1/*
2 *  linux/fs/block_dev.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8#include <linux/init.h>
9#include <linux/mm.h>
10#include <linux/fcntl.h>
11#include <linux/slab.h>
12#include <linux/kmod.h>
13#include <linux/major.h>
14#include <linux/device_cgroup.h>
15#include <linux/highmem.h>
16#include <linux/blkdev.h>
17#include <linux/backing-dev.h>
18#include <linux/module.h>
19#include <linux/blkpg.h>
20#include <linux/magic.h>
21#include <linux/buffer_head.h>
22#include <linux/swap.h>
23#include <linux/pagevec.h>
24#include <linux/writeback.h>
25#include <linux/mpage.h>
26#include <linux/mount.h>
27#include <linux/uio.h>
28#include <linux/namei.h>
29#include <linux/log2.h>
30#include <linux/cleancache.h>
31#include <linux/dax.h>
32#include <asm/uaccess.h>
33#include "internal.h"
34
35struct bdev_inode {
36	struct block_device bdev;
37	struct inode vfs_inode;
38};
39
40static const struct address_space_operations def_blk_aops;
41
42static inline struct bdev_inode *BDEV_I(struct inode *inode)
43{
44	return container_of(inode, struct bdev_inode, vfs_inode);
45}
46
47struct block_device *I_BDEV(struct inode *inode)
48{
49	return &BDEV_I(inode)->bdev;
50}
51EXPORT_SYMBOL(I_BDEV);
52
53static void bdev_write_inode(struct block_device *bdev)
54{
55	struct inode *inode = bdev->bd_inode;
56	int ret;
57
58	spin_lock(&inode->i_lock);
59	while (inode->i_state & I_DIRTY) {
60		spin_unlock(&inode->i_lock);
61		ret = write_inode_now(inode, true);
62		if (ret) {
63			char name[BDEVNAME_SIZE];
64			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65					    "for block device %s (err=%d).\n",
66					    bdevname(bdev, name), ret);
67		}
68		spin_lock(&inode->i_lock);
69	}
70	spin_unlock(&inode->i_lock);
71}
72
73/* Kill _all_ buffers and pagecache , dirty or not.. */
74void kill_bdev(struct block_device *bdev)
75{
76	struct address_space *mapping = bdev->bd_inode->i_mapping;
77
78	if (mapping->nrpages == 0 && mapping->nrshadows == 0)
79		return;
80
81	invalidate_bh_lrus();
82	truncate_inode_pages(mapping, 0);
83}
84EXPORT_SYMBOL(kill_bdev);
85
86/* Invalidate clean unused buffers and pagecache. */
87void invalidate_bdev(struct block_device *bdev)
88{
89	struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91	if (mapping->nrpages == 0)
92		return;
93
94	invalidate_bh_lrus();
95	lru_add_drain_all();	/* make sure all lru add caches are flushed */
96	invalidate_mapping_pages(mapping, 0, -1);
97	/* 99% of the time, we don't need to flush the cleancache on the bdev.
98	 * But, for the strange corners, lets be cautious
99	 */
100	cleancache_invalidate_inode(mapping);
101}
102EXPORT_SYMBOL(invalidate_bdev);
103
104int set_blocksize(struct block_device *bdev, int size)
105{
106	/* Size must be a power of two, and between 512 and PAGE_SIZE */
107	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
108		return -EINVAL;
109
110	/* Size cannot be smaller than the size supported by the device */
111	if (size < bdev_logical_block_size(bdev))
112		return -EINVAL;
113
114	/* Don't change the size if it is same as current */
115	if (bdev->bd_block_size != size) {
116		sync_blockdev(bdev);
117		bdev->bd_block_size = size;
118		bdev->bd_inode->i_blkbits = blksize_bits(size);
119		kill_bdev(bdev);
120	}
121	return 0;
122}
123
124EXPORT_SYMBOL(set_blocksize);
125
126int sb_set_blocksize(struct super_block *sb, int size)
127{
128	if (set_blocksize(sb->s_bdev, size))
129		return 0;
130	/* If we get here, we know size is power of two
131	 * and it's value is between 512 and PAGE_SIZE */
132	sb->s_blocksize = size;
133	sb->s_blocksize_bits = blksize_bits(size);
134	return sb->s_blocksize;
135}
136
137EXPORT_SYMBOL(sb_set_blocksize);
138
139int sb_min_blocksize(struct super_block *sb, int size)
140{
141	int minsize = bdev_logical_block_size(sb->s_bdev);
142	if (size < minsize)
143		size = minsize;
144	return sb_set_blocksize(sb, size);
145}
146
147EXPORT_SYMBOL(sb_min_blocksize);
148
149static int
150blkdev_get_block(struct inode *inode, sector_t iblock,
151		struct buffer_head *bh, int create)
152{
153	bh->b_bdev = I_BDEV(inode);
154	bh->b_blocknr = iblock;
155	set_buffer_mapped(bh);
156	return 0;
157}
158
159static ssize_t
160blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
161{
162	struct file *file = iocb->ki_filp;
163	struct inode *inode = file->f_mapping->host;
164
165	if (IS_DAX(inode))
166		return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
167				NULL, DIO_SKIP_DIO_COUNT);
168	return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
169				    blkdev_get_block, NULL, NULL,
170				    DIO_SKIP_DIO_COUNT);
171}
172
173int __sync_blockdev(struct block_device *bdev, int wait)
174{
175	if (!bdev)
176		return 0;
177	if (!wait)
178		return filemap_flush(bdev->bd_inode->i_mapping);
179	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
180}
181
182/*
183 * Write out and wait upon all the dirty data associated with a block
184 * device via its mapping.  Does not take the superblock lock.
185 */
186int sync_blockdev(struct block_device *bdev)
187{
188	return __sync_blockdev(bdev, 1);
189}
190EXPORT_SYMBOL(sync_blockdev);
191
192/*
193 * Write out and wait upon all dirty data associated with this
194 * device.   Filesystem data as well as the underlying block
195 * device.  Takes the superblock lock.
196 */
197int fsync_bdev(struct block_device *bdev)
198{
199	struct super_block *sb = get_super(bdev);
200	if (sb) {
201		int res = sync_filesystem(sb);
202		drop_super(sb);
203		return res;
204	}
205	return sync_blockdev(bdev);
206}
207EXPORT_SYMBOL(fsync_bdev);
208
209/**
210 * freeze_bdev  --  lock a filesystem and force it into a consistent state
211 * @bdev:	blockdevice to lock
212 *
213 * If a superblock is found on this device, we take the s_umount semaphore
214 * on it to make sure nobody unmounts until the snapshot creation is done.
215 * The reference counter (bd_fsfreeze_count) guarantees that only the last
216 * unfreeze process can unfreeze the frozen filesystem actually when multiple
217 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
218 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
219 * actually.
220 */
221struct super_block *freeze_bdev(struct block_device *bdev)
222{
223	struct super_block *sb;
224	int error = 0;
225
226	mutex_lock(&bdev->bd_fsfreeze_mutex);
227	if (++bdev->bd_fsfreeze_count > 1) {
228		/*
229		 * We don't even need to grab a reference - the first call
230		 * to freeze_bdev grab an active reference and only the last
231		 * thaw_bdev drops it.
232		 */
233		sb = get_super(bdev);
234		drop_super(sb);
235		mutex_unlock(&bdev->bd_fsfreeze_mutex);
236		return sb;
237	}
238
239	sb = get_active_super(bdev);
240	if (!sb)
241		goto out;
242	if (sb->s_op->freeze_super)
243		error = sb->s_op->freeze_super(sb);
244	else
245		error = freeze_super(sb);
246	if (error) {
247		deactivate_super(sb);
248		bdev->bd_fsfreeze_count--;
249		mutex_unlock(&bdev->bd_fsfreeze_mutex);
250		return ERR_PTR(error);
251	}
252	deactivate_super(sb);
253 out:
254	sync_blockdev(bdev);
255	mutex_unlock(&bdev->bd_fsfreeze_mutex);
256	return sb;	/* thaw_bdev releases s->s_umount */
257}
258EXPORT_SYMBOL(freeze_bdev);
259
260/**
261 * thaw_bdev  -- unlock filesystem
262 * @bdev:	blockdevice to unlock
263 * @sb:		associated superblock
264 *
265 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
266 */
267int thaw_bdev(struct block_device *bdev, struct super_block *sb)
268{
269	int error = -EINVAL;
270
271	mutex_lock(&bdev->bd_fsfreeze_mutex);
272	if (!bdev->bd_fsfreeze_count)
273		goto out;
274
275	error = 0;
276	if (--bdev->bd_fsfreeze_count > 0)
277		goto out;
278
279	if (!sb)
280		goto out;
281
282	if (sb->s_op->thaw_super)
283		error = sb->s_op->thaw_super(sb);
284	else
285		error = thaw_super(sb);
286	if (error) {
287		bdev->bd_fsfreeze_count++;
288		mutex_unlock(&bdev->bd_fsfreeze_mutex);
289		return error;
290	}
291out:
292	mutex_unlock(&bdev->bd_fsfreeze_mutex);
293	return 0;
294}
295EXPORT_SYMBOL(thaw_bdev);
296
297static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
298{
299	return block_write_full_page(page, blkdev_get_block, wbc);
300}
301
302static int blkdev_readpage(struct file * file, struct page * page)
303{
304	return block_read_full_page(page, blkdev_get_block);
305}
306
307static int blkdev_readpages(struct file *file, struct address_space *mapping,
308			struct list_head *pages, unsigned nr_pages)
309{
310	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
311}
312
313static int blkdev_write_begin(struct file *file, struct address_space *mapping,
314			loff_t pos, unsigned len, unsigned flags,
315			struct page **pagep, void **fsdata)
316{
317	return block_write_begin(mapping, pos, len, flags, pagep,
318				 blkdev_get_block);
319}
320
321static int blkdev_write_end(struct file *file, struct address_space *mapping,
322			loff_t pos, unsigned len, unsigned copied,
323			struct page *page, void *fsdata)
324{
325	int ret;
326	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
327
328	unlock_page(page);
329	page_cache_release(page);
330
331	return ret;
332}
333
334/*
335 * private llseek:
336 * for a block special file file_inode(file)->i_size is zero
337 * so we compute the size by hand (just as in block_read/write above)
338 */
339static loff_t block_llseek(struct file *file, loff_t offset, int whence)
340{
341	struct inode *bd_inode = file->f_mapping->host;
342	loff_t retval;
343
344	mutex_lock(&bd_inode->i_mutex);
345	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
346	mutex_unlock(&bd_inode->i_mutex);
347	return retval;
348}
349
350int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
351{
352	struct inode *bd_inode = filp->f_mapping->host;
353	struct block_device *bdev = I_BDEV(bd_inode);
354	int error;
355
356	error = filemap_write_and_wait_range(filp->f_mapping, start, end);
357	if (error)
358		return error;
359
360	/*
361	 * There is no need to serialise calls to blkdev_issue_flush with
362	 * i_mutex and doing so causes performance issues with concurrent
363	 * O_SYNC writers to a block device.
364	 */
365	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
366	if (error == -EOPNOTSUPP)
367		error = 0;
368
369	return error;
370}
371EXPORT_SYMBOL(blkdev_fsync);
372
373/**
374 * bdev_read_page() - Start reading a page from a block device
375 * @bdev: The device to read the page from
376 * @sector: The offset on the device to read the page to (need not be aligned)
377 * @page: The page to read
378 *
379 * On entry, the page should be locked.  It will be unlocked when the page
380 * has been read.  If the block driver implements rw_page synchronously,
381 * that will be true on exit from this function, but it need not be.
382 *
383 * Errors returned by this function are usually "soft", eg out of memory, or
384 * queue full; callers should try a different route to read this page rather
385 * than propagate an error back up the stack.
386 *
387 * Return: negative errno if an error occurs, 0 if submission was successful.
388 */
389int bdev_read_page(struct block_device *bdev, sector_t sector,
390			struct page *page)
391{
392	const struct block_device_operations *ops = bdev->bd_disk->fops;
393	int result = -EOPNOTSUPP;
394
395	if (!ops->rw_page || bdev_get_integrity(bdev))
396		return result;
397
398	result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
399	if (result)
400		return result;
401	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
402	blk_queue_exit(bdev->bd_queue);
403	return result;
404}
405EXPORT_SYMBOL_GPL(bdev_read_page);
406
407/**
408 * bdev_write_page() - Start writing a page to a block device
409 * @bdev: The device to write the page to
410 * @sector: The offset on the device to write the page to (need not be aligned)
411 * @page: The page to write
412 * @wbc: The writeback_control for the write
413 *
414 * On entry, the page should be locked and not currently under writeback.
415 * On exit, if the write started successfully, the page will be unlocked and
416 * under writeback.  If the write failed already (eg the driver failed to
417 * queue the page to the device), the page will still be locked.  If the
418 * caller is a ->writepage implementation, it will need to unlock the page.
419 *
420 * Errors returned by this function are usually "soft", eg out of memory, or
421 * queue full; callers should try a different route to write this page rather
422 * than propagate an error back up the stack.
423 *
424 * Return: negative errno if an error occurs, 0 if submission was successful.
425 */
426int bdev_write_page(struct block_device *bdev, sector_t sector,
427			struct page *page, struct writeback_control *wbc)
428{
429	int result;
430	int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
431	const struct block_device_operations *ops = bdev->bd_disk->fops;
432
433	if (!ops->rw_page || bdev_get_integrity(bdev))
434		return -EOPNOTSUPP;
435	result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
436	if (result)
437		return result;
438
439	set_page_writeback(page);
440	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
441	if (result)
442		end_page_writeback(page);
443	else
444		unlock_page(page);
445	blk_queue_exit(bdev->bd_queue);
446	return result;
447}
448EXPORT_SYMBOL_GPL(bdev_write_page);
449
450/**
451 * bdev_direct_access() - Get the address for directly-accessibly memory
452 * @bdev: The device containing the memory
453 * @sector: The offset within the device
454 * @addr: Where to put the address of the memory
455 * @pfn: The Page Frame Number for the memory
456 * @size: The number of bytes requested
457 *
458 * If a block device is made up of directly addressable memory, this function
459 * will tell the caller the PFN and the address of the memory.  The address
460 * may be directly dereferenced within the kernel without the need to call
461 * ioremap(), kmap() or similar.  The PFN is suitable for inserting into
462 * page tables.
463 *
464 * Return: negative errno if an error occurs, otherwise the number of bytes
465 * accessible at this address.
466 */
467long bdev_direct_access(struct block_device *bdev, sector_t sector,
468			void __pmem **addr, unsigned long *pfn, long size)
469{
470	long avail;
471	const struct block_device_operations *ops = bdev->bd_disk->fops;
472
473	/*
474	 * The device driver is allowed to sleep, in order to make the
475	 * memory directly accessible.
476	 */
477	might_sleep();
478
479	if (size < 0)
480		return size;
481	if (!ops->direct_access)
482		return -EOPNOTSUPP;
483	if ((sector + DIV_ROUND_UP(size, 512)) >
484					part_nr_sects_read(bdev->bd_part))
485		return -ERANGE;
486	sector += get_start_sect(bdev);
487	if (sector % (PAGE_SIZE / 512))
488		return -EINVAL;
489	avail = ops->direct_access(bdev, sector, addr, pfn);
490	if (!avail)
491		return -ERANGE;
492	return min(avail, size);
493}
494EXPORT_SYMBOL_GPL(bdev_direct_access);
495
496/*
497 * pseudo-fs
498 */
499
500static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
501static struct kmem_cache * bdev_cachep __read_mostly;
502
503static struct inode *bdev_alloc_inode(struct super_block *sb)
504{
505	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
506	if (!ei)
507		return NULL;
508	return &ei->vfs_inode;
509}
510
511static void bdev_i_callback(struct rcu_head *head)
512{
513	struct inode *inode = container_of(head, struct inode, i_rcu);
514	struct bdev_inode *bdi = BDEV_I(inode);
515
516	kmem_cache_free(bdev_cachep, bdi);
517}
518
519static void bdev_destroy_inode(struct inode *inode)
520{
521	call_rcu(&inode->i_rcu, bdev_i_callback);
522}
523
524static void init_once(void *foo)
525{
526	struct bdev_inode *ei = (struct bdev_inode *) foo;
527	struct block_device *bdev = &ei->bdev;
528
529	memset(bdev, 0, sizeof(*bdev));
530	mutex_init(&bdev->bd_mutex);
531	INIT_LIST_HEAD(&bdev->bd_inodes);
532	INIT_LIST_HEAD(&bdev->bd_list);
533#ifdef CONFIG_SYSFS
534	INIT_LIST_HEAD(&bdev->bd_holder_disks);
535#endif
536	inode_init_once(&ei->vfs_inode);
537	/* Initialize mutex for freeze. */
538	mutex_init(&bdev->bd_fsfreeze_mutex);
539}
540
541static inline void __bd_forget(struct inode *inode)
542{
543	list_del_init(&inode->i_devices);
544	inode->i_bdev = NULL;
545	inode->i_mapping = &inode->i_data;
546}
547
548static void bdev_evict_inode(struct inode *inode)
549{
550	struct block_device *bdev = &BDEV_I(inode)->bdev;
551	struct list_head *p;
552	truncate_inode_pages_final(&inode->i_data);
553	invalidate_inode_buffers(inode); /* is it needed here? */
554	clear_inode(inode);
555	spin_lock(&bdev_lock);
556	while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
557		__bd_forget(list_entry(p, struct inode, i_devices));
558	}
559	list_del_init(&bdev->bd_list);
560	spin_unlock(&bdev_lock);
561}
562
563static const struct super_operations bdev_sops = {
564	.statfs = simple_statfs,
565	.alloc_inode = bdev_alloc_inode,
566	.destroy_inode = bdev_destroy_inode,
567	.drop_inode = generic_delete_inode,
568	.evict_inode = bdev_evict_inode,
569};
570
571static struct dentry *bd_mount(struct file_system_type *fs_type,
572	int flags, const char *dev_name, void *data)
573{
574	return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
575}
576
577static struct file_system_type bd_type = {
578	.name		= "bdev",
579	.mount		= bd_mount,
580	.kill_sb	= kill_anon_super,
581};
582
583struct super_block *blockdev_superblock __read_mostly;
584EXPORT_SYMBOL_GPL(blockdev_superblock);
585
586void __init bdev_cache_init(void)
587{
588	int err;
589	static struct vfsmount *bd_mnt;
590
591	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
592			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
593				SLAB_MEM_SPREAD|SLAB_PANIC),
594			init_once);
595	err = register_filesystem(&bd_type);
596	if (err)
597		panic("Cannot register bdev pseudo-fs");
598	bd_mnt = kern_mount(&bd_type);
599	if (IS_ERR(bd_mnt))
600		panic("Cannot create bdev pseudo-fs");
601	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
602}
603
604/*
605 * Most likely _very_ bad one - but then it's hardly critical for small
606 * /dev and can be fixed when somebody will need really large one.
607 * Keep in mind that it will be fed through icache hash function too.
608 */
609static inline unsigned long hash(dev_t dev)
610{
611	return MAJOR(dev)+MINOR(dev);
612}
613
614static int bdev_test(struct inode *inode, void *data)
615{
616	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
617}
618
619static int bdev_set(struct inode *inode, void *data)
620{
621	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
622	return 0;
623}
624
625static LIST_HEAD(all_bdevs);
626
627struct block_device *bdget(dev_t dev)
628{
629	struct block_device *bdev;
630	struct inode *inode;
631
632	inode = iget5_locked(blockdev_superblock, hash(dev),
633			bdev_test, bdev_set, &dev);
634
635	if (!inode)
636		return NULL;
637
638	bdev = &BDEV_I(inode)->bdev;
639
640	if (inode->i_state & I_NEW) {
641		bdev->bd_contains = NULL;
642		bdev->bd_super = NULL;
643		bdev->bd_inode = inode;
644		bdev->bd_block_size = (1 << inode->i_blkbits);
645		bdev->bd_part_count = 0;
646		bdev->bd_invalidated = 0;
647		inode->i_mode = S_IFBLK;
648		inode->i_rdev = dev;
649		inode->i_bdev = bdev;
650		inode->i_data.a_ops = &def_blk_aops;
651		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
652		spin_lock(&bdev_lock);
653		list_add(&bdev->bd_list, &all_bdevs);
654		spin_unlock(&bdev_lock);
655		unlock_new_inode(inode);
656	}
657	return bdev;
658}
659
660EXPORT_SYMBOL(bdget);
661
662/**
663 * bdgrab -- Grab a reference to an already referenced block device
664 * @bdev:	Block device to grab a reference to.
665 */
666struct block_device *bdgrab(struct block_device *bdev)
667{
668	ihold(bdev->bd_inode);
669	return bdev;
670}
671EXPORT_SYMBOL(bdgrab);
672
673long nr_blockdev_pages(void)
674{
675	struct block_device *bdev;
676	long ret = 0;
677	spin_lock(&bdev_lock);
678	list_for_each_entry(bdev, &all_bdevs, bd_list) {
679		ret += bdev->bd_inode->i_mapping->nrpages;
680	}
681	spin_unlock(&bdev_lock);
682	return ret;
683}
684
685void bdput(struct block_device *bdev)
686{
687	iput(bdev->bd_inode);
688}
689
690EXPORT_SYMBOL(bdput);
691
692static struct block_device *bd_acquire(struct inode *inode)
693{
694	struct block_device *bdev;
695
696	spin_lock(&bdev_lock);
697	bdev = inode->i_bdev;
698	if (bdev) {
699		ihold(bdev->bd_inode);
700		spin_unlock(&bdev_lock);
701		return bdev;
702	}
703	spin_unlock(&bdev_lock);
704
705	bdev = bdget(inode->i_rdev);
706	if (bdev) {
707		spin_lock(&bdev_lock);
708		if (!inode->i_bdev) {
709			/*
710			 * We take an additional reference to bd_inode,
711			 * and it's released in clear_inode() of inode.
712			 * So, we can access it via ->i_mapping always
713			 * without igrab().
714			 */
715			ihold(bdev->bd_inode);
716			inode->i_bdev = bdev;
717			inode->i_mapping = bdev->bd_inode->i_mapping;
718			list_add(&inode->i_devices, &bdev->bd_inodes);
719		}
720		spin_unlock(&bdev_lock);
721	}
722	return bdev;
723}
724
725/* Call when you free inode */
726
727void bd_forget(struct inode *inode)
728{
729	struct block_device *bdev = NULL;
730
731	spin_lock(&bdev_lock);
732	if (!sb_is_blkdev_sb(inode->i_sb))
733		bdev = inode->i_bdev;
734	__bd_forget(inode);
735	spin_unlock(&bdev_lock);
736
737	if (bdev)
738		iput(bdev->bd_inode);
739}
740
741/**
742 * bd_may_claim - test whether a block device can be claimed
743 * @bdev: block device of interest
744 * @whole: whole block device containing @bdev, may equal @bdev
745 * @holder: holder trying to claim @bdev
746 *
747 * Test whether @bdev can be claimed by @holder.
748 *
749 * CONTEXT:
750 * spin_lock(&bdev_lock).
751 *
752 * RETURNS:
753 * %true if @bdev can be claimed, %false otherwise.
754 */
755static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
756			 void *holder)
757{
758	if (bdev->bd_holder == holder)
759		return true;	 /* already a holder */
760	else if (bdev->bd_holder != NULL)
761		return false; 	 /* held by someone else */
762	else if (bdev->bd_contains == bdev)
763		return true;  	 /* is a whole device which isn't held */
764
765	else if (whole->bd_holder == bd_may_claim)
766		return true; 	 /* is a partition of a device that is being partitioned */
767	else if (whole->bd_holder != NULL)
768		return false;	 /* is a partition of a held device */
769	else
770		return true;	 /* is a partition of an un-held device */
771}
772
773/**
774 * bd_prepare_to_claim - prepare to claim a block device
775 * @bdev: block device of interest
776 * @whole: the whole device containing @bdev, may equal @bdev
777 * @holder: holder trying to claim @bdev
778 *
779 * Prepare to claim @bdev.  This function fails if @bdev is already
780 * claimed by another holder and waits if another claiming is in
781 * progress.  This function doesn't actually claim.  On successful
782 * return, the caller has ownership of bd_claiming and bd_holder[s].
783 *
784 * CONTEXT:
785 * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
786 * it multiple times.
787 *
788 * RETURNS:
789 * 0 if @bdev can be claimed, -EBUSY otherwise.
790 */
791static int bd_prepare_to_claim(struct block_device *bdev,
792			       struct block_device *whole, void *holder)
793{
794retry:
795	/* if someone else claimed, fail */
796	if (!bd_may_claim(bdev, whole, holder))
797		return -EBUSY;
798
799	/* if claiming is already in progress, wait for it to finish */
800	if (whole->bd_claiming) {
801		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
802		DEFINE_WAIT(wait);
803
804		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
805		spin_unlock(&bdev_lock);
806		schedule();
807		finish_wait(wq, &wait);
808		spin_lock(&bdev_lock);
809		goto retry;
810	}
811
812	/* yay, all mine */
813	return 0;
814}
815
816/**
817 * bd_start_claiming - start claiming a block device
818 * @bdev: block device of interest
819 * @holder: holder trying to claim @bdev
820 *
821 * @bdev is about to be opened exclusively.  Check @bdev can be opened
822 * exclusively and mark that an exclusive open is in progress.  Each
823 * successful call to this function must be matched with a call to
824 * either bd_finish_claiming() or bd_abort_claiming() (which do not
825 * fail).
826 *
827 * This function is used to gain exclusive access to the block device
828 * without actually causing other exclusive open attempts to fail. It
829 * should be used when the open sequence itself requires exclusive
830 * access but may subsequently fail.
831 *
832 * CONTEXT:
833 * Might sleep.
834 *
835 * RETURNS:
836 * Pointer to the block device containing @bdev on success, ERR_PTR()
837 * value on failure.
838 */
839static struct block_device *bd_start_claiming(struct block_device *bdev,
840					      void *holder)
841{
842	struct gendisk *disk;
843	struct block_device *whole;
844	int partno, err;
845
846	might_sleep();
847
848	/*
849	 * @bdev might not have been initialized properly yet, look up
850	 * and grab the outer block device the hard way.
851	 */
852	disk = get_gendisk(bdev->bd_dev, &partno);
853	if (!disk)
854		return ERR_PTR(-ENXIO);
855
856	/*
857	 * Normally, @bdev should equal what's returned from bdget_disk()
858	 * if partno is 0; however, some drivers (floppy) use multiple
859	 * bdev's for the same physical device and @bdev may be one of the
860	 * aliases.  Keep @bdev if partno is 0.  This means claimer
861	 * tracking is broken for those devices but it has always been that
862	 * way.
863	 */
864	if (partno)
865		whole = bdget_disk(disk, 0);
866	else
867		whole = bdgrab(bdev);
868
869	module_put(disk->fops->owner);
870	put_disk(disk);
871	if (!whole)
872		return ERR_PTR(-ENOMEM);
873
874	/* prepare to claim, if successful, mark claiming in progress */
875	spin_lock(&bdev_lock);
876
877	err = bd_prepare_to_claim(bdev, whole, holder);
878	if (err == 0) {
879		whole->bd_claiming = holder;
880		spin_unlock(&bdev_lock);
881		return whole;
882	} else {
883		spin_unlock(&bdev_lock);
884		bdput(whole);
885		return ERR_PTR(err);
886	}
887}
888
889#ifdef CONFIG_SYSFS
890struct bd_holder_disk {
891	struct list_head	list;
892	struct gendisk		*disk;
893	int			refcnt;
894};
895
896static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
897						  struct gendisk *disk)
898{
899	struct bd_holder_disk *holder;
900
901	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
902		if (holder->disk == disk)
903			return holder;
904	return NULL;
905}
906
907static int add_symlink(struct kobject *from, struct kobject *to)
908{
909	return sysfs_create_link(from, to, kobject_name(to));
910}
911
912static void del_symlink(struct kobject *from, struct kobject *to)
913{
914	sysfs_remove_link(from, kobject_name(to));
915}
916
917/**
918 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
919 * @bdev: the claimed slave bdev
920 * @disk: the holding disk
921 *
922 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
923 *
924 * This functions creates the following sysfs symlinks.
925 *
926 * - from "slaves" directory of the holder @disk to the claimed @bdev
927 * - from "holders" directory of the @bdev to the holder @disk
928 *
929 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
930 * passed to bd_link_disk_holder(), then:
931 *
932 *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
933 *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
934 *
935 * The caller must have claimed @bdev before calling this function and
936 * ensure that both @bdev and @disk are valid during the creation and
937 * lifetime of these symlinks.
938 *
939 * CONTEXT:
940 * Might sleep.
941 *
942 * RETURNS:
943 * 0 on success, -errno on failure.
944 */
945int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
946{
947	struct bd_holder_disk *holder;
948	int ret = 0;
949
950	mutex_lock(&bdev->bd_mutex);
951
952	WARN_ON_ONCE(!bdev->bd_holder);
953
954	/* FIXME: remove the following once add_disk() handles errors */
955	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
956		goto out_unlock;
957
958	holder = bd_find_holder_disk(bdev, disk);
959	if (holder) {
960		holder->refcnt++;
961		goto out_unlock;
962	}
963
964	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
965	if (!holder) {
966		ret = -ENOMEM;
967		goto out_unlock;
968	}
969
970	INIT_LIST_HEAD(&holder->list);
971	holder->disk = disk;
972	holder->refcnt = 1;
973
974	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
975	if (ret)
976		goto out_free;
977
978	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
979	if (ret)
980		goto out_del;
981	/*
982	 * bdev could be deleted beneath us which would implicitly destroy
983	 * the holder directory.  Hold on to it.
984	 */
985	kobject_get(bdev->bd_part->holder_dir);
986
987	list_add(&holder->list, &bdev->bd_holder_disks);
988	goto out_unlock;
989
990out_del:
991	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
992out_free:
993	kfree(holder);
994out_unlock:
995	mutex_unlock(&bdev->bd_mutex);
996	return ret;
997}
998EXPORT_SYMBOL_GPL(bd_link_disk_holder);
999
1000/**
1001 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1002 * @bdev: the calimed slave bdev
1003 * @disk: the holding disk
1004 *
1005 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1006 *
1007 * CONTEXT:
1008 * Might sleep.
1009 */
1010void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1011{
1012	struct bd_holder_disk *holder;
1013
1014	mutex_lock(&bdev->bd_mutex);
1015
1016	holder = bd_find_holder_disk(bdev, disk);
1017
1018	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1019		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1020		del_symlink(bdev->bd_part->holder_dir,
1021			    &disk_to_dev(disk)->kobj);
1022		kobject_put(bdev->bd_part->holder_dir);
1023		list_del_init(&holder->list);
1024		kfree(holder);
1025	}
1026
1027	mutex_unlock(&bdev->bd_mutex);
1028}
1029EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1030#endif
1031
1032/**
1033 * flush_disk - invalidates all buffer-cache entries on a disk
1034 *
1035 * @bdev:      struct block device to be flushed
1036 * @kill_dirty: flag to guide handling of dirty inodes
1037 *
1038 * Invalidates all buffer-cache entries on a disk. It should be called
1039 * when a disk has been changed -- either by a media change or online
1040 * resize.
1041 */
1042static void flush_disk(struct block_device *bdev, bool kill_dirty)
1043{
1044	if (__invalidate_device(bdev, kill_dirty)) {
1045		char name[BDEVNAME_SIZE] = "";
1046
1047		if (bdev->bd_disk)
1048			disk_name(bdev->bd_disk, 0, name);
1049		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1050		       "resized disk %s\n", name);
1051	}
1052
1053	if (!bdev->bd_disk)
1054		return;
1055	if (disk_part_scan_enabled(bdev->bd_disk))
1056		bdev->bd_invalidated = 1;
1057}
1058
1059/**
1060 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1061 * @disk: struct gendisk to check
1062 * @bdev: struct bdev to adjust.
1063 *
1064 * This routine checks to see if the bdev size does not match the disk size
1065 * and adjusts it if it differs.
1066 */
1067void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1068{
1069	loff_t disk_size, bdev_size;
1070
1071	disk_size = (loff_t)get_capacity(disk) << 9;
1072	bdev_size = i_size_read(bdev->bd_inode);
1073	if (disk_size != bdev_size) {
1074		char name[BDEVNAME_SIZE];
1075
1076		disk_name(disk, 0, name);
1077		printk(KERN_INFO
1078		       "%s: detected capacity change from %lld to %lld\n",
1079		       name, bdev_size, disk_size);
1080		i_size_write(bdev->bd_inode, disk_size);
1081		flush_disk(bdev, false);
1082	}
1083}
1084EXPORT_SYMBOL(check_disk_size_change);
1085
1086/**
1087 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1088 * @disk: struct gendisk to be revalidated
1089 *
1090 * This routine is a wrapper for lower-level driver's revalidate_disk
1091 * call-backs.  It is used to do common pre and post operations needed
1092 * for all revalidate_disk operations.
1093 */
1094int revalidate_disk(struct gendisk *disk)
1095{
1096	struct block_device *bdev;
1097	int ret = 0;
1098
1099	if (disk->fops->revalidate_disk)
1100		ret = disk->fops->revalidate_disk(disk);
1101	blk_integrity_revalidate(disk);
1102	bdev = bdget_disk(disk, 0);
1103	if (!bdev)
1104		return ret;
1105
1106	mutex_lock(&bdev->bd_mutex);
1107	check_disk_size_change(disk, bdev);
1108	bdev->bd_invalidated = 0;
1109	mutex_unlock(&bdev->bd_mutex);
1110	bdput(bdev);
1111	return ret;
1112}
1113EXPORT_SYMBOL(revalidate_disk);
1114
1115/*
1116 * This routine checks whether a removable media has been changed,
1117 * and invalidates all buffer-cache-entries in that case. This
1118 * is a relatively slow routine, so we have to try to minimize using
1119 * it. Thus it is called only upon a 'mount' or 'open'. This
1120 * is the best way of combining speed and utility, I think.
1121 * People changing diskettes in the middle of an operation deserve
1122 * to lose :-)
1123 */
1124int check_disk_change(struct block_device *bdev)
1125{
1126	struct gendisk *disk = bdev->bd_disk;
1127	const struct block_device_operations *bdops = disk->fops;
1128	unsigned int events;
1129
1130	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1131				   DISK_EVENT_EJECT_REQUEST);
1132	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1133		return 0;
1134
1135	flush_disk(bdev, true);
1136	if (bdops->revalidate_disk)
1137		bdops->revalidate_disk(bdev->bd_disk);
1138	return 1;
1139}
1140
1141EXPORT_SYMBOL(check_disk_change);
1142
1143void bd_set_size(struct block_device *bdev, loff_t size)
1144{
1145	unsigned bsize = bdev_logical_block_size(bdev);
1146
1147	mutex_lock(&bdev->bd_inode->i_mutex);
1148	i_size_write(bdev->bd_inode, size);
1149	mutex_unlock(&bdev->bd_inode->i_mutex);
1150	while (bsize < PAGE_CACHE_SIZE) {
1151		if (size & bsize)
1152			break;
1153		bsize <<= 1;
1154	}
1155	bdev->bd_block_size = bsize;
1156	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1157}
1158EXPORT_SYMBOL(bd_set_size);
1159
1160static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1161
1162/*
1163 * bd_mutex locking:
1164 *
1165 *  mutex_lock(part->bd_mutex)
1166 *    mutex_lock_nested(whole->bd_mutex, 1)
1167 */
1168
1169static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1170{
1171	struct gendisk *disk;
1172	struct module *owner;
1173	int ret;
1174	int partno;
1175	int perm = 0;
1176
1177	if (mode & FMODE_READ)
1178		perm |= MAY_READ;
1179	if (mode & FMODE_WRITE)
1180		perm |= MAY_WRITE;
1181	/*
1182	 * hooks: /n/, see "layering violations".
1183	 */
1184	if (!for_part) {
1185		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1186		if (ret != 0) {
1187			bdput(bdev);
1188			return ret;
1189		}
1190	}
1191
1192 restart:
1193
1194	ret = -ENXIO;
1195	disk = get_gendisk(bdev->bd_dev, &partno);
1196	if (!disk)
1197		goto out;
1198	owner = disk->fops->owner;
1199
1200	disk_block_events(disk);
1201	mutex_lock_nested(&bdev->bd_mutex, for_part);
1202	if (!bdev->bd_openers) {
1203		bdev->bd_disk = disk;
1204		bdev->bd_queue = disk->queue;
1205		bdev->bd_contains = bdev;
1206		bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1207		if (!partno) {
1208			ret = -ENXIO;
1209			bdev->bd_part = disk_get_part(disk, partno);
1210			if (!bdev->bd_part)
1211				goto out_clear;
1212
1213			ret = 0;
1214			if (disk->fops->open) {
1215				ret = disk->fops->open(bdev, mode);
1216				if (ret == -ERESTARTSYS) {
1217					/* Lost a race with 'disk' being
1218					 * deleted, try again.
1219					 * See md.c
1220					 */
1221					disk_put_part(bdev->bd_part);
1222					bdev->bd_part = NULL;
1223					bdev->bd_disk = NULL;
1224					bdev->bd_queue = NULL;
1225					mutex_unlock(&bdev->bd_mutex);
1226					disk_unblock_events(disk);
1227					put_disk(disk);
1228					module_put(owner);
1229					goto restart;
1230				}
1231			}
1232
1233			if (!ret)
1234				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1235
1236			/*
1237			 * If the device is invalidated, rescan partition
1238			 * if open succeeded or failed with -ENOMEDIUM.
1239			 * The latter is necessary to prevent ghost
1240			 * partitions on a removed medium.
1241			 */
1242			if (bdev->bd_invalidated) {
1243				if (!ret)
1244					rescan_partitions(disk, bdev);
1245				else if (ret == -ENOMEDIUM)
1246					invalidate_partitions(disk, bdev);
1247			}
1248			if (ret)
1249				goto out_clear;
1250		} else {
1251			struct block_device *whole;
1252			whole = bdget_disk(disk, 0);
1253			ret = -ENOMEM;
1254			if (!whole)
1255				goto out_clear;
1256			BUG_ON(for_part);
1257			ret = __blkdev_get(whole, mode, 1);
1258			if (ret)
1259				goto out_clear;
1260			bdev->bd_contains = whole;
1261			bdev->bd_part = disk_get_part(disk, partno);
1262			if (!(disk->flags & GENHD_FL_UP) ||
1263			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1264				ret = -ENXIO;
1265				goto out_clear;
1266			}
1267			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1268			/*
1269			 * If the partition is not aligned on a page
1270			 * boundary, we can't do dax I/O to it.
1271			 */
1272			if ((bdev->bd_part->start_sect % (PAGE_SIZE / 512)) ||
1273			    (bdev->bd_part->nr_sects % (PAGE_SIZE / 512)))
1274				bdev->bd_inode->i_flags &= ~S_DAX;
1275		}
1276	} else {
1277		if (bdev->bd_contains == bdev) {
1278			ret = 0;
1279			if (bdev->bd_disk->fops->open)
1280				ret = bdev->bd_disk->fops->open(bdev, mode);
1281			/* the same as first opener case, read comment there */
1282			if (bdev->bd_invalidated) {
1283				if (!ret)
1284					rescan_partitions(bdev->bd_disk, bdev);
1285				else if (ret == -ENOMEDIUM)
1286					invalidate_partitions(bdev->bd_disk, bdev);
1287			}
1288			if (ret)
1289				goto out_unlock_bdev;
1290		}
1291		/* only one opener holds refs to the module and disk */
1292		put_disk(disk);
1293		module_put(owner);
1294	}
1295	bdev->bd_openers++;
1296	if (for_part)
1297		bdev->bd_part_count++;
1298	mutex_unlock(&bdev->bd_mutex);
1299	disk_unblock_events(disk);
1300	return 0;
1301
1302 out_clear:
1303	disk_put_part(bdev->bd_part);
1304	bdev->bd_disk = NULL;
1305	bdev->bd_part = NULL;
1306	bdev->bd_queue = NULL;
1307	if (bdev != bdev->bd_contains)
1308		__blkdev_put(bdev->bd_contains, mode, 1);
1309	bdev->bd_contains = NULL;
1310 out_unlock_bdev:
1311	mutex_unlock(&bdev->bd_mutex);
1312	disk_unblock_events(disk);
1313	put_disk(disk);
1314	module_put(owner);
1315 out:
1316	bdput(bdev);
1317
1318	return ret;
1319}
1320
1321/**
1322 * blkdev_get - open a block device
1323 * @bdev: block_device to open
1324 * @mode: FMODE_* mask
1325 * @holder: exclusive holder identifier
1326 *
1327 * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1328 * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1329 * @holder is invalid.  Exclusive opens may nest for the same @holder.
1330 *
1331 * On success, the reference count of @bdev is unchanged.  On failure,
1332 * @bdev is put.
1333 *
1334 * CONTEXT:
1335 * Might sleep.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
1340int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1341{
1342	struct block_device *whole = NULL;
1343	int res;
1344
1345	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1346
1347	if ((mode & FMODE_EXCL) && holder) {
1348		whole = bd_start_claiming(bdev, holder);
1349		if (IS_ERR(whole)) {
1350			bdput(bdev);
1351			return PTR_ERR(whole);
1352		}
1353	}
1354
1355	res = __blkdev_get(bdev, mode, 0);
1356
1357	if (whole) {
1358		struct gendisk *disk = whole->bd_disk;
1359
1360		/* finish claiming */
1361		mutex_lock(&bdev->bd_mutex);
1362		spin_lock(&bdev_lock);
1363
1364		if (!res) {
1365			BUG_ON(!bd_may_claim(bdev, whole, holder));
1366			/*
1367			 * Note that for a whole device bd_holders
1368			 * will be incremented twice, and bd_holder
1369			 * will be set to bd_may_claim before being
1370			 * set to holder
1371			 */
1372			whole->bd_holders++;
1373			whole->bd_holder = bd_may_claim;
1374			bdev->bd_holders++;
1375			bdev->bd_holder = holder;
1376		}
1377
1378		/* tell others that we're done */
1379		BUG_ON(whole->bd_claiming != holder);
1380		whole->bd_claiming = NULL;
1381		wake_up_bit(&whole->bd_claiming, 0);
1382
1383		spin_unlock(&bdev_lock);
1384
1385		/*
1386		 * Block event polling for write claims if requested.  Any
1387		 * write holder makes the write_holder state stick until
1388		 * all are released.  This is good enough and tracking
1389		 * individual writeable reference is too fragile given the
1390		 * way @mode is used in blkdev_get/put().
1391		 */
1392		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1393		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1394			bdev->bd_write_holder = true;
1395			disk_block_events(disk);
1396		}
1397
1398		mutex_unlock(&bdev->bd_mutex);
1399		bdput(whole);
1400	}
1401
1402	return res;
1403}
1404EXPORT_SYMBOL(blkdev_get);
1405
1406/**
1407 * blkdev_get_by_path - open a block device by name
1408 * @path: path to the block device to open
1409 * @mode: FMODE_* mask
1410 * @holder: exclusive holder identifier
1411 *
1412 * Open the blockdevice described by the device file at @path.  @mode
1413 * and @holder are identical to blkdev_get().
1414 *
1415 * On success, the returned block_device has reference count of one.
1416 *
1417 * CONTEXT:
1418 * Might sleep.
1419 *
1420 * RETURNS:
1421 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1422 */
1423struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1424					void *holder)
1425{
1426	struct block_device *bdev;
1427	int err;
1428
1429	bdev = lookup_bdev(path);
1430	if (IS_ERR(bdev))
1431		return bdev;
1432
1433	err = blkdev_get(bdev, mode, holder);
1434	if (err)
1435		return ERR_PTR(err);
1436
1437	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1438		blkdev_put(bdev, mode);
1439		return ERR_PTR(-EACCES);
1440	}
1441
1442	return bdev;
1443}
1444EXPORT_SYMBOL(blkdev_get_by_path);
1445
1446/**
1447 * blkdev_get_by_dev - open a block device by device number
1448 * @dev: device number of block device to open
1449 * @mode: FMODE_* mask
1450 * @holder: exclusive holder identifier
1451 *
1452 * Open the blockdevice described by device number @dev.  @mode and
1453 * @holder are identical to blkdev_get().
1454 *
1455 * Use it ONLY if you really do not have anything better - i.e. when
1456 * you are behind a truly sucky interface and all you are given is a
1457 * device number.  _Never_ to be used for internal purposes.  If you
1458 * ever need it - reconsider your API.
1459 *
1460 * On success, the returned block_device has reference count of one.
1461 *
1462 * CONTEXT:
1463 * Might sleep.
1464 *
1465 * RETURNS:
1466 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1467 */
1468struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1469{
1470	struct block_device *bdev;
1471	int err;
1472
1473	bdev = bdget(dev);
1474	if (!bdev)
1475		return ERR_PTR(-ENOMEM);
1476
1477	err = blkdev_get(bdev, mode, holder);
1478	if (err)
1479		return ERR_PTR(err);
1480
1481	return bdev;
1482}
1483EXPORT_SYMBOL(blkdev_get_by_dev);
1484
1485static int blkdev_open(struct inode * inode, struct file * filp)
1486{
1487	struct block_device *bdev;
1488
1489	/*
1490	 * Preserve backwards compatibility and allow large file access
1491	 * even if userspace doesn't ask for it explicitly. Some mkfs
1492	 * binary needs it. We might want to drop this workaround
1493	 * during an unstable branch.
1494	 */
1495	filp->f_flags |= O_LARGEFILE;
1496
1497	if (filp->f_flags & O_NDELAY)
1498		filp->f_mode |= FMODE_NDELAY;
1499	if (filp->f_flags & O_EXCL)
1500		filp->f_mode |= FMODE_EXCL;
1501	if ((filp->f_flags & O_ACCMODE) == 3)
1502		filp->f_mode |= FMODE_WRITE_IOCTL;
1503
1504	bdev = bd_acquire(inode);
1505	if (bdev == NULL)
1506		return -ENOMEM;
1507
1508	filp->f_mapping = bdev->bd_inode->i_mapping;
1509
1510	return blkdev_get(bdev, filp->f_mode, filp);
1511}
1512
1513static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1514{
1515	struct gendisk *disk = bdev->bd_disk;
1516	struct block_device *victim = NULL;
1517
1518	mutex_lock_nested(&bdev->bd_mutex, for_part);
1519	if (for_part)
1520		bdev->bd_part_count--;
1521
1522	if (!--bdev->bd_openers) {
1523		WARN_ON_ONCE(bdev->bd_holders);
1524		sync_blockdev(bdev);
1525		kill_bdev(bdev);
1526
1527		bdev_write_inode(bdev);
1528		/*
1529		 * Detaching bdev inode from its wb in __destroy_inode()
1530		 * is too late: the queue which embeds its bdi (along with
1531		 * root wb) can be gone as soon as we put_disk() below.
1532		 */
1533		inode_detach_wb(bdev->bd_inode);
1534	}
1535	if (bdev->bd_contains == bdev) {
1536		if (disk->fops->release)
1537			disk->fops->release(disk, mode);
1538	}
1539	if (!bdev->bd_openers) {
1540		struct module *owner = disk->fops->owner;
1541
1542		disk_put_part(bdev->bd_part);
1543		bdev->bd_part = NULL;
1544		bdev->bd_disk = NULL;
1545		if (bdev != bdev->bd_contains)
1546			victim = bdev->bd_contains;
1547		bdev->bd_contains = NULL;
1548
1549		put_disk(disk);
1550		module_put(owner);
1551	}
1552	mutex_unlock(&bdev->bd_mutex);
1553	bdput(bdev);
1554	if (victim)
1555		__blkdev_put(victim, mode, 1);
1556}
1557
1558void blkdev_put(struct block_device *bdev, fmode_t mode)
1559{
1560	mutex_lock(&bdev->bd_mutex);
1561
1562	if (mode & FMODE_EXCL) {
1563		bool bdev_free;
1564
1565		/*
1566		 * Release a claim on the device.  The holder fields
1567		 * are protected with bdev_lock.  bd_mutex is to
1568		 * synchronize disk_holder unlinking.
1569		 */
1570		spin_lock(&bdev_lock);
1571
1572		WARN_ON_ONCE(--bdev->bd_holders < 0);
1573		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1574
1575		/* bd_contains might point to self, check in a separate step */
1576		if ((bdev_free = !bdev->bd_holders))
1577			bdev->bd_holder = NULL;
1578		if (!bdev->bd_contains->bd_holders)
1579			bdev->bd_contains->bd_holder = NULL;
1580
1581		spin_unlock(&bdev_lock);
1582
1583		/*
1584		 * If this was the last claim, remove holder link and
1585		 * unblock evpoll if it was a write holder.
1586		 */
1587		if (bdev_free && bdev->bd_write_holder) {
1588			disk_unblock_events(bdev->bd_disk);
1589			bdev->bd_write_holder = false;
1590		}
1591	}
1592
1593	/*
1594	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1595	 * event.  This is to ensure detection of media removal commanded
1596	 * from userland - e.g. eject(1).
1597	 */
1598	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1599
1600	mutex_unlock(&bdev->bd_mutex);
1601
1602	__blkdev_put(bdev, mode, 0);
1603}
1604EXPORT_SYMBOL(blkdev_put);
1605
1606static int blkdev_close(struct inode * inode, struct file * filp)
1607{
1608	struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1609	blkdev_put(bdev, filp->f_mode);
1610	return 0;
1611}
1612
1613static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1614{
1615	struct block_device *bdev = I_BDEV(file->f_mapping->host);
1616	fmode_t mode = file->f_mode;
1617
1618	/*
1619	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1620	 * to updated it before every ioctl.
1621	 */
1622	if (file->f_flags & O_NDELAY)
1623		mode |= FMODE_NDELAY;
1624	else
1625		mode &= ~FMODE_NDELAY;
1626
1627	return blkdev_ioctl(bdev, mode, cmd, arg);
1628}
1629
1630/*
1631 * Write data to the block device.  Only intended for the block device itself
1632 * and the raw driver which basically is a fake block device.
1633 *
1634 * Does not take i_mutex for the write and thus is not for general purpose
1635 * use.
1636 */
1637ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1638{
1639	struct file *file = iocb->ki_filp;
1640	struct inode *bd_inode = file->f_mapping->host;
1641	loff_t size = i_size_read(bd_inode);
1642	struct blk_plug plug;
1643	ssize_t ret;
1644
1645	if (bdev_read_only(I_BDEV(bd_inode)))
1646		return -EPERM;
1647
1648	if (!iov_iter_count(from))
1649		return 0;
1650
1651	if (iocb->ki_pos >= size)
1652		return -ENOSPC;
1653
1654	iov_iter_truncate(from, size - iocb->ki_pos);
1655
1656	blk_start_plug(&plug);
1657	ret = __generic_file_write_iter(iocb, from);
1658	if (ret > 0) {
1659		ssize_t err;
1660		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1661		if (err < 0)
1662			ret = err;
1663	}
1664	blk_finish_plug(&plug);
1665	return ret;
1666}
1667EXPORT_SYMBOL_GPL(blkdev_write_iter);
1668
1669ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1670{
1671	struct file *file = iocb->ki_filp;
1672	struct inode *bd_inode = file->f_mapping->host;
1673	loff_t size = i_size_read(bd_inode);
1674	loff_t pos = iocb->ki_pos;
1675
1676	if (pos >= size)
1677		return 0;
1678
1679	size -= pos;
1680	iov_iter_truncate(to, size);
1681	return generic_file_read_iter(iocb, to);
1682}
1683EXPORT_SYMBOL_GPL(blkdev_read_iter);
1684
1685/*
1686 * Try to release a page associated with block device when the system
1687 * is under memory pressure.
1688 */
1689static int blkdev_releasepage(struct page *page, gfp_t wait)
1690{
1691	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1692
1693	if (super && super->s_op->bdev_try_to_free_page)
1694		return super->s_op->bdev_try_to_free_page(super, page, wait);
1695
1696	return try_to_free_buffers(page);
1697}
1698
1699static const struct address_space_operations def_blk_aops = {
1700	.readpage	= blkdev_readpage,
1701	.readpages	= blkdev_readpages,
1702	.writepage	= blkdev_writepage,
1703	.write_begin	= blkdev_write_begin,
1704	.write_end	= blkdev_write_end,
1705	.writepages	= generic_writepages,
1706	.releasepage	= blkdev_releasepage,
1707	.direct_IO	= blkdev_direct_IO,
1708	.is_dirty_writeback = buffer_check_dirty_writeback,
1709};
1710
1711const struct file_operations def_blk_fops = {
1712	.open		= blkdev_open,
1713	.release	= blkdev_close,
1714	.llseek		= block_llseek,
1715	.read_iter	= blkdev_read_iter,
1716	.write_iter	= blkdev_write_iter,
1717	.mmap		= generic_file_mmap,
1718	.fsync		= blkdev_fsync,
1719	.unlocked_ioctl	= block_ioctl,
1720#ifdef CONFIG_COMPAT
1721	.compat_ioctl	= compat_blkdev_ioctl,
1722#endif
1723	.splice_read	= generic_file_splice_read,
1724	.splice_write	= iter_file_splice_write,
1725};
1726
1727int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1728{
1729	int res;
1730	mm_segment_t old_fs = get_fs();
1731	set_fs(KERNEL_DS);
1732	res = blkdev_ioctl(bdev, 0, cmd, arg);
1733	set_fs(old_fs);
1734	return res;
1735}
1736
1737EXPORT_SYMBOL(ioctl_by_bdev);
1738
1739/**
1740 * lookup_bdev  - lookup a struct block_device by name
1741 * @pathname:	special file representing the block device
1742 *
1743 * Get a reference to the blockdevice at @pathname in the current
1744 * namespace if possible and return it.  Return ERR_PTR(error)
1745 * otherwise.
1746 */
1747struct block_device *lookup_bdev(const char *pathname)
1748{
1749	struct block_device *bdev;
1750	struct inode *inode;
1751	struct path path;
1752	int error;
1753
1754	if (!pathname || !*pathname)
1755		return ERR_PTR(-EINVAL);
1756
1757	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1758	if (error)
1759		return ERR_PTR(error);
1760
1761	inode = d_backing_inode(path.dentry);
1762	error = -ENOTBLK;
1763	if (!S_ISBLK(inode->i_mode))
1764		goto fail;
1765	error = -EACCES;
1766	if (path.mnt->mnt_flags & MNT_NODEV)
1767		goto fail;
1768	error = -ENOMEM;
1769	bdev = bd_acquire(inode);
1770	if (!bdev)
1771		goto fail;
1772out:
1773	path_put(&path);
1774	return bdev;
1775fail:
1776	bdev = ERR_PTR(error);
1777	goto out;
1778}
1779EXPORT_SYMBOL(lookup_bdev);
1780
1781int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1782{
1783	struct super_block *sb = get_super(bdev);
1784	int res = 0;
1785
1786	if (sb) {
1787		/*
1788		 * no need to lock the super, get_super holds the
1789		 * read mutex so the filesystem cannot go away
1790		 * under us (->put_super runs with the write lock
1791		 * hold).
1792		 */
1793		shrink_dcache_sb(sb);
1794		res = invalidate_inodes(sb, kill_dirty);
1795		drop_super(sb);
1796	}
1797	invalidate_bdev(bdev);
1798	return res;
1799}
1800EXPORT_SYMBOL(__invalidate_device);
1801
1802void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1803{
1804	struct inode *inode, *old_inode = NULL;
1805
1806	spin_lock(&blockdev_superblock->s_inode_list_lock);
1807	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1808		struct address_space *mapping = inode->i_mapping;
1809
1810		spin_lock(&inode->i_lock);
1811		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1812		    mapping->nrpages == 0) {
1813			spin_unlock(&inode->i_lock);
1814			continue;
1815		}
1816		__iget(inode);
1817		spin_unlock(&inode->i_lock);
1818		spin_unlock(&blockdev_superblock->s_inode_list_lock);
1819		/*
1820		 * We hold a reference to 'inode' so it couldn't have been
1821		 * removed from s_inodes list while we dropped the
1822		 * s_inode_list_lock  We cannot iput the inode now as we can
1823		 * be holding the last reference and we cannot iput it under
1824		 * s_inode_list_lock. So we keep the reference and iput it
1825		 * later.
1826		 */
1827		iput(old_inode);
1828		old_inode = inode;
1829
1830		func(I_BDEV(inode), arg);
1831
1832		spin_lock(&blockdev_superblock->s_inode_list_lock);
1833	}
1834	spin_unlock(&blockdev_superblock->s_inode_list_lock);
1835	iput(old_inode);
1836}
1837