1/*
2 *  linux/fs/ext4/indirect.c
3 *
4 *  from
5 *
6 *  linux/fs/ext4/inode.c
7 *
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
12 *
13 *  from
14 *
15 *  linux/fs/minix/inode.c
16 *
17 *  Copyright (C) 1991, 1992  Linus Torvalds
18 *
19 *  Goal-directed block allocation by Stephen Tweedie
20 *	(sct@redhat.com), 1993, 1998
21 */
22
23#include "ext4_jbd2.h"
24#include "truncate.h"
25#include <linux/dax.h>
26#include <linux/uio.h>
27
28#include <trace/events/ext4.h>
29
30typedef struct {
31	__le32	*p;
32	__le32	key;
33	struct buffer_head *bh;
34} Indirect;
35
36static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
37{
38	p->key = *(p->p = v);
39	p->bh = bh;
40}
41
42/**
43 *	ext4_block_to_path - parse the block number into array of offsets
44 *	@inode: inode in question (we are only interested in its superblock)
45 *	@i_block: block number to be parsed
46 *	@offsets: array to store the offsets in
47 *	@boundary: set this non-zero if the referred-to block is likely to be
48 *	       followed (on disk) by an indirect block.
49 *
50 *	To store the locations of file's data ext4 uses a data structure common
51 *	for UNIX filesystems - tree of pointers anchored in the inode, with
52 *	data blocks at leaves and indirect blocks in intermediate nodes.
53 *	This function translates the block number into path in that tree -
54 *	return value is the path length and @offsets[n] is the offset of
55 *	pointer to (n+1)th node in the nth one. If @block is out of range
56 *	(negative or too large) warning is printed and zero returned.
57 *
58 *	Note: function doesn't find node addresses, so no IO is needed. All
59 *	we need to know is the capacity of indirect blocks (taken from the
60 *	inode->i_sb).
61 */
62
63/*
64 * Portability note: the last comparison (check that we fit into triple
65 * indirect block) is spelled differently, because otherwise on an
66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
67 * if our filesystem had 8Kb blocks. We might use long long, but that would
68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
69 * i_block would have to be negative in the very beginning, so we would not
70 * get there at all.
71 */
72
73static int ext4_block_to_path(struct inode *inode,
74			      ext4_lblk_t i_block,
75			      ext4_lblk_t offsets[4], int *boundary)
76{
77	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
78	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
79	const long direct_blocks = EXT4_NDIR_BLOCKS,
80		indirect_blocks = ptrs,
81		double_blocks = (1 << (ptrs_bits * 2));
82	int n = 0;
83	int final = 0;
84
85	if (i_block < direct_blocks) {
86		offsets[n++] = i_block;
87		final = direct_blocks;
88	} else if ((i_block -= direct_blocks) < indirect_blocks) {
89		offsets[n++] = EXT4_IND_BLOCK;
90		offsets[n++] = i_block;
91		final = ptrs;
92	} else if ((i_block -= indirect_blocks) < double_blocks) {
93		offsets[n++] = EXT4_DIND_BLOCK;
94		offsets[n++] = i_block >> ptrs_bits;
95		offsets[n++] = i_block & (ptrs - 1);
96		final = ptrs;
97	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
98		offsets[n++] = EXT4_TIND_BLOCK;
99		offsets[n++] = i_block >> (ptrs_bits * 2);
100		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
101		offsets[n++] = i_block & (ptrs - 1);
102		final = ptrs;
103	} else {
104		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
105			     i_block + direct_blocks +
106			     indirect_blocks + double_blocks, inode->i_ino);
107	}
108	if (boundary)
109		*boundary = final - 1 - (i_block & (ptrs - 1));
110	return n;
111}
112
113/**
114 *	ext4_get_branch - read the chain of indirect blocks leading to data
115 *	@inode: inode in question
116 *	@depth: depth of the chain (1 - direct pointer, etc.)
117 *	@offsets: offsets of pointers in inode/indirect blocks
118 *	@chain: place to store the result
119 *	@err: here we store the error value
120 *
121 *	Function fills the array of triples <key, p, bh> and returns %NULL
122 *	if everything went OK or the pointer to the last filled triple
123 *	(incomplete one) otherwise. Upon the return chain[i].key contains
124 *	the number of (i+1)-th block in the chain (as it is stored in memory,
125 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
126 *	number (it points into struct inode for i==0 and into the bh->b_data
127 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
128 *	block for i>0 and NULL for i==0. In other words, it holds the block
129 *	numbers of the chain, addresses they were taken from (and where we can
130 *	verify that chain did not change) and buffer_heads hosting these
131 *	numbers.
132 *
133 *	Function stops when it stumbles upon zero pointer (absent block)
134 *		(pointer to last triple returned, *@err == 0)
135 *	or when it gets an IO error reading an indirect block
136 *		(ditto, *@err == -EIO)
137 *	or when it reads all @depth-1 indirect blocks successfully and finds
138 *	the whole chain, all way to the data (returns %NULL, *err == 0).
139 *
140 *      Need to be called with
141 *      down_read(&EXT4_I(inode)->i_data_sem)
142 */
143static Indirect *ext4_get_branch(struct inode *inode, int depth,
144				 ext4_lblk_t  *offsets,
145				 Indirect chain[4], int *err)
146{
147	struct super_block *sb = inode->i_sb;
148	Indirect *p = chain;
149	struct buffer_head *bh;
150	int ret = -EIO;
151
152	*err = 0;
153	/* i_data is not going away, no lock needed */
154	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
155	if (!p->key)
156		goto no_block;
157	while (--depth) {
158		bh = sb_getblk(sb, le32_to_cpu(p->key));
159		if (unlikely(!bh)) {
160			ret = -ENOMEM;
161			goto failure;
162		}
163
164		if (!bh_uptodate_or_lock(bh)) {
165			if (bh_submit_read(bh) < 0) {
166				put_bh(bh);
167				goto failure;
168			}
169			/* validate block references */
170			if (ext4_check_indirect_blockref(inode, bh)) {
171				put_bh(bh);
172				goto failure;
173			}
174		}
175
176		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
177		/* Reader: end */
178		if (!p->key)
179			goto no_block;
180	}
181	return NULL;
182
183failure:
184	*err = ret;
185no_block:
186	return p;
187}
188
189/**
190 *	ext4_find_near - find a place for allocation with sufficient locality
191 *	@inode: owner
192 *	@ind: descriptor of indirect block.
193 *
194 *	This function returns the preferred place for block allocation.
195 *	It is used when heuristic for sequential allocation fails.
196 *	Rules are:
197 *	  + if there is a block to the left of our position - allocate near it.
198 *	  + if pointer will live in indirect block - allocate near that block.
199 *	  + if pointer will live in inode - allocate in the same
200 *	    cylinder group.
201 *
202 * In the latter case we colour the starting block by the callers PID to
203 * prevent it from clashing with concurrent allocations for a different inode
204 * in the same block group.   The PID is used here so that functionally related
205 * files will be close-by on-disk.
206 *
207 *	Caller must make sure that @ind is valid and will stay that way.
208 */
209static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
210{
211	struct ext4_inode_info *ei = EXT4_I(inode);
212	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
213	__le32 *p;
214
215	/* Try to find previous block */
216	for (p = ind->p - 1; p >= start; p--) {
217		if (*p)
218			return le32_to_cpu(*p);
219	}
220
221	/* No such thing, so let's try location of indirect block */
222	if (ind->bh)
223		return ind->bh->b_blocknr;
224
225	/*
226	 * It is going to be referred to from the inode itself? OK, just put it
227	 * into the same cylinder group then.
228	 */
229	return ext4_inode_to_goal_block(inode);
230}
231
232/**
233 *	ext4_find_goal - find a preferred place for allocation.
234 *	@inode: owner
235 *	@block:  block we want
236 *	@partial: pointer to the last triple within a chain
237 *
238 *	Normally this function find the preferred place for block allocation,
239 *	returns it.
240 *	Because this is only used for non-extent files, we limit the block nr
241 *	to 32 bits.
242 */
243static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
244				   Indirect *partial)
245{
246	ext4_fsblk_t goal;
247
248	/*
249	 * XXX need to get goal block from mballoc's data structures
250	 */
251
252	goal = ext4_find_near(inode, partial);
253	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
254	return goal;
255}
256
257/**
258 *	ext4_blks_to_allocate - Look up the block map and count the number
259 *	of direct blocks need to be allocated for the given branch.
260 *
261 *	@branch: chain of indirect blocks
262 *	@k: number of blocks need for indirect blocks
263 *	@blks: number of data blocks to be mapped.
264 *	@blocks_to_boundary:  the offset in the indirect block
265 *
266 *	return the total number of blocks to be allocate, including the
267 *	direct and indirect blocks.
268 */
269static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
270				 int blocks_to_boundary)
271{
272	unsigned int count = 0;
273
274	/*
275	 * Simple case, [t,d]Indirect block(s) has not allocated yet
276	 * then it's clear blocks on that path have not allocated
277	 */
278	if (k > 0) {
279		/* right now we don't handle cross boundary allocation */
280		if (blks < blocks_to_boundary + 1)
281			count += blks;
282		else
283			count += blocks_to_boundary + 1;
284		return count;
285	}
286
287	count++;
288	while (count < blks && count <= blocks_to_boundary &&
289		le32_to_cpu(*(branch[0].p + count)) == 0) {
290		count++;
291	}
292	return count;
293}
294
295/**
296 *	ext4_alloc_branch - allocate and set up a chain of blocks.
297 *	@handle: handle for this transaction
298 *	@inode: owner
299 *	@indirect_blks: number of allocated indirect blocks
300 *	@blks: number of allocated direct blocks
301 *	@goal: preferred place for allocation
302 *	@offsets: offsets (in the blocks) to store the pointers to next.
303 *	@branch: place to store the chain in.
304 *
305 *	This function allocates blocks, zeroes out all but the last one,
306 *	links them into chain and (if we are synchronous) writes them to disk.
307 *	In other words, it prepares a branch that can be spliced onto the
308 *	inode. It stores the information about that chain in the branch[], in
309 *	the same format as ext4_get_branch() would do. We are calling it after
310 *	we had read the existing part of chain and partial points to the last
311 *	triple of that (one with zero ->key). Upon the exit we have the same
312 *	picture as after the successful ext4_get_block(), except that in one
313 *	place chain is disconnected - *branch->p is still zero (we did not
314 *	set the last link), but branch->key contains the number that should
315 *	be placed into *branch->p to fill that gap.
316 *
317 *	If allocation fails we free all blocks we've allocated (and forget
318 *	their buffer_heads) and return the error value the from failed
319 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
320 *	as described above and return 0.
321 */
322static int ext4_alloc_branch(handle_t *handle,
323			     struct ext4_allocation_request *ar,
324			     int indirect_blks, ext4_lblk_t *offsets,
325			     Indirect *branch)
326{
327	struct buffer_head *		bh;
328	ext4_fsblk_t			b, new_blocks[4];
329	__le32				*p;
330	int				i, j, err, len = 1;
331
332	for (i = 0; i <= indirect_blks; i++) {
333		if (i == indirect_blks) {
334			new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
335		} else
336			ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
337					ar->inode, ar->goal,
338					ar->flags & EXT4_MB_DELALLOC_RESERVED,
339					NULL, &err);
340		if (err) {
341			i--;
342			goto failed;
343		}
344		branch[i].key = cpu_to_le32(new_blocks[i]);
345		if (i == 0)
346			continue;
347
348		bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
349		if (unlikely(!bh)) {
350			err = -ENOMEM;
351			goto failed;
352		}
353		lock_buffer(bh);
354		BUFFER_TRACE(bh, "call get_create_access");
355		err = ext4_journal_get_create_access(handle, bh);
356		if (err) {
357			unlock_buffer(bh);
358			goto failed;
359		}
360
361		memset(bh->b_data, 0, bh->b_size);
362		p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
363		b = new_blocks[i];
364
365		if (i == indirect_blks)
366			len = ar->len;
367		for (j = 0; j < len; j++)
368			*p++ = cpu_to_le32(b++);
369
370		BUFFER_TRACE(bh, "marking uptodate");
371		set_buffer_uptodate(bh);
372		unlock_buffer(bh);
373
374		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
375		err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
376		if (err)
377			goto failed;
378	}
379	return 0;
380failed:
381	for (; i >= 0; i--) {
382		/*
383		 * We want to ext4_forget() only freshly allocated indirect
384		 * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
385		 * buffer at branch[0].bh is indirect block / inode already
386		 * existing before ext4_alloc_branch() was called.
387		 */
388		if (i > 0 && i != indirect_blks && branch[i].bh)
389			ext4_forget(handle, 1, ar->inode, branch[i].bh,
390				    branch[i].bh->b_blocknr);
391		ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
392				 (i == indirect_blks) ? ar->len : 1, 0);
393	}
394	return err;
395}
396
397/**
398 * ext4_splice_branch - splice the allocated branch onto inode.
399 * @handle: handle for this transaction
400 * @inode: owner
401 * @block: (logical) number of block we are adding
402 * @chain: chain of indirect blocks (with a missing link - see
403 *	ext4_alloc_branch)
404 * @where: location of missing link
405 * @num:   number of indirect blocks we are adding
406 * @blks:  number of direct blocks we are adding
407 *
408 * This function fills the missing link and does all housekeeping needed in
409 * inode (->i_blocks, etc.). In case of success we end up with the full
410 * chain to new block and return 0.
411 */
412static int ext4_splice_branch(handle_t *handle,
413			      struct ext4_allocation_request *ar,
414			      Indirect *where, int num)
415{
416	int i;
417	int err = 0;
418	ext4_fsblk_t current_block;
419
420	/*
421	 * If we're splicing into a [td]indirect block (as opposed to the
422	 * inode) then we need to get write access to the [td]indirect block
423	 * before the splice.
424	 */
425	if (where->bh) {
426		BUFFER_TRACE(where->bh, "get_write_access");
427		err = ext4_journal_get_write_access(handle, where->bh);
428		if (err)
429			goto err_out;
430	}
431	/* That's it */
432
433	*where->p = where->key;
434
435	/*
436	 * Update the host buffer_head or inode to point to more just allocated
437	 * direct blocks blocks
438	 */
439	if (num == 0 && ar->len > 1) {
440		current_block = le32_to_cpu(where->key) + 1;
441		for (i = 1; i < ar->len; i++)
442			*(where->p + i) = cpu_to_le32(current_block++);
443	}
444
445	/* We are done with atomic stuff, now do the rest of housekeeping */
446	/* had we spliced it onto indirect block? */
447	if (where->bh) {
448		/*
449		 * If we spliced it onto an indirect block, we haven't
450		 * altered the inode.  Note however that if it is being spliced
451		 * onto an indirect block at the very end of the file (the
452		 * file is growing) then we *will* alter the inode to reflect
453		 * the new i_size.  But that is not done here - it is done in
454		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
455		 */
456		jbd_debug(5, "splicing indirect only\n");
457		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
458		err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
459		if (err)
460			goto err_out;
461	} else {
462		/*
463		 * OK, we spliced it into the inode itself on a direct block.
464		 */
465		ext4_mark_inode_dirty(handle, ar->inode);
466		jbd_debug(5, "splicing direct\n");
467	}
468	return err;
469
470err_out:
471	for (i = 1; i <= num; i++) {
472		/*
473		 * branch[i].bh is newly allocated, so there is no
474		 * need to revoke the block, which is why we don't
475		 * need to set EXT4_FREE_BLOCKS_METADATA.
476		 */
477		ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
478				 EXT4_FREE_BLOCKS_FORGET);
479	}
480	ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
481			 ar->len, 0);
482
483	return err;
484}
485
486/*
487 * The ext4_ind_map_blocks() function handles non-extents inodes
488 * (i.e., using the traditional indirect/double-indirect i_blocks
489 * scheme) for ext4_map_blocks().
490 *
491 * Allocation strategy is simple: if we have to allocate something, we will
492 * have to go the whole way to leaf. So let's do it before attaching anything
493 * to tree, set linkage between the newborn blocks, write them if sync is
494 * required, recheck the path, free and repeat if check fails, otherwise
495 * set the last missing link (that will protect us from any truncate-generated
496 * removals - all blocks on the path are immune now) and possibly force the
497 * write on the parent block.
498 * That has a nice additional property: no special recovery from the failed
499 * allocations is needed - we simply release blocks and do not touch anything
500 * reachable from inode.
501 *
502 * `handle' can be NULL if create == 0.
503 *
504 * return > 0, # of blocks mapped or allocated.
505 * return = 0, if plain lookup failed.
506 * return < 0, error case.
507 *
508 * The ext4_ind_get_blocks() function should be called with
509 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
510 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
511 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
512 * blocks.
513 */
514int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
515			struct ext4_map_blocks *map,
516			int flags)
517{
518	struct ext4_allocation_request ar;
519	int err = -EIO;
520	ext4_lblk_t offsets[4];
521	Indirect chain[4];
522	Indirect *partial;
523	int indirect_blks;
524	int blocks_to_boundary = 0;
525	int depth;
526	int count = 0;
527	ext4_fsblk_t first_block = 0;
528
529	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
530	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
531	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
532	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
533				   &blocks_to_boundary);
534
535	if (depth == 0)
536		goto out;
537
538	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
539
540	/* Simplest case - block found, no allocation needed */
541	if (!partial) {
542		first_block = le32_to_cpu(chain[depth - 1].key);
543		count++;
544		/*map more blocks*/
545		while (count < map->m_len && count <= blocks_to_boundary) {
546			ext4_fsblk_t blk;
547
548			blk = le32_to_cpu(*(chain[depth-1].p + count));
549
550			if (blk == first_block + count)
551				count++;
552			else
553				break;
554		}
555		goto got_it;
556	}
557
558	/* Next simple case - plain lookup or failed read of indirect block */
559	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
560		goto cleanup;
561
562	/*
563	 * Okay, we need to do block allocation.
564	*/
565	if (ext4_has_feature_bigalloc(inode->i_sb)) {
566		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
567				 "non-extent mapped inodes with bigalloc");
568		return -EFSCORRUPTED;
569	}
570
571	/* Set up for the direct block allocation */
572	memset(&ar, 0, sizeof(ar));
573	ar.inode = inode;
574	ar.logical = map->m_lblk;
575	if (S_ISREG(inode->i_mode))
576		ar.flags = EXT4_MB_HINT_DATA;
577	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
578		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
579	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
580		ar.flags |= EXT4_MB_USE_RESERVED;
581
582	ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
583
584	/* the number of blocks need to allocate for [d,t]indirect blocks */
585	indirect_blks = (chain + depth) - partial - 1;
586
587	/*
588	 * Next look up the indirect map to count the totoal number of
589	 * direct blocks to allocate for this branch.
590	 */
591	ar.len = ext4_blks_to_allocate(partial, indirect_blks,
592				       map->m_len, blocks_to_boundary);
593
594	/*
595	 * Block out ext4_truncate while we alter the tree
596	 */
597	err = ext4_alloc_branch(handle, &ar, indirect_blks,
598				offsets + (partial - chain), partial);
599
600	/*
601	 * The ext4_splice_branch call will free and forget any buffers
602	 * on the new chain if there is a failure, but that risks using
603	 * up transaction credits, especially for bitmaps where the
604	 * credits cannot be returned.  Can we handle this somehow?  We
605	 * may need to return -EAGAIN upwards in the worst case.  --sct
606	 */
607	if (!err)
608		err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
609	if (err)
610		goto cleanup;
611
612	map->m_flags |= EXT4_MAP_NEW;
613
614	ext4_update_inode_fsync_trans(handle, inode, 1);
615	count = ar.len;
616got_it:
617	map->m_flags |= EXT4_MAP_MAPPED;
618	map->m_pblk = le32_to_cpu(chain[depth-1].key);
619	map->m_len = count;
620	if (count > blocks_to_boundary)
621		map->m_flags |= EXT4_MAP_BOUNDARY;
622	err = count;
623	/* Clean up and exit */
624	partial = chain + depth - 1;	/* the whole chain */
625cleanup:
626	while (partial > chain) {
627		BUFFER_TRACE(partial->bh, "call brelse");
628		brelse(partial->bh);
629		partial--;
630	}
631out:
632	trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
633	return err;
634}
635
636/*
637 * O_DIRECT for ext3 (or indirect map) based files
638 *
639 * If the O_DIRECT write will extend the file then add this inode to the
640 * orphan list.  So recovery will truncate it back to the original size
641 * if the machine crashes during the write.
642 *
643 * If the O_DIRECT write is intantiating holes inside i_size and the machine
644 * crashes then stale disk data _may_ be exposed inside the file. But current
645 * VFS code falls back into buffered path in that case so we are safe.
646 */
647ssize_t ext4_ind_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
648			   loff_t offset)
649{
650	struct file *file = iocb->ki_filp;
651	struct inode *inode = file->f_mapping->host;
652	struct ext4_inode_info *ei = EXT4_I(inode);
653	handle_t *handle;
654	ssize_t ret;
655	int orphan = 0;
656	size_t count = iov_iter_count(iter);
657	int retries = 0;
658
659	if (iov_iter_rw(iter) == WRITE) {
660		loff_t final_size = offset + count;
661
662		if (final_size > inode->i_size) {
663			/* Credits for sb + inode write */
664			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
665			if (IS_ERR(handle)) {
666				ret = PTR_ERR(handle);
667				goto out;
668			}
669			ret = ext4_orphan_add(handle, inode);
670			if (ret) {
671				ext4_journal_stop(handle);
672				goto out;
673			}
674			orphan = 1;
675			ei->i_disksize = inode->i_size;
676			ext4_journal_stop(handle);
677		}
678	}
679
680retry:
681	if (iov_iter_rw(iter) == READ && ext4_should_dioread_nolock(inode)) {
682		/*
683		 * Nolock dioread optimization may be dynamically disabled
684		 * via ext4_inode_block_unlocked_dio(). Check inode's state
685		 * while holding extra i_dio_count ref.
686		 */
687		inode_dio_begin(inode);
688		smp_mb();
689		if (unlikely(ext4_test_inode_state(inode,
690						    EXT4_STATE_DIOREAD_LOCK))) {
691			inode_dio_end(inode);
692			goto locked;
693		}
694		if (IS_DAX(inode))
695			ret = dax_do_io(iocb, inode, iter, offset,
696					ext4_get_block, NULL, 0);
697		else
698			ret = __blockdev_direct_IO(iocb, inode,
699						   inode->i_sb->s_bdev, iter,
700						   offset, ext4_get_block, NULL,
701						   NULL, 0);
702		inode_dio_end(inode);
703	} else {
704locked:
705		if (IS_DAX(inode))
706			ret = dax_do_io(iocb, inode, iter, offset,
707					ext4_get_block, NULL, DIO_LOCKING);
708		else
709			ret = blockdev_direct_IO(iocb, inode, iter, offset,
710						 ext4_get_block);
711
712		if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
713			loff_t isize = i_size_read(inode);
714			loff_t end = offset + count;
715
716			if (end > isize)
717				ext4_truncate_failed_write(inode);
718		}
719	}
720	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
721		goto retry;
722
723	if (orphan) {
724		int err;
725
726		/* Credits for sb + inode write */
727		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
728		if (IS_ERR(handle)) {
729			/* This is really bad luck. We've written the data
730			 * but cannot extend i_size. Bail out and pretend
731			 * the write failed... */
732			ret = PTR_ERR(handle);
733			if (inode->i_nlink)
734				ext4_orphan_del(NULL, inode);
735
736			goto out;
737		}
738		if (inode->i_nlink)
739			ext4_orphan_del(handle, inode);
740		if (ret > 0) {
741			loff_t end = offset + ret;
742			if (end > inode->i_size) {
743				ei->i_disksize = end;
744				i_size_write(inode, end);
745				/*
746				 * We're going to return a positive `ret'
747				 * here due to non-zero-length I/O, so there's
748				 * no way of reporting error returns from
749				 * ext4_mark_inode_dirty() to userspace.  So
750				 * ignore it.
751				 */
752				ext4_mark_inode_dirty(handle, inode);
753			}
754		}
755		err = ext4_journal_stop(handle);
756		if (ret == 0)
757			ret = err;
758	}
759out:
760	return ret;
761}
762
763/*
764 * Calculate the number of metadata blocks need to reserve
765 * to allocate a new block at @lblocks for non extent file based file
766 */
767int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
768{
769	struct ext4_inode_info *ei = EXT4_I(inode);
770	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
771	int blk_bits;
772
773	if (lblock < EXT4_NDIR_BLOCKS)
774		return 0;
775
776	lblock -= EXT4_NDIR_BLOCKS;
777
778	if (ei->i_da_metadata_calc_len &&
779	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
780		ei->i_da_metadata_calc_len++;
781		return 0;
782	}
783	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
784	ei->i_da_metadata_calc_len = 1;
785	blk_bits = order_base_2(lblock);
786	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
787}
788
789/*
790 * Calculate number of indirect blocks touched by mapping @nrblocks logically
791 * contiguous blocks
792 */
793int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
794{
795	/*
796	 * With N contiguous data blocks, we need at most
797	 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
798	 * 2 dindirect blocks, and 1 tindirect block
799	 */
800	return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
801}
802
803/*
804 * Truncate transactions can be complex and absolutely huge.  So we need to
805 * be able to restart the transaction at a conventient checkpoint to make
806 * sure we don't overflow the journal.
807 *
808 * Try to extend this transaction for the purposes of truncation.  If
809 * extend fails, we need to propagate the failure up and restart the
810 * transaction in the top-level truncate loop. --sct
811 *
812 * Returns 0 if we managed to create more room.  If we can't create more
813 * room, and the transaction must be restarted we return 1.
814 */
815static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
816{
817	if (!ext4_handle_valid(handle))
818		return 0;
819	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
820		return 0;
821	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
822		return 0;
823	return 1;
824}
825
826/*
827 * Probably it should be a library function... search for first non-zero word
828 * or memcmp with zero_page, whatever is better for particular architecture.
829 * Linus?
830 */
831static inline int all_zeroes(__le32 *p, __le32 *q)
832{
833	while (p < q)
834		if (*p++)
835			return 0;
836	return 1;
837}
838
839/**
840 *	ext4_find_shared - find the indirect blocks for partial truncation.
841 *	@inode:	  inode in question
842 *	@depth:	  depth of the affected branch
843 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
844 *	@chain:	  place to store the pointers to partial indirect blocks
845 *	@top:	  place to the (detached) top of branch
846 *
847 *	This is a helper function used by ext4_truncate().
848 *
849 *	When we do truncate() we may have to clean the ends of several
850 *	indirect blocks but leave the blocks themselves alive. Block is
851 *	partially truncated if some data below the new i_size is referred
852 *	from it (and it is on the path to the first completely truncated
853 *	data block, indeed).  We have to free the top of that path along
854 *	with everything to the right of the path. Since no allocation
855 *	past the truncation point is possible until ext4_truncate()
856 *	finishes, we may safely do the latter, but top of branch may
857 *	require special attention - pageout below the truncation point
858 *	might try to populate it.
859 *
860 *	We atomically detach the top of branch from the tree, store the
861 *	block number of its root in *@top, pointers to buffer_heads of
862 *	partially truncated blocks - in @chain[].bh and pointers to
863 *	their last elements that should not be removed - in
864 *	@chain[].p. Return value is the pointer to last filled element
865 *	of @chain.
866 *
867 *	The work left to caller to do the actual freeing of subtrees:
868 *		a) free the subtree starting from *@top
869 *		b) free the subtrees whose roots are stored in
870 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
871 *		c) free the subtrees growing from the inode past the @chain[0].
872 *			(no partially truncated stuff there).  */
873
874static Indirect *ext4_find_shared(struct inode *inode, int depth,
875				  ext4_lblk_t offsets[4], Indirect chain[4],
876				  __le32 *top)
877{
878	Indirect *partial, *p;
879	int k, err;
880
881	*top = 0;
882	/* Make k index the deepest non-null offset + 1 */
883	for (k = depth; k > 1 && !offsets[k-1]; k--)
884		;
885	partial = ext4_get_branch(inode, k, offsets, chain, &err);
886	/* Writer: pointers */
887	if (!partial)
888		partial = chain + k-1;
889	/*
890	 * If the branch acquired continuation since we've looked at it -
891	 * fine, it should all survive and (new) top doesn't belong to us.
892	 */
893	if (!partial->key && *partial->p)
894		/* Writer: end */
895		goto no_top;
896	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
897		;
898	/*
899	 * OK, we've found the last block that must survive. The rest of our
900	 * branch should be detached before unlocking. However, if that rest
901	 * of branch is all ours and does not grow immediately from the inode
902	 * it's easier to cheat and just decrement partial->p.
903	 */
904	if (p == chain + k - 1 && p > chain) {
905		p->p--;
906	} else {
907		*top = *p->p;
908		/* Nope, don't do this in ext4.  Must leave the tree intact */
909#if 0
910		*p->p = 0;
911#endif
912	}
913	/* Writer: end */
914
915	while (partial > p) {
916		brelse(partial->bh);
917		partial--;
918	}
919no_top:
920	return partial;
921}
922
923/*
924 * Zero a number of block pointers in either an inode or an indirect block.
925 * If we restart the transaction we must again get write access to the
926 * indirect block for further modification.
927 *
928 * We release `count' blocks on disk, but (last - first) may be greater
929 * than `count' because there can be holes in there.
930 *
931 * Return 0 on success, 1 on invalid block range
932 * and < 0 on fatal error.
933 */
934static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
935			     struct buffer_head *bh,
936			     ext4_fsblk_t block_to_free,
937			     unsigned long count, __le32 *first,
938			     __le32 *last)
939{
940	__le32 *p;
941	int	flags = EXT4_FREE_BLOCKS_VALIDATED;
942	int	err;
943
944	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
945		flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
946	else if (ext4_should_journal_data(inode))
947		flags |= EXT4_FREE_BLOCKS_FORGET;
948
949	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
950				   count)) {
951		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
952				 "blocks %llu len %lu",
953				 (unsigned long long) block_to_free, count);
954		return 1;
955	}
956
957	if (try_to_extend_transaction(handle, inode)) {
958		if (bh) {
959			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
960			err = ext4_handle_dirty_metadata(handle, inode, bh);
961			if (unlikely(err))
962				goto out_err;
963		}
964		err = ext4_mark_inode_dirty(handle, inode);
965		if (unlikely(err))
966			goto out_err;
967		err = ext4_truncate_restart_trans(handle, inode,
968					ext4_blocks_for_truncate(inode));
969		if (unlikely(err))
970			goto out_err;
971		if (bh) {
972			BUFFER_TRACE(bh, "retaking write access");
973			err = ext4_journal_get_write_access(handle, bh);
974			if (unlikely(err))
975				goto out_err;
976		}
977	}
978
979	for (p = first; p < last; p++)
980		*p = 0;
981
982	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
983	return 0;
984out_err:
985	ext4_std_error(inode->i_sb, err);
986	return err;
987}
988
989/**
990 * ext4_free_data - free a list of data blocks
991 * @handle:	handle for this transaction
992 * @inode:	inode we are dealing with
993 * @this_bh:	indirect buffer_head which contains *@first and *@last
994 * @first:	array of block numbers
995 * @last:	points immediately past the end of array
996 *
997 * We are freeing all blocks referred from that array (numbers are stored as
998 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
999 *
1000 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1001 * blocks are contiguous then releasing them at one time will only affect one
1002 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1003 * actually use a lot of journal space.
1004 *
1005 * @this_bh will be %NULL if @first and @last point into the inode's direct
1006 * block pointers.
1007 */
1008static void ext4_free_data(handle_t *handle, struct inode *inode,
1009			   struct buffer_head *this_bh,
1010			   __le32 *first, __le32 *last)
1011{
1012	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1013	unsigned long count = 0;	    /* Number of blocks in the run */
1014	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
1015					       corresponding to
1016					       block_to_free */
1017	ext4_fsblk_t nr;		    /* Current block # */
1018	__le32 *p;			    /* Pointer into inode/ind
1019					       for current block */
1020	int err = 0;
1021
1022	if (this_bh) {				/* For indirect block */
1023		BUFFER_TRACE(this_bh, "get_write_access");
1024		err = ext4_journal_get_write_access(handle, this_bh);
1025		/* Important: if we can't update the indirect pointers
1026		 * to the blocks, we can't free them. */
1027		if (err)
1028			return;
1029	}
1030
1031	for (p = first; p < last; p++) {
1032		nr = le32_to_cpu(*p);
1033		if (nr) {
1034			/* accumulate blocks to free if they're contiguous */
1035			if (count == 0) {
1036				block_to_free = nr;
1037				block_to_free_p = p;
1038				count = 1;
1039			} else if (nr == block_to_free + count) {
1040				count++;
1041			} else {
1042				err = ext4_clear_blocks(handle, inode, this_bh,
1043						        block_to_free, count,
1044						        block_to_free_p, p);
1045				if (err)
1046					break;
1047				block_to_free = nr;
1048				block_to_free_p = p;
1049				count = 1;
1050			}
1051		}
1052	}
1053
1054	if (!err && count > 0)
1055		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1056					count, block_to_free_p, p);
1057	if (err < 0)
1058		/* fatal error */
1059		return;
1060
1061	if (this_bh) {
1062		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1063
1064		/*
1065		 * The buffer head should have an attached journal head at this
1066		 * point. However, if the data is corrupted and an indirect
1067		 * block pointed to itself, it would have been detached when
1068		 * the block was cleared. Check for this instead of OOPSing.
1069		 */
1070		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1071			ext4_handle_dirty_metadata(handle, inode, this_bh);
1072		else
1073			EXT4_ERROR_INODE(inode,
1074					 "circular indirect block detected at "
1075					 "block %llu",
1076				(unsigned long long) this_bh->b_blocknr);
1077	}
1078}
1079
1080/**
1081 *	ext4_free_branches - free an array of branches
1082 *	@handle: JBD handle for this transaction
1083 *	@inode:	inode we are dealing with
1084 *	@parent_bh: the buffer_head which contains *@first and *@last
1085 *	@first:	array of block numbers
1086 *	@last:	pointer immediately past the end of array
1087 *	@depth:	depth of the branches to free
1088 *
1089 *	We are freeing all blocks referred from these branches (numbers are
1090 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1091 *	appropriately.
1092 */
1093static void ext4_free_branches(handle_t *handle, struct inode *inode,
1094			       struct buffer_head *parent_bh,
1095			       __le32 *first, __le32 *last, int depth)
1096{
1097	ext4_fsblk_t nr;
1098	__le32 *p;
1099
1100	if (ext4_handle_is_aborted(handle))
1101		return;
1102
1103	if (depth--) {
1104		struct buffer_head *bh;
1105		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1106		p = last;
1107		while (--p >= first) {
1108			nr = le32_to_cpu(*p);
1109			if (!nr)
1110				continue;		/* A hole */
1111
1112			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1113						   nr, 1)) {
1114				EXT4_ERROR_INODE(inode,
1115						 "invalid indirect mapped "
1116						 "block %lu (level %d)",
1117						 (unsigned long) nr, depth);
1118				break;
1119			}
1120
1121			/* Go read the buffer for the next level down */
1122			bh = sb_bread(inode->i_sb, nr);
1123
1124			/*
1125			 * A read failure? Report error and clear slot
1126			 * (should be rare).
1127			 */
1128			if (!bh) {
1129				EXT4_ERROR_INODE_BLOCK(inode, nr,
1130						       "Read failure");
1131				continue;
1132			}
1133
1134			/* This zaps the entire block.  Bottom up. */
1135			BUFFER_TRACE(bh, "free child branches");
1136			ext4_free_branches(handle, inode, bh,
1137					(__le32 *) bh->b_data,
1138					(__le32 *) bh->b_data + addr_per_block,
1139					depth);
1140			brelse(bh);
1141
1142			/*
1143			 * Everything below this this pointer has been
1144			 * released.  Now let this top-of-subtree go.
1145			 *
1146			 * We want the freeing of this indirect block to be
1147			 * atomic in the journal with the updating of the
1148			 * bitmap block which owns it.  So make some room in
1149			 * the journal.
1150			 *
1151			 * We zero the parent pointer *after* freeing its
1152			 * pointee in the bitmaps, so if extend_transaction()
1153			 * for some reason fails to put the bitmap changes and
1154			 * the release into the same transaction, recovery
1155			 * will merely complain about releasing a free block,
1156			 * rather than leaking blocks.
1157			 */
1158			if (ext4_handle_is_aborted(handle))
1159				return;
1160			if (try_to_extend_transaction(handle, inode)) {
1161				ext4_mark_inode_dirty(handle, inode);
1162				ext4_truncate_restart_trans(handle, inode,
1163					    ext4_blocks_for_truncate(inode));
1164			}
1165
1166			/*
1167			 * The forget flag here is critical because if
1168			 * we are journaling (and not doing data
1169			 * journaling), we have to make sure a revoke
1170			 * record is written to prevent the journal
1171			 * replay from overwriting the (former)
1172			 * indirect block if it gets reallocated as a
1173			 * data block.  This must happen in the same
1174			 * transaction where the data blocks are
1175			 * actually freed.
1176			 */
1177			ext4_free_blocks(handle, inode, NULL, nr, 1,
1178					 EXT4_FREE_BLOCKS_METADATA|
1179					 EXT4_FREE_BLOCKS_FORGET);
1180
1181			if (parent_bh) {
1182				/*
1183				 * The block which we have just freed is
1184				 * pointed to by an indirect block: journal it
1185				 */
1186				BUFFER_TRACE(parent_bh, "get_write_access");
1187				if (!ext4_journal_get_write_access(handle,
1188								   parent_bh)){
1189					*p = 0;
1190					BUFFER_TRACE(parent_bh,
1191					"call ext4_handle_dirty_metadata");
1192					ext4_handle_dirty_metadata(handle,
1193								   inode,
1194								   parent_bh);
1195				}
1196			}
1197		}
1198	} else {
1199		/* We have reached the bottom of the tree. */
1200		BUFFER_TRACE(parent_bh, "free data blocks");
1201		ext4_free_data(handle, inode, parent_bh, first, last);
1202	}
1203}
1204
1205void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1206{
1207	struct ext4_inode_info *ei = EXT4_I(inode);
1208	__le32 *i_data = ei->i_data;
1209	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1210	ext4_lblk_t offsets[4];
1211	Indirect chain[4];
1212	Indirect *partial;
1213	__le32 nr = 0;
1214	int n = 0;
1215	ext4_lblk_t last_block, max_block;
1216	unsigned blocksize = inode->i_sb->s_blocksize;
1217
1218	last_block = (inode->i_size + blocksize-1)
1219					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1220	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1221					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1222
1223	if (last_block != max_block) {
1224		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1225		if (n == 0)
1226			return;
1227	}
1228
1229	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1230
1231	/*
1232	 * The orphan list entry will now protect us from any crash which
1233	 * occurs before the truncate completes, so it is now safe to propagate
1234	 * the new, shorter inode size (held for now in i_size) into the
1235	 * on-disk inode. We do this via i_disksize, which is the value which
1236	 * ext4 *really* writes onto the disk inode.
1237	 */
1238	ei->i_disksize = inode->i_size;
1239
1240	if (last_block == max_block) {
1241		/*
1242		 * It is unnecessary to free any data blocks if last_block is
1243		 * equal to the indirect block limit.
1244		 */
1245		return;
1246	} else if (n == 1) {		/* direct blocks */
1247		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1248			       i_data + EXT4_NDIR_BLOCKS);
1249		goto do_indirects;
1250	}
1251
1252	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1253	/* Kill the top of shared branch (not detached) */
1254	if (nr) {
1255		if (partial == chain) {
1256			/* Shared branch grows from the inode */
1257			ext4_free_branches(handle, inode, NULL,
1258					   &nr, &nr+1, (chain+n-1) - partial);
1259			*partial->p = 0;
1260			/*
1261			 * We mark the inode dirty prior to restart,
1262			 * and prior to stop.  No need for it here.
1263			 */
1264		} else {
1265			/* Shared branch grows from an indirect block */
1266			BUFFER_TRACE(partial->bh, "get_write_access");
1267			ext4_free_branches(handle, inode, partial->bh,
1268					partial->p,
1269					partial->p+1, (chain+n-1) - partial);
1270		}
1271	}
1272	/* Clear the ends of indirect blocks on the shared branch */
1273	while (partial > chain) {
1274		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1275				   (__le32*)partial->bh->b_data+addr_per_block,
1276				   (chain+n-1) - partial);
1277		BUFFER_TRACE(partial->bh, "call brelse");
1278		brelse(partial->bh);
1279		partial--;
1280	}
1281do_indirects:
1282	/* Kill the remaining (whole) subtrees */
1283	switch (offsets[0]) {
1284	default:
1285		nr = i_data[EXT4_IND_BLOCK];
1286		if (nr) {
1287			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1288			i_data[EXT4_IND_BLOCK] = 0;
1289		}
1290	case EXT4_IND_BLOCK:
1291		nr = i_data[EXT4_DIND_BLOCK];
1292		if (nr) {
1293			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1294			i_data[EXT4_DIND_BLOCK] = 0;
1295		}
1296	case EXT4_DIND_BLOCK:
1297		nr = i_data[EXT4_TIND_BLOCK];
1298		if (nr) {
1299			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1300			i_data[EXT4_TIND_BLOCK] = 0;
1301		}
1302	case EXT4_TIND_BLOCK:
1303		;
1304	}
1305}
1306
1307/**
1308 *	ext4_ind_remove_space - remove space from the range
1309 *	@handle: JBD handle for this transaction
1310 *	@inode:	inode we are dealing with
1311 *	@start:	First block to remove
1312 *	@end:	One block after the last block to remove (exclusive)
1313 *
1314 *	Free the blocks in the defined range (end is exclusive endpoint of
1315 *	range). This is used by ext4_punch_hole().
1316 */
1317int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1318			  ext4_lblk_t start, ext4_lblk_t end)
1319{
1320	struct ext4_inode_info *ei = EXT4_I(inode);
1321	__le32 *i_data = ei->i_data;
1322	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1323	ext4_lblk_t offsets[4], offsets2[4];
1324	Indirect chain[4], chain2[4];
1325	Indirect *partial, *partial2;
1326	ext4_lblk_t max_block;
1327	__le32 nr = 0, nr2 = 0;
1328	int n = 0, n2 = 0;
1329	unsigned blocksize = inode->i_sb->s_blocksize;
1330
1331	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1332					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1333	if (end >= max_block)
1334		end = max_block;
1335	if ((start >= end) || (start > max_block))
1336		return 0;
1337
1338	n = ext4_block_to_path(inode, start, offsets, NULL);
1339	n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1340
1341	BUG_ON(n > n2);
1342
1343	if ((n == 1) && (n == n2)) {
1344		/* We're punching only within direct block range */
1345		ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1346			       i_data + offsets2[0]);
1347		return 0;
1348	} else if (n2 > n) {
1349		/*
1350		 * Start and end are on a different levels so we're going to
1351		 * free partial block at start, and partial block at end of
1352		 * the range. If there are some levels in between then
1353		 * do_indirects label will take care of that.
1354		 */
1355
1356		if (n == 1) {
1357			/*
1358			 * Start is at the direct block level, free
1359			 * everything to the end of the level.
1360			 */
1361			ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1362				       i_data + EXT4_NDIR_BLOCKS);
1363			goto end_range;
1364		}
1365
1366
1367		partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1368		if (nr) {
1369			if (partial == chain) {
1370				/* Shared branch grows from the inode */
1371				ext4_free_branches(handle, inode, NULL,
1372					   &nr, &nr+1, (chain+n-1) - partial);
1373				*partial->p = 0;
1374			} else {
1375				/* Shared branch grows from an indirect block */
1376				BUFFER_TRACE(partial->bh, "get_write_access");
1377				ext4_free_branches(handle, inode, partial->bh,
1378					partial->p,
1379					partial->p+1, (chain+n-1) - partial);
1380			}
1381		}
1382
1383		/*
1384		 * Clear the ends of indirect blocks on the shared branch
1385		 * at the start of the range
1386		 */
1387		while (partial > chain) {
1388			ext4_free_branches(handle, inode, partial->bh,
1389				partial->p + 1,
1390				(__le32 *)partial->bh->b_data+addr_per_block,
1391				(chain+n-1) - partial);
1392			BUFFER_TRACE(partial->bh, "call brelse");
1393			brelse(partial->bh);
1394			partial--;
1395		}
1396
1397end_range:
1398		partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1399		if (nr2) {
1400			if (partial2 == chain2) {
1401				/*
1402				 * Remember, end is exclusive so here we're at
1403				 * the start of the next level we're not going
1404				 * to free. Everything was covered by the start
1405				 * of the range.
1406				 */
1407				goto do_indirects;
1408			}
1409		} else {
1410			/*
1411			 * ext4_find_shared returns Indirect structure which
1412			 * points to the last element which should not be
1413			 * removed by truncate. But this is end of the range
1414			 * in punch_hole so we need to point to the next element
1415			 */
1416			partial2->p++;
1417		}
1418
1419		/*
1420		 * Clear the ends of indirect blocks on the shared branch
1421		 * at the end of the range
1422		 */
1423		while (partial2 > chain2) {
1424			ext4_free_branches(handle, inode, partial2->bh,
1425					   (__le32 *)partial2->bh->b_data,
1426					   partial2->p,
1427					   (chain2+n2-1) - partial2);
1428			BUFFER_TRACE(partial2->bh, "call brelse");
1429			brelse(partial2->bh);
1430			partial2--;
1431		}
1432		goto do_indirects;
1433	}
1434
1435	/* Punch happened within the same level (n == n2) */
1436	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1437	partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1438
1439	/* Free top, but only if partial2 isn't its subtree. */
1440	if (nr) {
1441		int level = min(partial - chain, partial2 - chain2);
1442		int i;
1443		int subtree = 1;
1444
1445		for (i = 0; i <= level; i++) {
1446			if (offsets[i] != offsets2[i]) {
1447				subtree = 0;
1448				break;
1449			}
1450		}
1451
1452		if (!subtree) {
1453			if (partial == chain) {
1454				/* Shared branch grows from the inode */
1455				ext4_free_branches(handle, inode, NULL,
1456						   &nr, &nr+1,
1457						   (chain+n-1) - partial);
1458				*partial->p = 0;
1459			} else {
1460				/* Shared branch grows from an indirect block */
1461				BUFFER_TRACE(partial->bh, "get_write_access");
1462				ext4_free_branches(handle, inode, partial->bh,
1463						   partial->p,
1464						   partial->p+1,
1465						   (chain+n-1) - partial);
1466			}
1467		}
1468	}
1469
1470	if (!nr2) {
1471		/*
1472		 * ext4_find_shared returns Indirect structure which
1473		 * points to the last element which should not be
1474		 * removed by truncate. But this is end of the range
1475		 * in punch_hole so we need to point to the next element
1476		 */
1477		partial2->p++;
1478	}
1479
1480	while (partial > chain || partial2 > chain2) {
1481		int depth = (chain+n-1) - partial;
1482		int depth2 = (chain2+n2-1) - partial2;
1483
1484		if (partial > chain && partial2 > chain2 &&
1485		    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1486			/*
1487			 * We've converged on the same block. Clear the range,
1488			 * then we're done.
1489			 */
1490			ext4_free_branches(handle, inode, partial->bh,
1491					   partial->p + 1,
1492					   partial2->p,
1493					   (chain+n-1) - partial);
1494			BUFFER_TRACE(partial->bh, "call brelse");
1495			brelse(partial->bh);
1496			BUFFER_TRACE(partial2->bh, "call brelse");
1497			brelse(partial2->bh);
1498			return 0;
1499		}
1500
1501		/*
1502		 * The start and end partial branches may not be at the same
1503		 * level even though the punch happened within one level. So, we
1504		 * give them a chance to arrive at the same level, then walk
1505		 * them in step with each other until we converge on the same
1506		 * block.
1507		 */
1508		if (partial > chain && depth <= depth2) {
1509			ext4_free_branches(handle, inode, partial->bh,
1510					   partial->p + 1,
1511					   (__le32 *)partial->bh->b_data+addr_per_block,
1512					   (chain+n-1) - partial);
1513			BUFFER_TRACE(partial->bh, "call brelse");
1514			brelse(partial->bh);
1515			partial--;
1516		}
1517		if (partial2 > chain2 && depth2 <= depth) {
1518			ext4_free_branches(handle, inode, partial2->bh,
1519					   (__le32 *)partial2->bh->b_data,
1520					   partial2->p,
1521					   (chain2+n2-1) - partial2);
1522			BUFFER_TRACE(partial2->bh, "call brelse");
1523			brelse(partial2->bh);
1524			partial2--;
1525		}
1526	}
1527	return 0;
1528
1529do_indirects:
1530	/* Kill the remaining (whole) subtrees */
1531	switch (offsets[0]) {
1532	default:
1533		if (++n >= n2)
1534			return 0;
1535		nr = i_data[EXT4_IND_BLOCK];
1536		if (nr) {
1537			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1538			i_data[EXT4_IND_BLOCK] = 0;
1539		}
1540	case EXT4_IND_BLOCK:
1541		if (++n >= n2)
1542			return 0;
1543		nr = i_data[EXT4_DIND_BLOCK];
1544		if (nr) {
1545			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1546			i_data[EXT4_DIND_BLOCK] = 0;
1547		}
1548	case EXT4_DIND_BLOCK:
1549		if (++n >= n2)
1550			return 0;
1551		nr = i_data[EXT4_TIND_BLOCK];
1552		if (nr) {
1553			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1554			i_data[EXT4_TIND_BLOCK] = 0;
1555		}
1556	case EXT4_TIND_BLOCK:
1557		;
1558	}
1559	return 0;
1560}
1561