanned the whole range (or exhausted
2585 				 * nr_to_write), submitted what was mapped and
2586 				 * didn't find anything needing mapping. We are
2587 				 * done.
2588 				 */
2589 				done = true;
2590 			}
2591 		}
2592 		ext4_journal_stop(handle);
2593 		/* Submit prepared bio */
2594 		ext4_io_submit(&mpd.io_submit);
2595 		/* Unlock pages we didn't use */
2596 		mpage_release_unused_pages(&mpd, give_up_on_write);
2597 		/* Drop our io_end reference we got from init */
2598 		ext4_put_io_end(mpd.io_submit.io_end);
2599 
2600 		if (ret == -ENOSPC && sbi->s_journal) {
2601 			/*
2602 			 * Commit the transaction which would
2603 			 * free blocks released in the transaction
2604 			 * and try again
2605 			 */
2606 			jbd2_journal_force_commit_nested(sbi->s_journal);
2607 			ret = 0;
2608 			continue;
2609 		}
2610 		/* Fatal error - ENOMEM, EIO... */
2611 		if (ret)
2612 			break;
2613 	}
2614 	blk_finish_plug(&plug);
2615 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2616 		cycled = 1;
2617 		mpd.last_page = writeback_index - 1;
2618 		mpd.first_page = 0;
2619 		goto retry;
2620 	}
2621 
2622 	/* Update index */
2623 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2624 		/*
2625 		 * Set the writeback_index so that range_cyclic
2626 		 * mode will write it back later
2627 		 */
2628 		mapping->writeback_index = mpd.first_page;
2629 
2630 out_writepages:
2631 	trace_ext4_writepages_result(inode, wbc, ret,
2632 				     nr_to_write - wbc->nr_to_write);
2633 	return ret;
2634 }
2635 
ext4_nonda_switch(struct super_block * sb)2636 static int ext4_nonda_switch(struct super_block *sb)
2637 {
2638 	s64 free_clusters, dirty_clusters;
2639 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2640 
2641 	/*
2642 	 * switch to non delalloc mode if we are running low
2643 	 * on free block. The free block accounting via percpu
2644 	 * counters can get slightly wrong with percpu_counter_batch getting
2645 	 * accumulated on each CPU without updating global counters
2646 	 * Delalloc need an accurate free block accounting. So switch
2647 	 * to non delalloc when we are near to error range.
2648 	 */
2649 	free_clusters =
2650 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2651 	dirty_clusters =
2652 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2653 	/*
2654 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2655 	 */
2656 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2657 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2658 
2659 	if (2 * free_clusters < 3 * dirty_clusters ||
2660 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2661 		/*
2662 		 * free block count is less than 150% of dirty blocks
2663 		 * or free blocks is less than watermark
2664 		 */
2665 		return 1;
2666 	}
2667 	return 0;
2668 }
2669 
2670 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)2671 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2672 {
2673 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2674 		return 1;
2675 
2676 	if (pos + len <= 0x7fffffffULL)
2677 		return 1;
2678 
2679 	/* We might need to update the superblock to set LARGE_FILE */
2680 	return 2;
2681 }
2682 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2683 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2684 			       loff_t pos, unsigned len, unsigned flags,
2685 			       struct page **pagep, void **fsdata)
2686 {
2687 	int ret, retries = 0;
2688 	struct page *page;
2689 	pgoff_t index;
2690 	struct inode *inode = mapping->host;
2691 	handle_t *handle;
2692 
2693 	index = pos >> PAGE_CACHE_SHIFT;
2694 
2695 	if (ext4_nonda_switch(inode->i_sb)) {
2696 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2697 		return ext4_write_begin(file, mapping, pos,
2698 					len, flags, pagep, fsdata);
2699 	}
2700 	*fsdata = (void *)0;
2701 	trace_ext4_da_write_begin(inode, pos, len, flags);
2702 
2703 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2704 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2705 						      pos, len, flags,
2706 						      pagep, fsdata);
2707 		if (ret < 0)
2708 			return ret;
2709 		if (ret == 1)
2710 			return 0;
2711 	}
2712 
2713 	/*
2714 	 * grab_cache_page_write_begin() can take a long time if the
2715 	 * system is thrashing due to memory pressure, or if the page
2716 	 * is being written back.  So grab it first before we start
2717 	 * the transaction handle.  This also allows us to allocate
2718 	 * the page (if needed) without using GFP_NOFS.
2719 	 */
2720 retry_grab:
2721 	page = grab_cache_page_write_begin(mapping, index, flags);
2722 	if (!page)
2723 		return -ENOMEM;
2724 	unlock_page(page);
2725 
2726 	/*
2727 	 * With delayed allocation, we don't log the i_disksize update
2728 	 * if there is delayed block allocation. But we still need
2729 	 * to journalling the i_disksize update if writes to the end
2730 	 * of file which has an already mapped buffer.
2731 	 */
2732 retry_journal:
2733 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2734 				ext4_da_write_credits(inode, pos, len));
2735 	if (IS_ERR(handle)) {
2736 		page_cache_release(page);
2737 		return PTR_ERR(handle);
2738 	}
2739 
2740 	lock_page(page);
2741 	if (page->mapping != mapping) {
2742 		/* The page got truncated from under us */
2743 		unlock_page(page);
2744 		page_cache_release(page);
2745 		ext4_journal_stop(handle);
2746 		goto retry_grab;
2747 	}
2748 	/* In case writeback began while the page was unlocked */
2749 	wait_for_stable_page(page);
2750 
2751 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2752 	ret = ext4_block_write_begin(page, pos, len,
2753 				     ext4_da_get_block_prep);
2754 #else
2755 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2756 #endif
2757 	if (ret < 0) {
2758 		unlock_page(page);
2759 		ext4_journal_stop(handle);
2760 		/*
2761 		 * block_write_begin may have instantiated a few blocks
2762 		 * outside i_size.  Trim these off again. Don't need
2763 		 * i_size_read because we hold i_mutex.
2764 		 */
2765 		if (pos + len > inode->i_size)
2766 			ext4_truncate_failed_write(inode);
2767 
2768 		if (ret == -ENOSPC &&
2769 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2770 			goto retry_journal;
2771 
2772 		page_cache_release(page);
2773 		return ret;
2774 	}
2775 
2776 	*pagep = page;
2777 	return ret;
2778 }
2779 
2780 /*
2781  * Check if we should update i_disksize
2782  * when write to the end of file but not require block allocation
2783  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)2784 static int ext4_da_should_update_i_disksize(struct page *page,
2785 					    unsigned long offset)
2786 {
2787 	struct buffer_head *bh;
2788 	struct inode *inode = page->mapping->host;
2789 	unsigned int idx;
2790 	int i;
2791 
2792 	bh = page_buffers(page);
2793 	idx = offset >> inode->i_blkbits;
2794 
2795 	for (i = 0; i < idx; i++)
2796 		bh = bh->b_this_page;
2797 
2798 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2799 		return 0;
2800 	return 1;
2801 }
2802 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2803 static int ext4_da_write_end(struct file *file,
2804 			     struct address_space *mapping,
2805 			     loff_t pos, unsigned len, unsigned copied,
2806 			     struct page *page, void *fsdata)
2807 {
2808 	struct inode *inode = mapping->host;
2809 	int ret = 0, ret2;
2810 	handle_t *handle = ext4_journal_current_handle();
2811 	loff_t new_i_size;
2812 	unsigned long start, end;
2813 	int write_mode = (int)(unsigned long)fsdata;
2814 
2815 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2816 		return ext4_write_end(file, mapping, pos,
2817 				      len, copied, page, fsdata);
2818 
2819 	trace_ext4_da_write_end(inode, pos, len, copied);
2820 	start = pos & (PAGE_CACHE_SIZE - 1);
2821 	end = start + copied - 1;
2822 
2823 	/*
2824 	 * generic_write_end() will run mark_inode_dirty() if i_size
2825 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2826 	 * into that.
2827 	 */
2828 	new_i_size = pos + copied;
2829 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2830 		if (ext4_has_inline_data(inode) ||
2831 		    ext4_da_should_update_i_disksize(page, end)) {
2832 			ext4_update_i_disksize(inode, new_i_size);
2833 			/* We need to mark inode dirty even if
2834 			 * new_i_size is less that inode->i_size
2835 			 * bu greater than i_disksize.(hint delalloc)
2836 			 */
2837 			ext4_mark_inode_dirty(handle, inode);
2838 		}
2839 	}
2840 
2841 	if (write_mode != CONVERT_INLINE_DATA &&
2842 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2843 	    ext4_has_inline_data(inode))
2844 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2845 						     page);
2846 	else
2847 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2848 							page, fsdata);
2849 
2850 	copied = ret2;
2851 	if (ret2 < 0)
2852 		ret = ret2;
2853 	ret2 = ext4_journal_stop(handle);
2854 	if (!ret)
2855 		ret = ret2;
2856 
2857 	return ret ? ret : copied;
2858 }
2859 
ext4_da_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2860 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2861 				   unsigned int length)
2862 {
2863 	/*
2864 	 * Drop reserved blocks
2865 	 */
2866 	BUG_ON(!PageLocked(page));
2867 	if (!page_has_buffers(page))
2868 		goto out;
2869 
2870 	ext4_da_page_release_reservation(page, offset, length);
2871 
2872 out:
2873 	ext4_invalidatepage(page, offset, length);
2874 
2875 	return;
2876 }
2877 
2878 /*
2879  * Force all delayed allocation blocks to be allocated for a given inode.
2880  */
ext4_alloc_da_blocks(struct inode * inode)2881 int ext4_alloc_da_blocks(struct inode *inode)
2882 {
2883 	trace_ext4_alloc_da_blocks(inode);
2884 
2885 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2886 		return 0;
2887 
2888 	/*
2889 	 * We do something simple for now.  The filemap_flush() will
2890 	 * also start triggering a write of the data blocks, which is
2891 	 * not strictly speaking necessary (and for users of
2892 	 * laptop_mode, not even desirable).  However, to do otherwise
2893 	 * would require replicating code paths in:
2894 	 *
2895 	 * ext4_writepages() ->
2896 	 *    write_cache_pages() ---> (via passed in callback function)
2897 	 *        __mpage_da_writepage() -->
2898 	 *           mpage_add_bh_to_extent()
2899 	 *           mpage_da_map_blocks()
2900 	 *
2901 	 * The problem is that write_cache_pages(), located in
2902 	 * mm/page-writeback.c, marks pages clean in preparation for
2903 	 * doing I/O, which is not desirable if we're not planning on
2904 	 * doing I/O at all.
2905 	 *
2906 	 * We could call write_cache_pages(), and then redirty all of
2907 	 * the pages by calling redirty_page_for_writepage() but that
2908 	 * would be ugly in the extreme.  So instead we would need to
2909 	 * replicate parts of the code in the above functions,
2910 	 * simplifying them because we wouldn't actually intend to
2911 	 * write out the pages, but rather only collect contiguous
2912 	 * logical block extents, call the multi-block allocator, and
2913 	 * then update the buffer heads with the block allocations.
2914 	 *
2915 	 * For now, though, we'll cheat by calling filemap_flush(),
2916 	 * which will map the blocks, and start the I/O, but not
2917 	 * actually wait for the I/O to complete.
2918 	 */
2919 	return filemap_flush(inode->i_mapping);
2920 }
2921 
2922 /*
2923  * bmap() is special.  It gets used by applications such as lilo and by
2924  * the swapper to find the on-disk block of a specific piece of data.
2925  *
2926  * Naturally, this is dangerous if the block concerned is still in the
2927  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2928  * filesystem and enables swap, then they may get a nasty shock when the
2929  * data getting swapped to that swapfile suddenly gets overwritten by
2930  * the original zero's written out previously to the journal and
2931  * awaiting writeback in the kernel's buffer cache.
2932  *
2933  * So, if we see any bmap calls here on a modified, data-journaled file,
2934  * take extra steps to flush any blocks which might be in the cache.
2935  */
ext4_bmap(struct address_space * mapping,sector_t block)2936 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2937 {
2938 	struct inode *inode = mapping->host;
2939 	journal_t *journal;
2940 	int err;
2941 
2942 	/*
2943 	 * We can get here for an inline file via the FIBMAP ioctl
2944 	 */
2945 	if (ext4_has_inline_data(inode))
2946 		return 0;
2947 
2948 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2949 			test_opt(inode->i_sb, DELALLOC)) {
2950 		/*
2951 		 * With delalloc we want to sync the file
2952 		 * so that we can make sure we allocate
2953 		 * blocks for file
2954 		 */
2955 		filemap_write_and_wait(mapping);
2956 	}
2957 
2958 	if (EXT4_JOURNAL(inode) &&
2959 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2960 		/*
2961 		 * This is a REALLY heavyweight approach, but the use of
2962 		 * bmap on dirty files is expected to be extremely rare:
2963 		 * only if we run lilo or swapon on a freshly made file
2964 		 * do we expect this to happen.
2965 		 *
2966 		 * (bmap requires CAP_SYS_RAWIO so this does not
2967 		 * represent an unprivileged user DOS attack --- we'd be
2968 		 * in trouble if mortal users could trigger this path at
2969 		 * will.)
2970 		 *
2971 		 * NB. EXT4_STATE_JDATA is not set on files other than
2972 		 * regular files.  If somebody wants to bmap a directory
2973 		 * or symlink and gets confused because the buffer
2974 		 * hasn't yet been flushed to disk, they deserve
2975 		 * everything they get.
2976 		 */
2977 
2978 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2979 		journal = EXT4_JOURNAL(inode);
2980 		jbd2_journal_lock_updates(journal);
2981 		err = jbd2_journal_flush(journal);
2982 		jbd2_journal_unlock_updates(journal);
2983 
2984 		if (err)
2985 			return 0;
2986 	}
2987 
2988 	return generic_block_bmap(mapping, block, ext4_get_block);
2989 }
2990 
ext4_readpage(struct file * file,struct page * page)2991 static int ext4_readpage(struct file *file, struct page *page)
2992 {
2993 	int ret = -EAGAIN;
2994 	struct inode *inode = page->mapping->host;
2995 
2996 	trace_ext4_readpage(page);
2997 
2998 	if (ext4_has_inline_data(inode))
2999 		ret = ext4_readpage_inline(inode, page);
3000 
3001 	if (ret == -EAGAIN)
3002 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3003 
3004 	return ret;
3005 }
3006 
3007 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3008 ext4_readpages(struct file *file, struct address_space *mapping,
3009 		struct list_head *pages, unsigned nr_pages)
3010 {
3011 	struct inode *inode = mapping->host;
3012 
3013 	/* If the file has inline data, no need to do readpages. */
3014 	if (ext4_has_inline_data(inode))
3015 		return 0;
3016 
3017 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3018 }
3019 
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3020 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3021 				unsigned int length)
3022 {
3023 	trace_ext4_invalidatepage(page, offset, length);
3024 
3025 	/* No journalling happens on data buffers when this function is used */
3026 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3027 
3028 	block_invalidatepage(page, offset, length);
3029 }
3030 
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3031 static int __ext4_journalled_invalidatepage(struct page *page,
3032 					    unsigned int offset,
3033 					    unsigned int length)
3034 {
3035 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3036 
3037 	trace_ext4_journalled_invalidatepage(page, offset, length);
3038 
3039 	/*
3040 	 * If it's a full truncate we just forget about the pending dirtying
3041 	 */
3042 	if (offset == 0 && length == PAGE_CACHE_SIZE)
3043 		ClearPageChecked(page);
3044 
3045 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3046 }
3047 
3048 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3049 static void ext4_journalled_invalidatepage(struct page *page,
3050 					   unsigned int offset,
3051 					   unsigned int length)
3052 {
3053 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3054 }
3055 
ext4_releasepage(struct page * page,gfp_t wait)3056 static int ext4_releasepage(struct page *page, gfp_t wait)
3057 {
3058 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3059 
3060 	trace_ext4_releasepage(page);
3061 
3062 	/* Page has dirty journalled data -> cannot release */
3063 	if (PageChecked(page))
3064 		return 0;
3065 	if (journal)
3066 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3067 	else
3068 		return try_to_free_buffers(page);
3069 }
3070 
3071 /*
3072  * ext4_get_block used when preparing for a DIO write or buffer write.
3073  * We allocate an uinitialized extent if blocks haven't been allocated.
3074  * The extent will be converted to initialized after the IO is complete.
3075  */
ext4_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3076 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3077 		   struct buffer_head *bh_result, int create)
3078 {
3079 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3080 		   inode->i_ino, create);
3081 	return _ext4_get_block(inode, iblock, bh_result,
3082 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3083 }
3084 
ext4_get_block_write_nolock(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3085 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3086 		   struct buffer_head *bh_result, int create)
3087 {
3088 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3089 		   inode->i_ino, create);
3090 	return _ext4_get_block(inode, iblock, bh_result,
3091 			       EXT4_GET_BLOCKS_NO_LOCK);
3092 }
3093 
ext4_get_block_dax(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3094 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3095 		   struct buffer_head *bh_result, int create)
3096 {
3097 	int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3098 	if (create)
3099 		flags |= EXT4_GET_BLOCKS_CREATE;
3100 	ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3101 		   inode->i_ino, create);
3102 	return _ext4_get_block(inode, iblock, bh_result, flags);
3103 }
3104 
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3105 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3106 			    ssize_t size, void *private)
3107 {
3108         ext4_io_end_t *io_end = iocb->private;
3109 
3110 	/* if not async direct IO just return */
3111 	if (!io_end)
3112 		return;
3113 
3114 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3115 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3116  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3117 		  size);
3118 
3119 	iocb->private = NULL;
3120 	io_end->offset = offset;
3121 	io_end->size = size;
3122 	ext4_put_io_end(io_end);
3123 }
3124 
3125 /*
3126  * For ext4 extent files, ext4 will do direct-io write to holes,
3127  * preallocated extents, and those write extend the file, no need to
3128  * fall back to buffered IO.
3129  *
3130  * For holes, we fallocate those blocks, mark them as unwritten
3131  * If those blocks were preallocated, we mark sure they are split, but
3132  * still keep the range to write as unwritten.
3133  *
3134  * The unwritten extents will be converted to written when DIO is completed.
3135  * For async direct IO, since the IO may still pending when return, we
3136  * set up an end_io call back function, which will do the conversion
3137  * when async direct IO completed.
3138  *
3139  * If the O_DIRECT write will extend the file then add this inode to the
3140  * orphan list.  So recovery will truncate it back to the original size
3141  * if the machine crashes during the write.
3142  *
3143  */
ext4_ext_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3144 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3145 				  loff_t offset)
3146 {
3147 	struct file *file = iocb->ki_filp;
3148 	struct inode *inode = file->f_mapping->host;
3149 	ssize_t ret;
3150 	size_t count = iov_iter_count(iter);
3151 	int overwrite = 0;
3152 	get_block_t *get_block_func = NULL;
3153 	int dio_flags = 0;
3154 	loff_t final_size = offset + count;
3155 	ext4_io_end_t *io_end = NULL;
3156 
3157 	/* Use the old path for reads and writes beyond i_size. */
3158 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3159 		return ext4_ind_direct_IO(iocb, iter, offset);
3160 
3161 	BUG_ON(iocb->private == NULL);
3162 
3163 	/*
3164 	 * Make all waiters for direct IO properly wait also for extent
3165 	 * conversion. This also disallows race between truncate() and
3166 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3167 	 */
3168 	if (iov_iter_rw(iter) == WRITE)
3169 		inode_dio_begin(inode);
3170 
3171 	/* If we do a overwrite dio, i_mutex locking can be released */
3172 	overwrite = *((int *)iocb->private);
3173 
3174 	if (overwrite) {
3175 		down_read(&EXT4_I(inode)->i_data_sem);
3176 		mutex_unlock(&inode->i_mutex);
3177 	}
3178 
3179 	/*
3180 	 * We could direct write to holes and fallocate.
3181 	 *
3182 	 * Allocated blocks to fill the hole are marked as
3183 	 * unwritten to prevent parallel buffered read to expose
3184 	 * the stale data before DIO complete the data IO.
3185 	 *
3186 	 * As to previously fallocated extents, ext4 get_block will
3187 	 * just simply mark the buffer mapped but still keep the
3188 	 * extents unwritten.
3189 	 *
3190 	 * For non AIO case, we will convert those unwritten extents
3191 	 * to written after return back from blockdev_direct_IO.
3192 	 *
3193 	 * For async DIO, the conversion needs to be deferred when the
3194 	 * IO is completed. The ext4 end_io callback function will be
3195 	 * called to take care of the conversion work.  Here for async
3196 	 * case, we allocate an io_end structure to hook to the iocb.
3197 	 */
3198 	iocb->private = NULL;
3199 	ext4_inode_aio_set(inode, NULL);
3200 	if (!is_sync_kiocb(iocb)) {
3201 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3202 		if (!io_end) {
3203 			ret = -ENOMEM;
3204 			goto retake_lock;
3205 		}
3206 		/*
3207 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3208 		 */
3209 		iocb->private = ext4_get_io_end(io_end);
3210 		/*
3211 		 * we save the io structure for current async direct
3212 		 * IO, so that later ext4_map_blocks() could flag the
3213 		 * io structure whether there is a unwritten extents
3214 		 * needs to be converted when IO is completed.
3215 		 */
3216 		ext4_inode_aio_set(inode, io_end);
3217 	}
3218 
3219 	if (overwrite) {
3220 		get_block_func = ext4_get_block_write_nolock;
3221 	} else {
3222 		get_block_func = ext4_get_block_write;
3223 		dio_flags = DIO_LOCKING;
3224 	}
3225 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3226 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3227 #endif
3228 	if (IS_DAX(inode))
3229 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3230 				ext4_end_io_dio, dio_flags);
3231 	else
3232 		ret = __blockdev_direct_IO(iocb, inode,
3233 					   inode->i_sb->s_bdev, iter, offset,
3234 					   get_block_func,
3235 					   ext4_end_io_dio, NULL, dio_flags);
3236 
3237 	/*
3238 	 * Put our reference to io_end. This can free the io_end structure e.g.
3239 	 * in sync IO case or in case of error. It can even perform extent
3240 	 * conversion if all bios we submitted finished before we got here.
3241 	 * Note that in that case iocb->private can be already set to NULL
3242 	 * here.
3243 	 */
3244 	if (io_end) {
3245 		ext4_inode_aio_set(inode, NULL);
3246 		ext4_put_io_end(io_end);
3247 		/*
3248 		 * When no IO was submitted ext4_end_io_dio() was not
3249 		 * called so we have to put iocb's reference.
3250 		 */
3251 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3252 			WARN_ON(iocb->private != io_end);
3253 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3254 			ext4_put_io_end(io_end);
3255 			iocb->private = NULL;
3256 		}
3257 	}
3258 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3259 						EXT4_STATE_DIO_UNWRITTEN)) {
3260 		int err;
3261 		/*
3262 		 * for non AIO case, since the IO is already
3263 		 * completed, we could do the conversion right here
3264 		 */
3265 		err = ext4_convert_unwritten_extents(NULL, inode,
3266 						     offset, ret);
3267 		if (err < 0)
3268 			ret = err;
3269 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3270 	}
3271 
3272 retake_lock:
3273 	if (iov_iter_rw(iter) == WRITE)
3274 		inode_dio_end(inode);
3275 	/* take i_mutex locking again if we do a ovewrite dio */
3276 	if (overwrite) {
3277 		up_read(&EXT4_I(inode)->i_data_sem);
3278 		mutex_lock(&inode->i_mutex);
3279 	}
3280 
3281 	return ret;
3282 }
3283 
ext4_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3284 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3285 			      loff_t offset)
3286 {
3287 	struct file *file = iocb->ki_filp;
3288 	struct inode *inode = file->f_mapping->host;
3289 	size_t count = iov_iter_count(iter);
3290 	ssize_t ret;
3291 
3292 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3293 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3294 		return 0;
3295 #endif
3296 
3297 	/*
3298 	 * If we are doing data journalling we don't support O_DIRECT
3299 	 */
3300 	if (ext4_should_journal_data(inode))
3301 		return 0;
3302 
3303 	/* Let buffer I/O handle the inline data case. */
3304 	if (ext4_has_inline_data(inode))
3305 		return 0;
3306 
3307 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3308 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3309 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3310 	else
3311 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3312 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3313 	return ret;
3314 }
3315 
3316 /*
3317  * Pages can be marked dirty completely asynchronously from ext4's journalling
3318  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3319  * much here because ->set_page_dirty is called under VFS locks.  The page is
3320  * not necessarily locked.
3321  *
3322  * We cannot just dirty the page and leave attached buffers clean, because the
3323  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3324  * or jbddirty because all the journalling code will explode.
3325  *
3326  * So what we do is to mark the page "pending dirty" and next time writepage
3327  * is called, propagate that into the buffers appropriately.
3328  */
ext4_journalled_set_page_dirty(struct page * page)3329 static int ext4_journalled_set_page_dirty(struct page *page)
3330 {
3331 	SetPageChecked(page);
3332 	return __set_page_dirty_nobuffers(page);
3333 }
3334 
3335 static const struct address_space_operations ext4_aops = {
3336 	.readpage		= ext4_readpage,
3337 	.readpages		= ext4_readpages,
3338 	.writepage		= ext4_writepage,
3339 	.writepages		= ext4_writepages,
3340 	.write_begin		= ext4_write_begin,
3341 	.write_end		= ext4_write_end,
3342 	.bmap			= ext4_bmap,
3343 	.invalidatepage		= ext4_invalidatepage,
3344 	.releasepage		= ext4_releasepage,
3345 	.direct_IO		= ext4_direct_IO,
3346 	.migratepage		= buffer_migrate_page,
3347 	.is_partially_uptodate  = block_is_partially_uptodate,
3348 	.error_remove_page	= generic_error_remove_page,
3349 };
3350 
3351 static const struct address_space_operations ext4_journalled_aops = {
3352 	.readpage		= ext4_readpage,
3353 	.readpages		= ext4_readpages,
3354 	.writepage		= ext4_writepage,
3355 	.writepages		= ext4_writepages,
3356 	.write_begin		= ext4_write_begin,
3357 	.write_end		= ext4_journalled_write_end,
3358 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3359 	.bmap			= ext4_bmap,
3360 	.invalidatepage		= ext4_journalled_invalidatepage,
3361 	.releasepage		= ext4_releasepage,
3362 	.direct_IO		= ext4_direct_IO,
3363 	.is_partially_uptodate  = block_is_partially_uptodate,
3364 	.error_remove_page	= generic_error_remove_page,
3365 };
3366 
3367 static const struct address_space_operations ext4_da_aops = {
3368 	.readpage		= ext4_readpage,
3369 	.readpages		= ext4_readpages,
3370 	.writepage		= ext4_writepage,
3371 	.writepages		= ext4_writepages,
3372 	.write_begin		= ext4_da_write_begin,
3373 	.write_end		= ext4_da_write_end,
3374 	.bmap			= ext4_bmap,
3375 	.invalidatepage		= ext4_da_invalidatepage,
3376 	.releasepage		= ext4_releasepage,
3377 	.direct_IO		= ext4_direct_IO,
3378 	.migratepage		= buffer_migrate_page,
3379 	.is_partially_uptodate  = block_is_partially_uptodate,
3380 	.error_remove_page	= generic_error_remove_page,
3381 };
3382 
ext4_set_aops(struct inode * inode)3383 void ext4_set_aops(struct inode *inode)
3384 {
3385 	switch (ext4_inode_journal_mode(inode)) {
3386 	case EXT4_INODE_ORDERED_DATA_MODE:
3387 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3388 		break;
3389 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3390 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3391 		break;
3392 	case EXT4_INODE_JOURNAL_DATA_MODE:
3393 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3394 		return;
3395 	default:
3396 		BUG();
3397 	}
3398 	if (test_opt(inode->i_sb, DELALLOC))
3399 		inode->i_mapping->a_ops = &ext4_da_aops;
3400 	else
3401 		inode->i_mapping->a_ops = &ext4_aops;
3402 }
3403 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3404 static int __ext4_block_zero_page_range(handle_t *handle,
3405 		struct address_space *mapping, loff_t from, loff_t length)
3406 {
3407 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3408 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3409 	unsigned blocksize, pos;
3410 	ext4_lblk_t iblock;
3411 	struct inode *inode = mapping->host;
3412 	struct buffer_head *bh;
3413 	struct page *page;
3414 	int err = 0;
3415 
3416 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3417 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3418 	if (!page)
3419 		return -ENOMEM;
3420 
3421 	blocksize = inode->i_sb->s_blocksize;
3422 
3423 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3424 
3425 	if (!page_has_buffers(page))
3426 		create_empty_buffers(page, blocksize, 0);
3427 
3428 	/* Find the buffer that contains "offset" */
3429 	bh = page_buffers(page);
3430 	pos = blocksize;
3431 	while (offset >= pos) {
3432 		bh = bh->b_this_page;
3433 		iblock++;
3434 		pos += blocksize;
3435 	}
3436 	if (buffer_freed(bh)) {
3437 		BUFFER_TRACE(bh, "freed: skip");
3438 		goto unlock;
3439 	}
3440 	if (!buffer_mapped(bh)) {
3441 		BUFFER_TRACE(bh, "unmapped");
3442 		ext4_get_block(inode, iblock, bh, 0);
3443 		/* unmapped? It's a hole - nothing to do */
3444 		if (!buffer_mapped(bh)) {
3445 			BUFFER_TRACE(bh, "still unmapped");
3446 			goto unlock;
3447 		}
3448 	}
3449 
3450 	/* Ok, it's mapped. Make sure it's up-to-date */
3451 	if (PageUptodate(page))
3452 		set_buffer_uptodate(bh);
3453 
3454 	if (!buffer_uptodate(bh)) {
3455 		err = -EIO;
3456 		ll_rw_block(READ, 1, &bh);
3457 		wait_on_buffer(bh);
3458 		/* Uhhuh. Read error. Complain and punt. */
3459 		if (!buffer_uptodate(bh))
3460 			goto unlock;
3461 		if (S_ISREG(inode->i_mode) &&
3462 		    ext4_encrypted_inode(inode)) {
3463 			/* We expect the key to be set. */
3464 			BUG_ON(!ext4_has_encryption_key(inode));
3465 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3466 			WARN_ON_ONCE(ext4_decrypt(page));
3467 		}
3468 	}
3469 	if (ext4_should_journal_data(inode)) {
3470 		BUFFER_TRACE(bh, "get write access");
3471 		err = ext4_journal_get_write_access(handle, bh);
3472 		if (err)
3473 			goto unlock;
3474 	}
3475 	zero_user(page, offset, length);
3476 	BUFFER_TRACE(bh, "zeroed end of block");
3477 
3478 	if (ext4_should_journal_data(inode)) {
3479 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3480 	} else {
3481 		err = 0;
3482 		mark_buffer_dirty(bh);
3483 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3484 			err = ext4_jbd2_file_inode(handle, inode);
3485 	}
3486 
3487 unlock:
3488 	unlock_page(page);
3489 	page_cache_release(page);
3490 	return err;
3491 }
3492 
3493 /*
3494  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3495  * starting from file offset 'from'.  The range to be zero'd must
3496  * be contained with in one block.  If the specified range exceeds
3497  * the end of the block it will be shortened to end of the block
3498  * that cooresponds to 'from'
3499  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3500 static int ext4_block_zero_page_range(handle_t *handle,
3501 		struct address_space *mapping, loff_t from, loff_t length)
3502 {
3503 	struct inode *inode = mapping->host;
3504 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3505 	unsigned blocksize = inode->i_sb->s_blocksize;
3506 	unsigned max = blocksize - (offset & (blocksize - 1));
3507 
3508 	/*
3509 	 * correct length if it does not fall between
3510 	 * 'from' and the end of the block
3511 	 */
3512 	if (length > max || length < 0)
3513 		length = max;
3514 
3515 	if (IS_DAX(inode))
3516 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3517 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3518 }
3519 
3520 /*
3521  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3522  * up to the end of the block which corresponds to `from'.
3523  * This required during truncate. We need to physically zero the tail end
3524  * of that block so it doesn't yield old data if the file is later grown.
3525  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3526 static int ext4_block_truncate_page(handle_t *handle,
3527 		struct address_space *mapping, loff_t from)
3528 {
3529 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3530 	unsigned length;
3531 	unsigned blocksize;
3532 	struct inode *inode = mapping->host;
3533 
3534 	blocksize = inode->i_sb->s_blocksize;
3535 	length = blocksize - (offset & (blocksize - 1));
3536 
3537 	return ext4_block_zero_page_range(handle, mapping, from, length);
3538 }
3539 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3540 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3541 			     loff_t lstart, loff_t length)
3542 {
3543 	struct super_block *sb = inode->i_sb;
3544 	struct address_space *mapping = inode->i_mapping;
3545 	unsigned partial_start, partial_end;
3546 	ext4_fsblk_t start, end;
3547 	loff_t byte_end = (lstart + length - 1);
3548 	int err = 0;
3549 
3550 	partial_start = lstart & (sb->s_blocksize - 1);
3551 	partial_end = byte_end & (sb->s_blocksize - 1);
3552 
3553 	start = lstart >> sb->s_blocksize_bits;
3554 	end = byte_end >> sb->s_blocksize_bits;
3555 
3556 	/* Handle partial zero within the single block */
3557 	if (start == end &&
3558 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3559 		err = ext4_block_zero_page_range(handle, mapping,
3560 						 lstart, length);
3561 		return err;
3562 	}
3563 	/* Handle partial zero out on the start of the range */
3564 	if (partial_start) {
3565 		err = ext4_block_zero_page_range(handle, mapping,
3566 						 lstart, sb->s_blocksize);
3567 		if (err)
3568 			return err;
3569 	}
3570 	/* Handle partial zero out on the end of the range */
3571 	if (partial_end != sb->s_blocksize - 1)
3572 		err = ext4_block_zero_page_range(handle, mapping,
3573 						 byte_end - partial_end,
3574 						 partial_end + 1);
3575 	return err;
3576 }
3577 
ext4_can_truncate(struct inode * inode)3578 int ext4_can_truncate(struct inode *inode)
3579 {
3580 	if (S_ISREG(inode->i_mode))
3581 		return 1;
3582 	if (S_ISDIR(inode->i_mode))
3583 		return 1;
3584 	if (S_ISLNK(inode->i_mode))
3585 		return !ext4_inode_is_fast_symlink(inode);
3586 	return 0;
3587 }
3588 
3589 /*
3590  * We have to make sure i_disksize gets properly updated before we truncate
3591  * page cache due to hole punching or zero range. Otherwise i_disksize update
3592  * can get lost as it may have been postponed to submission of writeback but
3593  * that will never happen after we truncate page cache.
3594  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3595 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3596 				      loff_t len)
3597 {
3598 	handle_t *handle;
3599 	loff_t size = i_size_read(inode);
3600 
3601 	WARN_ON(!mutex_is_locked(&inode->i_mutex));
3602 	if (offset > size || offset + len < size)
3603 		return 0;
3604 
3605 	if (EXT4_I(inode)->i_disksize >= size)
3606 		return 0;
3607 
3608 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3609 	if (IS_ERR(handle))
3610 		return PTR_ERR(handle);
3611 	ext4_update_i_disksize(inode, size);
3612 	ext4_mark_inode_dirty(handle, inode);
3613 	ext4_journal_stop(handle);
3614 
3615 	return 0;
3616 }
3617 
3618 /*
3619  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3620  * associated with the given offset and length
3621  *
3622  * @inode:  File inode
3623  * @offset: The offset where the hole will begin
3624  * @len:    The length of the hole
3625  *
3626  * Returns: 0 on success or negative on failure
3627  */
3628 
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)3629 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3630 {
3631 	struct super_block *sb = inode->i_sb;
3632 	ext4_lblk_t first_block, stop_block;
3633 	struct address_space *mapping = inode->i_mapping;
3634 	loff_t first_block_offset, last_block_offset;
3635 	handle_t *handle;
3636 	unsigned int credits;
3637 	int ret = 0;
3638 
3639 	if (!S_ISREG(inode->i_mode))
3640 		return -EOPNOTSUPP;
3641 
3642 	trace_ext4_punch_hole(inode, offset, length, 0);
3643 
3644 	/*
3645 	 * Write out all dirty pages to avoid race conditions
3646 	 * Then release them.
3647 	 */
3648 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3649 		ret = filemap_write_and_wait_range(mapping, offset,
3650 						   offset + length - 1);
3651 		if (ret)
3652 			return ret;
3653 	}
3654 
3655 	mutex_lock(&inode->i_mutex);
3656 
3657 	/* No need to punch hole beyond i_size */
3658 	if (offset >= inode->i_size)
3659 		goto out_mutex;
3660 
3661 	/*
3662 	 * If the hole extends beyond i_size, set the hole
3663 	 * to end after the page that contains i_size
3664 	 */
3665 	if (offset + length > inode->i_size) {
3666 		length = inode->i_size +
3667 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3668 		   offset;
3669 	}
3670 
3671 	if (offset & (sb->s_blocksize - 1) ||
3672 	    (offset + length) & (sb->s_blocksize - 1)) {
3673 		/*
3674 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3675 		 * partial block
3676 		 */
3677 		ret = ext4_inode_attach_jinode(inode);
3678 		if (ret < 0)
3679 			goto out_mutex;
3680 
3681 	}
3682 
3683 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3684 	ext4_inode_block_unlocked_dio(inode);
3685 	inode_dio_wait(inode);
3686 
3687 	/*
3688 	 * Prevent page faults from reinstantiating pages we have released from
3689 	 * page cache.
3690 	 */
3691 	down_write(&EXT4_I(inode)->i_mmap_sem);
3692 	first_block_offset = round_up(offset, sb->s_blocksize);
3693 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3694 
3695 	/* Now release the pages and zero block aligned part of pages*/
3696 	if (last_block_offset > first_block_offset) {
3697 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3698 		if (ret)
3699 			goto out_dio;
3700 		truncate_pagecache_range(inode, first_block_offset,
3701 					 last_block_offset);
3702 	}
3703 
3704 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3705 		credits = ext4_writepage_trans_blocks(inode);
3706 	else
3707 		credits = ext4_blocks_for_truncate(inode);
3708 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3709 	if (IS_ERR(handle)) {
3710 		ret = PTR_ERR(handle);
3711 		ext4_std_error(sb, ret);
3712 		goto out_dio;
3713 	}
3714 
3715 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3716 				       length);
3717 	if (ret)
3718 		goto out_stop;
3719 
3720 	first_block = (offset + sb->s_blocksize - 1) >>
3721 		EXT4_BLOCK_SIZE_BITS(sb);
3722 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3723 
3724 	/* If there are no blocks to remove, return now */
3725 	if (first_block >= stop_block)
3726 		goto out_stop;
3727 
3728 	down_write(&EXT4_I(inode)->i_data_sem);
3729 	ext4_discard_preallocations(inode);
3730 
3731 	ret = ext4_es_remove_extent(inode, first_block,
3732 				    stop_block - first_block);
3733 	if (ret) {
3734 		up_write(&EXT4_I(inode)->i_data_sem);
3735 		goto out_stop;
3736 	}
3737 
3738 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3739 		ret = ext4_ext_remove_space(inode, first_block,
3740 					    stop_block - 1);
3741 	else
3742 		ret = ext4_ind_remove_space(handle, inode, first_block,
3743 					    stop_block);
3744 
3745 	up_write(&EXT4_I(inode)->i_data_sem);
3746 	if (IS_SYNC(inode))
3747 		ext4_handle_sync(handle);
3748 
3749 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3750 	ext4_mark_inode_dirty(handle, inode);
3751 out_stop:
3752 	ext4_journal_stop(handle);
3753 out_dio:
3754 	up_write(&EXT4_I(inode)->i_mmap_sem);
3755 	ext4_inode_resume_unlocked_dio(inode);
3756 out_mutex:
3757 	mutex_unlock(&inode->i_mutex);
3758 	return ret;
3759 }
3760 
ext4_inode_attach_jinode(struct inode * inode)3761 int ext4_inode_attach_jinode(struct inode *inode)
3762 {
3763 	struct ext4_inode_info *ei = EXT4_I(inode);
3764 	struct jbd2_inode *jinode;
3765 
3766 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3767 		return 0;
3768 
3769 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3770 	spin_lock(&inode->i_lock);
3771 	if (!ei->jinode) {
3772 		if (!jinode) {
3773 			spin_unlock(&inode->i_lock);
3774 			return -ENOMEM;
3775 		}
3776 		ei->jinode = jinode;
3777 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3778 		jinode = NULL;
3779 	}
3780 	spin_unlock(&inode->i_lock);
3781 	if (unlikely(jinode != NULL))
3782 		jbd2_free_inode(jinode);
3783 	return 0;
3784 }
3785 
3786 /*
3787  * ext4_truncate()
3788  *
3789  * We block out ext4_get_block() block instantiations across the entire
3790  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3791  * simultaneously on behalf of the same inode.
3792  *
3793  * As we work through the truncate and commit bits of it to the journal there
3794  * is one core, guiding principle: the file's tree must always be consistent on
3795  * disk.  We must be able to restart the truncate after a crash.
3796  *
3797  * The file's tree may be transiently inconsistent in memory (although it
3798  * probably isn't), but whenever we close off and commit a journal transaction,
3799  * the contents of (the filesystem + the journal) must be consistent and
3800  * restartable.  It's pretty simple, really: bottom up, right to left (although
3801  * left-to-right works OK too).
3802  *
3803  * Note that at recovery time, journal replay occurs *before* the restart of
3804  * truncate against the orphan inode list.
3805  *
3806  * The committed inode has the new, desired i_size (which is the same as
3807  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3808  * that this inode's truncate did not complete and it will again call
3809  * ext4_truncate() to have another go.  So there will be instantiated blocks
3810  * to the right of the truncation point in a crashed ext4 filesystem.  But
3811  * that's fine - as long as they are linked from the inode, the post-crash
3812  * ext4_truncate() run will find them and release them.
3813  */
ext4_truncate(struct inode * inode)3814 void ext4_truncate(struct inode *inode)
3815 {
3816 	struct ext4_inode_info *ei = EXT4_I(inode);
3817 	unsigned int credits;
3818 	handle_t *handle;
3819 	struct address_space *mapping = inode->i_mapping;
3820 
3821 	/*
3822 	 * There is a possibility that we're either freeing the inode
3823 	 * or it's a completely new inode. In those cases we might not
3824 	 * have i_mutex locked because it's not necessary.
3825 	 */
3826 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3827 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3828 	trace_ext4_truncate_enter(inode);
3829 
3830 	if (!ext4_can_truncate(inode))
3831 		return;
3832 
3833 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3834 
3835 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3836 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3837 
3838 	if (ext4_has_inline_data(inode)) {
3839 		int has_inline = 1;
3840 
3841 		ext4_inline_data_truncate(inode, &has_inline);
3842 		if (has_inline)
3843 			return;
3844 	}
3845 
3846 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3847 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3848 		if (ext4_inode_attach_jinode(inode) < 0)
3849 			return;
3850 	}
3851 
3852 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3853 		credits = ext4_writepage_trans_blocks(inode);
3854 	else
3855 		credits = ext4_blocks_for_truncate(inode);
3856 
3857 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3858 	if (IS_ERR(handle)) {
3859 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3860 		return;
3861 	}
3862 
3863 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3864 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3865 
3866 	/*
3867 	 * We add the inode to the orphan list, so that if this
3868 	 * truncate spans multiple transactions, and we crash, we will
3869 	 * resume the truncate when the filesystem recovers.  It also
3870 	 * marks the inode dirty, to catch the new size.
3871 	 *
3872 	 * Implication: the file must always be in a sane, consistent
3873 	 * truncatable state while each transaction commits.
3874 	 */
3875 	if (ext4_orphan_add(handle, inode))
3876 		goto out_stop;
3877 
3878 	down_write(&EXT4_I(inode)->i_data_sem);
3879 
3880 	ext4_discard_preallocations(inode);
3881 
3882 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3883 		ext4_ext_truncate(handle, inode);
3884 	else
3885 		ext4_ind_truncate(handle, inode);
3886 
3887 	up_write(&ei->i_data_sem);
3888 
3889 	if (IS_SYNC(inode))
3890 		ext4_handle_sync(handle);
3891 
3892 out_stop:
3893 	/*
3894 	 * If this was a simple ftruncate() and the file will remain alive,
3895 	 * then we need to clear up the orphan record which we created above.
3896 	 * However, if this was a real unlink then we were called by
3897 	 * ext4_evict_inode(), and we allow that function to clean up the
3898 	 * orphan info for us.
3899 	 */
3900 	if (inode->i_nlink)
3901 		ext4_orphan_del(handle, inode);
3902 
3903 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3904 	ext4_mark_inode_dirty(handle, inode);
3905 	ext4_journal_stop(handle);
3906 
3907 	trace_ext4_truncate_exit(inode);
3908 }
3909 
3910 /*
3911  * ext4_get_inode_loc returns with an extra refcount against the inode's
3912  * underlying buffer_head on success. If 'in_mem' is true, we have all
3913  * data in memory that is needed to recreate the on-disk version of this
3914  * inode.
3915  */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)3916 static int __ext4_get_inode_loc(struct inode *inode,
3917 				struct ext4_iloc *iloc, int in_mem)
3918 {
3919 	struct ext4_group_desc	*gdp;
3920 	struct buffer_head	*bh;
3921 	struct super_block	*sb = inode->i_sb;
3922 	ext4_fsblk_t		block;
3923 	int			inodes_per_block, inode_offset;
3924 
3925 	iloc->bh = NULL;
3926 	if (!ext4_valid_inum(sb, inode->i_ino))
3927 		return -EFSCORRUPTED;
3928 
3929 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3930 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3931 	if (!gdp)
3932 		return -EIO;
3933 
3934 	/*
3935 	 * Figure out the offset within the block group inode table
3936 	 */
3937 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3938 	inode_offset = ((inode->i_ino - 1) %
3939 			EXT4_INODES_PER_GROUP(sb));
3940 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3941 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3942 
3943 	bh = sb_getblk(sb, block);
3944 	if (unlikely(!bh))
3945 		return -ENOMEM;
3946 	if (!buffer_uptodate(bh)) {
3947 		lock_buffer(bh);
3948 
3949 		/*
3950 		 * If the buffer has the write error flag, we have failed
3951 		 * to write out another inode in the same block.  In this
3952 		 * case, we don't have to read the block because we may
3953 		 * read the old inode data successfully.
3954 		 */
3955 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3956 			set_buffer_uptodate(bh);
3957 
3958 		if (buffer_uptodate(bh)) {
3959 			/* someone brought it uptodate while we waited */
3960 			unlock_buffer(bh);
3961 			goto has_buffer;
3962 		}
3963 
3964 		/*
3965 		 * If we have all information of the inode in memory and this
3966 		 * is the only valid inode in the block, we need not read the
3967 		 * block.
3968 		 */
3969 		if (in_mem) {
3970 			struct buffer_head *bitmap_bh;
3971 			int i, start;
3972 
3973 			start = inode_offset & ~(inodes_per_block - 1);
3974 
3975 			/* Is the inode bitmap in cache? */
3976 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3977 			if (unlikely(!bitmap_bh))
3978 				goto make_io;
3979 
3980 			/*
3981 			 * If the inode bitmap isn't in cache then the
3982 			 * optimisation may end up performing two reads instead
3983 			 * of one, so skip it.
3984 			 */
3985 			if (!buffer_uptodate(bitmap_bh)) {
3986 				brelse(bitmap_bh);
3987 				goto make_io;
3988 			}
3989 			for (i = start; i < start + inodes_per_block; i++) {
3990 				if (i == inode_offset)
3991 					continue;
3992 				if (ext4_test_bit(i, bitmap_bh->b_data))
3993 					break;
3994 			}
3995 			brelse(bitmap_bh);
3996 			if (i == start + inodes_per_block) {
3997 				/* all other inodes are free, so skip I/O */
3998 				memset(bh->b_data, 0, bh->b_size);
3999 				set_buffer_uptodate(bh);
4000 				unlock_buffer(bh);
4001 				goto has_buffer;
4002 			}
4003 		}
4004 
4005 make_io:
4006 		/*
4007 		 * If we need to do any I/O, try to pre-readahead extra
4008 		 * blocks from the inode table.
4009 		 */
4010 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4011 			ext4_fsblk_t b, end, table;
4012 			unsigned num;
4013 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4014 
4015 			table = ext4_inode_table(sb, gdp);
4016 			/* s_inode_readahead_blks is always a power of 2 */
4017 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4018 			if (table > b)
4019 				b = table;
4020 			end = b + ra_blks;
4021 			num = EXT4_INODES_PER_GROUP(sb);
4022 			if (ext4_has_group_desc_csum(sb))
4023 				num -= ext4_itable_unused_count(sb, gdp);
4024 			table += num / inodes_per_block;
4025 			if (end > table)
4026 				end = table;
4027 			while (b <= end)
4028 				sb_breadahead(sb, b++);
4029 		}
4030 
4031 		/*
4032 		 * There are other valid inodes in the buffer, this inode
4033 		 * has in-inode xattrs, or we don't have this inode in memory.
4034 		 * Read the block from disk.
4035 		 */
4036 		trace_ext4_load_inode(inode);
4037 		get_bh(bh);
4038 		bh->b_end_io = end_buffer_read_sync;
4039 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4040 		wait_on_buffer(bh);
4041 		if (!buffer_uptodate(bh)) {
4042 			EXT4_ERROR_INODE_BLOCK(inode, block,
4043 					       "unable to read itable block");
4044 			brelse(bh);
4045 			return -EIO;
4046 		}
4047 	}
4048 has_buffer:
4049 	iloc->bh = bh;
4050 	return 0;
4051 }
4052 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4053 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4054 {
4055 	/* We have all inode data except xattrs in memory here. */
4056 	return __ext4_get_inode_loc(inode, iloc,
4057 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4058 }
4059 
ext4_set_inode_flags(struct inode * inode)4060 void ext4_set_inode_flags(struct inode *inode)
4061 {
4062 	unsigned int flags = EXT4_I(inode)->i_flags;
4063 	unsigned int new_fl = 0;
4064 
4065 	if (flags & EXT4_SYNC_FL)
4066 		new_fl |= S_SYNC;
4067 	if (flags & EXT4_APPEND_FL)
4068 		new_fl |= S_APPEND;
4069 	if (flags & EXT4_IMMUTABLE_FL)
4070 		new_fl |= S_IMMUTABLE;
4071 	if (flags & EXT4_NOATIME_FL)
4072 		new_fl |= S_NOATIME;
4073 	if (flags & EXT4_DIRSYNC_FL)
4074 		new_fl |= S_DIRSYNC;
4075 	if (test_opt(inode->i_sb, DAX))
4076 		new_fl |= S_DAX;
4077 	inode_set_flags(inode, new_fl,
4078 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4079 }
4080 
4081 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)4082 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4083 {
4084 	unsigned int vfs_fl;
4085 	unsigned long old_fl, new_fl;
4086 
4087 	do {
4088 		vfs_fl = ei->vfs_inode.i_flags;
4089 		old_fl = ei->i_flags;
4090 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4091 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4092 				EXT4_DIRSYNC_FL);
4093 		if (vfs_fl & S_SYNC)
4094 			new_fl |= EXT4_SYNC_FL;
4095 		if (vfs_fl & S_APPEND)
4096 			new_fl |= EXT4_APPEND_FL;
4097 		if (vfs_fl & S_IMMUTABLE)
4098 			new_fl |= EXT4_IMMUTABLE_FL;
4099 		if (vfs_fl & S_NOATIME)
4100 			new_fl |= EXT4_NOATIME_FL;
4101 		if (vfs_fl & S_DIRSYNC)
4102 			new_fl |= EXT4_DIRSYNC_FL;
4103 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4104 }
4105 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4106 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4107 				  struct ext4_inode_info *ei)
4108 {
4109 	blkcnt_t i_blocks ;
4110 	struct inode *inode = &(ei->vfs_inode);
4111 	struct super_block *sb = inode->i_sb;
4112 
4113 	if (ext4_has_feature_huge_file(sb)) {
4114 		/* we are using combined 48 bit field */
4115 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4116 					le32_to_cpu(raw_inode->i_blocks_lo);
4117 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4118 			/* i_blocks represent file system block size */
4119 			return i_blocks  << (inode->i_blkbits - 9);
4120 		} else {
4121 			return i_blocks;
4122 		}
4123 	} else {
4124 		return le32_to_cpu(raw_inode->i_blocks_lo);
4125 	}
4126 }
4127 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4128 static inline void ext4_iget_extra_inode(struct inode *inode,
4129 					 struct ext4_inode *raw_inode,
4130 					 struct ext4_inode_info *ei)
4131 {
4132 	__le32 *magic = (void *)raw_inode +
4133 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4134 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4135 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4136 		ext4_find_inline_data_nolock(inode);
4137 	} else
4138 		EXT4_I(inode)->i_inline_off = 0;
4139 }
4140 
ext4_iget(struct super_block * sb,unsigned long ino)4141 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4142 {
4143 	struct ext4_iloc iloc;
4144 	struct ext4_inode *raw_inode;
4145 	struct ext4_inode_info *ei;
4146 	struct inode *inode;
4147 	journal_t *journal = EXT4_SB(sb)->s_journal;
4148 	long ret;
4149 	int block;
4150 	uid_t i_uid;
4151 	gid_t i_gid;
4152 
4153 	inode = iget_locked(sb, ino);
4154 	if (!inode)
4155 		return ERR_PTR(-ENOMEM);
4156 	if (!(inode->i_state & I_NEW))
4157 		return inode;
4158 
4159 	ei = EXT4_I(inode);
4160 	iloc.bh = NULL;
4161 
4162 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4163 	if (ret < 0)
4164 		goto bad_inode;
4165 	raw_inode = ext4_raw_inode(&iloc);
4166 
4167 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4168 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4169 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4170 		    EXT4_INODE_SIZE(inode->i_sb)) {
4171 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4172 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4173 				EXT4_INODE_SIZE(inode->i_sb));
4174 			ret = -EFSCORRUPTED;
4175 			goto bad_inode;
4176 		}
4177 	} else
4178 		ei->i_extra_isize = 0;
4179 
4180 	/* Precompute checksum seed for inode metadata */
4181 	if (ext4_has_metadata_csum(sb)) {
4182 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4183 		__u32 csum;
4184 		__le32 inum = cpu_to_le32(inode->i_ino);
4185 		__le32 gen = raw_inode->i_generation;
4186 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4187 				   sizeof(inum));
4188 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4189 					      sizeof(gen));
4190 	}
4191 
4192 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4193 		EXT4_ERROR_INODE(inode, "checksum invalid");
4194 		ret = -EFSBADCRC;
4195 		goto bad_inode;
4196 	}
4197 
4198 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4199 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4200 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4201 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4202 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4203 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4204 	}
4205 	i_uid_write(inode, i_uid);
4206 	i_gid_write(inode, i_gid);
4207 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4208 
4209 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4210 	ei->i_inline_off = 0;
4211 	ei->i_dir_start_lookup = 0;
4212 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4213 	/* We now have enough fields to check if the inode was active or not.
4214 	 * This is needed because nfsd might try to access dead inodes
4215 	 * the test is that same one that e2fsck uses
4216 	 * NeilBrown 1999oct15
4217 	 */
4218 	if (inode->i_nlink == 0) {
4219 		if ((inode->i_mode == 0 ||
4220 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4221 		    ino != EXT4_BOOT_LOADER_INO) {
4222 			/* this inode is deleted */
4223 			ret = -ESTALE;
4224 			goto bad_inode;
4225 		}
4226 		/* The only unlinked inodes we let through here have
4227 		 * valid i_mode and are being read by the orphan
4228 		 * recovery code: that's fine, we're about to complete
4229 		 * the process of deleting those.
4230 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4231 		 * not initialized on a new filesystem. */
4232 	}
4233 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4234 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4235 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4236 	if (ext4_has_feature_64bit(sb))
4237 		ei->i_file_acl |=
4238 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4239 	inode->i_size = ext4_isize(raw_inode);
4240 	ei->i_disksize = inode->i_size;
4241 #ifdef CONFIG_QUOTA
4242 	ei->i_reserved_quota = 0;
4243 #endif
4244 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4245 	ei->i_block_group = iloc.block_group;
4246 	ei->i_last_alloc_group = ~0;
4247 	/*
4248 	 * NOTE! The in-memory inode i_data array is in little-endian order
4249 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4250 	 */
4251 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4252 		ei->i_data[block] = raw_inode->i_block[block];
4253 	INIT_LIST_HEAD(&ei->i_orphan);
4254 
4255 	/*
4256 	 * Set transaction id's of transactions that have to be committed
4257 	 * to finish f[data]sync. We set them to currently running transaction
4258 	 * as we cannot be sure that the inode or some of its metadata isn't
4259 	 * part of the transaction - the inode could have been reclaimed and
4260 	 * now it is reread from disk.
4261 	 */
4262 	if (journal) {
4263 		transaction_t *transaction;
4264 		tid_t tid;
4265 
4266 		read_lock(&journal->j_state_lock);
4267 		if (journal->j_running_transaction)
4268 			transaction = journal->j_running_transaction;
4269 		else
4270 			transaction = journal->j_committing_transaction;
4271 		if (transaction)
4272 			tid = transaction->t_tid;
4273 		else
4274 			tid = journal->j_commit_sequence;
4275 		read_unlock(&journal->j_state_lock);
4276 		ei->i_sync_tid = tid;
4277 		ei->i_datasync_tid = tid;
4278 	}
4279 
4280 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4281 		if (ei->i_extra_isize == 0) {
4282 			/* The extra space is currently unused. Use it. */
4283 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4284 					    EXT4_GOOD_OLD_INODE_SIZE;
4285 		} else {
4286 			ext4_iget_extra_inode(inode, raw_inode, ei);
4287 		}
4288 	}
4289 
4290 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4291 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4292 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4293 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4294 
4295 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4296 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4297 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4298 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4299 				inode->i_version |=
4300 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4301 		}
4302 	}
4303 
4304 	ret = 0;
4305 	if (ei->i_file_acl &&
4306 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4307 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4308 				 ei->i_file_acl);
4309 		ret = -EFSCORRUPTED;
4310 		goto bad_inode;
4311 	} else if (!ext4_has_inline_data(inode)) {
4312 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4313 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4314 			    (S_ISLNK(inode->i_mode) &&
4315 			     !ext4_inode_is_fast_symlink(inode))))
4316 				/* Validate extent which is part of inode */
4317 				ret = ext4_ext_check_inode(inode);
4318 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4319 			   (S_ISLNK(inode->i_mode) &&
4320 			    !ext4_inode_is_fast_symlink(inode))) {
4321 			/* Validate block references which are part of inode */
4322 			ret = ext4_ind_check_inode(inode);
4323 		}
4324 	}
4325 	if (ret)
4326 		goto bad_inode;
4327 
4328 	if (S_ISREG(inode->i_mode)) {
4329 		inode->i_op = &ext4_file_inode_operations;
4330 		inode->i_fop = &ext4_file_operations;
4331 		ext4_set_aops(inode);
4332 	} else if (S_ISDIR(inode->i_mode)) {
4333 		inode->i_op = &ext4_dir_inode_operations;
4334 		inode->i_fop = &ext4_dir_operations;
4335 	} else if (S_ISLNK(inode->i_mode)) {
4336 		if (ext4_encrypted_inode(inode)) {
4337 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4338 			ext4_set_aops(inode);
4339 		} else if (ext4_inode_is_fast_symlink(inode)) {
4340 			inode->i_link = (char *)ei->i_data;
4341 			inode->i_op = &ext4_fast_symlink_inode_operations;
4342 			nd_terminate_link(ei->i_data, inode->i_size,
4343 				sizeof(ei->i_data) - 1);
4344 		} else {
4345 			inode->i_op = &ext4_symlink_inode_operations;
4346 			ext4_set_aops(inode);
4347 		}
4348 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4349 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4350 		inode->i_op = &ext4_special_inode_operations;
4351 		if (raw_inode->i_block[0])
4352 			init_special_inode(inode, inode->i_mode,
4353 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4354 		else
4355 			init_special_inode(inode, inode->i_mode,
4356 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4357 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4358 		make_bad_inode(inode);
4359 	} else {
4360 		ret = -EFSCORRUPTED;
4361 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4362 		goto bad_inode;
4363 	}
4364 	brelse(iloc.bh);
4365 	ext4_set_inode_flags(inode);
4366 	unlock_new_inode(inode);
4367 	return inode;
4368 
4369 bad_inode:
4370 	brelse(iloc.bh);
4371 	iget_failed(inode);
4372 	return ERR_PTR(ret);
4373 }
4374 
ext4_iget_normal(struct super_block * sb,unsigned long ino)4375 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4376 {
4377 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4378 		return ERR_PTR(-EFSCORRUPTED);
4379 	return ext4_iget(sb, ino);
4380 }
4381 
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4382 static int ext4_inode_blocks_set(handle_t *handle,
4383 				struct ext4_inode *raw_inode,
4384 				struct ext4_inode_info *ei)
4385 {
4386 	struct inode *inode = &(ei->vfs_inode);
4387 	u64 i_blocks = inode->i_blocks;
4388 	struct super_block *sb = inode->i_sb;
4389 
4390 	if (i_blocks <= ~0U) {
4391 		/*
4392 		 * i_blocks can be represented in a 32 bit variable
4393 		 * as multiple of 512 bytes
4394 		 */
4395 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4396 		raw_inode->i_blocks_high = 0;
4397 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4398 		return 0;
4399 	}
4400 	if (!ext4_has_feature_huge_file(sb))
4401 		return -EFBIG;
4402 
4403 	if (i_blocks <= 0xffffffffffffULL) {
4404 		/*
4405 		 * i_blocks can be represented in a 48 bit variable
4406 		 * as multiple of 512 bytes
4407 		 */
4408 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4409 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4410 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4411 	} else {
4412 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4413 		/* i_block is stored in file system block size */
4414 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4415 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4416 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4417 	}
4418 	return 0;
4419 }
4420 
4421 struct other_inode {
4422 	unsigned long		orig_ino;
4423 	struct ext4_inode	*raw_inode;
4424 };
4425 
other_inode_match(struct inode * inode,unsigned long ino,void * data)4426 static int other_inode_match(struct inode * inode, unsigned long ino,
4427 			     void *data)
4428 {
4429 	struct other_inode *oi = (struct other_inode *) data;
4430 
4431 	if ((inode->i_ino != ino) ||
4432 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4433 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4434 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4435 		return 0;
4436 	spin_lock(&inode->i_lock);
4437 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4438 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4439 	    (inode->i_state & I_DIRTY_TIME)) {
4440 		struct ext4_inode_info	*ei = EXT4_I(inode);
4441 
4442 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4443 		spin_unlock(&inode->i_lock);
4444 
4445 		spin_lock(&ei->i_raw_lock);
4446 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4447 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4448 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4449 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4450 		spin_unlock(&ei->i_raw_lock);
4451 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4452 		return -1;
4453 	}
4454 	spin_unlock(&inode->i_lock);
4455 	return -1;
4456 }
4457 
4458 /*
4459  * Opportunistically update the other time fields for other inodes in
4460  * the same inode table block.
4461  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)4462 static void ext4_update_other_inodes_time(struct super_block *sb,
4463 					  unsigned long orig_ino, char *buf)
4464 {
4465 	struct other_inode oi;
4466 	unsigned long ino;
4467 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4468 	int inode_size = EXT4_INODE_SIZE(sb);
4469 
4470 	oi.orig_ino = orig_ino;
4471 	/*
4472 	 * Calculate the first inode in the inode table block.  Inode
4473 	 * numbers are one-based.  That is, the first inode in a block
4474 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4475 	 */
4476 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4477 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4478 		if (ino == orig_ino)
4479 			continue;
4480 		oi.raw_inode = (struct ext4_inode *) buf;
4481 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4482 	}
4483 }
4484 
4485 /*
4486  * Post the struct inode info into an on-disk inode location in the
4487  * buffer-cache.  This gobbles the caller's reference to the
4488  * buffer_head in the inode location struct.
4489  *
4490  * The caller must have write access to iloc->bh.
4491  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4492 static int ext4_do_update_inode(handle_t *handle,
4493 				struct inode *inode,
4494 				struct ext4_iloc *iloc)
4495 {
4496 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4497 	struct ext4_inode_info *ei = EXT4_I(inode);
4498 	struct buffer_head *bh = iloc->bh;
4499 	struct super_block *sb = inode->i_sb;
4500 	int err = 0, rc, block;
4501 	int need_datasync = 0, set_large_file = 0;
4502 	uid_t i_uid;
4503 	gid_t i_gid;
4504 
4505 	spin_lock(&ei->i_raw_lock);
4506 
4507 	/* For fields not tracked in the in-memory inode,
4508 	 * initialise them to zero for new inodes. */
4509 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4510 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4511 
4512 	ext4_get_inode_flags(ei);
4513 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4514 	i_uid = i_uid_read(inode);
4515 	i_gid = i_gid_read(inode);
4516 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4517 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4518 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4519 /*
4520  * Fix up interoperability with old kernels. Otherwise, old inodes get
4521  * re-used with the upper 16 bits of the uid/gid intact
4522  */
4523 		if (!ei->i_dtime) {
4524 			raw_inode->i_uid_high =
4525 				cpu_to_le16(high_16_bits(i_uid));
4526 			raw_inode->i_gid_high =
4527 				cpu_to_le16(high_16_bits(i_gid));
4528 		} else {
4529 			raw_inode->i_uid_high = 0;
4530 			raw_inode->i_gid_high = 0;
4531 		}
4532 	} else {
4533 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4534 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4535 		raw_inode->i_uid_high = 0;
4536 		raw_inode->i_gid_high = 0;
4537 	}
4538 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4539 
4540 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4541 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4542 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4543 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4544 
4545 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4546 	if (err) {
4547 		spin_unlock(&ei->i_raw_lock);
4548 		goto out_brelse;
4549 	}
4550 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4551 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4552 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4553 		raw_inode->i_file_acl_high =
4554 			cpu_to_le16(ei->i_file_acl >> 32);
4555 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4556 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4557 		ext4_isize_set(raw_inode, ei->i_disksize);
4558 		need_datasync = 1;
4559 	}
4560 	if (ei->i_disksize > 0x7fffffffULL) {
4561 		if (!ext4_has_feature_large_file(sb) ||
4562 				EXT4_SB(sb)->s_es->s_rev_level ==
4563 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4564 			set_large_file = 1;
4565 	}
4566 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4567 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4568 		if (old_valid_dev(inode->i_rdev)) {
4569 			raw_inode->i_block[0] =
4570 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4571 			raw_inode->i_block[1] = 0;
4572 		} else {
4573 			raw_inode->i_block[0] = 0;
4574 			raw_inode->i_block[1] =
4575 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4576 			raw_inode->i_block[2] = 0;
4577 		}
4578 	} else if (!ext4_has_inline_data(inode)) {
4579 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4580 			raw_inode->i_block[block] = ei->i_data[block];
4581 	}
4582 
4583 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4584 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4585 		if (ei->i_extra_isize) {
4586 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4587 				raw_inode->i_version_hi =
4588 					cpu_to_le32(inode->i_version >> 32);
4589 			raw_inode->i_extra_isize =
4590 				cpu_to_le16(ei->i_extra_isize);
4591 		}
4592 	}
4593 	ext4_inode_csum_set(inode, raw_inode, ei);
4594 	spin_unlock(&ei->i_raw_lock);
4595 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4596 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4597 					      bh->b_data);
4598 
4599 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4600 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4601 	if (!err)
4602 		err = rc;
4603 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4604 	if (set_large_file) {
4605 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4606 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4607 		if (err)
4608 			goto out_brelse;
4609 		ext4_update_dynamic_rev(sb);
4610 		ext4_set_feature_large_file(sb);
4611 		ext4_handle_sync(handle);
4612 		err = ext4_handle_dirty_super(handle, sb);
4613 	}
4614 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4615 out_brelse:
4616 	brelse(bh);
4617 	ext4_std_error(inode->i_sb, err);
4618 	return err;
4619 }
4620 
4621 /*
4622  * ext4_write_inode()
4623  *
4624  * We are called from a few places:
4625  *
4626  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4627  *   Here, there will be no transaction running. We wait for any running
4628  *   transaction to commit.
4629  *
4630  * - Within flush work (sys_sync(), kupdate and such).
4631  *   We wait on commit, if told to.
4632  *
4633  * - Within iput_final() -> write_inode_now()
4634  *   We wait on commit, if told to.
4635  *
4636  * In all cases it is actually safe for us to return without doing anything,
4637  * because the inode has been copied into a raw inode buffer in
4638  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4639  * writeback.
4640  *
4641  * Note that we are absolutely dependent upon all inode dirtiers doing the
4642  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4643  * which we are interested.
4644  *
4645  * It would be a bug for them to not do this.  The code:
4646  *
4647  *	mark_inode_dirty(inode)
4648  *	stuff();
4649  *	inode->i_size = expr;
4650  *
4651  * is in error because write_inode() could occur while `stuff()' is running,
4652  * and the new i_size will be lost.  Plus the inode will no longer be on the
4653  * superblock's dirty inode list.
4654  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)4655 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4656 {
4657 	int err;
4658 
4659 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4660 		return 0;
4661 
4662 	if (EXT4_SB(inode->i_sb)->s_journal) {
4663 		if (ext4_journal_current_handle()) {
4664 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4665 			dump_stack();
4666 			return -EIO;
4667 		}
4668 
4669 		/*
4670 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4671 		 * ext4_sync_fs() will force the commit after everything is
4672 		 * written.
4673 		 */
4674 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4675 			return 0;
4676 
4677 		err = ext4_force_commit(inode->i_sb);
4678 	} else {
4679 		struct ext4_iloc iloc;
4680 
4681 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4682 		if (err)
4683 			return err;
4684 		/*
4685 		 * sync(2) will flush the whole buffer cache. No need to do
4686 		 * it here separately for each inode.
4687 		 */
4688 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4689 			sync_dirty_buffer(iloc.bh);
4690 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4691 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4692 					 "IO error syncing inode");
4693 			err = -EIO;
4694 		}
4695 		brelse(iloc.bh);
4696 	}
4697 	return err;
4698 }
4699 
4700 /*
4701  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4702  * buffers that are attached to a page stradding i_size and are undergoing
4703  * commit. In that case we have to wait for commit to finish and try again.
4704  */
ext4_wait_for_tail_page_commit(struct inode * inode)4705 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4706 {
4707 	struct page *page;
4708 	unsigned offset;
4709 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4710 	tid_t commit_tid = 0;
4711 	int ret;
4712 
4713 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4714 	/*
4715 	 * All buffers in the last page remain valid? Then there's nothing to
4716 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4717 	 * blocksize case
4718 	 */
4719 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4720 		return;
4721 	while (1) {
4722 		page = find_lock_page(inode->i_mapping,
4723 				      inode->i_size >> PAGE_CACHE_SHIFT);
4724 		if (!page)
4725 			return;
4726 		ret = __ext4_journalled_invalidatepage(page, offset,
4727 						PAGE_CACHE_SIZE - offset);
4728 		unlock_page(page);
4729 		page_cache_release(page);
4730 		if (ret != -EBUSY)
4731 			return;
4732 		commit_tid = 0;
4733 		read_lock(&journal->j_state_lock);
4734 		if (journal->j_committing_transaction)
4735 			commit_tid = journal->j_committing_transaction->t_tid;
4736 		read_unlock(&journal->j_state_lock);
4737 		if (commit_tid)
4738 			jbd2_log_wait_commit(journal, commit_tid);
4739 	}
4740 }
4741 
4742 /*
4743  * ext4_setattr()
4744  *
4745  * Called from notify_change.
4746  *
4747  * We want to trap VFS attempts to truncate the file as soon as
4748  * possible.  In particular, we want to make sure that when the VFS
4749  * shrinks i_size, we put the inode on the orphan list and modify
4750  * i_disksize immediately, so that during the subsequent flushing of
4751  * dirty pages and freeing of disk blocks, we can guarantee that any
4752  * commit will leave the blocks being flushed in an unused state on
4753  * disk.  (On recovery, the inode will get truncated and the blocks will
4754  * be freed, so we have a strong guarantee that no future commit will
4755  * leave these blocks visible to the user.)
4756  *
4757  * Another thing we have to assure is that if we are in ordered mode
4758  * and inode is still attached to the committing transaction, we must
4759  * we start writeout of all the dirty pages which are being truncated.
4760  * This way we are sure that all the data written in the previous
4761  * transaction are already on disk (truncate waits for pages under
4762  * writeback).
4763  *
4764  * Called with inode->i_mutex down.
4765  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)4766 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4767 {
4768 	struct inode *inode = d_inode(dentry);
4769 	int error, rc = 0;
4770 	int orphan = 0;
4771 	const unsigned int ia_valid = attr->ia_valid;
4772 
4773 	error = inode_change_ok(inode, attr);
4774 	if (error)
4775 		return error;
4776 
4777 	if (is_quota_modification(inode, attr)) {
4778 		error = dquot_initialize(inode);
4779 		if (error)
4780 			return error;
4781 	}
4782 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4783 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4784 		handle_t *handle;
4785 
4786 		/* (user+group)*(old+new) structure, inode write (sb,
4787 		 * inode block, ? - but truncate inode update has it) */
4788 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4789 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4790 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4791 		if (IS_ERR(handle)) {
4792 			error = PTR_ERR(handle);
4793 			goto err_out;
4794 		}
4795 		error = dquot_transfer(inode, attr);
4796 		if (error) {
4797 			ext4_journal_stop(handle);
4798 			return error;
4799 		}
4800 		/* Update corresponding info in inode so that everything is in
4801 		 * one transaction */
4802 		if (attr->ia_valid & ATTR_UID)
4803 			inode->i_uid = attr->ia_uid;
4804 		if (attr->ia_valid & ATTR_GID)
4805 			inode->i_gid = attr->ia_gid;
4806 		error = ext4_mark_inode_dirty(handle, inode);
4807 		ext4_journal_stop(handle);
4808 	}
4809 
4810 	if (attr->ia_valid & ATTR_SIZE) {
4811 		handle_t *handle;
4812 		loff_t oldsize = inode->i_size;
4813 		int shrink = (attr->ia_size <= inode->i_size);
4814 
4815 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4816 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4817 
4818 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4819 				return -EFBIG;
4820 		}
4821 		if (!S_ISREG(inode->i_mode))
4822 			return -EINVAL;
4823 
4824 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4825 			inode_inc_iversion(inode);
4826 
4827 		if (ext4_should_order_data(inode) &&
4828 		    (attr->ia_size < inode->i_size)) {
4829 			error = ext4_begin_ordered_truncate(inode,
4830 							    attr->ia_size);
4831 			if (error)
4832 				goto err_out;
4833 		}
4834 		if (attr->ia_size != inode->i_size) {
4835 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4836 			if (IS_ERR(handle)) {
4837 				error = PTR_ERR(handle);
4838 				goto err_out;
4839 			}
4840 			if (ext4_handle_valid(handle) && shrink) {
4841 				error = ext4_orphan_add(handle, inode);
4842 				orphan = 1;
4843 			}
4844 			/*
4845 			 * Update c/mtime on truncate up, ext4_truncate() will
4846 			 * update c/mtime in shrink case below
4847 			 */
4848 			if (!shrink) {
4849 				inode->i_mtime = ext4_current_time(inode);
4850 				inode->i_ctime = inode->i_mtime;
4851 			}
4852 			down_write(&EXT4_I(inode)->i_data_sem);
4853 			EXT4_I(inode)->i_disksize = attr->ia_size;
4854 			rc = ext4_mark_inode_dirty(handle, inode);
4855 			if (!error)
4856 				error = rc;
4857 			/*
4858 			 * We have to update i_size under i_data_sem together
4859 			 * with i_disksize to avoid races with writeback code
4860 			 * running ext4_wb_update_i_disksize().
4861 			 */
4862 			if (!error)
4863 				i_size_write(inode, attr->ia_size);
4864 			up_write(&EXT4_I(inode)->i_data_sem);
4865 			ext4_journal_stop(handle);
4866 			if (error) {
4867 				if (orphan)
4868 					ext4_orphan_del(NULL, inode);
4869 				goto err_out;
4870 			}
4871 		}
4872 		if (!shrink)
4873 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4874 
4875 		/*
4876 		 * Blocks are going to be removed from the inode. Wait
4877 		 * for dio in flight.  Temporarily disable
4878 		 * dioread_nolock to prevent livelock.
4879 		 */
4880 		if (orphan) {
4881 			if (!ext4_should_journal_data(inode)) {
4882 				ext4_inode_block_unlocked_dio(inode);
4883 				inode_dio_wait(inode);
4884 				ext4_inode_resume_unlocked_dio(inode);
4885 			} else
4886 				ext4_wait_for_tail_page_commit(inode);
4887 		}
4888 		down_write(&EXT4_I(inode)->i_mmap_sem);
4889 		/*
4890 		 * Truncate pagecache after we've waited for commit
4891 		 * in data=journal mode to make pages freeable.
4892 		 */
4893 		truncate_pagecache(inode, inode->i_size);
4894 		if (shrink)
4895 			ext4_truncate(inode);
4896 		up_write(&EXT4_I(inode)->i_mmap_sem);
4897 	}
4898 
4899 	if (!rc) {
4900 		setattr_copy(inode, attr);
4901 		mark_inode_dirty(inode);
4902 	}
4903 
4904 	/*
4905 	 * If the call to ext4_truncate failed to get a transaction handle at
4906 	 * all, we need to clean up the in-core orphan list manually.
4907 	 */
4908 	if (orphan && inode->i_nlink)
4909 		ext4_orphan_del(NULL, inode);
4910 
4911 	if (!rc && (ia_valid & ATTR_MODE))
4912 		rc = posix_acl_chmod(inode, inode->i_mode);
4913 
4914 err_out:
4915 	ext4_std_error(inode->i_sb, error);
4916 	if (!error)
4917 		error = rc;
4918 	return error;
4919 }
4920 
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)4921 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4922 		 struct kstat *stat)
4923 {
4924 	struct inode *inode;
4925 	unsigned long long delalloc_blocks;
4926 
4927 	inode = d_inode(dentry);
4928 	generic_fillattr(inode, stat);
4929 
4930 	/*
4931 	 * If there is inline data in the inode, the inode will normally not
4932 	 * have data blocks allocated (it may have an external xattr block).
4933 	 * Report at least one sector for such files, so tools like tar, rsync,
4934 	 * others doen't incorrectly think the file is completely sparse.
4935 	 */
4936 	if (unlikely(ext4_has_inline_data(inode)))
4937 		stat->blocks += (stat->size + 511) >> 9;
4938 
4939 	/*
4940 	 * We can't update i_blocks if the block allocation is delayed
4941 	 * otherwise in the case of system crash before the real block
4942 	 * allocation is done, we will have i_blocks inconsistent with
4943 	 * on-disk file blocks.
4944 	 * We always keep i_blocks updated together with real
4945 	 * allocation. But to not confuse with user, stat
4946 	 * will return the blocks that include the delayed allocation
4947 	 * blocks for this file.
4948 	 */
4949 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4950 				   EXT4_I(inode)->i_reserved_data_blocks);
4951 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4952 	return 0;
4953 }
4954 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)4955 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4956 				   int pextents)
4957 {
4958 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4959 		return ext4_ind_trans_blocks(inode, lblocks);
4960 	return ext4_ext_index_trans_blocks(inode, pextents);
4961 }
4962 
4963 /*
4964  * Account for index blocks, block groups bitmaps and block group
4965  * descriptor blocks if modify datablocks and index blocks
4966  * worse case, the indexs blocks spread over different block groups
4967  *
4968  * If datablocks are discontiguous, they are possible to spread over
4969  * different block groups too. If they are contiguous, with flexbg,
4970  * they could still across block group boundary.
4971  *
4972  * Also account for superblock, inode, quota and xattr blocks
4973  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)4974 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4975 				  int pextents)
4976 {
4977 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4978 	int gdpblocks;
4979 	int idxblocks;
4980 	int ret = 0;
4981 
4982 	/*
4983 	 * How many index blocks need to touch to map @lblocks logical blocks
4984 	 * to @pextents physical extents?
4985 	 */
4986 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4987 
4988 	ret = idxblocks;
4989 
4990 	/*
4991 	 * Now let's see how many group bitmaps and group descriptors need
4992 	 * to account
4993 	 */
4994 	groups = idxblocks + pextents;
4995 	gdpblocks = groups;
4996 	if (groups > ngroups)
4997 		groups = ngroups;
4998 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4999 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5000 
5001 	/* bitmaps and block group descriptor blocks */
5002 	ret += groups + gdpblocks;
5003 
5004 	/* Blocks for super block, inode, quota and xattr blocks */
5005 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5006 
5007 	return ret;
5008 }
5009 
5010 /*
5011  * Calculate the total number of credits to reserve to fit
5012  * the modification of a single pages into a single transaction,
5013  * which may include multiple chunks of block allocations.
5014  *
5015  * This could be called via ext4_write_begin()
5016  *
5017  * We need to consider the worse case, when
5018  * one new block per extent.
5019  */
ext4_writepage_trans_blocks(struct inode * inode)5020 int ext4_writepage_trans_blocks(struct inode *inode)
5021 {
5022 	int bpp = ext4_journal_blocks_per_page(inode);
5023 	int ret;
5024 
5025 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5026 
5027 	/* Account for data blocks for journalled mode */
5028 	if (ext4_should_journal_data(inode))
5029 		ret += bpp;
5030 	return ret;
5031 }
5032 
5033 /*
5034  * Calculate the journal credits for a chunk of data modification.
5035  *
5036  * This is called from DIO, fallocate or whoever calling
5037  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5038  *
5039  * journal buffers for data blocks are not included here, as DIO
5040  * and fallocate do no need to journal data buffers.
5041  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5042 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5043 {
5044 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5045 }
5046 
5047 /*
5048  * The caller must have previously called ext4_reserve_inode_write().
5049  * Give this, we know that the caller already has write access to iloc->bh.
5050  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5051 int ext4_mark_iloc_dirty(handle_t *handle,
5052 			 struct inode *inode, struct ext4_iloc *iloc)
5053 {
5054 	int err = 0;
5055 
5056 	if (IS_I_VERSION(inode))
5057 		inode_inc_iversion(inode);
5058 
5059 	/* the do_update_inode consumes one bh->b_count */
5060 	get_bh(iloc->bh);
5061 
5062 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5063 	err = ext4_do_update_inode(handle, inode, iloc);
5064 	put_bh(iloc->bh);
5065 	return err;
5066 }
5067 
5068 /*
5069  * On success, We end up with an outstanding reference count against
5070  * iloc->bh.  This _must_ be cleaned up later.
5071  */
5072 
5073 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5074 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5075 			 struct ext4_iloc *iloc)
5076 {
5077 	int err;
5078 
5079 	err = ext4_get_inode_loc(inode, iloc);
5080 	if (!err) {
5081 		BUFFER_TRACE(iloc->bh, "get_write_access");
5082 		err = ext4_journal_get_write_access(handle, iloc->bh);
5083 		if (err) {
5084 			brelse(iloc->bh);
5085 			iloc->bh = NULL;
5086 		}
5087 	}
5088 	ext4_std_error(inode->i_sb, err);
5089 	return err;
5090 }
5091 
5092 /*
5093  * Expand an inode by new_extra_isize bytes.
5094  * Returns 0 on success or negative error number on failure.
5095  */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5096 static int ext4_expand_extra_isize(struct inode *inode,
5097 				   unsigned int new_extra_isize,
5098 				   struct ext4_iloc iloc,
5099 				   handle_t *handle)
5100 {
5101 	struct ext4_inode *raw_inode;
5102 	struct ext4_xattr_ibody_header *header;
5103 
5104 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5105 		return 0;
5106 
5107 	raw_inode = ext4_raw_inode(&iloc);
5108 
5109 	header = IHDR(inode, raw_inode);
5110 
5111 	/* No extended attributes present */
5112 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5113 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5114 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5115 			new_extra_isize);
5116 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5117 		return 0;
5118 	}
5119 
5120 	/* try to expand with EAs present */
5121 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5122 					  raw_inode, handle);
5123 }
5124 
5125 /*
5126  * What we do here is to mark the in-core inode as clean with respect to inode
5127  * dirtiness (it may still be data-dirty).
5128  * This means that the in-core inode may be reaped by prune_icache
5129  * without having to perform any I/O.  This is a very good thing,
5130  * because *any* task may call prune_icache - even ones which
5131  * have a transaction open against a different journal.
5132  *
5133  * Is this cheating?  Not really.  Sure, we haven't written the
5134  * inode out, but prune_icache isn't a user-visible syncing function.
5135  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5136  * we start and wait on commits.
5137  */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)5138 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5139 {
5140 	struct ext4_iloc iloc;
5141 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5142 	static unsigned int mnt_count;
5143 	int err, ret;
5144 
5145 	might_sleep();
5146 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5147 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5148 	if (err)
5149 		return err;
5150 	if (ext4_handle_valid(handle) &&
5151 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5152 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5153 		/*
5154 		 * We need extra buffer credits since we may write into EA block
5155 		 * with this same handle. If journal_extend fails, then it will
5156 		 * only result in a minor loss of functionality for that inode.
5157 		 * If this is felt to be critical, then e2fsck should be run to
5158 		 * force a large enough s_min_extra_isize.
5159 		 */
5160 		if ((jbd2_journal_extend(handle,
5161 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5162 			ret = ext4_expand_extra_isize(inode,
5163 						      sbi->s_want_extra_isize,
5164 						      iloc, handle);
5165 			if (ret) {
5166 				ext4_set_inode_state(inode,
5167 						     EXT4_STATE_NO_EXPAND);
5168 				if (mnt_count !=
5169 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5170 					ext4_warning(inode->i_sb,
5171 					"Unable to expand inode %lu. Delete"
5172 					" some EAs or run e2fsck.",
5173 					inode->i_ino);
5174 					mnt_count =
5175 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5176 				}
5177 			}
5178 		}
5179 	}
5180 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5181 }
5182 
5183 /*
5184  * ext4_dirty_inode() is called from __mark_inode_dirty()
5185  *
5186  * We're really interested in the case where a file is being extended.
5187  * i_size has been changed by generic_commit_write() and we thus need
5188  * to include the updated inode in the current transaction.
5189  *
5190  * Also, dquot_alloc_block() will always dirty the inode when blocks
5191  * are allocated to the file.
5192  *
5193  * If the inode is marked synchronous, we don't honour that here - doing
5194  * so would cause a commit on atime updates, which we don't bother doing.
5195  * We handle synchronous inodes at the highest possible level.
5196  *
5197  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5198  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5199  * to copy into the on-disk inode structure are the timestamp files.
5200  */
ext4_dirty_inode(struct inode * inode,int flags)5201 void ext4_dirty_inode(struct inode *inode, int flags)
5202 {
5203 	handle_t *handle;
5204 
5205 	if (flags == I_DIRTY_TIME)
5206 		return;
5207 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5208 	if (IS_ERR(handle))
5209 		goto out;
5210 
5211 	ext4_mark_inode_dirty(handle, inode);
5212 
5213 	ext4_journal_stop(handle);
5214 out:
5215 	return;
5216 }
5217 
5218 #if 0
5219 /*
5220  * Bind an inode's backing buffer_head into this transaction, to prevent
5221  * it from being flushed to disk early.  Unlike
5222  * ext4_reserve_inode_write, this leaves behind no bh reference and
5223  * returns no iloc structure, so the caller needs to repeat the iloc
5224  * lookup to mark the inode dirty later.
5225  */
5226 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5227 {
5228 	struct ext4_iloc iloc;
5229 
5230 	int err = 0;
5231 	if (handle) {
5232 		err = ext4_get_inode_loc(inode, &iloc);
5233 		if (!err) {
5234 			BUFFER_TRACE(iloc.bh, "get_write_access");
5235 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5236 			if (!err)
5237 				err = ext4_handle_dirty_metadata(handle,
5238 								 NULL,
5239 								 iloc.bh);
5240 			brelse(iloc.bh);
5241 		}
5242 	}
5243 	ext4_std_error(inode->i_sb, err);
5244 	return err;
5245 }
5246 #endif
5247 
ext4_change_inode_journal_flag(struct inode * inode,int val)5248 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5249 {
5250 	journal_t *journal;
5251 	handle_t *handle;
5252 	int err;
5253 
5254 	/*
5255 	 * We have to be very careful here: changing a data block's
5256 	 * journaling status dynamically is dangerous.  If we write a
5257 	 * data block to the journal, change the status and then delete
5258 	 * that block, we risk forgetting to revoke the old log record
5259 	 * from the journal and so a subsequent replay can corrupt data.
5260 	 * So, first we make sure that the journal is empty and that
5261 	 * nobody is changing anything.
5262 	 */
5263 
5264 	journal = EXT4_JOURNAL(inode);
5265 	if (!journal)
5266 		return 0;
5267 	if (is_journal_aborted(journal))
5268 		return -EROFS;
5269 	/* We have to allocate physical blocks for delalloc blocks
5270 	 * before flushing journal. otherwise delalloc blocks can not
5271 	 * be allocated any more. even more truncate on delalloc blocks
5272 	 * could trigger BUG by flushing delalloc blocks in journal.
5273 	 * There is no delalloc block in non-journal data mode.
5274 	 */
5275 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5276 		err = ext4_alloc_da_blocks(inode);
5277 		if (err < 0)
5278 			return err;
5279 	}
5280 
5281 	/* Wait for all existing dio workers */
5282 	ext4_inode_block_unlocked_dio(inode);
5283 	inode_dio_wait(inode);
5284 
5285 	jbd2_journal_lock_updates(journal);
5286 
5287 	/*
5288 	 * OK, there are no updates running now, and all cached data is
5289 	 * synced to disk.  We are now in a completely consistent state
5290 	 * which doesn't have anything in the journal, and we know that
5291 	 * no filesystem updates are running, so it is safe to modify
5292 	 * the inode's in-core data-journaling state flag now.
5293 	 */
5294 
5295 	if (val)
5296 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5297 	else {
5298 		err = jbd2_journal_flush(journal);
5299 		if (err < 0) {
5300 			jbd2_journal_unlock_updates(journal);
5301 			ext4_inode_resume_unlocked_dio(inode);
5302 			return err;
5303 		}
5304 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5305 	}
5306 	ext4_set_aops(inode);
5307 
5308 	jbd2_journal_unlock_updates(journal);
5309 	ext4_inode_resume_unlocked_dio(inode);
5310 
5311 	/* Finally we can mark the inode as dirty. */
5312 
5313 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5314 	if (IS_ERR(handle))
5315 		return PTR_ERR(handle);
5316 
5317 	err = ext4_mark_inode_dirty(handle, inode);
5318 	ext4_handle_sync(handle);
5319 	ext4_journal_stop(handle);
5320 	ext4_std_error(inode->i_sb, err);
5321 
5322 	return err;
5323 }
5324 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)5325 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5326 {
5327 	return !buffer_mapped(bh);
5328 }
5329 
ext4_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)5330 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5331 {
5332 	struct page *page = vmf->page;
5333 	loff_t size;
5334 	unsigned long len;
5335 	int ret;
5336 	struct file *file = vma->vm_file;
5337 	struct inode *inode = file_inode(file);
5338 	struct address_space *mapping = inode->i_mapping;
5339 	handle_t *handle;
5340 	get_block_t *get_block;
5341 	int retries = 0;
5342 
5343 	sb_start_pagefault(inode->i_sb);
5344 	file_update_time(vma->vm_file);
5345 
5346 	down_read(&EXT4_I(inode)->i_mmap_sem);
5347 	/* Delalloc case is easy... */
5348 	if (test_opt(inode->i_sb, DELALLOC) &&
5349 	    !ext4_should_journal_data(inode) &&
5350 	    !ext4_nonda_switch(inode->i_sb)) {
5351 		do {
5352 			ret = block_page_mkwrite(vma, vmf,
5353 						   ext4_da_get_block_prep);
5354 		} while (ret == -ENOSPC &&
5355 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5356 		goto out_ret;
5357 	}
5358 
5359 	lock_page(page);
5360 	size = i_size_read(inode);
5361 	/* Page got truncated from under us? */
5362 	if (page->mapping != mapping || page_offset(page) > size) {
5363 		unlock_page(page);
5364 		ret = VM_FAULT_NOPAGE;
5365 		goto out;
5366 	}
5367 
5368 	if (page->index == size >> PAGE_CACHE_SHIFT)
5369 		len = size & ~PAGE_CACHE_MASK;
5370 	else
5371 		len = PAGE_CACHE_SIZE;
5372 	/*
5373 	 * Return if we have all the buffers mapped. This avoids the need to do
5374 	 * journal_start/journal_stop which can block and take a long time
5375 	 */
5376 	if (page_has_buffers(page)) {
5377 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5378 					    0, len, NULL,
5379 					    ext4_bh_unmapped)) {
5380 			/* Wait so that we don't change page under IO */
5381 			wait_for_stable_page(page);
5382 			ret = VM_FAULT_LOCKED;
5383 			goto out;
5384 		}
5385 	}
5386 	unlock_page(page);
5387 	/* OK, we need to fill the hole... */
5388 	if (ext4_should_dioread_nolock(inode))
5389 		get_block = ext4_get_block_write;
5390 	else
5391 		get_block = ext4_get_block;
5392 retry_alloc:
5393 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5394 				    ext4_writepage_trans_blocks(inode));
5395 	if (IS_ERR(handle)) {
5396 		ret = VM_FAULT_SIGBUS;
5397 		goto out;
5398 	}
5399 	ret = block_page_mkwrite(vma, vmf, get_block);
5400 	if (!ret && ext4_should_journal_data(inode)) {
5401 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5402 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5403 			unlock_page(page);
5404 			ret = VM_FAULT_SIGBUS;
5405 			ext4_journal_stop(handle);
5406 			goto out;
5407 		}
5408 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5409 	}
5410 	ext4_journal_stop(handle);
5411 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5412 		goto retry_alloc;
5413 out_ret:
5414 	ret = block_page_mkwrite_return(ret);
5415 out:
5416 	up_read(&EXT4_I(inode)->i_mmap_sem);
5417 	sb_end_pagefault(inode->i_sb);
5418 	return ret;
5419 }
5420 
ext4_filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)5421 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5422 {
5423 	struct inode *inode = file_inode(vma->vm_file);
5424 	int err;
5425 
5426 	down_read(&EXT4_I(inode)->i_mmap_sem);
5427 	err = filemap_fault(vma, vmf);
5428 	up_read(&EXT4_I(inode)->i_mmap_sem);
5429 
5430 	return err;
5431 }
5432