1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56 
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 				    int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 				      struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 					struct extent_io_tree *dirty_pages,
68 					int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 				       struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73 
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80 	struct bio *bio;
81 	bio_end_io_t *end_io;
82 	void *private;
83 	struct btrfs_fs_info *info;
84 	int error;
85 	enum btrfs_wq_endio_type metadata;
86 	struct list_head list;
87 	struct btrfs_work work;
88 };
89 
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91 
btrfs_end_io_wq_init(void)92 int __init btrfs_end_io_wq_init(void)
93 {
94 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 					sizeof(struct btrfs_end_io_wq),
96 					0,
97 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 					NULL);
99 	if (!btrfs_end_io_wq_cache)
100 		return -ENOMEM;
101 	return 0;
102 }
103 
btrfs_end_io_wq_exit(void)104 void btrfs_end_io_wq_exit(void)
105 {
106 	if (btrfs_end_io_wq_cache)
107 		kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109 
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116 	struct inode *inode;
117 	struct bio *bio;
118 	struct list_head list;
119 	extent_submit_bio_hook_t *submit_bio_start;
120 	extent_submit_bio_hook_t *submit_bio_done;
121 	int rw;
122 	int mirror_num;
123 	unsigned long bio_flags;
124 	/*
125 	 * bio_offset is optional, can be used if the pages in the bio
126 	 * can't tell us where in the file the bio should go
127 	 */
128 	u64 bio_offset;
129 	struct btrfs_work work;
130 	int error;
131 };
132 
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160 
161 static struct btrfs_lockdep_keyset {
162 	u64			id;		/* root objectid */
163 	const char		*name_stem;	/* lock name stem */
164 	char			names[BTRFS_MAX_LEVEL + 1][20];
165 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
168 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
169 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
170 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
171 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
172 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
173 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
174 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
175 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
176 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
177 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
178 	{ .id = 0,				.name_stem = "tree"	},
179 };
180 
btrfs_init_lockdep(void)181 void __init btrfs_init_lockdep(void)
182 {
183 	int i, j;
184 
185 	/* initialize lockdep class names */
186 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188 
189 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 			snprintf(ks->names[j], sizeof(ks->names[j]),
191 				 "btrfs-%s-%02d", ks->name_stem, j);
192 	}
193 }
194 
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 				    int level)
197 {
198 	struct btrfs_lockdep_keyset *ks;
199 
200 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
201 
202 	/* find the matching keyset, id 0 is the default entry */
203 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 		if (ks->id == objectid)
205 			break;
206 
207 	lockdep_set_class_and_name(&eb->lock,
208 				   &ks->keys[level], ks->names[level]);
209 }
210 
211 #endif
212 
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
btree_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)217 static struct extent_map *btree_get_extent(struct inode *inode,
218 		struct page *page, size_t pg_offset, u64 start, u64 len,
219 		int create)
220 {
221 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 	struct extent_map *em;
223 	int ret;
224 
225 	read_lock(&em_tree->lock);
226 	em = lookup_extent_mapping(em_tree, start, len);
227 	if (em) {
228 		em->bdev =
229 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 		read_unlock(&em_tree->lock);
231 		goto out;
232 	}
233 	read_unlock(&em_tree->lock);
234 
235 	em = alloc_extent_map();
236 	if (!em) {
237 		em = ERR_PTR(-ENOMEM);
238 		goto out;
239 	}
240 	em->start = 0;
241 	em->len = (u64)-1;
242 	em->block_len = (u64)-1;
243 	em->block_start = 0;
244 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245 
246 	write_lock(&em_tree->lock);
247 	ret = add_extent_mapping(em_tree, em, 0);
248 	if (ret == -EEXIST) {
249 		free_extent_map(em);
250 		em = lookup_extent_mapping(em_tree, start, len);
251 		if (!em)
252 			em = ERR_PTR(-EIO);
253 	} else if (ret) {
254 		free_extent_map(em);
255 		em = ERR_PTR(ret);
256 	}
257 	write_unlock(&em_tree->lock);
258 
259 out:
260 	return em;
261 }
262 
btrfs_csum_data(char * data,u32 seed,size_t len)263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 	return btrfs_crc32c(seed, data, len);
266 }
267 
btrfs_csum_final(u32 crc,char * result)268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 	put_unaligned_le32(~crc, result);
271 }
272 
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
csum_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf,int verify)277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 			   struct extent_buffer *buf,
279 			   int verify)
280 {
281 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 	char *result = NULL;
283 	unsigned long len;
284 	unsigned long cur_len;
285 	unsigned long offset = BTRFS_CSUM_SIZE;
286 	char *kaddr;
287 	unsigned long map_start;
288 	unsigned long map_len;
289 	int err;
290 	u32 crc = ~(u32)0;
291 	unsigned long inline_result;
292 
293 	len = buf->len - offset;
294 	while (len > 0) {
295 		err = map_private_extent_buffer(buf, offset, 32,
296 					&kaddr, &map_start, &map_len);
297 		if (err)
298 			return 1;
299 		cur_len = min(len, map_len - (offset - map_start));
300 		crc = btrfs_csum_data(kaddr + offset - map_start,
301 				      crc, cur_len);
302 		len -= cur_len;
303 		offset += cur_len;
304 	}
305 	if (csum_size > sizeof(inline_result)) {
306 		result = kzalloc(csum_size, GFP_NOFS);
307 		if (!result)
308 			return 1;
309 	} else {
310 		result = (char *)&inline_result;
311 	}
312 
313 	btrfs_csum_final(crc, result);
314 
315 	if (verify) {
316 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 			u32 val;
318 			u32 found = 0;
319 			memcpy(&found, result, csum_size);
320 
321 			read_extent_buffer(buf, &val, 0, csum_size);
322 			btrfs_warn_rl(fs_info,
323 				"%s checksum verify failed on %llu wanted %X found %X "
324 				"level %d",
325 				fs_info->sb->s_id, buf->start,
326 				val, found, btrfs_header_level(buf));
327 			if (result != (char *)&inline_result)
328 				kfree(result);
329 			return 1;
330 		}
331 	} else {
332 		write_extent_buffer(buf, result, 0, csum_size);
333 	}
334 	if (result != (char *)&inline_result)
335 		kfree(result);
336 	return 0;
337 }
338 
339 /*
340  * we can't consider a given block up to date unless the transid of the
341  * block matches the transid in the parent node's pointer.  This is how we
342  * detect blocks that either didn't get written at all or got written
343  * in the wrong place.
344  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 				 struct extent_buffer *eb, u64 parent_transid,
347 				 int atomic)
348 {
349 	struct extent_state *cached_state = NULL;
350 	int ret;
351 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352 
353 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 		return 0;
355 
356 	if (atomic)
357 		return -EAGAIN;
358 
359 	if (need_lock) {
360 		btrfs_tree_read_lock(eb);
361 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 	}
363 
364 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 			 0, &cached_state);
366 	if (extent_buffer_uptodate(eb) &&
367 	    btrfs_header_generation(eb) == parent_transid) {
368 		ret = 0;
369 		goto out;
370 	}
371 	btrfs_err_rl(eb->fs_info,
372 		"parent transid verify failed on %llu wanted %llu found %llu",
373 			eb->start,
374 			parent_transid, btrfs_header_generation(eb));
375 	ret = 1;
376 
377 	/*
378 	 * Things reading via commit roots that don't have normal protection,
379 	 * like send, can have a really old block in cache that may point at a
380 	 * block that has been free'd and re-allocated.  So don't clear uptodate
381 	 * if we find an eb that is under IO (dirty/writeback) because we could
382 	 * end up reading in the stale data and then writing it back out and
383 	 * making everybody very sad.
384 	 */
385 	if (!extent_buffer_under_io(eb))
386 		clear_extent_buffer_uptodate(eb);
387 out:
388 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 			     &cached_state, GFP_NOFS);
390 	if (need_lock)
391 		btrfs_tree_read_unlock_blocking(eb);
392 	return ret;
393 }
394 
395 /*
396  * Return 0 if the superblock checksum type matches the checksum value of that
397  * algorithm. Pass the raw disk superblock data.
398  */
btrfs_check_super_csum(char * raw_disk_sb)399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 	struct btrfs_super_block *disk_sb =
402 		(struct btrfs_super_block *)raw_disk_sb;
403 	u16 csum_type = btrfs_super_csum_type(disk_sb);
404 	int ret = 0;
405 
406 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 		u32 crc = ~(u32)0;
408 		const int csum_size = sizeof(crc);
409 		char result[csum_size];
410 
411 		/*
412 		 * The super_block structure does not span the whole
413 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 		 * is filled with zeros and is included in the checkum.
415 		 */
416 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 		btrfs_csum_final(crc, result);
419 
420 		if (memcmp(raw_disk_sb, result, csum_size))
421 			ret = 1;
422 	}
423 
424 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 				csum_type);
427 		ret = 1;
428 	}
429 
430 	return ret;
431 }
432 
433 /*
434  * helper to read a given tree block, doing retries as required when
435  * the checksums don't match and we have alternate mirrors to try.
436  */
btree_read_extent_buffer_pages(struct btrfs_root * root,struct extent_buffer * eb,u64 start,u64 parent_transid)437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 					  struct extent_buffer *eb,
439 					  u64 start, u64 parent_transid)
440 {
441 	struct extent_io_tree *io_tree;
442 	int failed = 0;
443 	int ret;
444 	int num_copies = 0;
445 	int mirror_num = 0;
446 	int failed_mirror = 0;
447 
448 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 	while (1) {
451 		ret = read_extent_buffer_pages(io_tree, eb, start,
452 					       WAIT_COMPLETE,
453 					       btree_get_extent, mirror_num);
454 		if (!ret) {
455 			if (!verify_parent_transid(io_tree, eb,
456 						   parent_transid, 0))
457 				break;
458 			else
459 				ret = -EIO;
460 		}
461 
462 		/*
463 		 * This buffer's crc is fine, but its contents are corrupted, so
464 		 * there is no reason to read the other copies, they won't be
465 		 * any less wrong.
466 		 */
467 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 			break;
469 
470 		num_copies = btrfs_num_copies(root->fs_info,
471 					      eb->start, eb->len);
472 		if (num_copies == 1)
473 			break;
474 
475 		if (!failed_mirror) {
476 			failed = 1;
477 			failed_mirror = eb->read_mirror;
478 		}
479 
480 		mirror_num++;
481 		if (mirror_num == failed_mirror)
482 			mirror_num++;
483 
484 		if (mirror_num > num_copies)
485 			break;
486 	}
487 
488 	if (failed && !ret && failed_mirror)
489 		repair_eb_io_failure(root, eb, failed_mirror);
490 
491 	return ret;
492 }
493 
494 /*
495  * checksum a dirty tree block before IO.  This has extra checks to make sure
496  * we only fill in the checksum field in the first page of a multi-page block
497  */
498 
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 	u64 start = page_offset(page);
502 	u64 found_start;
503 	struct extent_buffer *eb;
504 
505 	eb = (struct extent_buffer *)page->private;
506 	if (page != eb->pages[0])
507 		return 0;
508 	found_start = btrfs_header_bytenr(eb);
509 	if (WARN_ON(found_start != start || !PageUptodate(page)))
510 		return 0;
511 	csum_tree_block(fs_info, eb, 0);
512 	return 0;
513 }
514 
check_tree_block_fsid(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 				 struct extent_buffer *eb)
517 {
518 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 	u8 fsid[BTRFS_UUID_SIZE];
520 	int ret = 1;
521 
522 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 	while (fs_devices) {
524 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 			ret = 0;
526 			break;
527 		}
528 		fs_devices = fs_devices->seed;
529 	}
530 	return ret;
531 }
532 
533 #define CORRUPT(reason, eb, root, slot)				\
534 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
535 		   "root=%llu, slot=%d", reason,			\
536 	       btrfs_header_bytenr(eb),	root->objectid, slot)
537 
check_leaf(struct btrfs_root * root,struct extent_buffer * leaf)538 static noinline int check_leaf(struct btrfs_root *root,
539 			       struct extent_buffer *leaf)
540 {
541 	struct btrfs_key key;
542 	struct btrfs_key leaf_key;
543 	u32 nritems = btrfs_header_nritems(leaf);
544 	int slot;
545 
546 	if (nritems == 0)
547 		return 0;
548 
549 	/* Check the 0 item */
550 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 	    BTRFS_LEAF_DATA_SIZE(root)) {
552 		CORRUPT("invalid item offset size pair", leaf, root, 0);
553 		return -EIO;
554 	}
555 
556 	/*
557 	 * Check to make sure each items keys are in the correct order and their
558 	 * offsets make sense.  We only have to loop through nritems-1 because
559 	 * we check the current slot against the next slot, which verifies the
560 	 * next slot's offset+size makes sense and that the current's slot
561 	 * offset is correct.
562 	 */
563 	for (slot = 0; slot < nritems - 1; slot++) {
564 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566 
567 		/* Make sure the keys are in the right order */
568 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 			CORRUPT("bad key order", leaf, root, slot);
570 			return -EIO;
571 		}
572 
573 		/*
574 		 * Make sure the offset and ends are right, remember that the
575 		 * item data starts at the end of the leaf and grows towards the
576 		 * front.
577 		 */
578 		if (btrfs_item_offset_nr(leaf, slot) !=
579 			btrfs_item_end_nr(leaf, slot + 1)) {
580 			CORRUPT("slot offset bad", leaf, root, slot);
581 			return -EIO;
582 		}
583 
584 		/*
585 		 * Check to make sure that we don't point outside of the leaf,
586 		 * just incase all the items are consistent to eachother, but
587 		 * all point outside of the leaf.
588 		 */
589 		if (btrfs_item_end_nr(leaf, slot) >
590 		    BTRFS_LEAF_DATA_SIZE(root)) {
591 			CORRUPT("slot end outside of leaf", leaf, root, slot);
592 			return -EIO;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 				      u64 phy_offset, struct page *page,
601 				      u64 start, u64 end, int mirror)
602 {
603 	u64 found_start;
604 	int found_level;
605 	struct extent_buffer *eb;
606 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 	int ret = 0;
608 	int reads_done;
609 
610 	if (!page->private)
611 		goto out;
612 
613 	eb = (struct extent_buffer *)page->private;
614 
615 	/* the pending IO might have been the only thing that kept this buffer
616 	 * in memory.  Make sure we have a ref for all this other checks
617 	 */
618 	extent_buffer_get(eb);
619 
620 	reads_done = atomic_dec_and_test(&eb->io_pages);
621 	if (!reads_done)
622 		goto err;
623 
624 	eb->read_mirror = mirror;
625 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 		ret = -EIO;
627 		goto err;
628 	}
629 
630 	found_start = btrfs_header_bytenr(eb);
631 	if (found_start != eb->start) {
632 		btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633 			       found_start, eb->start);
634 		ret = -EIO;
635 		goto err;
636 	}
637 	if (check_tree_block_fsid(root->fs_info, eb)) {
638 		btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639 			       eb->start);
640 		ret = -EIO;
641 		goto err;
642 	}
643 	found_level = btrfs_header_level(eb);
644 	if (found_level >= BTRFS_MAX_LEVEL) {
645 		btrfs_err(root->fs_info, "bad tree block level %d",
646 			   (int)btrfs_header_level(eb));
647 		ret = -EIO;
648 		goto err;
649 	}
650 
651 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652 				       eb, found_level);
653 
654 	ret = csum_tree_block(root->fs_info, eb, 1);
655 	if (ret) {
656 		ret = -EIO;
657 		goto err;
658 	}
659 
660 	/*
661 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
662 	 * that we don't try and read the other copies of this block, just
663 	 * return -EIO.
664 	 */
665 	if (found_level == 0 && check_leaf(root, eb)) {
666 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667 		ret = -EIO;
668 	}
669 
670 	if (!ret)
671 		set_extent_buffer_uptodate(eb);
672 err:
673 	if (reads_done &&
674 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675 		btree_readahead_hook(root, eb, eb->start, ret);
676 
677 	if (ret) {
678 		/*
679 		 * our io error hook is going to dec the io pages
680 		 * again, we have to make sure it has something
681 		 * to decrement
682 		 */
683 		atomic_inc(&eb->io_pages);
684 		clear_extent_buffer_uptodate(eb);
685 	}
686 	free_extent_buffer(eb);
687 out:
688 	return ret;
689 }
690 
btree_io_failed_hook(struct page * page,int failed_mirror)691 static int btree_io_failed_hook(struct page *page, int failed_mirror)
692 {
693 	struct extent_buffer *eb;
694 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695 
696 	eb = (struct extent_buffer *)page->private;
697 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
698 	eb->read_mirror = failed_mirror;
699 	atomic_dec(&eb->io_pages);
700 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
701 		btree_readahead_hook(root, eb, eb->start, -EIO);
702 	return -EIO;	/* we fixed nothing */
703 }
704 
end_workqueue_bio(struct bio * bio)705 static void end_workqueue_bio(struct bio *bio)
706 {
707 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
708 	struct btrfs_fs_info *fs_info;
709 	struct btrfs_workqueue *wq;
710 	btrfs_work_func_t func;
711 
712 	fs_info = end_io_wq->info;
713 	end_io_wq->error = bio->bi_error;
714 
715 	if (bio->bi_rw & REQ_WRITE) {
716 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717 			wq = fs_info->endio_meta_write_workers;
718 			func = btrfs_endio_meta_write_helper;
719 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720 			wq = fs_info->endio_freespace_worker;
721 			func = btrfs_freespace_write_helper;
722 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723 			wq = fs_info->endio_raid56_workers;
724 			func = btrfs_endio_raid56_helper;
725 		} else {
726 			wq = fs_info->endio_write_workers;
727 			func = btrfs_endio_write_helper;
728 		}
729 	} else {
730 		if (unlikely(end_io_wq->metadata ==
731 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732 			wq = fs_info->endio_repair_workers;
733 			func = btrfs_endio_repair_helper;
734 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
735 			wq = fs_info->endio_raid56_workers;
736 			func = btrfs_endio_raid56_helper;
737 		} else if (end_io_wq->metadata) {
738 			wq = fs_info->endio_meta_workers;
739 			func = btrfs_endio_meta_helper;
740 		} else {
741 			wq = fs_info->endio_workers;
742 			func = btrfs_endio_helper;
743 		}
744 	}
745 
746 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747 	btrfs_queue_work(wq, &end_io_wq->work);
748 }
749 
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
751 			enum btrfs_wq_endio_type metadata)
752 {
753 	struct btrfs_end_io_wq *end_io_wq;
754 
755 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
756 	if (!end_io_wq)
757 		return -ENOMEM;
758 
759 	end_io_wq->private = bio->bi_private;
760 	end_io_wq->end_io = bio->bi_end_io;
761 	end_io_wq->info = info;
762 	end_io_wq->error = 0;
763 	end_io_wq->bio = bio;
764 	end_io_wq->metadata = metadata;
765 
766 	bio->bi_private = end_io_wq;
767 	bio->bi_end_io = end_workqueue_bio;
768 	return 0;
769 }
770 
btrfs_async_submit_limit(struct btrfs_fs_info * info)771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
772 {
773 	unsigned long limit = min_t(unsigned long,
774 				    info->thread_pool_size,
775 				    info->fs_devices->open_devices);
776 	return 256 * limit;
777 }
778 
run_one_async_start(struct btrfs_work * work)779 static void run_one_async_start(struct btrfs_work *work)
780 {
781 	struct async_submit_bio *async;
782 	int ret;
783 
784 	async = container_of(work, struct  async_submit_bio, work);
785 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786 				      async->mirror_num, async->bio_flags,
787 				      async->bio_offset);
788 	if (ret)
789 		async->error = ret;
790 }
791 
run_one_async_done(struct btrfs_work * work)792 static void run_one_async_done(struct btrfs_work *work)
793 {
794 	struct btrfs_fs_info *fs_info;
795 	struct async_submit_bio *async;
796 	int limit;
797 
798 	async = container_of(work, struct  async_submit_bio, work);
799 	fs_info = BTRFS_I(async->inode)->root->fs_info;
800 
801 	limit = btrfs_async_submit_limit(fs_info);
802 	limit = limit * 2 / 3;
803 
804 	/*
805 	 * atomic_dec_return implies a barrier for waitqueue_active
806 	 */
807 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
808 	    waitqueue_active(&fs_info->async_submit_wait))
809 		wake_up(&fs_info->async_submit_wait);
810 
811 	/* If an error occured we just want to clean up the bio and move on */
812 	if (async->error) {
813 		async->bio->bi_error = async->error;
814 		bio_endio(async->bio);
815 		return;
816 	}
817 
818 	async->submit_bio_done(async->inode, async->rw, async->bio,
819 			       async->mirror_num, async->bio_flags,
820 			       async->bio_offset);
821 }
822 
run_one_async_free(struct btrfs_work * work)823 static void run_one_async_free(struct btrfs_work *work)
824 {
825 	struct async_submit_bio *async;
826 
827 	async = container_of(work, struct  async_submit_bio, work);
828 	kfree(async);
829 }
830 
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,extent_submit_bio_hook_t * submit_bio_start,extent_submit_bio_hook_t * submit_bio_done)831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832 			int rw, struct bio *bio, int mirror_num,
833 			unsigned long bio_flags,
834 			u64 bio_offset,
835 			extent_submit_bio_hook_t *submit_bio_start,
836 			extent_submit_bio_hook_t *submit_bio_done)
837 {
838 	struct async_submit_bio *async;
839 
840 	async = kmalloc(sizeof(*async), GFP_NOFS);
841 	if (!async)
842 		return -ENOMEM;
843 
844 	async->inode = inode;
845 	async->rw = rw;
846 	async->bio = bio;
847 	async->mirror_num = mirror_num;
848 	async->submit_bio_start = submit_bio_start;
849 	async->submit_bio_done = submit_bio_done;
850 
851 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
852 			run_one_async_done, run_one_async_free);
853 
854 	async->bio_flags = bio_flags;
855 	async->bio_offset = bio_offset;
856 
857 	async->error = 0;
858 
859 	atomic_inc(&fs_info->nr_async_submits);
860 
861 	if (rw & REQ_SYNC)
862 		btrfs_set_work_high_priority(&async->work);
863 
864 	btrfs_queue_work(fs_info->workers, &async->work);
865 
866 	while (atomic_read(&fs_info->async_submit_draining) &&
867 	      atomic_read(&fs_info->nr_async_submits)) {
868 		wait_event(fs_info->async_submit_wait,
869 			   (atomic_read(&fs_info->nr_async_submits) == 0));
870 	}
871 
872 	return 0;
873 }
874 
btree_csum_one_bio(struct bio * bio)875 static int btree_csum_one_bio(struct bio *bio)
876 {
877 	struct bio_vec *bvec;
878 	struct btrfs_root *root;
879 	int i, ret = 0;
880 
881 	bio_for_each_segment_all(bvec, bio, i) {
882 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
883 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
884 		if (ret)
885 			break;
886 	}
887 
888 	return ret;
889 }
890 
__btree_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)891 static int __btree_submit_bio_start(struct inode *inode, int rw,
892 				    struct bio *bio, int mirror_num,
893 				    unsigned long bio_flags,
894 				    u64 bio_offset)
895 {
896 	/*
897 	 * when we're called for a write, we're already in the async
898 	 * submission context.  Just jump into btrfs_map_bio
899 	 */
900 	return btree_csum_one_bio(bio);
901 }
902 
__btree_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
904 				 int mirror_num, unsigned long bio_flags,
905 				 u64 bio_offset)
906 {
907 	int ret;
908 
909 	/*
910 	 * when we're called for a write, we're already in the async
911 	 * submission context.  Just jump into btrfs_map_bio
912 	 */
913 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
914 	if (ret) {
915 		bio->bi_error = ret;
916 		bio_endio(bio);
917 	}
918 	return ret;
919 }
920 
check_async_write(struct inode * inode,unsigned long bio_flags)921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
922 {
923 	if (bio_flags & EXTENT_BIO_TREE_LOG)
924 		return 0;
925 #ifdef CONFIG_X86
926 	if (cpu_has_xmm4_2)
927 		return 0;
928 #endif
929 	return 1;
930 }
931 
btree_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933 				 int mirror_num, unsigned long bio_flags,
934 				 u64 bio_offset)
935 {
936 	int async = check_async_write(inode, bio_flags);
937 	int ret;
938 
939 	if (!(rw & REQ_WRITE)) {
940 		/*
941 		 * called for a read, do the setup so that checksum validation
942 		 * can happen in the async kernel threads
943 		 */
944 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945 					  bio, BTRFS_WQ_ENDIO_METADATA);
946 		if (ret)
947 			goto out_w_error;
948 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 				    mirror_num, 0);
950 	} else if (!async) {
951 		ret = btree_csum_one_bio(bio);
952 		if (ret)
953 			goto out_w_error;
954 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 				    mirror_num, 0);
956 	} else {
957 		/*
958 		 * kthread helpers are used to submit writes so that
959 		 * checksumming can happen in parallel across all CPUs
960 		 */
961 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 					  inode, rw, bio, mirror_num, 0,
963 					  bio_offset,
964 					  __btree_submit_bio_start,
965 					  __btree_submit_bio_done);
966 	}
967 
968 	if (ret)
969 		goto out_w_error;
970 	return 0;
971 
972 out_w_error:
973 	bio->bi_error = ret;
974 	bio_endio(bio);
975 	return ret;
976 }
977 
978 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)979 static int btree_migratepage(struct address_space *mapping,
980 			struct page *newpage, struct page *page,
981 			enum migrate_mode mode)
982 {
983 	/*
984 	 * we can't safely write a btree page from here,
985 	 * we haven't done the locking hook
986 	 */
987 	if (PageDirty(page))
988 		return -EAGAIN;
989 	/*
990 	 * Buffers may be managed in a filesystem specific way.
991 	 * We must have no buffers or drop them.
992 	 */
993 	if (page_has_private(page) &&
994 	    !try_to_release_page(page, GFP_KERNEL))
995 		return -EAGAIN;
996 	return migrate_page(mapping, newpage, page, mode);
997 }
998 #endif
999 
1000 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)1001 static int btree_writepages(struct address_space *mapping,
1002 			    struct writeback_control *wbc)
1003 {
1004 	struct btrfs_fs_info *fs_info;
1005 	int ret;
1006 
1007 	if (wbc->sync_mode == WB_SYNC_NONE) {
1008 
1009 		if (wbc->for_kupdate)
1010 			return 0;
1011 
1012 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1013 		/* this is a bit racy, but that's ok */
1014 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015 					     BTRFS_DIRTY_METADATA_THRESH);
1016 		if (ret < 0)
1017 			return 0;
1018 	}
1019 	return btree_write_cache_pages(mapping, wbc);
1020 }
1021 
btree_readpage(struct file * file,struct page * page)1022 static int btree_readpage(struct file *file, struct page *page)
1023 {
1024 	struct extent_io_tree *tree;
1025 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1026 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1027 }
1028 
btree_releasepage(struct page * page,gfp_t gfp_flags)1029 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1030 {
1031 	if (PageWriteback(page) || PageDirty(page))
1032 		return 0;
1033 
1034 	return try_release_extent_buffer(page);
1035 }
1036 
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1037 static void btree_invalidatepage(struct page *page, unsigned int offset,
1038 				 unsigned int length)
1039 {
1040 	struct extent_io_tree *tree;
1041 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1042 	extent_invalidatepage(tree, page, offset);
1043 	btree_releasepage(page, GFP_NOFS);
1044 	if (PagePrivate(page)) {
1045 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1046 			   "page private not zero on page %llu",
1047 			   (unsigned long long)page_offset(page));
1048 		ClearPagePrivate(page);
1049 		set_page_private(page, 0);
1050 		page_cache_release(page);
1051 	}
1052 }
1053 
btree_set_page_dirty(struct page * page)1054 static int btree_set_page_dirty(struct page *page)
1055 {
1056 #ifdef DEBUG
1057 	struct extent_buffer *eb;
1058 
1059 	BUG_ON(!PagePrivate(page));
1060 	eb = (struct extent_buffer *)page->private;
1061 	BUG_ON(!eb);
1062 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063 	BUG_ON(!atomic_read(&eb->refs));
1064 	btrfs_assert_tree_locked(eb);
1065 #endif
1066 	return __set_page_dirty_nobuffers(page);
1067 }
1068 
1069 static const struct address_space_operations btree_aops = {
1070 	.readpage	= btree_readpage,
1071 	.writepages	= btree_writepages,
1072 	.releasepage	= btree_releasepage,
1073 	.invalidatepage = btree_invalidatepage,
1074 #ifdef CONFIG_MIGRATION
1075 	.migratepage	= btree_migratepage,
1076 #endif
1077 	.set_page_dirty = btree_set_page_dirty,
1078 };
1079 
readahead_tree_block(struct btrfs_root * root,u64 bytenr)1080 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1081 {
1082 	struct extent_buffer *buf = NULL;
1083 	struct inode *btree_inode = root->fs_info->btree_inode;
1084 
1085 	buf = btrfs_find_create_tree_block(root, bytenr);
1086 	if (!buf)
1087 		return;
1088 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1089 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1090 	free_extent_buffer(buf);
1091 }
1092 
reada_tree_block_flagged(struct btrfs_root * root,u64 bytenr,int mirror_num,struct extent_buffer ** eb)1093 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1094 			 int mirror_num, struct extent_buffer **eb)
1095 {
1096 	struct extent_buffer *buf = NULL;
1097 	struct inode *btree_inode = root->fs_info->btree_inode;
1098 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099 	int ret;
1100 
1101 	buf = btrfs_find_create_tree_block(root, bytenr);
1102 	if (!buf)
1103 		return 0;
1104 
1105 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106 
1107 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108 				       btree_get_extent, mirror_num);
1109 	if (ret) {
1110 		free_extent_buffer(buf);
1111 		return ret;
1112 	}
1113 
1114 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115 		free_extent_buffer(buf);
1116 		return -EIO;
1117 	} else if (extent_buffer_uptodate(buf)) {
1118 		*eb = buf;
1119 	} else {
1120 		free_extent_buffer(buf);
1121 	}
1122 	return 0;
1123 }
1124 
btrfs_find_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1125 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1126 					    u64 bytenr)
1127 {
1128 	return find_extent_buffer(fs_info, bytenr);
1129 }
1130 
btrfs_find_create_tree_block(struct btrfs_root * root,u64 bytenr)1131 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1132 						 u64 bytenr)
1133 {
1134 	if (btrfs_test_is_dummy_root(root))
1135 		return alloc_test_extent_buffer(root->fs_info, bytenr);
1136 	return alloc_extent_buffer(root->fs_info, bytenr);
1137 }
1138 
1139 
btrfs_write_tree_block(struct extent_buffer * buf)1140 int btrfs_write_tree_block(struct extent_buffer *buf)
1141 {
1142 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1143 					buf->start + buf->len - 1);
1144 }
1145 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)1146 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1147 {
1148 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1149 				       buf->start, buf->start + buf->len - 1);
1150 }
1151 
read_tree_block(struct btrfs_root * root,u64 bytenr,u64 parent_transid)1152 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1153 				      u64 parent_transid)
1154 {
1155 	struct extent_buffer *buf = NULL;
1156 	int ret;
1157 
1158 	buf = btrfs_find_create_tree_block(root, bytenr);
1159 	if (!buf)
1160 		return ERR_PTR(-ENOMEM);
1161 
1162 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1163 	if (ret) {
1164 		free_extent_buffer(buf);
1165 		return ERR_PTR(ret);
1166 	}
1167 	return buf;
1168 
1169 }
1170 
clean_tree_block(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct extent_buffer * buf)1171 void clean_tree_block(struct btrfs_trans_handle *trans,
1172 		      struct btrfs_fs_info *fs_info,
1173 		      struct extent_buffer *buf)
1174 {
1175 	if (btrfs_header_generation(buf) ==
1176 	    fs_info->running_transaction->transid) {
1177 		btrfs_assert_tree_locked(buf);
1178 
1179 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1180 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1181 					     -buf->len,
1182 					     fs_info->dirty_metadata_batch);
1183 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1184 			btrfs_set_lock_blocking(buf);
1185 			clear_extent_buffer_dirty(buf);
1186 		}
1187 	}
1188 }
1189 
btrfs_alloc_subvolume_writers(void)1190 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1191 {
1192 	struct btrfs_subvolume_writers *writers;
1193 	int ret;
1194 
1195 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1196 	if (!writers)
1197 		return ERR_PTR(-ENOMEM);
1198 
1199 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1200 	if (ret < 0) {
1201 		kfree(writers);
1202 		return ERR_PTR(ret);
1203 	}
1204 
1205 	init_waitqueue_head(&writers->wait);
1206 	return writers;
1207 }
1208 
1209 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1210 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1211 {
1212 	percpu_counter_destroy(&writers->counter);
1213 	kfree(writers);
1214 }
1215 
__setup_root(u32 nodesize,u32 sectorsize,u32 stripesize,struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1216 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1217 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1218 			 u64 objectid)
1219 {
1220 	root->node = NULL;
1221 	root->commit_root = NULL;
1222 	root->sectorsize = sectorsize;
1223 	root->nodesize = nodesize;
1224 	root->stripesize = stripesize;
1225 	root->state = 0;
1226 	root->orphan_cleanup_state = 0;
1227 
1228 	root->objectid = objectid;
1229 	root->last_trans = 0;
1230 	root->highest_objectid = 0;
1231 	root->nr_delalloc_inodes = 0;
1232 	root->nr_ordered_extents = 0;
1233 	root->name = NULL;
1234 	root->inode_tree = RB_ROOT;
1235 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1236 	root->block_rsv = NULL;
1237 	root->orphan_block_rsv = NULL;
1238 
1239 	INIT_LIST_HEAD(&root->dirty_list);
1240 	INIT_LIST_HEAD(&root->root_list);
1241 	INIT_LIST_HEAD(&root->delalloc_inodes);
1242 	INIT_LIST_HEAD(&root->delalloc_root);
1243 	INIT_LIST_HEAD(&root->ordered_extents);
1244 	INIT_LIST_HEAD(&root->ordered_root);
1245 	INIT_LIST_HEAD(&root->logged_list[0]);
1246 	INIT_LIST_HEAD(&root->logged_list[1]);
1247 	spin_lock_init(&root->orphan_lock);
1248 	spin_lock_init(&root->inode_lock);
1249 	spin_lock_init(&root->delalloc_lock);
1250 	spin_lock_init(&root->ordered_extent_lock);
1251 	spin_lock_init(&root->accounting_lock);
1252 	spin_lock_init(&root->log_extents_lock[0]);
1253 	spin_lock_init(&root->log_extents_lock[1]);
1254 	mutex_init(&root->objectid_mutex);
1255 	mutex_init(&root->log_mutex);
1256 	mutex_init(&root->ordered_extent_mutex);
1257 	mutex_init(&root->delalloc_mutex);
1258 	init_waitqueue_head(&root->log_writer_wait);
1259 	init_waitqueue_head(&root->log_commit_wait[0]);
1260 	init_waitqueue_head(&root->log_commit_wait[1]);
1261 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1262 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1263 	atomic_set(&root->log_commit[0], 0);
1264 	atomic_set(&root->log_commit[1], 0);
1265 	atomic_set(&root->log_writers, 0);
1266 	atomic_set(&root->log_batch, 0);
1267 	atomic_set(&root->orphan_inodes, 0);
1268 	atomic_set(&root->refs, 1);
1269 	atomic_set(&root->will_be_snapshoted, 0);
1270 	atomic_set(&root->qgroup_meta_rsv, 0);
1271 	root->log_transid = 0;
1272 	root->log_transid_committed = -1;
1273 	root->last_log_commit = 0;
1274 	if (fs_info)
1275 		extent_io_tree_init(&root->dirty_log_pages,
1276 				     fs_info->btree_inode->i_mapping);
1277 
1278 	memset(&root->root_key, 0, sizeof(root->root_key));
1279 	memset(&root->root_item, 0, sizeof(root->root_item));
1280 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1281 	if (fs_info)
1282 		root->defrag_trans_start = fs_info->generation;
1283 	else
1284 		root->defrag_trans_start = 0;
1285 	root->root_key.objectid = objectid;
1286 	root->anon_dev = 0;
1287 
1288 	spin_lock_init(&root->root_item_lock);
1289 }
1290 
btrfs_alloc_root(struct btrfs_fs_info * fs_info)1291 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1292 {
1293 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1294 	if (root)
1295 		root->fs_info = fs_info;
1296 	return root;
1297 }
1298 
1299 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1300 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(void)1301 struct btrfs_root *btrfs_alloc_dummy_root(void)
1302 {
1303 	struct btrfs_root *root;
1304 
1305 	root = btrfs_alloc_root(NULL);
1306 	if (!root)
1307 		return ERR_PTR(-ENOMEM);
1308 	__setup_root(4096, 4096, 4096, root, NULL, 1);
1309 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1310 	root->alloc_bytenr = 0;
1311 
1312 	return root;
1313 }
1314 #endif
1315 
btrfs_create_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 objectid)1316 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1317 				     struct btrfs_fs_info *fs_info,
1318 				     u64 objectid)
1319 {
1320 	struct extent_buffer *leaf;
1321 	struct btrfs_root *tree_root = fs_info->tree_root;
1322 	struct btrfs_root *root;
1323 	struct btrfs_key key;
1324 	int ret = 0;
1325 	uuid_le uuid;
1326 
1327 	root = btrfs_alloc_root(fs_info);
1328 	if (!root)
1329 		return ERR_PTR(-ENOMEM);
1330 
1331 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1332 		tree_root->stripesize, root, fs_info, objectid);
1333 	root->root_key.objectid = objectid;
1334 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1335 	root->root_key.offset = 0;
1336 
1337 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1338 	if (IS_ERR(leaf)) {
1339 		ret = PTR_ERR(leaf);
1340 		leaf = NULL;
1341 		goto fail;
1342 	}
1343 
1344 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1345 	btrfs_set_header_bytenr(leaf, leaf->start);
1346 	btrfs_set_header_generation(leaf, trans->transid);
1347 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1348 	btrfs_set_header_owner(leaf, objectid);
1349 	root->node = leaf;
1350 
1351 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1352 			    BTRFS_FSID_SIZE);
1353 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1354 			    btrfs_header_chunk_tree_uuid(leaf),
1355 			    BTRFS_UUID_SIZE);
1356 	btrfs_mark_buffer_dirty(leaf);
1357 
1358 	root->commit_root = btrfs_root_node(root);
1359 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1360 
1361 	root->root_item.flags = 0;
1362 	root->root_item.byte_limit = 0;
1363 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1364 	btrfs_set_root_generation(&root->root_item, trans->transid);
1365 	btrfs_set_root_level(&root->root_item, 0);
1366 	btrfs_set_root_refs(&root->root_item, 1);
1367 	btrfs_set_root_used(&root->root_item, leaf->len);
1368 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1369 	btrfs_set_root_dirid(&root->root_item, 0);
1370 	uuid_le_gen(&uuid);
1371 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1372 	root->root_item.drop_level = 0;
1373 
1374 	key.objectid = objectid;
1375 	key.type = BTRFS_ROOT_ITEM_KEY;
1376 	key.offset = 0;
1377 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1378 	if (ret)
1379 		goto fail;
1380 
1381 	btrfs_tree_unlock(leaf);
1382 
1383 	return root;
1384 
1385 fail:
1386 	if (leaf) {
1387 		btrfs_tree_unlock(leaf);
1388 		free_extent_buffer(root->commit_root);
1389 		free_extent_buffer(leaf);
1390 	}
1391 	kfree(root);
1392 
1393 	return ERR_PTR(ret);
1394 }
1395 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1396 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1397 					 struct btrfs_fs_info *fs_info)
1398 {
1399 	struct btrfs_root *root;
1400 	struct btrfs_root *tree_root = fs_info->tree_root;
1401 	struct extent_buffer *leaf;
1402 
1403 	root = btrfs_alloc_root(fs_info);
1404 	if (!root)
1405 		return ERR_PTR(-ENOMEM);
1406 
1407 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1408 		     tree_root->stripesize, root, fs_info,
1409 		     BTRFS_TREE_LOG_OBJECTID);
1410 
1411 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1412 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1413 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1414 
1415 	/*
1416 	 * DON'T set REF_COWS for log trees
1417 	 *
1418 	 * log trees do not get reference counted because they go away
1419 	 * before a real commit is actually done.  They do store pointers
1420 	 * to file data extents, and those reference counts still get
1421 	 * updated (along with back refs to the log tree).
1422 	 */
1423 
1424 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1425 			NULL, 0, 0, 0);
1426 	if (IS_ERR(leaf)) {
1427 		kfree(root);
1428 		return ERR_CAST(leaf);
1429 	}
1430 
1431 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1432 	btrfs_set_header_bytenr(leaf, leaf->start);
1433 	btrfs_set_header_generation(leaf, trans->transid);
1434 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1435 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1436 	root->node = leaf;
1437 
1438 	write_extent_buffer(root->node, root->fs_info->fsid,
1439 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1440 	btrfs_mark_buffer_dirty(root->node);
1441 	btrfs_tree_unlock(root->node);
1442 	return root;
1443 }
1444 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1445 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1446 			     struct btrfs_fs_info *fs_info)
1447 {
1448 	struct btrfs_root *log_root;
1449 
1450 	log_root = alloc_log_tree(trans, fs_info);
1451 	if (IS_ERR(log_root))
1452 		return PTR_ERR(log_root);
1453 	WARN_ON(fs_info->log_root_tree);
1454 	fs_info->log_root_tree = log_root;
1455 	return 0;
1456 }
1457 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1458 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1459 		       struct btrfs_root *root)
1460 {
1461 	struct btrfs_root *log_root;
1462 	struct btrfs_inode_item *inode_item;
1463 
1464 	log_root = alloc_log_tree(trans, root->fs_info);
1465 	if (IS_ERR(log_root))
1466 		return PTR_ERR(log_root);
1467 
1468 	log_root->last_trans = trans->transid;
1469 	log_root->root_key.offset = root->root_key.objectid;
1470 
1471 	inode_item = &log_root->root_item.inode;
1472 	btrfs_set_stack_inode_generation(inode_item, 1);
1473 	btrfs_set_stack_inode_size(inode_item, 3);
1474 	btrfs_set_stack_inode_nlink(inode_item, 1);
1475 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1476 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1477 
1478 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1479 
1480 	WARN_ON(root->log_root);
1481 	root->log_root = log_root;
1482 	root->log_transid = 0;
1483 	root->log_transid_committed = -1;
1484 	root->last_log_commit = 0;
1485 	return 0;
1486 }
1487 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1488 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1489 					       struct btrfs_key *key)
1490 {
1491 	struct btrfs_root *root;
1492 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1493 	struct btrfs_path *path;
1494 	u64 generation;
1495 	int ret;
1496 
1497 	path = btrfs_alloc_path();
1498 	if (!path)
1499 		return ERR_PTR(-ENOMEM);
1500 
1501 	root = btrfs_alloc_root(fs_info);
1502 	if (!root) {
1503 		ret = -ENOMEM;
1504 		goto alloc_fail;
1505 	}
1506 
1507 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1508 		tree_root->stripesize, root, fs_info, key->objectid);
1509 
1510 	ret = btrfs_find_root(tree_root, key, path,
1511 			      &root->root_item, &root->root_key);
1512 	if (ret) {
1513 		if (ret > 0)
1514 			ret = -ENOENT;
1515 		goto find_fail;
1516 	}
1517 
1518 	generation = btrfs_root_generation(&root->root_item);
1519 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1520 				     generation);
1521 	if (IS_ERR(root->node)) {
1522 		ret = PTR_ERR(root->node);
1523 		goto find_fail;
1524 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1525 		ret = -EIO;
1526 		free_extent_buffer(root->node);
1527 		goto find_fail;
1528 	}
1529 	root->commit_root = btrfs_root_node(root);
1530 out:
1531 	btrfs_free_path(path);
1532 	return root;
1533 
1534 find_fail:
1535 	kfree(root);
1536 alloc_fail:
1537 	root = ERR_PTR(ret);
1538 	goto out;
1539 }
1540 
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1541 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1542 				      struct btrfs_key *location)
1543 {
1544 	struct btrfs_root *root;
1545 
1546 	root = btrfs_read_tree_root(tree_root, location);
1547 	if (IS_ERR(root))
1548 		return root;
1549 
1550 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1551 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1552 		btrfs_check_and_init_root_item(&root->root_item);
1553 	}
1554 
1555 	return root;
1556 }
1557 
btrfs_init_fs_root(struct btrfs_root * root)1558 int btrfs_init_fs_root(struct btrfs_root *root)
1559 {
1560 	int ret;
1561 	struct btrfs_subvolume_writers *writers;
1562 
1563 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1564 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1565 					GFP_NOFS);
1566 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1567 		ret = -ENOMEM;
1568 		goto fail;
1569 	}
1570 
1571 	writers = btrfs_alloc_subvolume_writers();
1572 	if (IS_ERR(writers)) {
1573 		ret = PTR_ERR(writers);
1574 		goto fail;
1575 	}
1576 	root->subv_writers = writers;
1577 
1578 	btrfs_init_free_ino_ctl(root);
1579 	spin_lock_init(&root->ino_cache_lock);
1580 	init_waitqueue_head(&root->ino_cache_wait);
1581 
1582 	ret = get_anon_bdev(&root->anon_dev);
1583 	if (ret)
1584 		goto free_writers;
1585 
1586 	mutex_lock(&root->objectid_mutex);
1587 	ret = btrfs_find_highest_objectid(root,
1588 					&root->highest_objectid);
1589 	if (ret) {
1590 		mutex_unlock(&root->objectid_mutex);
1591 		goto free_root_dev;
1592 	}
1593 
1594 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1595 
1596 	mutex_unlock(&root->objectid_mutex);
1597 
1598 	return 0;
1599 
1600 free_root_dev:
1601 	free_anon_bdev(root->anon_dev);
1602 free_writers:
1603 	btrfs_free_subvolume_writers(root->subv_writers);
1604 fail:
1605 	kfree(root->free_ino_ctl);
1606 	kfree(root->free_ino_pinned);
1607 	return ret;
1608 }
1609 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1610 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1611 					       u64 root_id)
1612 {
1613 	struct btrfs_root *root;
1614 
1615 	spin_lock(&fs_info->fs_roots_radix_lock);
1616 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1617 				 (unsigned long)root_id);
1618 	spin_unlock(&fs_info->fs_roots_radix_lock);
1619 	return root;
1620 }
1621 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1622 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1623 			 struct btrfs_root *root)
1624 {
1625 	int ret;
1626 
1627 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1628 	if (ret)
1629 		return ret;
1630 
1631 	spin_lock(&fs_info->fs_roots_radix_lock);
1632 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1633 				(unsigned long)root->root_key.objectid,
1634 				root);
1635 	if (ret == 0)
1636 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1637 	spin_unlock(&fs_info->fs_roots_radix_lock);
1638 	radix_tree_preload_end();
1639 
1640 	return ret;
1641 }
1642 
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1643 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1644 				     struct btrfs_key *location,
1645 				     bool check_ref)
1646 {
1647 	struct btrfs_root *root;
1648 	struct btrfs_path *path;
1649 	struct btrfs_key key;
1650 	int ret;
1651 
1652 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1653 		return fs_info->tree_root;
1654 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1655 		return fs_info->extent_root;
1656 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1657 		return fs_info->chunk_root;
1658 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1659 		return fs_info->dev_root;
1660 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1661 		return fs_info->csum_root;
1662 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1663 		return fs_info->quota_root ? fs_info->quota_root :
1664 					     ERR_PTR(-ENOENT);
1665 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1666 		return fs_info->uuid_root ? fs_info->uuid_root :
1667 					    ERR_PTR(-ENOENT);
1668 again:
1669 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1670 	if (root) {
1671 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1672 			return ERR_PTR(-ENOENT);
1673 		return root;
1674 	}
1675 
1676 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1677 	if (IS_ERR(root))
1678 		return root;
1679 
1680 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1681 		ret = -ENOENT;
1682 		goto fail;
1683 	}
1684 
1685 	ret = btrfs_init_fs_root(root);
1686 	if (ret)
1687 		goto fail;
1688 
1689 	path = btrfs_alloc_path();
1690 	if (!path) {
1691 		ret = -ENOMEM;
1692 		goto fail;
1693 	}
1694 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1695 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1696 	key.offset = location->objectid;
1697 
1698 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1699 	btrfs_free_path(path);
1700 	if (ret < 0)
1701 		goto fail;
1702 	if (ret == 0)
1703 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1704 
1705 	ret = btrfs_insert_fs_root(fs_info, root);
1706 	if (ret) {
1707 		if (ret == -EEXIST) {
1708 			free_fs_root(root);
1709 			goto again;
1710 		}
1711 		goto fail;
1712 	}
1713 	return root;
1714 fail:
1715 	free_fs_root(root);
1716 	return ERR_PTR(ret);
1717 }
1718 
btrfs_congested_fn(void * congested_data,int bdi_bits)1719 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1720 {
1721 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1722 	int ret = 0;
1723 	struct btrfs_device *device;
1724 	struct backing_dev_info *bdi;
1725 
1726 	rcu_read_lock();
1727 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1728 		if (!device->bdev)
1729 			continue;
1730 		bdi = blk_get_backing_dev_info(device->bdev);
1731 		if (bdi_congested(bdi, bdi_bits)) {
1732 			ret = 1;
1733 			break;
1734 		}
1735 	}
1736 	rcu_read_unlock();
1737 	return ret;
1738 }
1739 
setup_bdi(struct btrfs_fs_info * info,struct backing_dev_info * bdi)1740 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1741 {
1742 	int err;
1743 
1744 	err = bdi_setup_and_register(bdi, "btrfs");
1745 	if (err)
1746 		return err;
1747 
1748 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1749 	bdi->congested_fn	= btrfs_congested_fn;
1750 	bdi->congested_data	= info;
1751 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1752 	return 0;
1753 }
1754 
1755 /*
1756  * called by the kthread helper functions to finally call the bio end_io
1757  * functions.  This is where read checksum verification actually happens
1758  */
end_workqueue_fn(struct btrfs_work * work)1759 static void end_workqueue_fn(struct btrfs_work *work)
1760 {
1761 	struct bio *bio;
1762 	struct btrfs_end_io_wq *end_io_wq;
1763 
1764 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1765 	bio = end_io_wq->bio;
1766 
1767 	bio->bi_error = end_io_wq->error;
1768 	bio->bi_private = end_io_wq->private;
1769 	bio->bi_end_io = end_io_wq->end_io;
1770 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1771 	bio_endio(bio);
1772 }
1773 
cleaner_kthread(void * arg)1774 static int cleaner_kthread(void *arg)
1775 {
1776 	struct btrfs_root *root = arg;
1777 	int again;
1778 	struct btrfs_trans_handle *trans;
1779 
1780 	do {
1781 		again = 0;
1782 
1783 		/* Make the cleaner go to sleep early. */
1784 		if (btrfs_need_cleaner_sleep(root))
1785 			goto sleep;
1786 
1787 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1788 			goto sleep;
1789 
1790 		/*
1791 		 * Avoid the problem that we change the status of the fs
1792 		 * during the above check and trylock.
1793 		 */
1794 		if (btrfs_need_cleaner_sleep(root)) {
1795 			mutex_unlock(&root->fs_info->cleaner_mutex);
1796 			goto sleep;
1797 		}
1798 
1799 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1800 		btrfs_run_delayed_iputs(root);
1801 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1802 
1803 		again = btrfs_clean_one_deleted_snapshot(root);
1804 		mutex_unlock(&root->fs_info->cleaner_mutex);
1805 
1806 		/*
1807 		 * The defragger has dealt with the R/O remount and umount,
1808 		 * needn't do anything special here.
1809 		 */
1810 		btrfs_run_defrag_inodes(root->fs_info);
1811 
1812 		/*
1813 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1814 		 * with relocation (btrfs_relocate_chunk) and relocation
1815 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1816 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1817 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1818 		 * unused block groups.
1819 		 */
1820 		btrfs_delete_unused_bgs(root->fs_info);
1821 sleep:
1822 		if (!try_to_freeze() && !again) {
1823 			set_current_state(TASK_INTERRUPTIBLE);
1824 			if (!kthread_should_stop())
1825 				schedule();
1826 			__set_current_state(TASK_RUNNING);
1827 		}
1828 	} while (!kthread_should_stop());
1829 
1830 	/*
1831 	 * Transaction kthread is stopped before us and wakes us up.
1832 	 * However we might have started a new transaction and COWed some
1833 	 * tree blocks when deleting unused block groups for example. So
1834 	 * make sure we commit the transaction we started to have a clean
1835 	 * shutdown when evicting the btree inode - if it has dirty pages
1836 	 * when we do the final iput() on it, eviction will trigger a
1837 	 * writeback for it which will fail with null pointer dereferences
1838 	 * since work queues and other resources were already released and
1839 	 * destroyed by the time the iput/eviction/writeback is made.
1840 	 */
1841 	trans = btrfs_attach_transaction(root);
1842 	if (IS_ERR(trans)) {
1843 		if (PTR_ERR(trans) != -ENOENT)
1844 			btrfs_err(root->fs_info,
1845 				  "cleaner transaction attach returned %ld",
1846 				  PTR_ERR(trans));
1847 	} else {
1848 		int ret;
1849 
1850 		ret = btrfs_commit_transaction(trans, root);
1851 		if (ret)
1852 			btrfs_err(root->fs_info,
1853 				  "cleaner open transaction commit returned %d",
1854 				  ret);
1855 	}
1856 
1857 	return 0;
1858 }
1859 
transaction_kthread(void * arg)1860 static int transaction_kthread(void *arg)
1861 {
1862 	struct btrfs_root *root = arg;
1863 	struct btrfs_trans_handle *trans;
1864 	struct btrfs_transaction *cur;
1865 	u64 transid;
1866 	unsigned long now;
1867 	unsigned long delay;
1868 	bool cannot_commit;
1869 
1870 	do {
1871 		cannot_commit = false;
1872 		delay = HZ * root->fs_info->commit_interval;
1873 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1874 
1875 		spin_lock(&root->fs_info->trans_lock);
1876 		cur = root->fs_info->running_transaction;
1877 		if (!cur) {
1878 			spin_unlock(&root->fs_info->trans_lock);
1879 			goto sleep;
1880 		}
1881 
1882 		now = get_seconds();
1883 		if (cur->state < TRANS_STATE_BLOCKED &&
1884 		    (now < cur->start_time ||
1885 		     now - cur->start_time < root->fs_info->commit_interval)) {
1886 			spin_unlock(&root->fs_info->trans_lock);
1887 			delay = HZ * 5;
1888 			goto sleep;
1889 		}
1890 		transid = cur->transid;
1891 		spin_unlock(&root->fs_info->trans_lock);
1892 
1893 		/* If the file system is aborted, this will always fail. */
1894 		trans = btrfs_attach_transaction(root);
1895 		if (IS_ERR(trans)) {
1896 			if (PTR_ERR(trans) != -ENOENT)
1897 				cannot_commit = true;
1898 			goto sleep;
1899 		}
1900 		if (transid == trans->transid) {
1901 			btrfs_commit_transaction(trans, root);
1902 		} else {
1903 			btrfs_end_transaction(trans, root);
1904 		}
1905 sleep:
1906 		wake_up_process(root->fs_info->cleaner_kthread);
1907 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1908 
1909 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1910 				      &root->fs_info->fs_state)))
1911 			btrfs_cleanup_transaction(root);
1912 		if (!try_to_freeze()) {
1913 			set_current_state(TASK_INTERRUPTIBLE);
1914 			if (!kthread_should_stop() &&
1915 			    (!btrfs_transaction_blocked(root->fs_info) ||
1916 			     cannot_commit))
1917 				schedule_timeout(delay);
1918 			__set_current_state(TASK_RUNNING);
1919 		}
1920 	} while (!kthread_should_stop());
1921 	return 0;
1922 }
1923 
1924 /*
1925  * this will find the highest generation in the array of
1926  * root backups.  The index of the highest array is returned,
1927  * or -1 if we can't find anything.
1928  *
1929  * We check to make sure the array is valid by comparing the
1930  * generation of the latest  root in the array with the generation
1931  * in the super block.  If they don't match we pitch it.
1932  */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1933 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1934 {
1935 	u64 cur;
1936 	int newest_index = -1;
1937 	struct btrfs_root_backup *root_backup;
1938 	int i;
1939 
1940 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1941 		root_backup = info->super_copy->super_roots + i;
1942 		cur = btrfs_backup_tree_root_gen(root_backup);
1943 		if (cur == newest_gen)
1944 			newest_index = i;
1945 	}
1946 
1947 	/* check to see if we actually wrapped around */
1948 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1949 		root_backup = info->super_copy->super_roots;
1950 		cur = btrfs_backup_tree_root_gen(root_backup);
1951 		if (cur == newest_gen)
1952 			newest_index = 0;
1953 	}
1954 	return newest_index;
1955 }
1956 
1957 
1958 /*
1959  * find the oldest backup so we know where to store new entries
1960  * in the backup array.  This will set the backup_root_index
1961  * field in the fs_info struct
1962  */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1963 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1964 				     u64 newest_gen)
1965 {
1966 	int newest_index = -1;
1967 
1968 	newest_index = find_newest_super_backup(info, newest_gen);
1969 	/* if there was garbage in there, just move along */
1970 	if (newest_index == -1) {
1971 		info->backup_root_index = 0;
1972 	} else {
1973 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1974 	}
1975 }
1976 
1977 /*
1978  * copy all the root pointers into the super backup array.
1979  * this will bump the backup pointer by one when it is
1980  * done
1981  */
backup_super_roots(struct btrfs_fs_info * info)1982 static void backup_super_roots(struct btrfs_fs_info *info)
1983 {
1984 	int next_backup;
1985 	struct btrfs_root_backup *root_backup;
1986 	int last_backup;
1987 
1988 	next_backup = info->backup_root_index;
1989 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1990 		BTRFS_NUM_BACKUP_ROOTS;
1991 
1992 	/*
1993 	 * just overwrite the last backup if we're at the same generation
1994 	 * this happens only at umount
1995 	 */
1996 	root_backup = info->super_for_commit->super_roots + last_backup;
1997 	if (btrfs_backup_tree_root_gen(root_backup) ==
1998 	    btrfs_header_generation(info->tree_root->node))
1999 		next_backup = last_backup;
2000 
2001 	root_backup = info->super_for_commit->super_roots + next_backup;
2002 
2003 	/*
2004 	 * make sure all of our padding and empty slots get zero filled
2005 	 * regardless of which ones we use today
2006 	 */
2007 	memset(root_backup, 0, sizeof(*root_backup));
2008 
2009 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2010 
2011 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2012 	btrfs_set_backup_tree_root_gen(root_backup,
2013 			       btrfs_header_generation(info->tree_root->node));
2014 
2015 	btrfs_set_backup_tree_root_level(root_backup,
2016 			       btrfs_header_level(info->tree_root->node));
2017 
2018 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2019 	btrfs_set_backup_chunk_root_gen(root_backup,
2020 			       btrfs_header_generation(info->chunk_root->node));
2021 	btrfs_set_backup_chunk_root_level(root_backup,
2022 			       btrfs_header_level(info->chunk_root->node));
2023 
2024 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2025 	btrfs_set_backup_extent_root_gen(root_backup,
2026 			       btrfs_header_generation(info->extent_root->node));
2027 	btrfs_set_backup_extent_root_level(root_backup,
2028 			       btrfs_header_level(info->extent_root->node));
2029 
2030 	/*
2031 	 * we might commit during log recovery, which happens before we set
2032 	 * the fs_root.  Make sure it is valid before we fill it in.
2033 	 */
2034 	if (info->fs_root && info->fs_root->node) {
2035 		btrfs_set_backup_fs_root(root_backup,
2036 					 info->fs_root->node->start);
2037 		btrfs_set_backup_fs_root_gen(root_backup,
2038 			       btrfs_header_generation(info->fs_root->node));
2039 		btrfs_set_backup_fs_root_level(root_backup,
2040 			       btrfs_header_level(info->fs_root->node));
2041 	}
2042 
2043 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2044 	btrfs_set_backup_dev_root_gen(root_backup,
2045 			       btrfs_header_generation(info->dev_root->node));
2046 	btrfs_set_backup_dev_root_level(root_backup,
2047 				       btrfs_header_level(info->dev_root->node));
2048 
2049 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2050 	btrfs_set_backup_csum_root_gen(root_backup,
2051 			       btrfs_header_generation(info->csum_root->node));
2052 	btrfs_set_backup_csum_root_level(root_backup,
2053 			       btrfs_header_level(info->csum_root->node));
2054 
2055 	btrfs_set_backup_total_bytes(root_backup,
2056 			     btrfs_super_total_bytes(info->super_copy));
2057 	btrfs_set_backup_bytes_used(root_backup,
2058 			     btrfs_super_bytes_used(info->super_copy));
2059 	btrfs_set_backup_num_devices(root_backup,
2060 			     btrfs_super_num_devices(info->super_copy));
2061 
2062 	/*
2063 	 * if we don't copy this out to the super_copy, it won't get remembered
2064 	 * for the next commit
2065 	 */
2066 	memcpy(&info->super_copy->super_roots,
2067 	       &info->super_for_commit->super_roots,
2068 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2069 }
2070 
2071 /*
2072  * this copies info out of the root backup array and back into
2073  * the in-memory super block.  It is meant to help iterate through
2074  * the array, so you send it the number of backups you've already
2075  * tried and the last backup index you used.
2076  *
2077  * this returns -1 when it has tried all the backups
2078  */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)2079 static noinline int next_root_backup(struct btrfs_fs_info *info,
2080 				     struct btrfs_super_block *super,
2081 				     int *num_backups_tried, int *backup_index)
2082 {
2083 	struct btrfs_root_backup *root_backup;
2084 	int newest = *backup_index;
2085 
2086 	if (*num_backups_tried == 0) {
2087 		u64 gen = btrfs_super_generation(super);
2088 
2089 		newest = find_newest_super_backup(info, gen);
2090 		if (newest == -1)
2091 			return -1;
2092 
2093 		*backup_index = newest;
2094 		*num_backups_tried = 1;
2095 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2096 		/* we've tried all the backups, all done */
2097 		return -1;
2098 	} else {
2099 		/* jump to the next oldest backup */
2100 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2101 			BTRFS_NUM_BACKUP_ROOTS;
2102 		*backup_index = newest;
2103 		*num_backups_tried += 1;
2104 	}
2105 	root_backup = super->super_roots + newest;
2106 
2107 	btrfs_set_super_generation(super,
2108 				   btrfs_backup_tree_root_gen(root_backup));
2109 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2110 	btrfs_set_super_root_level(super,
2111 				   btrfs_backup_tree_root_level(root_backup));
2112 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2113 
2114 	/*
2115 	 * fixme: the total bytes and num_devices need to match or we should
2116 	 * need a fsck
2117 	 */
2118 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2119 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2120 	return 0;
2121 }
2122 
2123 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2124 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2125 {
2126 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2127 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2128 	btrfs_destroy_workqueue(fs_info->workers);
2129 	btrfs_destroy_workqueue(fs_info->endio_workers);
2130 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2131 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2132 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2133 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2134 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2135 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2136 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2137 	btrfs_destroy_workqueue(fs_info->submit_workers);
2138 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2139 	btrfs_destroy_workqueue(fs_info->caching_workers);
2140 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2141 	btrfs_destroy_workqueue(fs_info->flush_workers);
2142 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2143 	btrfs_destroy_workqueue(fs_info->extent_workers);
2144 }
2145 
free_root_extent_buffers(struct btrfs_root * root)2146 static void free_root_extent_buffers(struct btrfs_root *root)
2147 {
2148 	if (root) {
2149 		free_extent_buffer(root->node);
2150 		free_extent_buffer(root->commit_root);
2151 		root->node = NULL;
2152 		root->commit_root = NULL;
2153 	}
2154 }
2155 
2156 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,int chunk_root)2157 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2158 {
2159 	free_root_extent_buffers(info->tree_root);
2160 
2161 	free_root_extent_buffers(info->dev_root);
2162 	free_root_extent_buffers(info->extent_root);
2163 	free_root_extent_buffers(info->csum_root);
2164 	free_root_extent_buffers(info->quota_root);
2165 	free_root_extent_buffers(info->uuid_root);
2166 	if (chunk_root)
2167 		free_root_extent_buffers(info->chunk_root);
2168 }
2169 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2170 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2171 {
2172 	int ret;
2173 	struct btrfs_root *gang[8];
2174 	int i;
2175 
2176 	while (!list_empty(&fs_info->dead_roots)) {
2177 		gang[0] = list_entry(fs_info->dead_roots.next,
2178 				     struct btrfs_root, root_list);
2179 		list_del(&gang[0]->root_list);
2180 
2181 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2182 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2183 		} else {
2184 			free_extent_buffer(gang[0]->node);
2185 			free_extent_buffer(gang[0]->commit_root);
2186 			btrfs_put_fs_root(gang[0]);
2187 		}
2188 	}
2189 
2190 	while (1) {
2191 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2192 					     (void **)gang, 0,
2193 					     ARRAY_SIZE(gang));
2194 		if (!ret)
2195 			break;
2196 		for (i = 0; i < ret; i++)
2197 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2198 	}
2199 
2200 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2201 		btrfs_free_log_root_tree(NULL, fs_info);
2202 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2203 					    fs_info->pinned_extents);
2204 	}
2205 }
2206 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2207 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2208 {
2209 	mutex_init(&fs_info->scrub_lock);
2210 	atomic_set(&fs_info->scrubs_running, 0);
2211 	atomic_set(&fs_info->scrub_pause_req, 0);
2212 	atomic_set(&fs_info->scrubs_paused, 0);
2213 	atomic_set(&fs_info->scrub_cancel_req, 0);
2214 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2215 	fs_info->scrub_workers_refcnt = 0;
2216 }
2217 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2218 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2219 {
2220 	spin_lock_init(&fs_info->balance_lock);
2221 	mutex_init(&fs_info->balance_mutex);
2222 	atomic_set(&fs_info->balance_running, 0);
2223 	atomic_set(&fs_info->balance_pause_req, 0);
2224 	atomic_set(&fs_info->balance_cancel_req, 0);
2225 	fs_info->balance_ctl = NULL;
2226 	init_waitqueue_head(&fs_info->balance_wait_q);
2227 }
2228 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info,struct btrfs_root * tree_root)2229 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2230 				   struct btrfs_root *tree_root)
2231 {
2232 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2233 	set_nlink(fs_info->btree_inode, 1);
2234 	/*
2235 	 * we set the i_size on the btree inode to the max possible int.
2236 	 * the real end of the address space is determined by all of
2237 	 * the devices in the system
2238 	 */
2239 	fs_info->btree_inode->i_size = OFFSET_MAX;
2240 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2241 
2242 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2243 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2244 			     fs_info->btree_inode->i_mapping);
2245 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2246 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2247 
2248 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2249 
2250 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2251 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2252 	       sizeof(struct btrfs_key));
2253 	set_bit(BTRFS_INODE_DUMMY,
2254 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2255 	btrfs_insert_inode_hash(fs_info->btree_inode);
2256 }
2257 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2258 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2259 {
2260 	fs_info->dev_replace.lock_owner = 0;
2261 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2262 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2263 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2264 	mutex_init(&fs_info->dev_replace.lock);
2265 	init_waitqueue_head(&fs_info->replace_wait);
2266 }
2267 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2268 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2269 {
2270 	spin_lock_init(&fs_info->qgroup_lock);
2271 	mutex_init(&fs_info->qgroup_ioctl_lock);
2272 	fs_info->qgroup_tree = RB_ROOT;
2273 	fs_info->qgroup_op_tree = RB_ROOT;
2274 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2275 	fs_info->qgroup_seq = 1;
2276 	fs_info->quota_enabled = 0;
2277 	fs_info->pending_quota_state = 0;
2278 	fs_info->qgroup_ulist = NULL;
2279 	mutex_init(&fs_info->qgroup_rescan_lock);
2280 }
2281 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2282 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2283 		struct btrfs_fs_devices *fs_devices)
2284 {
2285 	int max_active = fs_info->thread_pool_size;
2286 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2287 
2288 	fs_info->workers =
2289 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2290 				      max_active, 16);
2291 
2292 	fs_info->delalloc_workers =
2293 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2294 
2295 	fs_info->flush_workers =
2296 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2297 
2298 	fs_info->caching_workers =
2299 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2300 
2301 	/*
2302 	 * a higher idle thresh on the submit workers makes it much more
2303 	 * likely that bios will be send down in a sane order to the
2304 	 * devices
2305 	 */
2306 	fs_info->submit_workers =
2307 		btrfs_alloc_workqueue("submit", flags,
2308 				      min_t(u64, fs_devices->num_devices,
2309 					    max_active), 64);
2310 
2311 	fs_info->fixup_workers =
2312 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2313 
2314 	/*
2315 	 * endios are largely parallel and should have a very
2316 	 * low idle thresh
2317 	 */
2318 	fs_info->endio_workers =
2319 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2320 	fs_info->endio_meta_workers =
2321 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2322 	fs_info->endio_meta_write_workers =
2323 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2324 	fs_info->endio_raid56_workers =
2325 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2326 	fs_info->endio_repair_workers =
2327 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2328 	fs_info->rmw_workers =
2329 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2330 	fs_info->endio_write_workers =
2331 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2332 	fs_info->endio_freespace_worker =
2333 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2334 	fs_info->delayed_workers =
2335 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2336 	fs_info->readahead_workers =
2337 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2338 	fs_info->qgroup_rescan_workers =
2339 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2340 	fs_info->extent_workers =
2341 		btrfs_alloc_workqueue("extent-refs", flags,
2342 				      min_t(u64, fs_devices->num_devices,
2343 					    max_active), 8);
2344 
2345 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2346 	      fs_info->submit_workers && fs_info->flush_workers &&
2347 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2348 	      fs_info->endio_meta_write_workers &&
2349 	      fs_info->endio_repair_workers &&
2350 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2351 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2352 	      fs_info->caching_workers && fs_info->readahead_workers &&
2353 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2354 	      fs_info->extent_workers &&
2355 	      fs_info->qgroup_rescan_workers)) {
2356 		return -ENOMEM;
2357 	}
2358 
2359 	return 0;
2360 }
2361 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2362 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2363 			    struct btrfs_fs_devices *fs_devices)
2364 {
2365 	int ret;
2366 	struct btrfs_root *tree_root = fs_info->tree_root;
2367 	struct btrfs_root *log_tree_root;
2368 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2369 	u64 bytenr = btrfs_super_log_root(disk_super);
2370 
2371 	if (fs_devices->rw_devices == 0) {
2372 		btrfs_warn(fs_info, "log replay required on RO media");
2373 		return -EIO;
2374 	}
2375 
2376 	log_tree_root = btrfs_alloc_root(fs_info);
2377 	if (!log_tree_root)
2378 		return -ENOMEM;
2379 
2380 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2381 			tree_root->stripesize, log_tree_root, fs_info,
2382 			BTRFS_TREE_LOG_OBJECTID);
2383 
2384 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2385 			fs_info->generation + 1);
2386 	if (IS_ERR(log_tree_root->node)) {
2387 		btrfs_warn(fs_info, "failed to read log tree");
2388 		ret = PTR_ERR(log_tree_root->node);
2389 		kfree(log_tree_root);
2390 		return ret;
2391 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2392 		btrfs_err(fs_info, "failed to read log tree");
2393 		free_extent_buffer(log_tree_root->node);
2394 		kfree(log_tree_root);
2395 		return -EIO;
2396 	}
2397 	/* returns with log_tree_root freed on success */
2398 	ret = btrfs_recover_log_trees(log_tree_root);
2399 	if (ret) {
2400 		btrfs_std_error(tree_root->fs_info, ret,
2401 			    "Failed to recover log tree");
2402 		free_extent_buffer(log_tree_root->node);
2403 		kfree(log_tree_root);
2404 		return ret;
2405 	}
2406 
2407 	if (fs_info->sb->s_flags & MS_RDONLY) {
2408 		ret = btrfs_commit_super(tree_root);
2409 		if (ret)
2410 			return ret;
2411 	}
2412 
2413 	return 0;
2414 }
2415 
btrfs_read_roots(struct btrfs_fs_info * fs_info,struct btrfs_root * tree_root)2416 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2417 			    struct btrfs_root *tree_root)
2418 {
2419 	struct btrfs_root *root;
2420 	struct btrfs_key location;
2421 	int ret;
2422 
2423 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2424 	location.type = BTRFS_ROOT_ITEM_KEY;
2425 	location.offset = 0;
2426 
2427 	root = btrfs_read_tree_root(tree_root, &location);
2428 	if (IS_ERR(root))
2429 		return PTR_ERR(root);
2430 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2431 	fs_info->extent_root = root;
2432 
2433 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2434 	root = btrfs_read_tree_root(tree_root, &location);
2435 	if (IS_ERR(root))
2436 		return PTR_ERR(root);
2437 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2438 	fs_info->dev_root = root;
2439 	btrfs_init_devices_late(fs_info);
2440 
2441 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2442 	root = btrfs_read_tree_root(tree_root, &location);
2443 	if (IS_ERR(root))
2444 		return PTR_ERR(root);
2445 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2446 	fs_info->csum_root = root;
2447 
2448 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2449 	root = btrfs_read_tree_root(tree_root, &location);
2450 	if (!IS_ERR(root)) {
2451 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2452 		fs_info->quota_enabled = 1;
2453 		fs_info->pending_quota_state = 1;
2454 		fs_info->quota_root = root;
2455 	}
2456 
2457 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2458 	root = btrfs_read_tree_root(tree_root, &location);
2459 	if (IS_ERR(root)) {
2460 		ret = PTR_ERR(root);
2461 		if (ret != -ENOENT)
2462 			return ret;
2463 	} else {
2464 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2465 		fs_info->uuid_root = root;
2466 	}
2467 
2468 	return 0;
2469 }
2470 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2471 int open_ctree(struct super_block *sb,
2472 	       struct btrfs_fs_devices *fs_devices,
2473 	       char *options)
2474 {
2475 	u32 sectorsize;
2476 	u32 nodesize;
2477 	u32 stripesize;
2478 	u64 generation;
2479 	u64 features;
2480 	struct btrfs_key location;
2481 	struct buffer_head *bh;
2482 	struct btrfs_super_block *disk_super;
2483 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2484 	struct btrfs_root *tree_root;
2485 	struct btrfs_root *chunk_root;
2486 	int ret;
2487 	int err = -EINVAL;
2488 	int num_backups_tried = 0;
2489 	int backup_index = 0;
2490 	int max_active;
2491 
2492 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2493 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2494 	if (!tree_root || !chunk_root) {
2495 		err = -ENOMEM;
2496 		goto fail;
2497 	}
2498 
2499 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2500 	if (ret) {
2501 		err = ret;
2502 		goto fail;
2503 	}
2504 
2505 	ret = setup_bdi(fs_info, &fs_info->bdi);
2506 	if (ret) {
2507 		err = ret;
2508 		goto fail_srcu;
2509 	}
2510 
2511 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2512 	if (ret) {
2513 		err = ret;
2514 		goto fail_bdi;
2515 	}
2516 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2517 					(1 + ilog2(nr_cpu_ids));
2518 
2519 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2520 	if (ret) {
2521 		err = ret;
2522 		goto fail_dirty_metadata_bytes;
2523 	}
2524 
2525 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2526 	if (ret) {
2527 		err = ret;
2528 		goto fail_delalloc_bytes;
2529 	}
2530 
2531 	fs_info->btree_inode = new_inode(sb);
2532 	if (!fs_info->btree_inode) {
2533 		err = -ENOMEM;
2534 		goto fail_bio_counter;
2535 	}
2536 
2537 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2538 
2539 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2540 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2541 	INIT_LIST_HEAD(&fs_info->trans_list);
2542 	INIT_LIST_HEAD(&fs_info->dead_roots);
2543 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2544 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2545 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2546 	spin_lock_init(&fs_info->delalloc_root_lock);
2547 	spin_lock_init(&fs_info->trans_lock);
2548 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2549 	spin_lock_init(&fs_info->delayed_iput_lock);
2550 	spin_lock_init(&fs_info->defrag_inodes_lock);
2551 	spin_lock_init(&fs_info->free_chunk_lock);
2552 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2553 	spin_lock_init(&fs_info->super_lock);
2554 	spin_lock_init(&fs_info->qgroup_op_lock);
2555 	spin_lock_init(&fs_info->buffer_lock);
2556 	spin_lock_init(&fs_info->unused_bgs_lock);
2557 	rwlock_init(&fs_info->tree_mod_log_lock);
2558 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2559 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2560 	mutex_init(&fs_info->reloc_mutex);
2561 	mutex_init(&fs_info->delalloc_root_mutex);
2562 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2563 	seqlock_init(&fs_info->profiles_lock);
2564 
2565 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2566 	INIT_LIST_HEAD(&fs_info->space_info);
2567 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2568 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2569 	btrfs_mapping_init(&fs_info->mapping_tree);
2570 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2571 			     BTRFS_BLOCK_RSV_GLOBAL);
2572 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2573 			     BTRFS_BLOCK_RSV_DELALLOC);
2574 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2575 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2576 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2577 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2578 			     BTRFS_BLOCK_RSV_DELOPS);
2579 	atomic_set(&fs_info->nr_async_submits, 0);
2580 	atomic_set(&fs_info->async_delalloc_pages, 0);
2581 	atomic_set(&fs_info->async_submit_draining, 0);
2582 	atomic_set(&fs_info->nr_async_bios, 0);
2583 	atomic_set(&fs_info->defrag_running, 0);
2584 	atomic_set(&fs_info->qgroup_op_seq, 0);
2585 	atomic64_set(&fs_info->tree_mod_seq, 0);
2586 	fs_info->sb = sb;
2587 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2588 	fs_info->metadata_ratio = 0;
2589 	fs_info->defrag_inodes = RB_ROOT;
2590 	fs_info->free_chunk_space = 0;
2591 	fs_info->tree_mod_log = RB_ROOT;
2592 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2593 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2594 	/* readahead state */
2595 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2596 	spin_lock_init(&fs_info->reada_lock);
2597 
2598 	fs_info->thread_pool_size = min_t(unsigned long,
2599 					  num_online_cpus() + 2, 8);
2600 
2601 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2602 	spin_lock_init(&fs_info->ordered_root_lock);
2603 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2604 					GFP_NOFS);
2605 	if (!fs_info->delayed_root) {
2606 		err = -ENOMEM;
2607 		goto fail_iput;
2608 	}
2609 	btrfs_init_delayed_root(fs_info->delayed_root);
2610 
2611 	btrfs_init_scrub(fs_info);
2612 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2613 	fs_info->check_integrity_print_mask = 0;
2614 #endif
2615 	btrfs_init_balance(fs_info);
2616 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2617 
2618 	sb->s_blocksize = 4096;
2619 	sb->s_blocksize_bits = blksize_bits(4096);
2620 	sb->s_bdi = &fs_info->bdi;
2621 
2622 	btrfs_init_btree_inode(fs_info, tree_root);
2623 
2624 	spin_lock_init(&fs_info->block_group_cache_lock);
2625 	fs_info->block_group_cache_tree = RB_ROOT;
2626 	fs_info->first_logical_byte = (u64)-1;
2627 
2628 	extent_io_tree_init(&fs_info->freed_extents[0],
2629 			     fs_info->btree_inode->i_mapping);
2630 	extent_io_tree_init(&fs_info->freed_extents[1],
2631 			     fs_info->btree_inode->i_mapping);
2632 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2633 	fs_info->do_barriers = 1;
2634 
2635 
2636 	mutex_init(&fs_info->ordered_operations_mutex);
2637 	mutex_init(&fs_info->tree_log_mutex);
2638 	mutex_init(&fs_info->chunk_mutex);
2639 	mutex_init(&fs_info->transaction_kthread_mutex);
2640 	mutex_init(&fs_info->cleaner_mutex);
2641 	mutex_init(&fs_info->volume_mutex);
2642 	mutex_init(&fs_info->ro_block_group_mutex);
2643 	init_rwsem(&fs_info->commit_root_sem);
2644 	init_rwsem(&fs_info->cleanup_work_sem);
2645 	init_rwsem(&fs_info->subvol_sem);
2646 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2647 
2648 	btrfs_init_dev_replace_locks(fs_info);
2649 	btrfs_init_qgroup(fs_info);
2650 
2651 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2652 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2653 
2654 	init_waitqueue_head(&fs_info->transaction_throttle);
2655 	init_waitqueue_head(&fs_info->transaction_wait);
2656 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2657 	init_waitqueue_head(&fs_info->async_submit_wait);
2658 
2659 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2660 
2661 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2662 	if (ret) {
2663 		err = ret;
2664 		goto fail_alloc;
2665 	}
2666 
2667 	__setup_root(4096, 4096, 4096, tree_root,
2668 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2669 
2670 	invalidate_bdev(fs_devices->latest_bdev);
2671 
2672 	/*
2673 	 * Read super block and check the signature bytes only
2674 	 */
2675 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2676 	if (IS_ERR(bh)) {
2677 		err = PTR_ERR(bh);
2678 		goto fail_alloc;
2679 	}
2680 
2681 	/*
2682 	 * We want to check superblock checksum, the type is stored inside.
2683 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2684 	 */
2685 	if (btrfs_check_super_csum(bh->b_data)) {
2686 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2687 		err = -EINVAL;
2688 		brelse(bh);
2689 		goto fail_alloc;
2690 	}
2691 
2692 	/*
2693 	 * super_copy is zeroed at allocation time and we never touch the
2694 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2695 	 * the whole block of INFO_SIZE
2696 	 */
2697 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2698 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2699 	       sizeof(*fs_info->super_for_commit));
2700 	brelse(bh);
2701 
2702 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2703 
2704 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2705 	if (ret) {
2706 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2707 		err = -EINVAL;
2708 		goto fail_alloc;
2709 	}
2710 
2711 	disk_super = fs_info->super_copy;
2712 	if (!btrfs_super_root(disk_super))
2713 		goto fail_alloc;
2714 
2715 	/* check FS state, whether FS is broken. */
2716 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2717 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2718 
2719 	/*
2720 	 * run through our array of backup supers and setup
2721 	 * our ring pointer to the oldest one
2722 	 */
2723 	generation = btrfs_super_generation(disk_super);
2724 	find_oldest_super_backup(fs_info, generation);
2725 
2726 	/*
2727 	 * In the long term, we'll store the compression type in the super
2728 	 * block, and it'll be used for per file compression control.
2729 	 */
2730 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2731 
2732 	ret = btrfs_parse_options(tree_root, options);
2733 	if (ret) {
2734 		err = ret;
2735 		goto fail_alloc;
2736 	}
2737 
2738 	features = btrfs_super_incompat_flags(disk_super) &
2739 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2740 	if (features) {
2741 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2742 		       "unsupported optional features (%Lx).\n",
2743 		       features);
2744 		err = -EINVAL;
2745 		goto fail_alloc;
2746 	}
2747 
2748 	/*
2749 	 * Leafsize and nodesize were always equal, this is only a sanity check.
2750 	 */
2751 	if (le32_to_cpu(disk_super->__unused_leafsize) !=
2752 	    btrfs_super_nodesize(disk_super)) {
2753 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2754 		       "blocksizes don't match.  node %d leaf %d\n",
2755 		       btrfs_super_nodesize(disk_super),
2756 		       le32_to_cpu(disk_super->__unused_leafsize));
2757 		err = -EINVAL;
2758 		goto fail_alloc;
2759 	}
2760 	if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2761 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2762 		       "blocksize (%d) was too large\n",
2763 		       btrfs_super_nodesize(disk_super));
2764 		err = -EINVAL;
2765 		goto fail_alloc;
2766 	}
2767 
2768 	features = btrfs_super_incompat_flags(disk_super);
2769 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2770 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2771 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2772 
2773 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2774 		printk(KERN_INFO "BTRFS: has skinny extents\n");
2775 
2776 	/*
2777 	 * flag our filesystem as having big metadata blocks if
2778 	 * they are bigger than the page size
2779 	 */
2780 	if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2781 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2782 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2783 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2784 	}
2785 
2786 	nodesize = btrfs_super_nodesize(disk_super);
2787 	sectorsize = btrfs_super_sectorsize(disk_super);
2788 	stripesize = btrfs_super_stripesize(disk_super);
2789 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2790 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2791 
2792 	/*
2793 	 * mixed block groups end up with duplicate but slightly offset
2794 	 * extent buffers for the same range.  It leads to corruptions
2795 	 */
2796 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2797 	    (sectorsize != nodesize)) {
2798 		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2799 				"are not allowed for mixed block groups on %s\n",
2800 				sb->s_id);
2801 		goto fail_alloc;
2802 	}
2803 
2804 	/*
2805 	 * Needn't use the lock because there is no other task which will
2806 	 * update the flag.
2807 	 */
2808 	btrfs_set_super_incompat_flags(disk_super, features);
2809 
2810 	features = btrfs_super_compat_ro_flags(disk_super) &
2811 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2812 	if (!(sb->s_flags & MS_RDONLY) && features) {
2813 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2814 		       "unsupported option features (%Lx).\n",
2815 		       features);
2816 		err = -EINVAL;
2817 		goto fail_alloc;
2818 	}
2819 
2820 	max_active = fs_info->thread_pool_size;
2821 
2822 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2823 	if (ret) {
2824 		err = ret;
2825 		goto fail_sb_buffer;
2826 	}
2827 
2828 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2829 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2830 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2831 
2832 	tree_root->nodesize = nodesize;
2833 	tree_root->sectorsize = sectorsize;
2834 	tree_root->stripesize = stripesize;
2835 
2836 	sb->s_blocksize = sectorsize;
2837 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2838 
2839 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2840 		printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2841 		goto fail_sb_buffer;
2842 	}
2843 
2844 	if (sectorsize != PAGE_SIZE) {
2845 		printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2846 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2847 		goto fail_sb_buffer;
2848 	}
2849 
2850 	mutex_lock(&fs_info->chunk_mutex);
2851 	ret = btrfs_read_sys_array(tree_root);
2852 	mutex_unlock(&fs_info->chunk_mutex);
2853 	if (ret) {
2854 		printk(KERN_ERR "BTRFS: failed to read the system "
2855 		       "array on %s\n", sb->s_id);
2856 		goto fail_sb_buffer;
2857 	}
2858 
2859 	generation = btrfs_super_chunk_root_generation(disk_super);
2860 
2861 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2862 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2863 
2864 	chunk_root->node = read_tree_block(chunk_root,
2865 					   btrfs_super_chunk_root(disk_super),
2866 					   generation);
2867 	if (IS_ERR(chunk_root->node) ||
2868 	    !extent_buffer_uptodate(chunk_root->node)) {
2869 		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2870 		       sb->s_id);
2871 		if (!IS_ERR(chunk_root->node))
2872 			free_extent_buffer(chunk_root->node);
2873 		chunk_root->node = NULL;
2874 		goto fail_tree_roots;
2875 	}
2876 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2877 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2878 
2879 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2880 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2881 
2882 	ret = btrfs_read_chunk_tree(chunk_root);
2883 	if (ret) {
2884 		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2885 		       sb->s_id);
2886 		goto fail_tree_roots;
2887 	}
2888 
2889 	/*
2890 	 * keep the device that is marked to be the target device for the
2891 	 * dev_replace procedure
2892 	 */
2893 	btrfs_close_extra_devices(fs_devices, 0);
2894 
2895 	if (!fs_devices->latest_bdev) {
2896 		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2897 		       sb->s_id);
2898 		goto fail_tree_roots;
2899 	}
2900 
2901 retry_root_backup:
2902 	generation = btrfs_super_generation(disk_super);
2903 
2904 	tree_root->node = read_tree_block(tree_root,
2905 					  btrfs_super_root(disk_super),
2906 					  generation);
2907 	if (IS_ERR(tree_root->node) ||
2908 	    !extent_buffer_uptodate(tree_root->node)) {
2909 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2910 		       sb->s_id);
2911 		if (!IS_ERR(tree_root->node))
2912 			free_extent_buffer(tree_root->node);
2913 		tree_root->node = NULL;
2914 		goto recovery_tree_root;
2915 	}
2916 
2917 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2918 	tree_root->commit_root = btrfs_root_node(tree_root);
2919 	btrfs_set_root_refs(&tree_root->root_item, 1);
2920 
2921 	mutex_lock(&tree_root->objectid_mutex);
2922 	ret = btrfs_find_highest_objectid(tree_root,
2923 					&tree_root->highest_objectid);
2924 	if (ret) {
2925 		mutex_unlock(&tree_root->objectid_mutex);
2926 		goto recovery_tree_root;
2927 	}
2928 
2929 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2930 
2931 	mutex_unlock(&tree_root->objectid_mutex);
2932 
2933 	ret = btrfs_read_roots(fs_info, tree_root);
2934 	if (ret)
2935 		goto recovery_tree_root;
2936 
2937 	fs_info->generation = generation;
2938 	fs_info->last_trans_committed = generation;
2939 
2940 	ret = btrfs_recover_balance(fs_info);
2941 	if (ret) {
2942 		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2943 		goto fail_block_groups;
2944 	}
2945 
2946 	ret = btrfs_init_dev_stats(fs_info);
2947 	if (ret) {
2948 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2949 		       ret);
2950 		goto fail_block_groups;
2951 	}
2952 
2953 	ret = btrfs_init_dev_replace(fs_info);
2954 	if (ret) {
2955 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2956 		goto fail_block_groups;
2957 	}
2958 
2959 	btrfs_close_extra_devices(fs_devices, 1);
2960 
2961 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2962 	if (ret) {
2963 		pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2964 		goto fail_block_groups;
2965 	}
2966 
2967 	ret = btrfs_sysfs_add_device(fs_devices);
2968 	if (ret) {
2969 		pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2970 		goto fail_fsdev_sysfs;
2971 	}
2972 
2973 	ret = btrfs_sysfs_add_mounted(fs_info);
2974 	if (ret) {
2975 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2976 		goto fail_fsdev_sysfs;
2977 	}
2978 
2979 	ret = btrfs_init_space_info(fs_info);
2980 	if (ret) {
2981 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2982 		goto fail_sysfs;
2983 	}
2984 
2985 	ret = btrfs_read_block_groups(fs_info->extent_root);
2986 	if (ret) {
2987 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2988 		goto fail_sysfs;
2989 	}
2990 	fs_info->num_tolerated_disk_barrier_failures =
2991 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2992 	if (fs_info->fs_devices->missing_devices >
2993 	     fs_info->num_tolerated_disk_barrier_failures &&
2994 	    !(sb->s_flags & MS_RDONLY)) {
2995 		pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2996 			fs_info->fs_devices->missing_devices,
2997 			fs_info->num_tolerated_disk_barrier_failures);
2998 		goto fail_sysfs;
2999 	}
3000 
3001 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3002 					       "btrfs-cleaner");
3003 	if (IS_ERR(fs_info->cleaner_kthread))
3004 		goto fail_sysfs;
3005 
3006 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3007 						   tree_root,
3008 						   "btrfs-transaction");
3009 	if (IS_ERR(fs_info->transaction_kthread))
3010 		goto fail_cleaner;
3011 
3012 	if (!btrfs_test_opt(tree_root, SSD) &&
3013 	    !btrfs_test_opt(tree_root, NOSSD) &&
3014 	    !fs_info->fs_devices->rotating) {
3015 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3016 		       "mode\n");
3017 		btrfs_set_opt(fs_info->mount_opt, SSD);
3018 	}
3019 
3020 	/*
3021 	 * Mount does not set all options immediatelly, we can do it now and do
3022 	 * not have to wait for transaction commit
3023 	 */
3024 	btrfs_apply_pending_changes(fs_info);
3025 
3026 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3027 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3028 		ret = btrfsic_mount(tree_root, fs_devices,
3029 				    btrfs_test_opt(tree_root,
3030 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3031 				    1 : 0,
3032 				    fs_info->check_integrity_print_mask);
3033 		if (ret)
3034 			printk(KERN_WARNING "BTRFS: failed to initialize"
3035 			       " integrity check module %s\n", sb->s_id);
3036 	}
3037 #endif
3038 	ret = btrfs_read_qgroup_config(fs_info);
3039 	if (ret)
3040 		goto fail_trans_kthread;
3041 
3042 	/* do not make disk changes in broken FS */
3043 	if (btrfs_super_log_root(disk_super) != 0) {
3044 		ret = btrfs_replay_log(fs_info, fs_devices);
3045 		if (ret) {
3046 			err = ret;
3047 			goto fail_qgroup;
3048 		}
3049 	}
3050 
3051 	ret = btrfs_find_orphan_roots(tree_root);
3052 	if (ret)
3053 		goto fail_qgroup;
3054 
3055 	if (!(sb->s_flags & MS_RDONLY)) {
3056 		ret = btrfs_cleanup_fs_roots(fs_info);
3057 		if (ret)
3058 			goto fail_qgroup;
3059 
3060 		mutex_lock(&fs_info->cleaner_mutex);
3061 		ret = btrfs_recover_relocation(tree_root);
3062 		mutex_unlock(&fs_info->cleaner_mutex);
3063 		if (ret < 0) {
3064 			printk(KERN_WARNING
3065 			       "BTRFS: failed to recover relocation\n");
3066 			err = -EINVAL;
3067 			goto fail_qgroup;
3068 		}
3069 	}
3070 
3071 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3072 	location.type = BTRFS_ROOT_ITEM_KEY;
3073 	location.offset = 0;
3074 
3075 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3076 	if (IS_ERR(fs_info->fs_root)) {
3077 		err = PTR_ERR(fs_info->fs_root);
3078 		goto fail_qgroup;
3079 	}
3080 
3081 	if (sb->s_flags & MS_RDONLY)
3082 		return 0;
3083 
3084 	down_read(&fs_info->cleanup_work_sem);
3085 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3086 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3087 		up_read(&fs_info->cleanup_work_sem);
3088 		close_ctree(tree_root);
3089 		return ret;
3090 	}
3091 	up_read(&fs_info->cleanup_work_sem);
3092 
3093 	ret = btrfs_resume_balance_async(fs_info);
3094 	if (ret) {
3095 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3096 		close_ctree(tree_root);
3097 		return ret;
3098 	}
3099 
3100 	ret = btrfs_resume_dev_replace_async(fs_info);
3101 	if (ret) {
3102 		pr_warn("BTRFS: failed to resume dev_replace\n");
3103 		close_ctree(tree_root);
3104 		return ret;
3105 	}
3106 
3107 	btrfs_qgroup_rescan_resume(fs_info);
3108 
3109 	if (!fs_info->uuid_root) {
3110 		pr_info("BTRFS: creating UUID tree\n");
3111 		ret = btrfs_create_uuid_tree(fs_info);
3112 		if (ret) {
3113 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3114 				ret);
3115 			close_ctree(tree_root);
3116 			return ret;
3117 		}
3118 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3119 		   fs_info->generation !=
3120 				btrfs_super_uuid_tree_generation(disk_super)) {
3121 		pr_info("BTRFS: checking UUID tree\n");
3122 		ret = btrfs_check_uuid_tree(fs_info);
3123 		if (ret) {
3124 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3125 				ret);
3126 			close_ctree(tree_root);
3127 			return ret;
3128 		}
3129 	} else {
3130 		fs_info->update_uuid_tree_gen = 1;
3131 	}
3132 
3133 	fs_info->open = 1;
3134 
3135 	return 0;
3136 
3137 fail_qgroup:
3138 	btrfs_free_qgroup_config(fs_info);
3139 fail_trans_kthread:
3140 	kthread_stop(fs_info->transaction_kthread);
3141 	btrfs_cleanup_transaction(fs_info->tree_root);
3142 	btrfs_free_fs_roots(fs_info);
3143 fail_cleaner:
3144 	kthread_stop(fs_info->cleaner_kthread);
3145 
3146 	/*
3147 	 * make sure we're done with the btree inode before we stop our
3148 	 * kthreads
3149 	 */
3150 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3151 
3152 fail_sysfs:
3153 	btrfs_sysfs_remove_mounted(fs_info);
3154 
3155 fail_fsdev_sysfs:
3156 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3157 
3158 fail_block_groups:
3159 	btrfs_put_block_group_cache(fs_info);
3160 	btrfs_free_block_groups(fs_info);
3161 
3162 fail_tree_roots:
3163 	free_root_pointers(fs_info, 1);
3164 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3165 
3166 fail_sb_buffer:
3167 	btrfs_stop_all_workers(fs_info);
3168 fail_alloc:
3169 fail_iput:
3170 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3171 
3172 	iput(fs_info->btree_inode);
3173 fail_bio_counter:
3174 	percpu_counter_destroy(&fs_info->bio_counter);
3175 fail_delalloc_bytes:
3176 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3177 fail_dirty_metadata_bytes:
3178 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3179 fail_bdi:
3180 	bdi_destroy(&fs_info->bdi);
3181 fail_srcu:
3182 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3183 fail:
3184 	btrfs_free_stripe_hash_table(fs_info);
3185 	btrfs_close_devices(fs_info->fs_devices);
3186 	return err;
3187 
3188 recovery_tree_root:
3189 	if (!btrfs_test_opt(tree_root, RECOVERY))
3190 		goto fail_tree_roots;
3191 
3192 	free_root_pointers(fs_info, 0);
3193 
3194 	/* don't use the log in recovery mode, it won't be valid */
3195 	btrfs_set_super_log_root(disk_super, 0);
3196 
3197 	/* we can't trust the free space cache either */
3198 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3199 
3200 	ret = next_root_backup(fs_info, fs_info->super_copy,
3201 			       &num_backups_tried, &backup_index);
3202 	if (ret == -1)
3203 		goto fail_block_groups;
3204 	goto retry_root_backup;
3205 }
3206 
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3207 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3208 {
3209 	if (uptodate) {
3210 		set_buffer_uptodate(bh);
3211 	} else {
3212 		struct btrfs_device *device = (struct btrfs_device *)
3213 			bh->b_private;
3214 
3215 		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3216 				"lost page write due to IO error on %s",
3217 					  rcu_str_deref(device->name));
3218 		/* note, we dont' set_buffer_write_io_error because we have
3219 		 * our own ways of dealing with the IO errors
3220 		 */
3221 		clear_buffer_uptodate(bh);
3222 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3223 	}
3224 	unlock_buffer(bh);
3225 	put_bh(bh);
3226 }
3227 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,struct buffer_head ** bh_ret)3228 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3229 			struct buffer_head **bh_ret)
3230 {
3231 	struct buffer_head *bh;
3232 	struct btrfs_super_block *super;
3233 	u64 bytenr;
3234 
3235 	bytenr = btrfs_sb_offset(copy_num);
3236 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3237 		return -EINVAL;
3238 
3239 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3240 	/*
3241 	 * If we fail to read from the underlying devices, as of now
3242 	 * the best option we have is to mark it EIO.
3243 	 */
3244 	if (!bh)
3245 		return -EIO;
3246 
3247 	super = (struct btrfs_super_block *)bh->b_data;
3248 	if (btrfs_super_bytenr(super) != bytenr ||
3249 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3250 		brelse(bh);
3251 		return -EINVAL;
3252 	}
3253 
3254 	*bh_ret = bh;
3255 	return 0;
3256 }
3257 
3258 
btrfs_read_dev_super(struct block_device * bdev)3259 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3260 {
3261 	struct buffer_head *bh;
3262 	struct buffer_head *latest = NULL;
3263 	struct btrfs_super_block *super;
3264 	int i;
3265 	u64 transid = 0;
3266 	int ret = -EINVAL;
3267 
3268 	/* we would like to check all the supers, but that would make
3269 	 * a btrfs mount succeed after a mkfs from a different FS.
3270 	 * So, we need to add a special mount option to scan for
3271 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3272 	 */
3273 	for (i = 0; i < 1; i++) {
3274 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3275 		if (ret)
3276 			continue;
3277 
3278 		super = (struct btrfs_super_block *)bh->b_data;
3279 
3280 		if (!latest || btrfs_super_generation(super) > transid) {
3281 			brelse(latest);
3282 			latest = bh;
3283 			transid = btrfs_super_generation(super);
3284 		} else {
3285 			brelse(bh);
3286 		}
3287 	}
3288 
3289 	if (!latest)
3290 		return ERR_PTR(ret);
3291 
3292 	return latest;
3293 }
3294 
3295 /*
3296  * this should be called twice, once with wait == 0 and
3297  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3298  * we write are pinned.
3299  *
3300  * They are released when wait == 1 is done.
3301  * max_mirrors must be the same for both runs, and it indicates how
3302  * many supers on this one device should be written.
3303  *
3304  * max_mirrors == 0 means to write them all.
3305  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int do_barriers,int wait,int max_mirrors)3306 static int write_dev_supers(struct btrfs_device *device,
3307 			    struct btrfs_super_block *sb,
3308 			    int do_barriers, int wait, int max_mirrors)
3309 {
3310 	struct buffer_head *bh;
3311 	int i;
3312 	int ret;
3313 	int errors = 0;
3314 	u32 crc;
3315 	u64 bytenr;
3316 
3317 	if (max_mirrors == 0)
3318 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3319 
3320 	for (i = 0; i < max_mirrors; i++) {
3321 		bytenr = btrfs_sb_offset(i);
3322 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3323 		    device->commit_total_bytes)
3324 			break;
3325 
3326 		if (wait) {
3327 			bh = __find_get_block(device->bdev, bytenr / 4096,
3328 					      BTRFS_SUPER_INFO_SIZE);
3329 			if (!bh) {
3330 				errors++;
3331 				continue;
3332 			}
3333 			wait_on_buffer(bh);
3334 			if (!buffer_uptodate(bh))
3335 				errors++;
3336 
3337 			/* drop our reference */
3338 			brelse(bh);
3339 
3340 			/* drop the reference from the wait == 0 run */
3341 			brelse(bh);
3342 			continue;
3343 		} else {
3344 			btrfs_set_super_bytenr(sb, bytenr);
3345 
3346 			crc = ~(u32)0;
3347 			crc = btrfs_csum_data((char *)sb +
3348 					      BTRFS_CSUM_SIZE, crc,
3349 					      BTRFS_SUPER_INFO_SIZE -
3350 					      BTRFS_CSUM_SIZE);
3351 			btrfs_csum_final(crc, sb->csum);
3352 
3353 			/*
3354 			 * one reference for us, and we leave it for the
3355 			 * caller
3356 			 */
3357 			bh = __getblk(device->bdev, bytenr / 4096,
3358 				      BTRFS_SUPER_INFO_SIZE);
3359 			if (!bh) {
3360 				btrfs_err(device->dev_root->fs_info,
3361 				    "couldn't get super buffer head for bytenr %llu",
3362 				    bytenr);
3363 				errors++;
3364 				continue;
3365 			}
3366 
3367 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3368 
3369 			/* one reference for submit_bh */
3370 			get_bh(bh);
3371 
3372 			set_buffer_uptodate(bh);
3373 			lock_buffer(bh);
3374 			bh->b_end_io = btrfs_end_buffer_write_sync;
3375 			bh->b_private = device;
3376 		}
3377 
3378 		/*
3379 		 * we fua the first super.  The others we allow
3380 		 * to go down lazy.
3381 		 */
3382 		if (i == 0)
3383 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3384 		else
3385 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3386 		if (ret)
3387 			errors++;
3388 	}
3389 	return errors < i ? 0 : -1;
3390 }
3391 
3392 /*
3393  * endio for the write_dev_flush, this will wake anyone waiting
3394  * for the barrier when it is done
3395  */
btrfs_end_empty_barrier(struct bio * bio)3396 static void btrfs_end_empty_barrier(struct bio *bio)
3397 {
3398 	if (bio->bi_private)
3399 		complete(bio->bi_private);
3400 	bio_put(bio);
3401 }
3402 
3403 /*
3404  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3405  * sent down.  With wait == 1, it waits for the previous flush.
3406  *
3407  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3408  * capable
3409  */
write_dev_flush(struct btrfs_device * device,int wait)3410 static int write_dev_flush(struct btrfs_device *device, int wait)
3411 {
3412 	struct bio *bio;
3413 	int ret = 0;
3414 
3415 	if (device->nobarriers)
3416 		return 0;
3417 
3418 	if (wait) {
3419 		bio = device->flush_bio;
3420 		if (!bio)
3421 			return 0;
3422 
3423 		wait_for_completion(&device->flush_wait);
3424 
3425 		if (bio->bi_error) {
3426 			ret = bio->bi_error;
3427 			btrfs_dev_stat_inc_and_print(device,
3428 				BTRFS_DEV_STAT_FLUSH_ERRS);
3429 		}
3430 
3431 		/* drop the reference from the wait == 0 run */
3432 		bio_put(bio);
3433 		device->flush_bio = NULL;
3434 
3435 		return ret;
3436 	}
3437 
3438 	/*
3439 	 * one reference for us, and we leave it for the
3440 	 * caller
3441 	 */
3442 	device->flush_bio = NULL;
3443 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3444 	if (!bio)
3445 		return -ENOMEM;
3446 
3447 	bio->bi_end_io = btrfs_end_empty_barrier;
3448 	bio->bi_bdev = device->bdev;
3449 	init_completion(&device->flush_wait);
3450 	bio->bi_private = &device->flush_wait;
3451 	device->flush_bio = bio;
3452 
3453 	bio_get(bio);
3454 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3455 
3456 	return 0;
3457 }
3458 
3459 /*
3460  * send an empty flush down to each device in parallel,
3461  * then wait for them
3462  */
barrier_all_devices(struct btrfs_fs_info * info)3463 static int barrier_all_devices(struct btrfs_fs_info *info)
3464 {
3465 	struct list_head *head;
3466 	struct btrfs_device *dev;
3467 	int errors_send = 0;
3468 	int errors_wait = 0;
3469 	int ret;
3470 
3471 	/* send down all the barriers */
3472 	head = &info->fs_devices->devices;
3473 	list_for_each_entry_rcu(dev, head, dev_list) {
3474 		if (dev->missing)
3475 			continue;
3476 		if (!dev->bdev) {
3477 			errors_send++;
3478 			continue;
3479 		}
3480 		if (!dev->in_fs_metadata || !dev->writeable)
3481 			continue;
3482 
3483 		ret = write_dev_flush(dev, 0);
3484 		if (ret)
3485 			errors_send++;
3486 	}
3487 
3488 	/* wait for all the barriers */
3489 	list_for_each_entry_rcu(dev, head, dev_list) {
3490 		if (dev->missing)
3491 			continue;
3492 		if (!dev->bdev) {
3493 			errors_wait++;
3494 			continue;
3495 		}
3496 		if (!dev->in_fs_metadata || !dev->writeable)
3497 			continue;
3498 
3499 		ret = write_dev_flush(dev, 1);
3500 		if (ret)
3501 			errors_wait++;
3502 	}
3503 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3504 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3505 		return -EIO;
3506 	return 0;
3507 }
3508 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3509 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3510 {
3511 	int raid_type;
3512 	int min_tolerated = INT_MAX;
3513 
3514 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3515 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3516 		min_tolerated = min(min_tolerated,
3517 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3518 				    tolerated_failures);
3519 
3520 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3521 		if (raid_type == BTRFS_RAID_SINGLE)
3522 			continue;
3523 		if (!(flags & btrfs_raid_group[raid_type]))
3524 			continue;
3525 		min_tolerated = min(min_tolerated,
3526 				    btrfs_raid_array[raid_type].
3527 				    tolerated_failures);
3528 	}
3529 
3530 	if (min_tolerated == INT_MAX) {
3531 		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3532 		min_tolerated = 0;
3533 	}
3534 
3535 	return min_tolerated;
3536 }
3537 
btrfs_calc_num_tolerated_disk_barrier_failures(struct btrfs_fs_info * fs_info)3538 int btrfs_calc_num_tolerated_disk_barrier_failures(
3539 	struct btrfs_fs_info *fs_info)
3540 {
3541 	struct btrfs_ioctl_space_info space;
3542 	struct btrfs_space_info *sinfo;
3543 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3544 		       BTRFS_BLOCK_GROUP_SYSTEM,
3545 		       BTRFS_BLOCK_GROUP_METADATA,
3546 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3547 	int i;
3548 	int c;
3549 	int num_tolerated_disk_barrier_failures =
3550 		(int)fs_info->fs_devices->num_devices;
3551 
3552 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3553 		struct btrfs_space_info *tmp;
3554 
3555 		sinfo = NULL;
3556 		rcu_read_lock();
3557 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3558 			if (tmp->flags == types[i]) {
3559 				sinfo = tmp;
3560 				break;
3561 			}
3562 		}
3563 		rcu_read_unlock();
3564 
3565 		if (!sinfo)
3566 			continue;
3567 
3568 		down_read(&sinfo->groups_sem);
3569 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3570 			u64 flags;
3571 
3572 			if (list_empty(&sinfo->block_groups[c]))
3573 				continue;
3574 
3575 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3576 						   &space);
3577 			if (space.total_bytes == 0 || space.used_bytes == 0)
3578 				continue;
3579 			flags = space.flags;
3580 
3581 			num_tolerated_disk_barrier_failures = min(
3582 				num_tolerated_disk_barrier_failures,
3583 				btrfs_get_num_tolerated_disk_barrier_failures(
3584 					flags));
3585 		}
3586 		up_read(&sinfo->groups_sem);
3587 	}
3588 
3589 	return num_tolerated_disk_barrier_failures;
3590 }
3591 
write_all_supers(struct btrfs_root * root,int max_mirrors)3592 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3593 {
3594 	struct list_head *head;
3595 	struct btrfs_device *dev;
3596 	struct btrfs_super_block *sb;
3597 	struct btrfs_dev_item *dev_item;
3598 	int ret;
3599 	int do_barriers;
3600 	int max_errors;
3601 	int total_errors = 0;
3602 	u64 flags;
3603 
3604 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3605 	backup_super_roots(root->fs_info);
3606 
3607 	sb = root->fs_info->super_for_commit;
3608 	dev_item = &sb->dev_item;
3609 
3610 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3611 	head = &root->fs_info->fs_devices->devices;
3612 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3613 
3614 	if (do_barriers) {
3615 		ret = barrier_all_devices(root->fs_info);
3616 		if (ret) {
3617 			mutex_unlock(
3618 				&root->fs_info->fs_devices->device_list_mutex);
3619 			btrfs_std_error(root->fs_info, ret,
3620 				    "errors while submitting device barriers.");
3621 			return ret;
3622 		}
3623 	}
3624 
3625 	list_for_each_entry_rcu(dev, head, dev_list) {
3626 		if (!dev->bdev) {
3627 			total_errors++;
3628 			continue;
3629 		}
3630 		if (!dev->in_fs_metadata || !dev->writeable)
3631 			continue;
3632 
3633 		btrfs_set_stack_device_generation(dev_item, 0);
3634 		btrfs_set_stack_device_type(dev_item, dev->type);
3635 		btrfs_set_stack_device_id(dev_item, dev->devid);
3636 		btrfs_set_stack_device_total_bytes(dev_item,
3637 						   dev->commit_total_bytes);
3638 		btrfs_set_stack_device_bytes_used(dev_item,
3639 						  dev->commit_bytes_used);
3640 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3641 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3642 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3643 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3644 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3645 
3646 		flags = btrfs_super_flags(sb);
3647 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3648 
3649 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3650 		if (ret)
3651 			total_errors++;
3652 	}
3653 	if (total_errors > max_errors) {
3654 		btrfs_err(root->fs_info, "%d errors while writing supers",
3655 		       total_errors);
3656 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3657 
3658 		/* FUA is masked off if unsupported and can't be the reason */
3659 		btrfs_std_error(root->fs_info, -EIO,
3660 			    "%d errors while writing supers", total_errors);
3661 		return -EIO;
3662 	}
3663 
3664 	total_errors = 0;
3665 	list_for_each_entry_rcu(dev, head, dev_list) {
3666 		if (!dev->bdev)
3667 			continue;
3668 		if (!dev->in_fs_metadata || !dev->writeable)
3669 			continue;
3670 
3671 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3672 		if (ret)
3673 			total_errors++;
3674 	}
3675 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3676 	if (total_errors > max_errors) {
3677 		btrfs_std_error(root->fs_info, -EIO,
3678 			    "%d errors while writing supers", total_errors);
3679 		return -EIO;
3680 	}
3681 	return 0;
3682 }
3683 
write_ctree_super(struct btrfs_trans_handle * trans,struct btrfs_root * root,int max_mirrors)3684 int write_ctree_super(struct btrfs_trans_handle *trans,
3685 		      struct btrfs_root *root, int max_mirrors)
3686 {
3687 	return write_all_supers(root, max_mirrors);
3688 }
3689 
3690 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3691 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3692 				  struct btrfs_root *root)
3693 {
3694 	spin_lock(&fs_info->fs_roots_radix_lock);
3695 	radix_tree_delete(&fs_info->fs_roots_radix,
3696 			  (unsigned long)root->root_key.objectid);
3697 	spin_unlock(&fs_info->fs_roots_radix_lock);
3698 
3699 	if (btrfs_root_refs(&root->root_item) == 0)
3700 		synchronize_srcu(&fs_info->subvol_srcu);
3701 
3702 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3703 		btrfs_free_log(NULL, root);
3704 
3705 	if (root->free_ino_pinned)
3706 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3707 	if (root->free_ino_ctl)
3708 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3709 	free_fs_root(root);
3710 }
3711 
free_fs_root(struct btrfs_root * root)3712 static void free_fs_root(struct btrfs_root *root)
3713 {
3714 	iput(root->ino_cache_inode);
3715 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3716 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3717 	root->orphan_block_rsv = NULL;
3718 	if (root->anon_dev)
3719 		free_anon_bdev(root->anon_dev);
3720 	if (root->subv_writers)
3721 		btrfs_free_subvolume_writers(root->subv_writers);
3722 	free_extent_buffer(root->node);
3723 	free_extent_buffer(root->commit_root);
3724 	kfree(root->free_ino_ctl);
3725 	kfree(root->free_ino_pinned);
3726 	kfree(root->name);
3727 	btrfs_put_fs_root(root);
3728 }
3729 
btrfs_free_fs_root(struct btrfs_root * root)3730 void btrfs_free_fs_root(struct btrfs_root *root)
3731 {
3732 	free_fs_root(root);
3733 }
3734 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3735 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3736 {
3737 	u64 root_objectid = 0;
3738 	struct btrfs_root *gang[8];
3739 	int i = 0;
3740 	int err = 0;
3741 	unsigned int ret = 0;
3742 	int index;
3743 
3744 	while (1) {
3745 		index = srcu_read_lock(&fs_info->subvol_srcu);
3746 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3747 					     (void **)gang, root_objectid,
3748 					     ARRAY_SIZE(gang));
3749 		if (!ret) {
3750 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3751 			break;
3752 		}
3753 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3754 
3755 		for (i = 0; i < ret; i++) {
3756 			/* Avoid to grab roots in dead_roots */
3757 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3758 				gang[i] = NULL;
3759 				continue;
3760 			}
3761 			/* grab all the search result for later use */
3762 			gang[i] = btrfs_grab_fs_root(gang[i]);
3763 		}
3764 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3765 
3766 		for (i = 0; i < ret; i++) {
3767 			if (!gang[i])
3768 				continue;
3769 			root_objectid = gang[i]->root_key.objectid;
3770 			err = btrfs_orphan_cleanup(gang[i]);
3771 			if (err)
3772 				break;
3773 			btrfs_put_fs_root(gang[i]);
3774 		}
3775 		root_objectid++;
3776 	}
3777 
3778 	/* release the uncleaned roots due to error */
3779 	for (; i < ret; i++) {
3780 		if (gang[i])
3781 			btrfs_put_fs_root(gang[i]);
3782 	}
3783 	return err;
3784 }
3785 
btrfs_commit_super(struct btrfs_root * root)3786 int btrfs_commit_super(struct btrfs_root *root)
3787 {
3788 	struct btrfs_trans_handle *trans;
3789 
3790 	mutex_lock(&root->fs_info->cleaner_mutex);
3791 	btrfs_run_delayed_iputs(root);
3792 	mutex_unlock(&root->fs_info->cleaner_mutex);
3793 	wake_up_process(root->fs_info->cleaner_kthread);
3794 
3795 	/* wait until ongoing cleanup work done */
3796 	down_write(&root->fs_info->cleanup_work_sem);
3797 	up_write(&root->fs_info->cleanup_work_sem);
3798 
3799 	trans = btrfs_join_transaction(root);
3800 	if (IS_ERR(trans))
3801 		return PTR_ERR(trans);
3802 	return btrfs_commit_transaction(trans, root);
3803 }
3804 
close_ctree(struct btrfs_root * root)3805 void close_ctree(struct btrfs_root *root)
3806 {
3807 	struct btrfs_fs_info *fs_info = root->fs_info;
3808 	int ret;
3809 
3810 	fs_info->closing = 1;
3811 	smp_mb();
3812 
3813 	/* wait for the qgroup rescan worker to stop */
3814 	btrfs_qgroup_wait_for_completion(fs_info);
3815 
3816 	/* wait for the uuid_scan task to finish */
3817 	down(&fs_info->uuid_tree_rescan_sem);
3818 	/* avoid complains from lockdep et al., set sem back to initial state */
3819 	up(&fs_info->uuid_tree_rescan_sem);
3820 
3821 	/* pause restriper - we want to resume on mount */
3822 	btrfs_pause_balance(fs_info);
3823 
3824 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3825 
3826 	btrfs_scrub_cancel(fs_info);
3827 
3828 	/* wait for any defraggers to finish */
3829 	wait_event(fs_info->transaction_wait,
3830 		   (atomic_read(&fs_info->defrag_running) == 0));
3831 
3832 	/* clear out the rbtree of defraggable inodes */
3833 	btrfs_cleanup_defrag_inodes(fs_info);
3834 
3835 	cancel_work_sync(&fs_info->async_reclaim_work);
3836 
3837 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3838 		/*
3839 		 * If the cleaner thread is stopped and there are
3840 		 * block groups queued for removal, the deletion will be
3841 		 * skipped when we quit the cleaner thread.
3842 		 */
3843 		btrfs_delete_unused_bgs(root->fs_info);
3844 
3845 		ret = btrfs_commit_super(root);
3846 		if (ret)
3847 			btrfs_err(fs_info, "commit super ret %d", ret);
3848 	}
3849 
3850 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3851 		btrfs_error_commit_super(root);
3852 
3853 	kthread_stop(fs_info->transaction_kthread);
3854 	kthread_stop(fs_info->cleaner_kthread);
3855 
3856 	fs_info->closing = 2;
3857 	smp_mb();
3858 
3859 	btrfs_free_qgroup_config(fs_info);
3860 
3861 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3862 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3863 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3864 	}
3865 
3866 	btrfs_sysfs_remove_mounted(fs_info);
3867 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3868 
3869 	btrfs_free_fs_roots(fs_info);
3870 
3871 	btrfs_put_block_group_cache(fs_info);
3872 
3873 	btrfs_free_block_groups(fs_info);
3874 
3875 	/*
3876 	 * we must make sure there is not any read request to
3877 	 * submit after we stopping all workers.
3878 	 */
3879 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3880 	btrfs_stop_all_workers(fs_info);
3881 
3882 	fs_info->open = 0;
3883 	free_root_pointers(fs_info, 1);
3884 
3885 	iput(fs_info->btree_inode);
3886 
3887 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3888 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3889 		btrfsic_unmount(root, fs_info->fs_devices);
3890 #endif
3891 
3892 	btrfs_close_devices(fs_info->fs_devices);
3893 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3894 
3895 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3896 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3897 	percpu_counter_destroy(&fs_info->bio_counter);
3898 	bdi_destroy(&fs_info->bdi);
3899 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3900 
3901 	btrfs_free_stripe_hash_table(fs_info);
3902 
3903 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3904 	root->orphan_block_rsv = NULL;
3905 
3906 	lock_chunks(root);
3907 	while (!list_empty(&fs_info->pinned_chunks)) {
3908 		struct extent_map *em;
3909 
3910 		em = list_first_entry(&fs_info->pinned_chunks,
3911 				      struct extent_map, list);
3912 		list_del_init(&em->list);
3913 		free_extent_map(em);
3914 	}
3915 	unlock_chunks(root);
3916 }
3917 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)3918 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3919 			  int atomic)
3920 {
3921 	int ret;
3922 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3923 
3924 	ret = extent_buffer_uptodate(buf);
3925 	if (!ret)
3926 		return ret;
3927 
3928 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3929 				    parent_transid, atomic);
3930 	if (ret == -EAGAIN)
3931 		return ret;
3932 	return !ret;
3933 }
3934 
btrfs_set_buffer_uptodate(struct extent_buffer * buf)3935 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3936 {
3937 	return set_extent_buffer_uptodate(buf);
3938 }
3939 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)3940 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3941 {
3942 	struct btrfs_root *root;
3943 	u64 transid = btrfs_header_generation(buf);
3944 	int was_dirty;
3945 
3946 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3947 	/*
3948 	 * This is a fast path so only do this check if we have sanity tests
3949 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3950 	 * outside of the sanity tests.
3951 	 */
3952 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3953 		return;
3954 #endif
3955 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3956 	btrfs_assert_tree_locked(buf);
3957 	if (transid != root->fs_info->generation)
3958 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3959 		       "found %llu running %llu\n",
3960 			buf->start, transid, root->fs_info->generation);
3961 	was_dirty = set_extent_buffer_dirty(buf);
3962 	if (!was_dirty)
3963 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3964 				     buf->len,
3965 				     root->fs_info->dirty_metadata_batch);
3966 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3967 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3968 		btrfs_print_leaf(root, buf);
3969 		ASSERT(0);
3970 	}
3971 #endif
3972 }
3973 
__btrfs_btree_balance_dirty(struct btrfs_root * root,int flush_delayed)3974 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3975 					int flush_delayed)
3976 {
3977 	/*
3978 	 * looks as though older kernels can get into trouble with
3979 	 * this code, they end up stuck in balance_dirty_pages forever
3980 	 */
3981 	int ret;
3982 
3983 	if (current->flags & PF_MEMALLOC)
3984 		return;
3985 
3986 	if (flush_delayed)
3987 		btrfs_balance_delayed_items(root);
3988 
3989 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3990 				     BTRFS_DIRTY_METADATA_THRESH);
3991 	if (ret > 0) {
3992 		balance_dirty_pages_ratelimited(
3993 				   root->fs_info->btree_inode->i_mapping);
3994 	}
3995 	return;
3996 }
3997 
btrfs_btree_balance_dirty(struct btrfs_root * root)3998 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3999 {
4000 	__btrfs_btree_balance_dirty(root, 1);
4001 }
4002 
btrfs_btree_balance_dirty_nodelay(struct btrfs_root * root)4003 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4004 {
4005 	__btrfs_btree_balance_dirty(root, 0);
4006 }
4007 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid)4008 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4009 {
4010 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4011 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4012 }
4013 
btrfs_check_super_valid(struct btrfs_fs_info * fs_info,int read_only)4014 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4015 			      int read_only)
4016 {
4017 	struct btrfs_super_block *sb = fs_info->super_copy;
4018 	int ret = 0;
4019 
4020 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4021 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4022 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4023 		ret = -EINVAL;
4024 	}
4025 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4026 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4027 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4028 		ret = -EINVAL;
4029 	}
4030 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4031 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4032 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4033 		ret = -EINVAL;
4034 	}
4035 
4036 	/*
4037 	 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4038 	 * items yet, they'll be verified later. Issue just a warning.
4039 	 */
4040 	if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4041 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4042 				btrfs_super_root(sb));
4043 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4044 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4045 				btrfs_super_chunk_root(sb));
4046 	if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4047 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4048 				btrfs_super_log_root(sb));
4049 
4050 	/*
4051 	 * Check the lower bound, the alignment and other constraints are
4052 	 * checked later.
4053 	 */
4054 	if (btrfs_super_nodesize(sb) < 4096) {
4055 		printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4056 				btrfs_super_nodesize(sb));
4057 		ret = -EINVAL;
4058 	}
4059 	if (btrfs_super_sectorsize(sb) < 4096) {
4060 		printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4061 				btrfs_super_sectorsize(sb));
4062 		ret = -EINVAL;
4063 	}
4064 
4065 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4066 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4067 				fs_info->fsid, sb->dev_item.fsid);
4068 		ret = -EINVAL;
4069 	}
4070 
4071 	/*
4072 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4073 	 * done later
4074 	 */
4075 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4076 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4077 				btrfs_super_num_devices(sb));
4078 	if (btrfs_super_num_devices(sb) == 0) {
4079 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4080 		ret = -EINVAL;
4081 	}
4082 
4083 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4084 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4085 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4086 		ret = -EINVAL;
4087 	}
4088 
4089 	/*
4090 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4091 	 * and one chunk
4092 	 */
4093 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4094 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4095 				btrfs_super_sys_array_size(sb),
4096 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4097 		ret = -EINVAL;
4098 	}
4099 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4100 			+ sizeof(struct btrfs_chunk)) {
4101 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4102 				btrfs_super_sys_array_size(sb),
4103 				sizeof(struct btrfs_disk_key)
4104 				+ sizeof(struct btrfs_chunk));
4105 		ret = -EINVAL;
4106 	}
4107 
4108 	/*
4109 	 * The generation is a global counter, we'll trust it more than the others
4110 	 * but it's still possible that it's the one that's wrong.
4111 	 */
4112 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4113 		printk(KERN_WARNING
4114 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4115 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4116 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4117 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4118 		printk(KERN_WARNING
4119 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4120 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4121 
4122 	return ret;
4123 }
4124 
btrfs_error_commit_super(struct btrfs_root * root)4125 static void btrfs_error_commit_super(struct btrfs_root *root)
4126 {
4127 	mutex_lock(&root->fs_info->cleaner_mutex);
4128 	btrfs_run_delayed_iputs(root);
4129 	mutex_unlock(&root->fs_info->cleaner_mutex);
4130 
4131 	down_write(&root->fs_info->cleanup_work_sem);
4132 	up_write(&root->fs_info->cleanup_work_sem);
4133 
4134 	/* cleanup FS via transaction */
4135 	btrfs_cleanup_transaction(root);
4136 }
4137 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4138 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4139 {
4140 	struct btrfs_ordered_extent *ordered;
4141 
4142 	spin_lock(&root->ordered_extent_lock);
4143 	/*
4144 	 * This will just short circuit the ordered completion stuff which will
4145 	 * make sure the ordered extent gets properly cleaned up.
4146 	 */
4147 	list_for_each_entry(ordered, &root->ordered_extents,
4148 			    root_extent_list)
4149 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4150 	spin_unlock(&root->ordered_extent_lock);
4151 }
4152 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4153 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4154 {
4155 	struct btrfs_root *root;
4156 	struct list_head splice;
4157 
4158 	INIT_LIST_HEAD(&splice);
4159 
4160 	spin_lock(&fs_info->ordered_root_lock);
4161 	list_splice_init(&fs_info->ordered_roots, &splice);
4162 	while (!list_empty(&splice)) {
4163 		root = list_first_entry(&splice, struct btrfs_root,
4164 					ordered_root);
4165 		list_move_tail(&root->ordered_root,
4166 			       &fs_info->ordered_roots);
4167 
4168 		spin_unlock(&fs_info->ordered_root_lock);
4169 		btrfs_destroy_ordered_extents(root);
4170 
4171 		cond_resched();
4172 		spin_lock(&fs_info->ordered_root_lock);
4173 	}
4174 	spin_unlock(&fs_info->ordered_root_lock);
4175 }
4176 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_root * root)4177 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4178 				      struct btrfs_root *root)
4179 {
4180 	struct rb_node *node;
4181 	struct btrfs_delayed_ref_root *delayed_refs;
4182 	struct btrfs_delayed_ref_node *ref;
4183 	int ret = 0;
4184 
4185 	delayed_refs = &trans->delayed_refs;
4186 
4187 	spin_lock(&delayed_refs->lock);
4188 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4189 		spin_unlock(&delayed_refs->lock);
4190 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4191 		return ret;
4192 	}
4193 
4194 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4195 		struct btrfs_delayed_ref_head *head;
4196 		struct btrfs_delayed_ref_node *tmp;
4197 		bool pin_bytes = false;
4198 
4199 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4200 				href_node);
4201 		if (!mutex_trylock(&head->mutex)) {
4202 			atomic_inc(&head->node.refs);
4203 			spin_unlock(&delayed_refs->lock);
4204 
4205 			mutex_lock(&head->mutex);
4206 			mutex_unlock(&head->mutex);
4207 			btrfs_put_delayed_ref(&head->node);
4208 			spin_lock(&delayed_refs->lock);
4209 			continue;
4210 		}
4211 		spin_lock(&head->lock);
4212 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4213 						 list) {
4214 			ref->in_tree = 0;
4215 			list_del(&ref->list);
4216 			atomic_dec(&delayed_refs->num_entries);
4217 			btrfs_put_delayed_ref(ref);
4218 		}
4219 		if (head->must_insert_reserved)
4220 			pin_bytes = true;
4221 		btrfs_free_delayed_extent_op(head->extent_op);
4222 		delayed_refs->num_heads--;
4223 		if (head->processing == 0)
4224 			delayed_refs->num_heads_ready--;
4225 		atomic_dec(&delayed_refs->num_entries);
4226 		head->node.in_tree = 0;
4227 		rb_erase(&head->href_node, &delayed_refs->href_root);
4228 		spin_unlock(&head->lock);
4229 		spin_unlock(&delayed_refs->lock);
4230 		mutex_unlock(&head->mutex);
4231 
4232 		if (pin_bytes)
4233 			btrfs_pin_extent(root, head->node.bytenr,
4234 					 head->node.num_bytes, 1);
4235 		btrfs_put_delayed_ref(&head->node);
4236 		cond_resched();
4237 		spin_lock(&delayed_refs->lock);
4238 	}
4239 
4240 	spin_unlock(&delayed_refs->lock);
4241 
4242 	return ret;
4243 }
4244 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4245 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4246 {
4247 	struct btrfs_inode *btrfs_inode;
4248 	struct list_head splice;
4249 
4250 	INIT_LIST_HEAD(&splice);
4251 
4252 	spin_lock(&root->delalloc_lock);
4253 	list_splice_init(&root->delalloc_inodes, &splice);
4254 
4255 	while (!list_empty(&splice)) {
4256 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4257 					       delalloc_inodes);
4258 
4259 		list_del_init(&btrfs_inode->delalloc_inodes);
4260 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4261 			  &btrfs_inode->runtime_flags);
4262 		spin_unlock(&root->delalloc_lock);
4263 
4264 		btrfs_invalidate_inodes(btrfs_inode->root);
4265 
4266 		spin_lock(&root->delalloc_lock);
4267 	}
4268 
4269 	spin_unlock(&root->delalloc_lock);
4270 }
4271 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4272 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4273 {
4274 	struct btrfs_root *root;
4275 	struct list_head splice;
4276 
4277 	INIT_LIST_HEAD(&splice);
4278 
4279 	spin_lock(&fs_info->delalloc_root_lock);
4280 	list_splice_init(&fs_info->delalloc_roots, &splice);
4281 	while (!list_empty(&splice)) {
4282 		root = list_first_entry(&splice, struct btrfs_root,
4283 					 delalloc_root);
4284 		list_del_init(&root->delalloc_root);
4285 		root = btrfs_grab_fs_root(root);
4286 		BUG_ON(!root);
4287 		spin_unlock(&fs_info->delalloc_root_lock);
4288 
4289 		btrfs_destroy_delalloc_inodes(root);
4290 		btrfs_put_fs_root(root);
4291 
4292 		spin_lock(&fs_info->delalloc_root_lock);
4293 	}
4294 	spin_unlock(&fs_info->delalloc_root_lock);
4295 }
4296 
btrfs_destroy_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)4297 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4298 					struct extent_io_tree *dirty_pages,
4299 					int mark)
4300 {
4301 	int ret;
4302 	struct extent_buffer *eb;
4303 	u64 start = 0;
4304 	u64 end;
4305 
4306 	while (1) {
4307 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4308 					    mark, NULL);
4309 		if (ret)
4310 			break;
4311 
4312 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4313 		while (start <= end) {
4314 			eb = btrfs_find_tree_block(root->fs_info, start);
4315 			start += root->nodesize;
4316 			if (!eb)
4317 				continue;
4318 			wait_on_extent_buffer_writeback(eb);
4319 
4320 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4321 					       &eb->bflags))
4322 				clear_extent_buffer_dirty(eb);
4323 			free_extent_buffer_stale(eb);
4324 		}
4325 	}
4326 
4327 	return ret;
4328 }
4329 
btrfs_destroy_pinned_extent(struct btrfs_root * root,struct extent_io_tree * pinned_extents)4330 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4331 				       struct extent_io_tree *pinned_extents)
4332 {
4333 	struct extent_io_tree *unpin;
4334 	u64 start;
4335 	u64 end;
4336 	int ret;
4337 	bool loop = true;
4338 
4339 	unpin = pinned_extents;
4340 again:
4341 	while (1) {
4342 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4343 					    EXTENT_DIRTY, NULL);
4344 		if (ret)
4345 			break;
4346 
4347 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4348 		btrfs_error_unpin_extent_range(root, start, end);
4349 		cond_resched();
4350 	}
4351 
4352 	if (loop) {
4353 		if (unpin == &root->fs_info->freed_extents[0])
4354 			unpin = &root->fs_info->freed_extents[1];
4355 		else
4356 			unpin = &root->fs_info->freed_extents[0];
4357 		loop = false;
4358 		goto again;
4359 	}
4360 
4361 	return 0;
4362 }
4363 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_root * root)4364 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4365 				   struct btrfs_root *root)
4366 {
4367 	btrfs_destroy_delayed_refs(cur_trans, root);
4368 
4369 	cur_trans->state = TRANS_STATE_COMMIT_START;
4370 	wake_up(&root->fs_info->transaction_blocked_wait);
4371 
4372 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4373 	wake_up(&root->fs_info->transaction_wait);
4374 
4375 	btrfs_destroy_delayed_inodes(root);
4376 	btrfs_assert_delayed_root_empty(root);
4377 
4378 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4379 				     EXTENT_DIRTY);
4380 	btrfs_destroy_pinned_extent(root,
4381 				    root->fs_info->pinned_extents);
4382 
4383 	cur_trans->state =TRANS_STATE_COMPLETED;
4384 	wake_up(&cur_trans->commit_wait);
4385 
4386 	/*
4387 	memset(cur_trans, 0, sizeof(*cur_trans));
4388 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4389 	*/
4390 }
4391 
btrfs_cleanup_transaction(struct btrfs_root * root)4392 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4393 {
4394 	struct btrfs_transaction *t;
4395 
4396 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4397 
4398 	spin_lock(&root->fs_info->trans_lock);
4399 	while (!list_empty(&root->fs_info->trans_list)) {
4400 		t = list_first_entry(&root->fs_info->trans_list,
4401 				     struct btrfs_transaction, list);
4402 		if (t->state >= TRANS_STATE_COMMIT_START) {
4403 			atomic_inc(&t->use_count);
4404 			spin_unlock(&root->fs_info->trans_lock);
4405 			btrfs_wait_for_commit(root, t->transid);
4406 			btrfs_put_transaction(t);
4407 			spin_lock(&root->fs_info->trans_lock);
4408 			continue;
4409 		}
4410 		if (t == root->fs_info->running_transaction) {
4411 			t->state = TRANS_STATE_COMMIT_DOING;
4412 			spin_unlock(&root->fs_info->trans_lock);
4413 			/*
4414 			 * We wait for 0 num_writers since we don't hold a trans
4415 			 * handle open currently for this transaction.
4416 			 */
4417 			wait_event(t->writer_wait,
4418 				   atomic_read(&t->num_writers) == 0);
4419 		} else {
4420 			spin_unlock(&root->fs_info->trans_lock);
4421 		}
4422 		btrfs_cleanup_one_transaction(t, root);
4423 
4424 		spin_lock(&root->fs_info->trans_lock);
4425 		if (t == root->fs_info->running_transaction)
4426 			root->fs_info->running_transaction = NULL;
4427 		list_del_init(&t->list);
4428 		spin_unlock(&root->fs_info->trans_lock);
4429 
4430 		btrfs_put_transaction(t);
4431 		trace_btrfs_transaction_commit(root);
4432 		spin_lock(&root->fs_info->trans_lock);
4433 	}
4434 	spin_unlock(&root->fs_info->trans_lock);
4435 	btrfs_destroy_all_ordered_extents(root->fs_info);
4436 	btrfs_destroy_delayed_inodes(root);
4437 	btrfs_assert_delayed_root_empty(root);
4438 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4439 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4440 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4441 
4442 	return 0;
4443 }
4444 
4445 static const struct extent_io_ops btree_extent_io_ops = {
4446 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4447 	.readpage_io_failed_hook = btree_io_failed_hook,
4448 	.submit_bio_hook = btree_submit_bio_hook,
4449 	/* note we're sharing with inode.c for the merge bio hook */
4450 	.merge_bio_hook = btrfs_merge_bio_hook,
4451 };
4452