1 /*
2  * Copyright (C) 2005-2006 by Texas Instruments
3  *
4  * This file implements a DMA  interface using TI's CPPI DMA.
5  * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6  * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/platform_device.h>
11 #include <linux/slab.h>
12 #include <linux/usb.h>
13 
14 #include "musb_core.h"
15 #include "musb_debug.h"
16 #include "cppi_dma.h"
17 
18 
19 /* CPPI DMA status 7-mar-2006:
20  *
21  * - See musb_{host,gadget}.c for more info
22  *
23  * - Correct RX DMA generally forces the engine into irq-per-packet mode,
24  *   which can easily saturate the CPU under non-mass-storage loads.
25  *
26  * NOTES 24-aug-2006 (2.6.18-rc4):
27  *
28  * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
29  *   evidently after the 1 byte packet was received and acked, the queue
30  *   of BDs got garbaged so it wouldn't empty the fifo.  (rxcsr 0x2003,
31  *   and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
32  *   004001ff 00000001 .. 8feff860)  Host was just getting NAKed on tx
33  *   of its next (512 byte) packet.  IRQ issues?
34  *
35  * REVISIT:  the "transfer DMA" glue between CPPI and USB fifos will
36  * evidently also directly update the RX and TX CSRs ... so audit all
37  * host and peripheral side DMA code to avoid CSR access after DMA has
38  * been started.
39  */
40 
41 /* REVISIT now we can avoid preallocating these descriptors; or
42  * more simply, switch to a global freelist not per-channel ones.
43  * Note: at full speed, 64 descriptors == 4K bulk data.
44  */
45 #define NUM_TXCHAN_BD       64
46 #define NUM_RXCHAN_BD       64
47 
cpu_drain_writebuffer(void)48 static inline void cpu_drain_writebuffer(void)
49 {
50 	wmb();
51 #ifdef	CONFIG_CPU_ARM926T
52 	/* REVISIT this "should not be needed",
53 	 * but lack of it sure seemed to hurt ...
54 	 */
55 	asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
56 #endif
57 }
58 
cppi_bd_alloc(struct cppi_channel * c)59 static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
60 {
61 	struct cppi_descriptor	*bd = c->freelist;
62 
63 	if (bd)
64 		c->freelist = bd->next;
65 	return bd;
66 }
67 
68 static inline void
cppi_bd_free(struct cppi_channel * c,struct cppi_descriptor * bd)69 cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
70 {
71 	if (!bd)
72 		return;
73 	bd->next = c->freelist;
74 	c->freelist = bd;
75 }
76 
77 /*
78  *  Start DMA controller
79  *
80  *  Initialize the DMA controller as necessary.
81  */
82 
83 /* zero out entire rx state RAM entry for the channel */
cppi_reset_rx(struct cppi_rx_stateram __iomem * rx)84 static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
85 {
86 	musb_writel(&rx->rx_skipbytes, 0, 0);
87 	musb_writel(&rx->rx_head, 0, 0);
88 	musb_writel(&rx->rx_sop, 0, 0);
89 	musb_writel(&rx->rx_current, 0, 0);
90 	musb_writel(&rx->rx_buf_current, 0, 0);
91 	musb_writel(&rx->rx_len_len, 0, 0);
92 	musb_writel(&rx->rx_cnt_cnt, 0, 0);
93 }
94 
95 /* zero out entire tx state RAM entry for the channel */
cppi_reset_tx(struct cppi_tx_stateram __iomem * tx,u32 ptr)96 static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
97 {
98 	musb_writel(&tx->tx_head, 0, 0);
99 	musb_writel(&tx->tx_buf, 0, 0);
100 	musb_writel(&tx->tx_current, 0, 0);
101 	musb_writel(&tx->tx_buf_current, 0, 0);
102 	musb_writel(&tx->tx_info, 0, 0);
103 	musb_writel(&tx->tx_rem_len, 0, 0);
104 	/* musb_writel(&tx->tx_dummy, 0, 0); */
105 	musb_writel(&tx->tx_complete, 0, ptr);
106 }
107 
cppi_pool_init(struct cppi * cppi,struct cppi_channel * c)108 static void cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
109 {
110 	int	j;
111 
112 	/* initialize channel fields */
113 	c->head = NULL;
114 	c->tail = NULL;
115 	c->last_processed = NULL;
116 	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
117 	c->controller = cppi;
118 	c->is_rndis = 0;
119 	c->freelist = NULL;
120 
121 	/* build the BD Free list for the channel */
122 	for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
123 		struct cppi_descriptor	*bd;
124 		dma_addr_t		dma;
125 
126 		bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
127 		bd->dma = dma;
128 		cppi_bd_free(c, bd);
129 	}
130 }
131 
132 static int cppi_channel_abort(struct dma_channel *);
133 
cppi_pool_free(struct cppi_channel * c)134 static void cppi_pool_free(struct cppi_channel *c)
135 {
136 	struct cppi		*cppi = c->controller;
137 	struct cppi_descriptor	*bd;
138 
139 	(void) cppi_channel_abort(&c->channel);
140 	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
141 	c->controller = NULL;
142 
143 	/* free all its bds */
144 	bd = c->last_processed;
145 	do {
146 		if (bd)
147 			dma_pool_free(cppi->pool, bd, bd->dma);
148 		bd = cppi_bd_alloc(c);
149 	} while (bd);
150 	c->last_processed = NULL;
151 }
152 
cppi_controller_start(struct cppi * controller)153 static void cppi_controller_start(struct cppi *controller)
154 {
155 	void __iomem	*tibase;
156 	int		i;
157 
158 	/* do whatever is necessary to start controller */
159 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
160 		controller->tx[i].transmit = true;
161 		controller->tx[i].index = i;
162 	}
163 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
164 		controller->rx[i].transmit = false;
165 		controller->rx[i].index = i;
166 	}
167 
168 	/* setup BD list on a per channel basis */
169 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
170 		cppi_pool_init(controller, controller->tx + i);
171 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
172 		cppi_pool_init(controller, controller->rx + i);
173 
174 	tibase =  controller->tibase;
175 	INIT_LIST_HEAD(&controller->tx_complete);
176 
177 	/* initialise tx/rx channel head pointers to zero */
178 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
179 		struct cppi_channel	*tx_ch = controller->tx + i;
180 		struct cppi_tx_stateram __iomem *tx;
181 
182 		INIT_LIST_HEAD(&tx_ch->tx_complete);
183 
184 		tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
185 		tx_ch->state_ram = tx;
186 		cppi_reset_tx(tx, 0);
187 	}
188 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
189 		struct cppi_channel	*rx_ch = controller->rx + i;
190 		struct cppi_rx_stateram __iomem *rx;
191 
192 		INIT_LIST_HEAD(&rx_ch->tx_complete);
193 
194 		rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
195 		rx_ch->state_ram = rx;
196 		cppi_reset_rx(rx);
197 	}
198 
199 	/* enable individual cppi channels */
200 	musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
201 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
202 	musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
203 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
204 
205 	/* enable tx/rx CPPI control */
206 	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
207 	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
208 
209 	/* disable RNDIS mode, also host rx RNDIS autorequest */
210 	musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
211 	musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
212 }
213 
214 /*
215  *  Stop DMA controller
216  *
217  *  De-Init the DMA controller as necessary.
218  */
219 
cppi_controller_stop(struct cppi * controller)220 static void cppi_controller_stop(struct cppi *controller)
221 {
222 	void __iomem		*tibase;
223 	int			i;
224 	struct musb		*musb;
225 
226 	musb = controller->musb;
227 
228 	tibase = controller->tibase;
229 	/* DISABLE INDIVIDUAL CHANNEL Interrupts */
230 	musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
231 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
232 	musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
233 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
234 
235 	dev_dbg(musb->controller, "Tearing down RX and TX Channels\n");
236 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
237 		/* FIXME restructure of txdma to use bds like rxdma */
238 		controller->tx[i].last_processed = NULL;
239 		cppi_pool_free(controller->tx + i);
240 	}
241 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
242 		cppi_pool_free(controller->rx + i);
243 
244 	/* in Tx Case proper teardown is supported. We resort to disabling
245 	 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
246 	 * complete TX CPPI cannot be disabled.
247 	 */
248 	/*disable tx/rx cppi */
249 	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
250 	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
251 }
252 
253 /* While dma channel is allocated, we only want the core irqs active
254  * for fault reports, otherwise we'd get irqs that we don't care about.
255  * Except for TX irqs, where dma done != fifo empty and reusable ...
256  *
257  * NOTE: docs don't say either way, but irq masking **enables** irqs.
258  *
259  * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
260  */
core_rxirq_disable(void __iomem * tibase,unsigned epnum)261 static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
262 {
263 	musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
264 }
265 
core_rxirq_enable(void __iomem * tibase,unsigned epnum)266 static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
267 {
268 	musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
269 }
270 
271 
272 /*
273  * Allocate a CPPI Channel for DMA.  With CPPI, channels are bound to
274  * each transfer direction of a non-control endpoint, so allocating
275  * (and deallocating) is mostly a way to notice bad housekeeping on
276  * the software side.  We assume the irqs are always active.
277  */
278 static struct dma_channel *
cppi_channel_allocate(struct dma_controller * c,struct musb_hw_ep * ep,u8 transmit)279 cppi_channel_allocate(struct dma_controller *c,
280 		struct musb_hw_ep *ep, u8 transmit)
281 {
282 	struct cppi		*controller;
283 	u8			index;
284 	struct cppi_channel	*cppi_ch;
285 	void __iomem		*tibase;
286 	struct musb		*musb;
287 
288 	controller = container_of(c, struct cppi, controller);
289 	tibase = controller->tibase;
290 	musb = controller->musb;
291 
292 	/* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
293 	index = ep->epnum - 1;
294 
295 	/* return the corresponding CPPI Channel Handle, and
296 	 * probably disable the non-CPPI irq until we need it.
297 	 */
298 	if (transmit) {
299 		if (index >= ARRAY_SIZE(controller->tx)) {
300 			dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'T', index);
301 			return NULL;
302 		}
303 		cppi_ch = controller->tx + index;
304 	} else {
305 		if (index >= ARRAY_SIZE(controller->rx)) {
306 			dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'R', index);
307 			return NULL;
308 		}
309 		cppi_ch = controller->rx + index;
310 		core_rxirq_disable(tibase, ep->epnum);
311 	}
312 
313 	/* REVISIT make this an error later once the same driver code works
314 	 * with the other DMA engine too
315 	 */
316 	if (cppi_ch->hw_ep)
317 		dev_dbg(musb->controller, "re-allocating DMA%d %cX channel %p\n",
318 				index, transmit ? 'T' : 'R', cppi_ch);
319 	cppi_ch->hw_ep = ep;
320 	cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
321 	cppi_ch->channel.max_len = 0x7fffffff;
322 
323 	dev_dbg(musb->controller, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
324 	return &cppi_ch->channel;
325 }
326 
327 /* Release a CPPI Channel.  */
cppi_channel_release(struct dma_channel * channel)328 static void cppi_channel_release(struct dma_channel *channel)
329 {
330 	struct cppi_channel	*c;
331 	void __iomem		*tibase;
332 
333 	/* REVISIT:  for paranoia, check state and abort if needed... */
334 
335 	c = container_of(channel, struct cppi_channel, channel);
336 	tibase = c->controller->tibase;
337 	if (!c->hw_ep)
338 		dev_dbg(c->controller->musb->controller,
339 			"releasing idle DMA channel %p\n", c);
340 	else if (!c->transmit)
341 		core_rxirq_enable(tibase, c->index + 1);
342 
343 	/* for now, leave its cppi IRQ enabled (we won't trigger it) */
344 	c->hw_ep = NULL;
345 	channel->status = MUSB_DMA_STATUS_UNKNOWN;
346 }
347 
348 /* Context: controller irqlocked */
349 static void
cppi_dump_rx(int level,struct cppi_channel * c,const char * tag)350 cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
351 {
352 	void __iomem			*base = c->controller->mregs;
353 	struct cppi_rx_stateram __iomem	*rx = c->state_ram;
354 
355 	musb_ep_select(base, c->index + 1);
356 
357 	dev_dbg(c->controller->musb->controller,
358 		"RX DMA%d%s: %d left, csr %04x, "
359 		"%08x H%08x S%08x C%08x, "
360 		"B%08x L%08x %08x .. %08x"
361 		"\n",
362 		c->index, tag,
363 		musb_readl(c->controller->tibase,
364 			DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
365 		musb_readw(c->hw_ep->regs, MUSB_RXCSR),
366 
367 		musb_readl(&rx->rx_skipbytes, 0),
368 		musb_readl(&rx->rx_head, 0),
369 		musb_readl(&rx->rx_sop, 0),
370 		musb_readl(&rx->rx_current, 0),
371 
372 		musb_readl(&rx->rx_buf_current, 0),
373 		musb_readl(&rx->rx_len_len, 0),
374 		musb_readl(&rx->rx_cnt_cnt, 0),
375 		musb_readl(&rx->rx_complete, 0)
376 		);
377 }
378 
379 /* Context: controller irqlocked */
380 static void
cppi_dump_tx(int level,struct cppi_channel * c,const char * tag)381 cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
382 {
383 	void __iomem			*base = c->controller->mregs;
384 	struct cppi_tx_stateram __iomem	*tx = c->state_ram;
385 
386 	musb_ep_select(base, c->index + 1);
387 
388 	dev_dbg(c->controller->musb->controller,
389 		"TX DMA%d%s: csr %04x, "
390 		"H%08x S%08x C%08x %08x, "
391 		"F%08x L%08x .. %08x"
392 		"\n",
393 		c->index, tag,
394 		musb_readw(c->hw_ep->regs, MUSB_TXCSR),
395 
396 		musb_readl(&tx->tx_head, 0),
397 		musb_readl(&tx->tx_buf, 0),
398 		musb_readl(&tx->tx_current, 0),
399 		musb_readl(&tx->tx_buf_current, 0),
400 
401 		musb_readl(&tx->tx_info, 0),
402 		musb_readl(&tx->tx_rem_len, 0),
403 		/* dummy/unused word 6 */
404 		musb_readl(&tx->tx_complete, 0)
405 		);
406 }
407 
408 /* Context: controller irqlocked */
409 static inline void
cppi_rndis_update(struct cppi_channel * c,int is_rx,void __iomem * tibase,int is_rndis)410 cppi_rndis_update(struct cppi_channel *c, int is_rx,
411 		void __iomem *tibase, int is_rndis)
412 {
413 	/* we may need to change the rndis flag for this cppi channel */
414 	if (c->is_rndis != is_rndis) {
415 		u32	value = musb_readl(tibase, DAVINCI_RNDIS_REG);
416 		u32	temp = 1 << (c->index);
417 
418 		if (is_rx)
419 			temp <<= 16;
420 		if (is_rndis)
421 			value |= temp;
422 		else
423 			value &= ~temp;
424 		musb_writel(tibase, DAVINCI_RNDIS_REG, value);
425 		c->is_rndis = is_rndis;
426 	}
427 }
428 
cppi_dump_rxbd(const char * tag,struct cppi_descriptor * bd)429 static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
430 {
431 	pr_debug("RXBD/%s %08x: "
432 			"nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
433 			tag, bd->dma,
434 			bd->hw_next, bd->hw_bufp, bd->hw_off_len,
435 			bd->hw_options);
436 }
437 
cppi_dump_rxq(int level,const char * tag,struct cppi_channel * rx)438 static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
439 {
440 	struct cppi_descriptor	*bd;
441 
442 	cppi_dump_rx(level, rx, tag);
443 	if (rx->last_processed)
444 		cppi_dump_rxbd("last", rx->last_processed);
445 	for (bd = rx->head; bd; bd = bd->next)
446 		cppi_dump_rxbd("active", bd);
447 }
448 
449 
450 /* NOTE:  DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
451  * so we won't ever use it (see "CPPI RX Woes" below).
452  */
cppi_autoreq_update(struct cppi_channel * rx,void __iomem * tibase,int onepacket,unsigned n_bds)453 static inline int cppi_autoreq_update(struct cppi_channel *rx,
454 		void __iomem *tibase, int onepacket, unsigned n_bds)
455 {
456 	u32	val;
457 
458 #ifdef	RNDIS_RX_IS_USABLE
459 	u32	tmp;
460 	/* assert(is_host_active(musb)) */
461 
462 	/* start from "AutoReq never" */
463 	tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
464 	val = tmp & ~((0x3) << (rx->index * 2));
465 
466 	/* HCD arranged reqpkt for packet #1.  we arrange int
467 	 * for all but the last one, maybe in two segments.
468 	 */
469 	if (!onepacket) {
470 #if 0
471 		/* use two segments, autoreq "all" then the last "never" */
472 		val |= ((0x3) << (rx->index * 2));
473 		n_bds--;
474 #else
475 		/* one segment, autoreq "all-but-last" */
476 		val |= ((0x1) << (rx->index * 2));
477 #endif
478 	}
479 
480 	if (val != tmp) {
481 		int n = 100;
482 
483 		/* make sure that autoreq is updated before continuing */
484 		musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
485 		do {
486 			tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
487 			if (tmp == val)
488 				break;
489 			cpu_relax();
490 		} while (n-- > 0);
491 	}
492 #endif
493 
494 	/* REQPKT is turned off after each segment */
495 	if (n_bds && rx->channel.actual_len) {
496 		void __iomem	*regs = rx->hw_ep->regs;
497 
498 		val = musb_readw(regs, MUSB_RXCSR);
499 		if (!(val & MUSB_RXCSR_H_REQPKT)) {
500 			val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
501 			musb_writew(regs, MUSB_RXCSR, val);
502 			/* flush writebuffer */
503 			val = musb_readw(regs, MUSB_RXCSR);
504 		}
505 	}
506 	return n_bds;
507 }
508 
509 
510 /* Buffer enqueuing Logic:
511  *
512  *  - RX builds new queues each time, to help handle routine "early
513  *    termination" cases (faults, including errors and short reads)
514  *    more correctly.
515  *
516  *  - for now, TX reuses the same queue of BDs every time
517  *
518  * REVISIT long term, we want a normal dynamic model.
519  * ... the goal will be to append to the
520  * existing queue, processing completed "dma buffers" (segments) on the fly.
521  *
522  * Otherwise we force an IRQ latency between requests, which slows us a lot
523  * (especially in "transparent" dma).  Unfortunately that model seems to be
524  * inherent in the DMA model from the Mentor code, except in the rare case
525  * of transfers big enough (~128+ KB) that we could append "middle" segments
526  * in the TX paths.  (RX can't do this, see below.)
527  *
528  * That's true even in the CPPI- friendly iso case, where most urbs have
529  * several small segments provided in a group and where the "packet at a time"
530  * "transparent" DMA model is always correct, even on the RX side.
531  */
532 
533 /*
534  * CPPI TX:
535  * ========
536  * TX is a lot more reasonable than RX; it doesn't need to run in
537  * irq-per-packet mode very often.  RNDIS mode seems to behave too
538  * (except how it handles the exactly-N-packets case).  Building a
539  * txdma queue with multiple requests (urb or usb_request) looks
540  * like it would work ... but fault handling would need much testing.
541  *
542  * The main issue with TX mode RNDIS relates to transfer lengths that
543  * are an exact multiple of the packet length.  It appears that there's
544  * a hiccup in that case (maybe the DMA completes before the ZLP gets
545  * written?) boiling down to not being able to rely on CPPI writing any
546  * terminating zero length packet before the next transfer is written.
547  * So that's punted to PIO; better yet, gadget drivers can avoid it.
548  *
549  * Plus, there's allegedly an undocumented constraint that rndis transfer
550  * length be a multiple of 64 bytes ... but the chip doesn't act that
551  * way, and we really don't _want_ that behavior anyway.
552  *
553  * On TX, "transparent" mode works ... although experiments have shown
554  * problems trying to use the SOP/EOP bits in different USB packets.
555  *
556  * REVISIT try to handle terminating zero length packets using CPPI
557  * instead of doing it by PIO after an IRQ.  (Meanwhile, make Ethernet
558  * links avoid that issue by forcing them to avoid zlps.)
559  */
560 static void
cppi_next_tx_segment(struct musb * musb,struct cppi_channel * tx)561 cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
562 {
563 	unsigned		maxpacket = tx->maxpacket;
564 	dma_addr_t		addr = tx->buf_dma + tx->offset;
565 	size_t			length = tx->buf_len - tx->offset;
566 	struct cppi_descriptor	*bd;
567 	unsigned		n_bds;
568 	unsigned		i;
569 	struct cppi_tx_stateram	__iomem *tx_ram = tx->state_ram;
570 	int			rndis;
571 
572 	/* TX can use the CPPI "rndis" mode, where we can probably fit this
573 	 * transfer in one BD and one IRQ.  The only time we would NOT want
574 	 * to use it is when hardware constraints prevent it, or if we'd
575 	 * trigger the "send a ZLP?" confusion.
576 	 */
577 	rndis = (maxpacket & 0x3f) == 0
578 		&& length > maxpacket
579 		&& length < 0xffff
580 		&& (length % maxpacket) != 0;
581 
582 	if (rndis) {
583 		maxpacket = length;
584 		n_bds = 1;
585 	} else {
586 		n_bds = length / maxpacket;
587 		if (!length || (length % maxpacket))
588 			n_bds++;
589 		n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
590 		length = min(n_bds * maxpacket, length);
591 	}
592 
593 	dev_dbg(musb->controller, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u\n",
594 			tx->index,
595 			maxpacket,
596 			rndis ? "rndis" : "transparent",
597 			n_bds,
598 			(unsigned long long)addr, length);
599 
600 	cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
601 
602 	/* assuming here that channel_program is called during
603 	 * transfer initiation ... current code maintains state
604 	 * for one outstanding request only (no queues, not even
605 	 * the implicit ones of an iso urb).
606 	 */
607 
608 	bd = tx->freelist;
609 	tx->head = bd;
610 	tx->last_processed = NULL;
611 
612 	/* FIXME use BD pool like RX side does, and just queue
613 	 * the minimum number for this request.
614 	 */
615 
616 	/* Prepare queue of BDs first, then hand it to hardware.
617 	 * All BDs except maybe the last should be of full packet
618 	 * size; for RNDIS there _is_ only that last packet.
619 	 */
620 	for (i = 0; i < n_bds; ) {
621 		if (++i < n_bds && bd->next)
622 			bd->hw_next = bd->next->dma;
623 		else
624 			bd->hw_next = 0;
625 
626 		bd->hw_bufp = tx->buf_dma + tx->offset;
627 
628 		/* FIXME set EOP only on the last packet,
629 		 * SOP only on the first ... avoid IRQs
630 		 */
631 		if ((tx->offset + maxpacket) <= tx->buf_len) {
632 			tx->offset += maxpacket;
633 			bd->hw_off_len = maxpacket;
634 			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
635 				| CPPI_OWN_SET | maxpacket;
636 		} else {
637 			/* only this one may be a partial USB Packet */
638 			u32		partial_len;
639 
640 			partial_len = tx->buf_len - tx->offset;
641 			tx->offset = tx->buf_len;
642 			bd->hw_off_len = partial_len;
643 
644 			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
645 				| CPPI_OWN_SET | partial_len;
646 			if (partial_len == 0)
647 				bd->hw_options |= CPPI_ZERO_SET;
648 		}
649 
650 		dev_dbg(musb->controller, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
651 				bd, bd->hw_next, bd->hw_bufp,
652 				bd->hw_off_len, bd->hw_options);
653 
654 		/* update the last BD enqueued to the list */
655 		tx->tail = bd;
656 		bd = bd->next;
657 	}
658 
659 	/* BDs live in DMA-coherent memory, but writes might be pending */
660 	cpu_drain_writebuffer();
661 
662 	/* Write to the HeadPtr in state RAM to trigger */
663 	musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
664 
665 	cppi_dump_tx(5, tx, "/S");
666 }
667 
668 /*
669  * CPPI RX Woes:
670  * =============
671  * Consider a 1KB bulk RX buffer in two scenarios:  (a) it's fed two 300 byte
672  * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
673  * (Full speed transfers have similar scenarios.)
674  *
675  * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
676  * and the next packet goes into a buffer that's queued later; while (b) fills
677  * the buffer with 1024 bytes.  How to do that with CPPI?
678  *
679  * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
680  *   (b) loses **BADLY** because nothing (!) happens when that second packet
681  *   fills the buffer, much less when a third one arrives.  (Which makes this
682  *   not a "true" RNDIS mode.  In the RNDIS protocol short-packet termination
683  *   is optional, and it's fine if peripherals -- not hosts! -- pad messages
684  *   out to end-of-buffer.  Standard PCI host controller DMA descriptors
685  *   implement that mode by default ... which is no accident.)
686  *
687  * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
688  *   converse problems:  (b) is handled right, but (a) loses badly.  CPPI RX
689  *   ignores SOP/EOP markings and processes both of those BDs; so both packets
690  *   are loaded into the buffer (with a 212 byte gap between them), and the next
691  *   buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
692  *   are intended as outputs for RX queues, not inputs...)
693  *
694  * - A variant of "transparent" mode -- one BD at a time -- is the only way to
695  *   reliably make both cases work, with software handling both cases correctly
696  *   and at the significant penalty of needing an IRQ per packet.  (The lack of
697  *   I/O overlap can be slightly ameliorated by enabling double buffering.)
698  *
699  * So how to get rid of IRQ-per-packet?  The transparent multi-BD case could
700  * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
701  * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
702  * with guaranteed driver level fault recovery and scrubbing out what's left
703  * of that garbaged datastream.
704  *
705  * But there seems to be no way to identify the cases where CPPI RNDIS mode
706  * is appropriate -- which do NOT include RNDIS host drivers, but do include
707  * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
708  * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
709  * that applies best on the peripheral side (and which could fail rudely).
710  *
711  * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
712  * cases other than mass storage class.  Otherwise we're correct but slow,
713  * since CPPI penalizes our need for a "true RNDIS" default mode.
714  */
715 
716 
717 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
718  *
719  * IFF
720  *  (a)	peripheral mode ... since rndis peripherals could pad their
721  *	writes to hosts, causing i/o failure; or we'd have to cope with
722  *	a largely unknowable variety of host side protocol variants
723  *  (b)	and short reads are NOT errors ... since full reads would
724  *	cause those same i/o failures
725  *  (c)	and read length is
726  *	- less than 64KB (max per cppi descriptor)
727  *	- not a multiple of 4096 (g_zero default, full reads typical)
728  *	- N (>1) packets long, ditto (full reads not EXPECTED)
729  * THEN
730  *   try rx rndis mode
731  *
732  * Cost of heuristic failing:  RXDMA wedges at the end of transfers that
733  * fill out the whole buffer.  Buggy host side usb network drivers could
734  * trigger that, but "in the field" such bugs seem to be all but unknown.
735  *
736  * So this module parameter lets the heuristic be disabled.  When using
737  * gadgetfs, the heuristic will probably need to be disabled.
738  */
739 static bool cppi_rx_rndis = 1;
740 
741 module_param(cppi_rx_rndis, bool, 0);
742 MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
743 
744 
745 /**
746  * cppi_next_rx_segment - dma read for the next chunk of a buffer
747  * @musb: the controller
748  * @rx: dma channel
749  * @onepacket: true unless caller treats short reads as errors, and
750  *	performs fault recovery above usbcore.
751  * Context: controller irqlocked
752  *
753  * See above notes about why we can't use multi-BD RX queues except in
754  * rare cases (mass storage class), and can never use the hardware "rndis"
755  * mode (since it's not a "true" RNDIS mode) with complete safety..
756  *
757  * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
758  * code to recover from corrupted datastreams after each short transfer.
759  */
760 static void
cppi_next_rx_segment(struct musb * musb,struct cppi_channel * rx,int onepacket)761 cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
762 {
763 	unsigned		maxpacket = rx->maxpacket;
764 	dma_addr_t		addr = rx->buf_dma + rx->offset;
765 	size_t			length = rx->buf_len - rx->offset;
766 	struct cppi_descriptor	*bd, *tail;
767 	unsigned		n_bds;
768 	unsigned		i;
769 	void __iomem		*tibase = musb->ctrl_base;
770 	int			is_rndis = 0;
771 	struct cppi_rx_stateram	__iomem *rx_ram = rx->state_ram;
772 	struct cppi_descriptor	*d;
773 
774 	if (onepacket) {
775 		/* almost every USB driver, host or peripheral side */
776 		n_bds = 1;
777 
778 		/* maybe apply the heuristic above */
779 		if (cppi_rx_rndis
780 				&& is_peripheral_active(musb)
781 				&& length > maxpacket
782 				&& (length & ~0xffff) == 0
783 				&& (length & 0x0fff) != 0
784 				&& (length & (maxpacket - 1)) == 0) {
785 			maxpacket = length;
786 			is_rndis = 1;
787 		}
788 	} else {
789 		/* virtually nothing except mass storage class */
790 		if (length > 0xffff) {
791 			n_bds = 0xffff / maxpacket;
792 			length = n_bds * maxpacket;
793 		} else {
794 			n_bds = length / maxpacket;
795 			if (length % maxpacket)
796 				n_bds++;
797 		}
798 		if (n_bds == 1)
799 			onepacket = 1;
800 		else
801 			n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
802 	}
803 
804 	/* In host mode, autorequest logic can generate some IN tokens; it's
805 	 * tricky since we can't leave REQPKT set in RXCSR after the transfer
806 	 * finishes. So:  multipacket transfers involve two or more segments.
807 	 * And always at least two IRQs ... RNDIS mode is not an option.
808 	 */
809 	if (is_host_active(musb))
810 		n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
811 
812 	cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
813 
814 	length = min(n_bds * maxpacket, length);
815 
816 	dev_dbg(musb->controller, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
817 			"dma 0x%llx len %u %u/%u\n",
818 			rx->index, maxpacket,
819 			onepacket
820 				? (is_rndis ? "rndis" : "onepacket")
821 				: "multipacket",
822 			n_bds,
823 			musb_readl(tibase,
824 				DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
825 					& 0xffff,
826 			(unsigned long long)addr, length,
827 			rx->channel.actual_len, rx->buf_len);
828 
829 	/* only queue one segment at a time, since the hardware prevents
830 	 * correct queue shutdown after unexpected short packets
831 	 */
832 	bd = cppi_bd_alloc(rx);
833 	rx->head = bd;
834 
835 	/* Build BDs for all packets in this segment */
836 	for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
837 		u32	bd_len;
838 
839 		if (i) {
840 			bd = cppi_bd_alloc(rx);
841 			if (!bd)
842 				break;
843 			tail->next = bd;
844 			tail->hw_next = bd->dma;
845 		}
846 		bd->hw_next = 0;
847 
848 		/* all but the last packet will be maxpacket size */
849 		if (maxpacket < length)
850 			bd_len = maxpacket;
851 		else
852 			bd_len = length;
853 
854 		bd->hw_bufp = addr;
855 		addr += bd_len;
856 		rx->offset += bd_len;
857 
858 		bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
859 		bd->buflen = bd_len;
860 
861 		bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
862 		length -= bd_len;
863 	}
864 
865 	/* we always expect at least one reusable BD! */
866 	if (!tail) {
867 		WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
868 		return;
869 	} else if (i < n_bds)
870 		WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
871 
872 	tail->next = NULL;
873 	tail->hw_next = 0;
874 
875 	bd = rx->head;
876 	rx->tail = tail;
877 
878 	/* short reads and other faults should terminate this entire
879 	 * dma segment.  we want one "dma packet" per dma segment, not
880 	 * one per USB packet, terminating the whole queue at once...
881 	 * NOTE that current hardware seems to ignore SOP and EOP.
882 	 */
883 	bd->hw_options |= CPPI_SOP_SET;
884 	tail->hw_options |= CPPI_EOP_SET;
885 
886 	for (d = rx->head; d; d = d->next)
887 		cppi_dump_rxbd("S", d);
888 
889 	/* in case the preceding transfer left some state... */
890 	tail = rx->last_processed;
891 	if (tail) {
892 		tail->next = bd;
893 		tail->hw_next = bd->dma;
894 	}
895 
896 	core_rxirq_enable(tibase, rx->index + 1);
897 
898 	/* BDs live in DMA-coherent memory, but writes might be pending */
899 	cpu_drain_writebuffer();
900 
901 	/* REVISIT specs say to write this AFTER the BUFCNT register
902 	 * below ... but that loses badly.
903 	 */
904 	musb_writel(&rx_ram->rx_head, 0, bd->dma);
905 
906 	/* bufferCount must be at least 3, and zeroes on completion
907 	 * unless it underflows below zero, or stops at two, or keeps
908 	 * growing ... grr.
909 	 */
910 	i = musb_readl(tibase,
911 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
912 			& 0xffff;
913 
914 	if (!i)
915 		musb_writel(tibase,
916 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
917 			n_bds + 2);
918 	else if (n_bds > (i - 3))
919 		musb_writel(tibase,
920 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
921 			n_bds - (i - 3));
922 
923 	i = musb_readl(tibase,
924 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
925 			& 0xffff;
926 	if (i < (2 + n_bds)) {
927 		dev_dbg(musb->controller, "bufcnt%d underrun - %d (for %d)\n",
928 					rx->index, i, n_bds);
929 		musb_writel(tibase,
930 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
931 			n_bds + 2);
932 	}
933 
934 	cppi_dump_rx(4, rx, "/S");
935 }
936 
937 /**
938  * cppi_channel_program - program channel for data transfer
939  * @ch: the channel
940  * @maxpacket: max packet size
941  * @mode: For RX, 1 unless the usb protocol driver promised to treat
942  *	all short reads as errors and kick in high level fault recovery.
943  *	For TX, ignored because of RNDIS mode races/glitches.
944  * @dma_addr: dma address of buffer
945  * @len: length of buffer
946  * Context: controller irqlocked
947  */
cppi_channel_program(struct dma_channel * ch,u16 maxpacket,u8 mode,dma_addr_t dma_addr,u32 len)948 static int cppi_channel_program(struct dma_channel *ch,
949 		u16 maxpacket, u8 mode,
950 		dma_addr_t dma_addr, u32 len)
951 {
952 	struct cppi_channel	*cppi_ch;
953 	struct cppi		*controller;
954 	struct musb		*musb;
955 
956 	cppi_ch = container_of(ch, struct cppi_channel, channel);
957 	controller = cppi_ch->controller;
958 	musb = controller->musb;
959 
960 	switch (ch->status) {
961 	case MUSB_DMA_STATUS_BUS_ABORT:
962 	case MUSB_DMA_STATUS_CORE_ABORT:
963 		/* fault irq handler should have handled cleanup */
964 		WARNING("%cX DMA%d not cleaned up after abort!\n",
965 				cppi_ch->transmit ? 'T' : 'R',
966 				cppi_ch->index);
967 		/* WARN_ON(1); */
968 		break;
969 	case MUSB_DMA_STATUS_BUSY:
970 		WARNING("program active channel?  %cX DMA%d\n",
971 				cppi_ch->transmit ? 'T' : 'R',
972 				cppi_ch->index);
973 		/* WARN_ON(1); */
974 		break;
975 	case MUSB_DMA_STATUS_UNKNOWN:
976 		dev_dbg(musb->controller, "%cX DMA%d not allocated!\n",
977 				cppi_ch->transmit ? 'T' : 'R',
978 				cppi_ch->index);
979 		/* FALLTHROUGH */
980 	case MUSB_DMA_STATUS_FREE:
981 		break;
982 	}
983 
984 	ch->status = MUSB_DMA_STATUS_BUSY;
985 
986 	/* set transfer parameters, then queue up its first segment */
987 	cppi_ch->buf_dma = dma_addr;
988 	cppi_ch->offset = 0;
989 	cppi_ch->maxpacket = maxpacket;
990 	cppi_ch->buf_len = len;
991 	cppi_ch->channel.actual_len = 0;
992 
993 	/* TX channel? or RX? */
994 	if (cppi_ch->transmit)
995 		cppi_next_tx_segment(musb, cppi_ch);
996 	else
997 		cppi_next_rx_segment(musb, cppi_ch, mode);
998 
999 	return true;
1000 }
1001 
cppi_rx_scan(struct cppi * cppi,unsigned ch)1002 static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1003 {
1004 	struct cppi_channel		*rx = &cppi->rx[ch];
1005 	struct cppi_rx_stateram __iomem	*state = rx->state_ram;
1006 	struct cppi_descriptor		*bd;
1007 	struct cppi_descriptor		*last = rx->last_processed;
1008 	bool				completed = false;
1009 	bool				acked = false;
1010 	int				i;
1011 	dma_addr_t			safe2ack;
1012 	void __iomem			*regs = rx->hw_ep->regs;
1013 	struct musb			*musb = cppi->musb;
1014 
1015 	cppi_dump_rx(6, rx, "/K");
1016 
1017 	bd = last ? last->next : rx->head;
1018 	if (!bd)
1019 		return false;
1020 
1021 	/* run through all completed BDs */
1022 	for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1023 			(safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1024 			i++, bd = bd->next) {
1025 		u16	len;
1026 
1027 		/* catch latest BD writes from CPPI */
1028 		rmb();
1029 		if (!completed && (bd->hw_options & CPPI_OWN_SET))
1030 			break;
1031 
1032 		dev_dbg(musb->controller, "C/RXBD %llx: nxt %08x buf %08x "
1033 			"off.len %08x opt.len %08x (%d)\n",
1034 			(unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp,
1035 			bd->hw_off_len, bd->hw_options,
1036 			rx->channel.actual_len);
1037 
1038 		/* actual packet received length */
1039 		if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1040 			len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1041 		else
1042 			len = 0;
1043 
1044 		if (bd->hw_options & CPPI_EOQ_MASK)
1045 			completed = true;
1046 
1047 		if (!completed && len < bd->buflen) {
1048 			/* NOTE:  when we get a short packet, RXCSR_H_REQPKT
1049 			 * must have been cleared, and no more DMA packets may
1050 			 * active be in the queue... TI docs didn't say, but
1051 			 * CPPI ignores those BDs even though OWN is still set.
1052 			 */
1053 			completed = true;
1054 			dev_dbg(musb->controller, "rx short %d/%d (%d)\n",
1055 					len, bd->buflen,
1056 					rx->channel.actual_len);
1057 		}
1058 
1059 		/* If we got here, we expect to ack at least one BD; meanwhile
1060 		 * CPPI may completing other BDs while we scan this list...
1061 		 *
1062 		 * RACE: we can notice OWN cleared before CPPI raises the
1063 		 * matching irq by writing that BD as the completion pointer.
1064 		 * In such cases, stop scanning and wait for the irq, avoiding
1065 		 * lost acks and states where BD ownership is unclear.
1066 		 */
1067 		if (bd->dma == safe2ack) {
1068 			musb_writel(&state->rx_complete, 0, safe2ack);
1069 			safe2ack = musb_readl(&state->rx_complete, 0);
1070 			acked = true;
1071 			if (bd->dma == safe2ack)
1072 				safe2ack = 0;
1073 		}
1074 
1075 		rx->channel.actual_len += len;
1076 
1077 		cppi_bd_free(rx, last);
1078 		last = bd;
1079 
1080 		/* stop scanning on end-of-segment */
1081 		if (bd->hw_next == 0)
1082 			completed = true;
1083 	}
1084 	rx->last_processed = last;
1085 
1086 	/* dma abort, lost ack, or ... */
1087 	if (!acked && last) {
1088 		int	csr;
1089 
1090 		if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1091 			musb_writel(&state->rx_complete, 0, safe2ack);
1092 		if (safe2ack == 0) {
1093 			cppi_bd_free(rx, last);
1094 			rx->last_processed = NULL;
1095 
1096 			/* if we land here on the host side, H_REQPKT will
1097 			 * be clear and we need to restart the queue...
1098 			 */
1099 			WARN_ON(rx->head);
1100 		}
1101 		musb_ep_select(cppi->mregs, rx->index + 1);
1102 		csr = musb_readw(regs, MUSB_RXCSR);
1103 		if (csr & MUSB_RXCSR_DMAENAB) {
1104 			dev_dbg(musb->controller, "list%d %p/%p, last %llx%s, csr %04x\n",
1105 				rx->index,
1106 				rx->head, rx->tail,
1107 				rx->last_processed
1108 					? (unsigned long long)
1109 						rx->last_processed->dma
1110 					: 0,
1111 				completed ? ", completed" : "",
1112 				csr);
1113 			cppi_dump_rxq(4, "/what?", rx);
1114 		}
1115 	}
1116 	if (!completed) {
1117 		int	csr;
1118 
1119 		rx->head = bd;
1120 
1121 		/* REVISIT seems like "autoreq all but EOP" doesn't...
1122 		 * setting it here "should" be racey, but seems to work
1123 		 */
1124 		csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1125 		if (is_host_active(cppi->musb)
1126 				&& bd
1127 				&& !(csr & MUSB_RXCSR_H_REQPKT)) {
1128 			csr |= MUSB_RXCSR_H_REQPKT;
1129 			musb_writew(regs, MUSB_RXCSR,
1130 					MUSB_RXCSR_H_WZC_BITS | csr);
1131 			csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1132 		}
1133 	} else {
1134 		rx->head = NULL;
1135 		rx->tail = NULL;
1136 	}
1137 
1138 	cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1139 	return completed;
1140 }
1141 
cppi_interrupt(int irq,void * dev_id)1142 irqreturn_t cppi_interrupt(int irq, void *dev_id)
1143 {
1144 	struct musb		*musb = dev_id;
1145 	struct cppi		*cppi;
1146 	void __iomem		*tibase;
1147 	struct musb_hw_ep	*hw_ep = NULL;
1148 	u32			rx, tx;
1149 	int			i, index;
1150 	unsigned long		uninitialized_var(flags);
1151 
1152 	cppi = container_of(musb->dma_controller, struct cppi, controller);
1153 	if (cppi->irq)
1154 		spin_lock_irqsave(&musb->lock, flags);
1155 
1156 	tibase = musb->ctrl_base;
1157 
1158 	tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG);
1159 	rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG);
1160 
1161 	if (!tx && !rx) {
1162 		if (cppi->irq)
1163 			spin_unlock_irqrestore(&musb->lock, flags);
1164 		return IRQ_NONE;
1165 	}
1166 
1167 	dev_dbg(musb->controller, "CPPI IRQ Tx%x Rx%x\n", tx, rx);
1168 
1169 	/* process TX channels */
1170 	for (index = 0; tx; tx = tx >> 1, index++) {
1171 		struct cppi_channel		*tx_ch;
1172 		struct cppi_tx_stateram __iomem	*tx_ram;
1173 		bool				completed = false;
1174 		struct cppi_descriptor		*bd;
1175 
1176 		if (!(tx & 1))
1177 			continue;
1178 
1179 		tx_ch = cppi->tx + index;
1180 		tx_ram = tx_ch->state_ram;
1181 
1182 		/* FIXME  need a cppi_tx_scan() routine, which
1183 		 * can also be called from abort code
1184 		 */
1185 
1186 		cppi_dump_tx(5, tx_ch, "/E");
1187 
1188 		bd = tx_ch->head;
1189 
1190 		/*
1191 		 * If Head is null then this could mean that a abort interrupt
1192 		 * that needs to be acknowledged.
1193 		 */
1194 		if (NULL == bd) {
1195 			dev_dbg(musb->controller, "null BD\n");
1196 			musb_writel(&tx_ram->tx_complete, 0, 0);
1197 			continue;
1198 		}
1199 
1200 		/* run through all completed BDs */
1201 		for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1202 				i++, bd = bd->next) {
1203 			u16	len;
1204 
1205 			/* catch latest BD writes from CPPI */
1206 			rmb();
1207 			if (bd->hw_options & CPPI_OWN_SET)
1208 				break;
1209 
1210 			dev_dbg(musb->controller, "C/TXBD %p n %x b %x off %x opt %x\n",
1211 					bd, bd->hw_next, bd->hw_bufp,
1212 					bd->hw_off_len, bd->hw_options);
1213 
1214 			len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1215 			tx_ch->channel.actual_len += len;
1216 
1217 			tx_ch->last_processed = bd;
1218 
1219 			/* write completion register to acknowledge
1220 			 * processing of completed BDs, and possibly
1221 			 * release the IRQ; EOQ might not be set ...
1222 			 *
1223 			 * REVISIT use the same ack strategy as rx
1224 			 *
1225 			 * REVISIT have observed bit 18 set; huh??
1226 			 */
1227 			/* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1228 				musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1229 
1230 			/* stop scanning on end-of-segment */
1231 			if (bd->hw_next == 0)
1232 				completed = true;
1233 		}
1234 
1235 		/* on end of segment, maybe go to next one */
1236 		if (completed) {
1237 			/* cppi_dump_tx(4, tx_ch, "/complete"); */
1238 
1239 			/* transfer more, or report completion */
1240 			if (tx_ch->offset >= tx_ch->buf_len) {
1241 				tx_ch->head = NULL;
1242 				tx_ch->tail = NULL;
1243 				tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1244 
1245 				hw_ep = tx_ch->hw_ep;
1246 
1247 				musb_dma_completion(musb, index + 1, 1);
1248 
1249 			} else {
1250 				/* Bigger transfer than we could fit in
1251 				 * that first batch of descriptors...
1252 				 */
1253 				cppi_next_tx_segment(musb, tx_ch);
1254 			}
1255 		} else
1256 			tx_ch->head = bd;
1257 	}
1258 
1259 	/* Start processing the RX block */
1260 	for (index = 0; rx; rx = rx >> 1, index++) {
1261 
1262 		if (rx & 1) {
1263 			struct cppi_channel		*rx_ch;
1264 
1265 			rx_ch = cppi->rx + index;
1266 
1267 			/* let incomplete dma segments finish */
1268 			if (!cppi_rx_scan(cppi, index))
1269 				continue;
1270 
1271 			/* start another dma segment if needed */
1272 			if (rx_ch->channel.actual_len != rx_ch->buf_len
1273 					&& rx_ch->channel.actual_len
1274 						== rx_ch->offset) {
1275 				cppi_next_rx_segment(musb, rx_ch, 1);
1276 				continue;
1277 			}
1278 
1279 			/* all segments completed! */
1280 			rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1281 
1282 			hw_ep = rx_ch->hw_ep;
1283 
1284 			core_rxirq_disable(tibase, index + 1);
1285 			musb_dma_completion(musb, index + 1, 0);
1286 		}
1287 	}
1288 
1289 	/* write to CPPI EOI register to re-enable interrupts */
1290 	musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1291 
1292 	if (cppi->irq)
1293 		spin_unlock_irqrestore(&musb->lock, flags);
1294 
1295 	return IRQ_HANDLED;
1296 }
1297 EXPORT_SYMBOL_GPL(cppi_interrupt);
1298 
1299 /* Instantiate a software object representing a DMA controller. */
1300 struct dma_controller *
cppi_dma_controller_create(struct musb * musb,void __iomem * mregs)1301 cppi_dma_controller_create(struct musb *musb, void __iomem *mregs)
1302 {
1303 	struct cppi		*controller;
1304 	struct device		*dev = musb->controller;
1305 	struct platform_device	*pdev = to_platform_device(dev);
1306 	int			irq = platform_get_irq_byname(pdev, "dma");
1307 
1308 	controller = kzalloc(sizeof *controller, GFP_KERNEL);
1309 	if (!controller)
1310 		return NULL;
1311 
1312 	controller->mregs = mregs;
1313 	controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1314 
1315 	controller->musb = musb;
1316 	controller->controller.channel_alloc = cppi_channel_allocate;
1317 	controller->controller.channel_release = cppi_channel_release;
1318 	controller->controller.channel_program = cppi_channel_program;
1319 	controller->controller.channel_abort = cppi_channel_abort;
1320 
1321 	/* NOTE: allocating from on-chip SRAM would give the least
1322 	 * contention for memory access, if that ever matters here.
1323 	 */
1324 
1325 	/* setup BufferPool */
1326 	controller->pool = dma_pool_create("cppi",
1327 			controller->musb->controller,
1328 			sizeof(struct cppi_descriptor),
1329 			CPPI_DESCRIPTOR_ALIGN, 0);
1330 	if (!controller->pool) {
1331 		kfree(controller);
1332 		return NULL;
1333 	}
1334 
1335 	if (irq > 0) {
1336 		if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) {
1337 			dev_err(dev, "request_irq %d failed!\n", irq);
1338 			musb_dma_controller_destroy(&controller->controller);
1339 			return NULL;
1340 		}
1341 		controller->irq = irq;
1342 	}
1343 
1344 	cppi_controller_start(controller);
1345 	return &controller->controller;
1346 }
1347 EXPORT_SYMBOL_GPL(cppi_dma_controller_create);
1348 
1349 /*
1350  *  Destroy a previously-instantiated DMA controller.
1351  */
cppi_dma_controller_destroy(struct dma_controller * c)1352 void cppi_dma_controller_destroy(struct dma_controller *c)
1353 {
1354 	struct cppi	*cppi;
1355 
1356 	cppi = container_of(c, struct cppi, controller);
1357 
1358 	cppi_controller_stop(cppi);
1359 
1360 	if (cppi->irq)
1361 		free_irq(cppi->irq, cppi->musb);
1362 
1363 	/* assert:  caller stopped the controller first */
1364 	dma_pool_destroy(cppi->pool);
1365 
1366 	kfree(cppi);
1367 }
1368 EXPORT_SYMBOL_GPL(cppi_dma_controller_destroy);
1369 
1370 /*
1371  * Context: controller irqlocked, endpoint selected
1372  */
cppi_channel_abort(struct dma_channel * channel)1373 static int cppi_channel_abort(struct dma_channel *channel)
1374 {
1375 	struct cppi_channel	*cppi_ch;
1376 	struct cppi		*controller;
1377 	void __iomem		*mbase;
1378 	void __iomem		*tibase;
1379 	void __iomem		*regs;
1380 	u32			value;
1381 	struct cppi_descriptor	*queue;
1382 
1383 	cppi_ch = container_of(channel, struct cppi_channel, channel);
1384 
1385 	controller = cppi_ch->controller;
1386 
1387 	switch (channel->status) {
1388 	case MUSB_DMA_STATUS_BUS_ABORT:
1389 	case MUSB_DMA_STATUS_CORE_ABORT:
1390 		/* from RX or TX fault irq handler */
1391 	case MUSB_DMA_STATUS_BUSY:
1392 		/* the hardware needs shutting down */
1393 		regs = cppi_ch->hw_ep->regs;
1394 		break;
1395 	case MUSB_DMA_STATUS_UNKNOWN:
1396 	case MUSB_DMA_STATUS_FREE:
1397 		return 0;
1398 	default:
1399 		return -EINVAL;
1400 	}
1401 
1402 	if (!cppi_ch->transmit && cppi_ch->head)
1403 		cppi_dump_rxq(3, "/abort", cppi_ch);
1404 
1405 	mbase = controller->mregs;
1406 	tibase = controller->tibase;
1407 
1408 	queue = cppi_ch->head;
1409 	cppi_ch->head = NULL;
1410 	cppi_ch->tail = NULL;
1411 
1412 	/* REVISIT should rely on caller having done this,
1413 	 * and caller should rely on us not changing it.
1414 	 * peripheral code is safe ... check host too.
1415 	 */
1416 	musb_ep_select(mbase, cppi_ch->index + 1);
1417 
1418 	if (cppi_ch->transmit) {
1419 		struct cppi_tx_stateram __iomem *tx_ram;
1420 		/* REVISIT put timeouts on these controller handshakes */
1421 
1422 		cppi_dump_tx(6, cppi_ch, " (teardown)");
1423 
1424 		/* teardown DMA engine then usb core */
1425 		do {
1426 			value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1427 		} while (!(value & CPPI_TEAR_READY));
1428 		musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1429 
1430 		tx_ram = cppi_ch->state_ram;
1431 		do {
1432 			value = musb_readl(&tx_ram->tx_complete, 0);
1433 		} while (0xFFFFFFFC != value);
1434 
1435 		/* FIXME clean up the transfer state ... here?
1436 		 * the completion routine should get called with
1437 		 * an appropriate status code.
1438 		 */
1439 
1440 		value = musb_readw(regs, MUSB_TXCSR);
1441 		value &= ~MUSB_TXCSR_DMAENAB;
1442 		value |= MUSB_TXCSR_FLUSHFIFO;
1443 		musb_writew(regs, MUSB_TXCSR, value);
1444 		musb_writew(regs, MUSB_TXCSR, value);
1445 
1446 		/*
1447 		 * 1. Write to completion Ptr value 0x1(bit 0 set)
1448 		 *    (write back mode)
1449 		 * 2. Wait for abort interrupt and then put the channel in
1450 		 *    compare mode by writing 1 to the tx_complete register.
1451 		 */
1452 		cppi_reset_tx(tx_ram, 1);
1453 		cppi_ch->head = NULL;
1454 		musb_writel(&tx_ram->tx_complete, 0, 1);
1455 		cppi_dump_tx(5, cppi_ch, " (done teardown)");
1456 
1457 		/* REVISIT tx side _should_ clean up the same way
1458 		 * as the RX side ... this does no cleanup at all!
1459 		 */
1460 
1461 	} else /* RX */ {
1462 		u16			csr;
1463 
1464 		/* NOTE: docs don't guarantee any of this works ...  we
1465 		 * expect that if the usb core stops telling the cppi core
1466 		 * to pull more data from it, then it'll be safe to flush
1467 		 * current RX DMA state iff any pending fifo transfer is done.
1468 		 */
1469 
1470 		core_rxirq_disable(tibase, cppi_ch->index + 1);
1471 
1472 		/* for host, ensure ReqPkt is never set again */
1473 		if (is_host_active(cppi_ch->controller->musb)) {
1474 			value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1475 			value &= ~((0x3) << (cppi_ch->index * 2));
1476 			musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1477 		}
1478 
1479 		csr = musb_readw(regs, MUSB_RXCSR);
1480 
1481 		/* for host, clear (just) ReqPkt at end of current packet(s) */
1482 		if (is_host_active(cppi_ch->controller->musb)) {
1483 			csr |= MUSB_RXCSR_H_WZC_BITS;
1484 			csr &= ~MUSB_RXCSR_H_REQPKT;
1485 		} else
1486 			csr |= MUSB_RXCSR_P_WZC_BITS;
1487 
1488 		/* clear dma enable */
1489 		csr &= ~(MUSB_RXCSR_DMAENAB);
1490 		musb_writew(regs, MUSB_RXCSR, csr);
1491 		csr = musb_readw(regs, MUSB_RXCSR);
1492 
1493 		/* Quiesce: wait for current dma to finish (if not cleanup).
1494 		 * We can't use bit zero of stateram->rx_sop, since that
1495 		 * refers to an entire "DMA packet" not just emptying the
1496 		 * current fifo.  Most segments need multiple usb packets.
1497 		 */
1498 		if (channel->status == MUSB_DMA_STATUS_BUSY)
1499 			udelay(50);
1500 
1501 		/* scan the current list, reporting any data that was
1502 		 * transferred and acking any IRQ
1503 		 */
1504 		cppi_rx_scan(controller, cppi_ch->index);
1505 
1506 		/* clobber the existing state once it's idle
1507 		 *
1508 		 * NOTE:  arguably, we should also wait for all the other
1509 		 * RX channels to quiesce (how??) and then temporarily
1510 		 * disable RXCPPI_CTRL_REG ... but it seems that we can
1511 		 * rely on the controller restarting from state ram, with
1512 		 * only RXCPPI_BUFCNT state being bogus.  BUFCNT will
1513 		 * correct itself after the next DMA transfer though.
1514 		 *
1515 		 * REVISIT does using rndis mode change that?
1516 		 */
1517 		cppi_reset_rx(cppi_ch->state_ram);
1518 
1519 		/* next DMA request _should_ load cppi head ptr */
1520 
1521 		/* ... we don't "free" that list, only mutate it in place.  */
1522 		cppi_dump_rx(5, cppi_ch, " (done abort)");
1523 
1524 		/* clean up previously pending bds */
1525 		cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1526 		cppi_ch->last_processed = NULL;
1527 
1528 		while (queue) {
1529 			struct cppi_descriptor	*tmp = queue->next;
1530 
1531 			cppi_bd_free(cppi_ch, queue);
1532 			queue = tmp;
1533 		}
1534 	}
1535 
1536 	channel->status = MUSB_DMA_STATUS_FREE;
1537 	cppi_ch->buf_dma = 0;
1538 	cppi_ch->offset = 0;
1539 	cppi_ch->buf_len = 0;
1540 	cppi_ch->maxpacket = 0;
1541 	return 0;
1542 }
1543 
1544 /* TBD Queries:
1545  *
1546  * Power Management ... probably turn off cppi during suspend, restart;
1547  * check state ram?  Clocking is presumably shared with usb core.
1548  */
1549