1/* Faraday FOTG210 EHCI-like driver
2 *
3 * Copyright (c) 2013 Faraday Technology Corporation
4 *
5 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
6 *	   Feng-Hsin Chiang <john453@faraday-tech.com>
7 *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
8 *
9 * Most of code borrowed from the Linux-3.7 EHCI driver
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software Foundation,
23 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25#include <linux/module.h>
26#include <linux/device.h>
27#include <linux/dmapool.h>
28#include <linux/kernel.h>
29#include <linux/delay.h>
30#include <linux/ioport.h>
31#include <linux/sched.h>
32#include <linux/vmalloc.h>
33#include <linux/errno.h>
34#include <linux/init.h>
35#include <linux/hrtimer.h>
36#include <linux/list.h>
37#include <linux/interrupt.h>
38#include <linux/usb.h>
39#include <linux/usb/hcd.h>
40#include <linux/moduleparam.h>
41#include <linux/dma-mapping.h>
42#include <linux/debugfs.h>
43#include <linux/slab.h>
44#include <linux/uaccess.h>
45#include <linux/platform_device.h>
46#include <linux/io.h>
47
48#include <asm/byteorder.h>
49#include <asm/irq.h>
50#include <asm/unaligned.h>
51
52#define DRIVER_AUTHOR "Yuan-Hsin Chen"
53#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
54static const char hcd_name[] = "fotg210_hcd";
55
56#undef FOTG210_URB_TRACE
57#define FOTG210_STATS
58
59/* magic numbers that can affect system performance */
60#define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
61#define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
62#define FOTG210_TUNE_RL_TT	0
63#define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
64#define FOTG210_TUNE_MULT_TT	1
65
66/* Some drivers think it's safe to schedule isochronous transfers more than 256
67 * ms into the future (partly as a result of an old bug in the scheduling
68 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
69 * length of 512 frames instead of 256.
70 */
71#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
72
73/* Initial IRQ latency:  faster than hw default */
74static int log2_irq_thresh; /* 0 to 6 */
75module_param(log2_irq_thresh, int, S_IRUGO);
76MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
77
78/* initial park setting:  slower than hw default */
79static unsigned park;
80module_param(park, uint, S_IRUGO);
81MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
82
83/* for link power management(LPM) feature */
84static unsigned int hird;
85module_param(hird, int, S_IRUGO);
86MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
87
88#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
89
90#include "fotg210.h"
91
92#define fotg210_dbg(fotg210, fmt, args...) \
93	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
94#define fotg210_err(fotg210, fmt, args...) \
95	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
96#define fotg210_info(fotg210, fmt, args...) \
97	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
98#define fotg210_warn(fotg210, fmt, args...) \
99	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
100
101/* check the values in the HCSPARAMS register (host controller _Structural_
102 * parameters) see EHCI spec, Table 2-4 for each value
103 */
104static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
105{
106	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
107
108	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
109			HCS_N_PORTS(params));
110}
111
112/* check the values in the HCCPARAMS register (host controller _Capability_
113 * parameters) see EHCI Spec, Table 2-5 for each value
114 */
115static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
116{
117	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
118
119	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
120			params,
121			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
122			HCC_CANPARK(params) ? " park" : "");
123}
124
125static void __maybe_unused
126dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
127{
128	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
129			hc32_to_cpup(fotg210, &qtd->hw_next),
130			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
131			hc32_to_cpup(fotg210, &qtd->hw_token),
132			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
133	if (qtd->hw_buf[1])
134		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
135				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
136				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
137				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
138				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
139}
140
141static void __maybe_unused
142dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
143{
144	struct fotg210_qh_hw *hw = qh->hw;
145
146	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
147			hw->hw_next, hw->hw_info1, hw->hw_info2,
148			hw->hw_current);
149
150	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
151}
152
153static void __maybe_unused
154dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
155{
156	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
157			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
158			itd->urb);
159
160	fotg210_dbg(fotg210,
161			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
162			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
163			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
164			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
165			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
166			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
167			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
168			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
169			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
170
171	fotg210_dbg(fotg210,
172			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
173			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
174			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
175			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
176			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
177			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
178			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
179			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
180
181	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
182			itd->index[0], itd->index[1], itd->index[2],
183			itd->index[3], itd->index[4], itd->index[5],
184			itd->index[6], itd->index[7]);
185}
186
187static int __maybe_unused
188dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
189{
190	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
191			label, label[0] ? " " : "", status,
192			(status & STS_ASS) ? " Async" : "",
193			(status & STS_PSS) ? " Periodic" : "",
194			(status & STS_RECL) ? " Recl" : "",
195			(status & STS_HALT) ? " Halt" : "",
196			(status & STS_IAA) ? " IAA" : "",
197			(status & STS_FATAL) ? " FATAL" : "",
198			(status & STS_FLR) ? " FLR" : "",
199			(status & STS_PCD) ? " PCD" : "",
200			(status & STS_ERR) ? " ERR" : "",
201			(status & STS_INT) ? " INT" : "");
202}
203
204static int __maybe_unused
205dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
206{
207	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
208			label, label[0] ? " " : "", enable,
209			(enable & STS_IAA) ? " IAA" : "",
210			(enable & STS_FATAL) ? " FATAL" : "",
211			(enable & STS_FLR) ? " FLR" : "",
212			(enable & STS_PCD) ? " PCD" : "",
213			(enable & STS_ERR) ? " ERR" : "",
214			(enable & STS_INT) ? " INT" : "");
215}
216
217static const char *const fls_strings[] = { "1024", "512", "256", "??" };
218
219static int dbg_command_buf(char *buf, unsigned len, const char *label,
220		u32 command)
221{
222	return scnprintf(buf, len,
223			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
224			label, label[0] ? " " : "", command,
225			(command & CMD_PARK) ? " park" : "(park)",
226			CMD_PARK_CNT(command),
227			(command >> 16) & 0x3f,
228			(command & CMD_IAAD) ? " IAAD" : "",
229			(command & CMD_ASE) ? " Async" : "",
230			(command & CMD_PSE) ? " Periodic" : "",
231			fls_strings[(command >> 2) & 0x3],
232			(command & CMD_RESET) ? " Reset" : "",
233			(command & CMD_RUN) ? "RUN" : "HALT");
234}
235
236static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
237		u32 status)
238{
239	char *sig;
240
241	/* signaling state */
242	switch (status & (3 << 10)) {
243	case 0 << 10:
244		sig = "se0";
245		break;
246	case 1 << 10:
247		sig = "k";
248		break; /* low speed */
249	case 2 << 10:
250		sig = "j";
251		break;
252	default:
253		sig = "?";
254		break;
255	}
256
257	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
258			label, label[0] ? " " : "", port, status,
259			status >> 25, /*device address */
260			sig,
261			(status & PORT_RESET) ? " RESET" : "",
262			(status & PORT_SUSPEND) ? " SUSPEND" : "",
263			(status & PORT_RESUME) ? " RESUME" : "",
264			(status & PORT_PEC) ? " PEC" : "",
265			(status & PORT_PE) ? " PE" : "",
266			(status & PORT_CSC) ? " CSC" : "",
267			(status & PORT_CONNECT) ? " CONNECT" : "");
268
269	return buf;
270}
271
272/* functions have the "wrong" filename when they're output... */
273#define dbg_status(fotg210, label, status) {			\
274	char _buf[80];						\
275	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
276	fotg210_dbg(fotg210, "%s\n", _buf);			\
277}
278
279#define dbg_cmd(fotg210, label, command) {			\
280	char _buf[80];						\
281	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
282	fotg210_dbg(fotg210, "%s\n", _buf);			\
283}
284
285#define dbg_port(fotg210, label, port, status) {			       \
286	char _buf[80];							       \
287	fotg210_dbg(fotg210, "%s\n",					       \
288			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
289}
290
291/* troubleshooting help: expose state in debugfs */
292static int debug_async_open(struct inode *, struct file *);
293static int debug_periodic_open(struct inode *, struct file *);
294static int debug_registers_open(struct inode *, struct file *);
295static int debug_async_open(struct inode *, struct file *);
296
297static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
298static int debug_close(struct inode *, struct file *);
299
300static const struct file_operations debug_async_fops = {
301	.owner		= THIS_MODULE,
302	.open		= debug_async_open,
303	.read		= debug_output,
304	.release	= debug_close,
305	.llseek		= default_llseek,
306};
307static const struct file_operations debug_periodic_fops = {
308	.owner		= THIS_MODULE,
309	.open		= debug_periodic_open,
310	.read		= debug_output,
311	.release	= debug_close,
312	.llseek		= default_llseek,
313};
314static const struct file_operations debug_registers_fops = {
315	.owner		= THIS_MODULE,
316	.open		= debug_registers_open,
317	.read		= debug_output,
318	.release	= debug_close,
319	.llseek		= default_llseek,
320};
321
322static struct dentry *fotg210_debug_root;
323
324struct debug_buffer {
325	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
326	struct usb_bus *bus;
327	struct mutex mutex;	/* protect filling of buffer */
328	size_t count;		/* number of characters filled into buffer */
329	char *output_buf;
330	size_t alloc_size;
331};
332
333static inline char speed_char(u32 scratch)
334{
335	switch (scratch & (3 << 12)) {
336	case QH_FULL_SPEED:
337		return 'f';
338
339	case QH_LOW_SPEED:
340		return 'l';
341
342	case QH_HIGH_SPEED:
343		return 'h';
344
345	default:
346		return '?';
347	}
348}
349
350static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
351{
352	__u32 v = hc32_to_cpu(fotg210, token);
353
354	if (v & QTD_STS_ACTIVE)
355		return '*';
356	if (v & QTD_STS_HALT)
357		return '-';
358	if (!IS_SHORT_READ(v))
359		return ' ';
360	/* tries to advance through hw_alt_next */
361	return '/';
362}
363
364static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
365		char **nextp, unsigned *sizep)
366{
367	u32 scratch;
368	u32 hw_curr;
369	struct fotg210_qtd *td;
370	unsigned temp;
371	unsigned size = *sizep;
372	char *next = *nextp;
373	char mark;
374	__le32 list_end = FOTG210_LIST_END(fotg210);
375	struct fotg210_qh_hw *hw = qh->hw;
376
377	if (hw->hw_qtd_next == list_end) /* NEC does this */
378		mark = '@';
379	else
380		mark = token_mark(fotg210, hw->hw_token);
381	if (mark == '/') { /* qh_alt_next controls qh advance? */
382		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
383		    fotg210->async->hw->hw_alt_next)
384			mark = '#'; /* blocked */
385		else if (hw->hw_alt_next == list_end)
386			mark = '.'; /* use hw_qtd_next */
387		/* else alt_next points to some other qtd */
388	}
389	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
390	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
391	temp = scnprintf(next, size,
392			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
393			qh, scratch & 0x007f,
394			speed_char(scratch),
395			(scratch >> 8) & 0x000f,
396			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
397			hc32_to_cpup(fotg210, &hw->hw_token), mark,
398			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
399				? "data1" : "data0",
400			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
401	size -= temp;
402	next += temp;
403
404	/* hc may be modifying the list as we read it ... */
405	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
406		scratch = hc32_to_cpup(fotg210, &td->hw_token);
407		mark = ' ';
408		if (hw_curr == td->qtd_dma)
409			mark = '*';
410		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
411			mark = '+';
412		else if (QTD_LENGTH(scratch)) {
413			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
414				mark = '#';
415			else if (td->hw_alt_next != list_end)
416				mark = '/';
417		}
418		temp = snprintf(next, size,
419				"\n\t%p%c%s len=%d %08x urb %p",
420				td, mark, ({ char *tmp;
421				 switch ((scratch>>8)&0x03) {
422				 case 0:
423					tmp = "out";
424					break;
425				 case 1:
426					tmp = "in";
427					break;
428				 case 2:
429					tmp = "setup";
430					break;
431				 default:
432					tmp = "?";
433					break;
434				 } tmp; }),
435				(scratch >> 16) & 0x7fff,
436				scratch,
437				td->urb);
438		if (size < temp)
439			temp = size;
440		size -= temp;
441		next += temp;
442		if (temp == size)
443			goto done;
444	}
445
446	temp = snprintf(next, size, "\n");
447	if (size < temp)
448		temp = size;
449
450	size -= temp;
451	next += temp;
452
453done:
454	*sizep = size;
455	*nextp = next;
456}
457
458static ssize_t fill_async_buffer(struct debug_buffer *buf)
459{
460	struct usb_hcd *hcd;
461	struct fotg210_hcd *fotg210;
462	unsigned long flags;
463	unsigned temp, size;
464	char *next;
465	struct fotg210_qh *qh;
466
467	hcd = bus_to_hcd(buf->bus);
468	fotg210 = hcd_to_fotg210(hcd);
469	next = buf->output_buf;
470	size = buf->alloc_size;
471
472	*next = 0;
473
474	/* dumps a snapshot of the async schedule.
475	 * usually empty except for long-term bulk reads, or head.
476	 * one QH per line, and TDs we know about
477	 */
478	spin_lock_irqsave(&fotg210->lock, flags);
479	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
480			qh = qh->qh_next.qh)
481		qh_lines(fotg210, qh, &next, &size);
482	if (fotg210->async_unlink && size > 0) {
483		temp = scnprintf(next, size, "\nunlink =\n");
484		size -= temp;
485		next += temp;
486
487		for (qh = fotg210->async_unlink; size > 0 && qh;
488				qh = qh->unlink_next)
489			qh_lines(fotg210, qh, &next, &size);
490	}
491	spin_unlock_irqrestore(&fotg210->lock, flags);
492
493	return strlen(buf->output_buf);
494}
495
496/* count tds, get ep direction */
497static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
498		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
499{
500	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
501	struct fotg210_qtd *qtd;
502	char *type = "";
503	unsigned temp = 0;
504
505	/* count tds, get ep direction */
506	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
507		temp++;
508		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
509		case 0:
510			type = "out";
511			continue;
512		case 1:
513			type = "in";
514			continue;
515		}
516	}
517
518	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
519			speed_char(scratch), scratch & 0x007f,
520			(scratch >> 8) & 0x000f, type, qh->usecs,
521			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
522}
523
524#define DBG_SCHED_LIMIT 64
525static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
526{
527	struct usb_hcd *hcd;
528	struct fotg210_hcd *fotg210;
529	unsigned long flags;
530	union fotg210_shadow p, *seen;
531	unsigned temp, size, seen_count;
532	char *next;
533	unsigned i;
534	__hc32 tag;
535
536	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
537	if (!seen)
538		return 0;
539
540	seen_count = 0;
541
542	hcd = bus_to_hcd(buf->bus);
543	fotg210 = hcd_to_fotg210(hcd);
544	next = buf->output_buf;
545	size = buf->alloc_size;
546
547	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
548	size -= temp;
549	next += temp;
550
551	/* dump a snapshot of the periodic schedule.
552	 * iso changes, interrupt usually doesn't.
553	 */
554	spin_lock_irqsave(&fotg210->lock, flags);
555	for (i = 0; i < fotg210->periodic_size; i++) {
556		p = fotg210->pshadow[i];
557		if (likely(!p.ptr))
558			continue;
559
560		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
561
562		temp = scnprintf(next, size, "%4d: ", i);
563		size -= temp;
564		next += temp;
565
566		do {
567			struct fotg210_qh_hw *hw;
568
569			switch (hc32_to_cpu(fotg210, tag)) {
570			case Q_TYPE_QH:
571				hw = p.qh->hw;
572				temp = scnprintf(next, size, " qh%d-%04x/%p",
573						p.qh->period,
574						hc32_to_cpup(fotg210,
575							&hw->hw_info2)
576							/* uframe masks */
577							& (QH_CMASK | QH_SMASK),
578						p.qh);
579				size -= temp;
580				next += temp;
581				/* don't repeat what follows this qh */
582				for (temp = 0; temp < seen_count; temp++) {
583					if (seen[temp].ptr != p.ptr)
584						continue;
585					if (p.qh->qh_next.ptr) {
586						temp = scnprintf(next, size,
587								" ...");
588						size -= temp;
589						next += temp;
590					}
591					break;
592				}
593				/* show more info the first time around */
594				if (temp == seen_count) {
595					temp = output_buf_tds_dir(next,
596							fotg210, hw,
597							p.qh, size);
598
599					if (seen_count < DBG_SCHED_LIMIT)
600						seen[seen_count++].qh = p.qh;
601				} else
602					temp = 0;
603				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
604				p = p.qh->qh_next;
605				break;
606			case Q_TYPE_FSTN:
607				temp = scnprintf(next, size,
608						" fstn-%8x/%p",
609						p.fstn->hw_prev, p.fstn);
610				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
611				p = p.fstn->fstn_next;
612				break;
613			case Q_TYPE_ITD:
614				temp = scnprintf(next, size,
615						" itd/%p", p.itd);
616				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
617				p = p.itd->itd_next;
618				break;
619			}
620			size -= temp;
621			next += temp;
622		} while (p.ptr);
623
624		temp = scnprintf(next, size, "\n");
625		size -= temp;
626		next += temp;
627	}
628	spin_unlock_irqrestore(&fotg210->lock, flags);
629	kfree(seen);
630
631	return buf->alloc_size - size;
632}
633#undef DBG_SCHED_LIMIT
634
635static const char *rh_state_string(struct fotg210_hcd *fotg210)
636{
637	switch (fotg210->rh_state) {
638	case FOTG210_RH_HALTED:
639		return "halted";
640	case FOTG210_RH_SUSPENDED:
641		return "suspended";
642	case FOTG210_RH_RUNNING:
643		return "running";
644	case FOTG210_RH_STOPPING:
645		return "stopping";
646	}
647	return "?";
648}
649
650static ssize_t fill_registers_buffer(struct debug_buffer *buf)
651{
652	struct usb_hcd *hcd;
653	struct fotg210_hcd *fotg210;
654	unsigned long flags;
655	unsigned temp, size, i;
656	char *next, scratch[80];
657	static const char fmt[] = "%*s\n";
658	static const char label[] = "";
659
660	hcd = bus_to_hcd(buf->bus);
661	fotg210 = hcd_to_fotg210(hcd);
662	next = buf->output_buf;
663	size = buf->alloc_size;
664
665	spin_lock_irqsave(&fotg210->lock, flags);
666
667	if (!HCD_HW_ACCESSIBLE(hcd)) {
668		size = scnprintf(next, size,
669				"bus %s, device %s\n"
670				"%s\n"
671				"SUSPENDED(no register access)\n",
672				hcd->self.controller->bus->name,
673				dev_name(hcd->self.controller),
674				hcd->product_desc);
675		goto done;
676	}
677
678	/* Capability Registers */
679	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
680			&fotg210->caps->hc_capbase));
681	temp = scnprintf(next, size,
682			"bus %s, device %s\n"
683			"%s\n"
684			"EHCI %x.%02x, rh state %s\n",
685			hcd->self.controller->bus->name,
686			dev_name(hcd->self.controller),
687			hcd->product_desc,
688			i >> 8, i & 0x0ff, rh_state_string(fotg210));
689	size -= temp;
690	next += temp;
691
692	/* FIXME interpret both types of params */
693	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
694	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
695	size -= temp;
696	next += temp;
697
698	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
699	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
700	size -= temp;
701	next += temp;
702
703	/* Operational Registers */
704	temp = dbg_status_buf(scratch, sizeof(scratch), label,
705			fotg210_readl(fotg210, &fotg210->regs->status));
706	temp = scnprintf(next, size, fmt, temp, scratch);
707	size -= temp;
708	next += temp;
709
710	temp = dbg_command_buf(scratch, sizeof(scratch), label,
711			fotg210_readl(fotg210, &fotg210->regs->command));
712	temp = scnprintf(next, size, fmt, temp, scratch);
713	size -= temp;
714	next += temp;
715
716	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
717			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
718	temp = scnprintf(next, size, fmt, temp, scratch);
719	size -= temp;
720	next += temp;
721
722	temp = scnprintf(next, size, "uframe %04x\n",
723			fotg210_read_frame_index(fotg210));
724	size -= temp;
725	next += temp;
726
727	if (fotg210->async_unlink) {
728		temp = scnprintf(next, size, "async unlink qh %p\n",
729				fotg210->async_unlink);
730		size -= temp;
731		next += temp;
732	}
733
734#ifdef FOTG210_STATS
735	temp = scnprintf(next, size,
736			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
737			fotg210->stats.normal, fotg210->stats.error,
738			fotg210->stats.iaa, fotg210->stats.lost_iaa);
739	size -= temp;
740	next += temp;
741
742	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
743			fotg210->stats.complete, fotg210->stats.unlink);
744	size -= temp;
745	next += temp;
746#endif
747
748done:
749	spin_unlock_irqrestore(&fotg210->lock, flags);
750
751	return buf->alloc_size - size;
752}
753
754static struct debug_buffer
755*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
756{
757	struct debug_buffer *buf;
758
759	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
760
761	if (buf) {
762		buf->bus = bus;
763		buf->fill_func = fill_func;
764		mutex_init(&buf->mutex);
765		buf->alloc_size = PAGE_SIZE;
766	}
767
768	return buf;
769}
770
771static int fill_buffer(struct debug_buffer *buf)
772{
773	int ret = 0;
774
775	if (!buf->output_buf)
776		buf->output_buf = vmalloc(buf->alloc_size);
777
778	if (!buf->output_buf) {
779		ret = -ENOMEM;
780		goto out;
781	}
782
783	ret = buf->fill_func(buf);
784
785	if (ret >= 0) {
786		buf->count = ret;
787		ret = 0;
788	}
789
790out:
791	return ret;
792}
793
794static ssize_t debug_output(struct file *file, char __user *user_buf,
795		size_t len, loff_t *offset)
796{
797	struct debug_buffer *buf = file->private_data;
798	int ret = 0;
799
800	mutex_lock(&buf->mutex);
801	if (buf->count == 0) {
802		ret = fill_buffer(buf);
803		if (ret != 0) {
804			mutex_unlock(&buf->mutex);
805			goto out;
806		}
807	}
808	mutex_unlock(&buf->mutex);
809
810	ret = simple_read_from_buffer(user_buf, len, offset,
811			buf->output_buf, buf->count);
812
813out:
814	return ret;
815
816}
817
818static int debug_close(struct inode *inode, struct file *file)
819{
820	struct debug_buffer *buf = file->private_data;
821
822	if (buf) {
823		vfree(buf->output_buf);
824		kfree(buf);
825	}
826
827	return 0;
828}
829static int debug_async_open(struct inode *inode, struct file *file)
830{
831	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
832
833	return file->private_data ? 0 : -ENOMEM;
834}
835
836static int debug_periodic_open(struct inode *inode, struct file *file)
837{
838	struct debug_buffer *buf;
839
840	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
841	if (!buf)
842		return -ENOMEM;
843
844	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
845	file->private_data = buf;
846	return 0;
847}
848
849static int debug_registers_open(struct inode *inode, struct file *file)
850{
851	file->private_data = alloc_buffer(inode->i_private,
852			fill_registers_buffer);
853
854	return file->private_data ? 0 : -ENOMEM;
855}
856
857static inline void create_debug_files(struct fotg210_hcd *fotg210)
858{
859	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
860
861	fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
862			fotg210_debug_root);
863	if (!fotg210->debug_dir)
864		return;
865
866	if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
867			&debug_async_fops))
868		goto file_error;
869
870	if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
871			&debug_periodic_fops))
872		goto file_error;
873
874	if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
875			&debug_registers_fops))
876		goto file_error;
877
878	return;
879
880file_error:
881	debugfs_remove_recursive(fotg210->debug_dir);
882}
883
884static inline void remove_debug_files(struct fotg210_hcd *fotg210)
885{
886	debugfs_remove_recursive(fotg210->debug_dir);
887}
888
889/* handshake - spin reading hc until handshake completes or fails
890 * @ptr: address of hc register to be read
891 * @mask: bits to look at in result of read
892 * @done: value of those bits when handshake succeeds
893 * @usec: timeout in microseconds
894 *
895 * Returns negative errno, or zero on success
896 *
897 * Success happens when the "mask" bits have the specified value (hardware
898 * handshake done).  There are two failure modes:  "usec" have passed (major
899 * hardware flakeout), or the register reads as all-ones (hardware removed).
900 *
901 * That last failure should_only happen in cases like physical cardbus eject
902 * before driver shutdown. But it also seems to be caused by bugs in cardbus
903 * bridge shutdown:  shutting down the bridge before the devices using it.
904 */
905static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
906		u32 mask, u32 done, int usec)
907{
908	u32 result;
909
910	do {
911		result = fotg210_readl(fotg210, ptr);
912		if (result == ~(u32)0)		/* card removed */
913			return -ENODEV;
914		result &= mask;
915		if (result == done)
916			return 0;
917		udelay(1);
918		usec--;
919	} while (usec > 0);
920	return -ETIMEDOUT;
921}
922
923/* Force HC to halt state from unknown (EHCI spec section 2.3).
924 * Must be called with interrupts enabled and the lock not held.
925 */
926static int fotg210_halt(struct fotg210_hcd *fotg210)
927{
928	u32 temp;
929
930	spin_lock_irq(&fotg210->lock);
931
932	/* disable any irqs left enabled by previous code */
933	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
934
935	/*
936	 * This routine gets called during probe before fotg210->command
937	 * has been initialized, so we can't rely on its value.
938	 */
939	fotg210->command &= ~CMD_RUN;
940	temp = fotg210_readl(fotg210, &fotg210->regs->command);
941	temp &= ~(CMD_RUN | CMD_IAAD);
942	fotg210_writel(fotg210, temp, &fotg210->regs->command);
943
944	spin_unlock_irq(&fotg210->lock);
945	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
946
947	return handshake(fotg210, &fotg210->regs->status,
948			STS_HALT, STS_HALT, 16 * 125);
949}
950
951/* Reset a non-running (STS_HALT == 1) controller.
952 * Must be called with interrupts enabled and the lock not held.
953 */
954static int fotg210_reset(struct fotg210_hcd *fotg210)
955{
956	int retval;
957	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
958
959	/* If the EHCI debug controller is active, special care must be
960	 * taken before and after a host controller reset
961	 */
962	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
963		fotg210->debug = NULL;
964
965	command |= CMD_RESET;
966	dbg_cmd(fotg210, "reset", command);
967	fotg210_writel(fotg210, command, &fotg210->regs->command);
968	fotg210->rh_state = FOTG210_RH_HALTED;
969	fotg210->next_statechange = jiffies;
970	retval = handshake(fotg210, &fotg210->regs->command,
971			CMD_RESET, 0, 250 * 1000);
972
973	if (retval)
974		return retval;
975
976	if (fotg210->debug)
977		dbgp_external_startup(fotg210_to_hcd(fotg210));
978
979	fotg210->port_c_suspend = fotg210->suspended_ports =
980			fotg210->resuming_ports = 0;
981	return retval;
982}
983
984/* Idle the controller (turn off the schedules).
985 * Must be called with interrupts enabled and the lock not held.
986 */
987static void fotg210_quiesce(struct fotg210_hcd *fotg210)
988{
989	u32 temp;
990
991	if (fotg210->rh_state != FOTG210_RH_RUNNING)
992		return;
993
994	/* wait for any schedule enables/disables to take effect */
995	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
996	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
997			16 * 125);
998
999	/* then disable anything that's still active */
1000	spin_lock_irq(&fotg210->lock);
1001	fotg210->command &= ~(CMD_ASE | CMD_PSE);
1002	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1003	spin_unlock_irq(&fotg210->lock);
1004
1005	/* hardware can take 16 microframes to turn off ... */
1006	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1007			16 * 125);
1008}
1009
1010static void end_unlink_async(struct fotg210_hcd *fotg210);
1011static void unlink_empty_async(struct fotg210_hcd *fotg210);
1012static void fotg210_work(struct fotg210_hcd *fotg210);
1013static void start_unlink_intr(struct fotg210_hcd *fotg210,
1014			      struct fotg210_qh *qh);
1015static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1016
1017/* Set a bit in the USBCMD register */
1018static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1019{
1020	fotg210->command |= bit;
1021	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1022
1023	/* unblock posted write */
1024	fotg210_readl(fotg210, &fotg210->regs->command);
1025}
1026
1027/* Clear a bit in the USBCMD register */
1028static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1029{
1030	fotg210->command &= ~bit;
1031	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1032
1033	/* unblock posted write */
1034	fotg210_readl(fotg210, &fotg210->regs->command);
1035}
1036
1037/* EHCI timer support...  Now using hrtimers.
1038 *
1039 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1040 * the timer routine runs, it checks each possible event; events that are
1041 * currently enabled and whose expiration time has passed get handled.
1042 * The set of enabled events is stored as a collection of bitflags in
1043 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1044 * increasing delay values (ranging between 1 ms and 100 ms).
1045 *
1046 * Rather than implementing a sorted list or tree of all pending events,
1047 * we keep track only of the lowest-numbered pending event, in
1048 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1049 * expiration time is set to the timeout value for this event.
1050 *
1051 * As a result, events might not get handled right away; the actual delay
1052 * could be anywhere up to twice the requested delay.  This doesn't
1053 * matter, because none of the events are especially time-critical.  The
1054 * ones that matter most all have a delay of 1 ms, so they will be
1055 * handled after 2 ms at most, which is okay.  In addition to this, we
1056 * allow for an expiration range of 1 ms.
1057 */
1058
1059/* Delay lengths for the hrtimer event types.
1060 * Keep this list sorted by delay length, in the same order as
1061 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1062 */
1063static unsigned event_delays_ns[] = {
1064	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1065	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1066	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1067	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1068	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1069	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1070	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1071	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1072	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1073	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1074};
1075
1076/* Enable a pending hrtimer event */
1077static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1078		bool resched)
1079{
1080	ktime_t *timeout = &fotg210->hr_timeouts[event];
1081
1082	if (resched)
1083		*timeout = ktime_add(ktime_get(),
1084				ktime_set(0, event_delays_ns[event]));
1085	fotg210->enabled_hrtimer_events |= (1 << event);
1086
1087	/* Track only the lowest-numbered pending event */
1088	if (event < fotg210->next_hrtimer_event) {
1089		fotg210->next_hrtimer_event = event;
1090		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1091				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1092	}
1093}
1094
1095
1096/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1097static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1098{
1099	unsigned actual, want;
1100
1101	/* Don't enable anything if the controller isn't running (e.g., died) */
1102	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1103		return;
1104
1105	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1106	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1107
1108	if (want != actual) {
1109
1110		/* Poll again later, but give up after about 20 ms */
1111		if (fotg210->ASS_poll_count++ < 20) {
1112			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1113					true);
1114			return;
1115		}
1116		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1117				want, actual);
1118	}
1119	fotg210->ASS_poll_count = 0;
1120
1121	/* The status is up-to-date; restart or stop the schedule as needed */
1122	if (want == 0) {	/* Stopped */
1123		if (fotg210->async_count > 0)
1124			fotg210_set_command_bit(fotg210, CMD_ASE);
1125
1126	} else {		/* Running */
1127		if (fotg210->async_count == 0) {
1128
1129			/* Turn off the schedule after a while */
1130			fotg210_enable_event(fotg210,
1131					FOTG210_HRTIMER_DISABLE_ASYNC,
1132					true);
1133		}
1134	}
1135}
1136
1137/* Turn off the async schedule after a brief delay */
1138static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1139{
1140	fotg210_clear_command_bit(fotg210, CMD_ASE);
1141}
1142
1143
1144/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1145static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1146{
1147	unsigned actual, want;
1148
1149	/* Don't do anything if the controller isn't running (e.g., died) */
1150	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1151		return;
1152
1153	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1154	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1155
1156	if (want != actual) {
1157
1158		/* Poll again later, but give up after about 20 ms */
1159		if (fotg210->PSS_poll_count++ < 20) {
1160			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1161					true);
1162			return;
1163		}
1164		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1165				want, actual);
1166	}
1167	fotg210->PSS_poll_count = 0;
1168
1169	/* The status is up-to-date; restart or stop the schedule as needed */
1170	if (want == 0) {	/* Stopped */
1171		if (fotg210->periodic_count > 0)
1172			fotg210_set_command_bit(fotg210, CMD_PSE);
1173
1174	} else {		/* Running */
1175		if (fotg210->periodic_count == 0) {
1176
1177			/* Turn off the schedule after a while */
1178			fotg210_enable_event(fotg210,
1179					FOTG210_HRTIMER_DISABLE_PERIODIC,
1180					true);
1181		}
1182	}
1183}
1184
1185/* Turn off the periodic schedule after a brief delay */
1186static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1187{
1188	fotg210_clear_command_bit(fotg210, CMD_PSE);
1189}
1190
1191
1192/* Poll the STS_HALT status bit; see when a dead controller stops */
1193static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1194{
1195	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1196
1197		/* Give up after a few milliseconds */
1198		if (fotg210->died_poll_count++ < 5) {
1199			/* Try again later */
1200			fotg210_enable_event(fotg210,
1201					FOTG210_HRTIMER_POLL_DEAD, true);
1202			return;
1203		}
1204		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1205	}
1206
1207	/* Clean up the mess */
1208	fotg210->rh_state = FOTG210_RH_HALTED;
1209	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1210	fotg210_work(fotg210);
1211	end_unlink_async(fotg210);
1212
1213	/* Not in process context, so don't try to reset the controller */
1214}
1215
1216
1217/* Handle unlinked interrupt QHs once they are gone from the hardware */
1218static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1219{
1220	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1221
1222	/*
1223	 * Process all the QHs on the intr_unlink list that were added
1224	 * before the current unlink cycle began.  The list is in
1225	 * temporal order, so stop when we reach the first entry in the
1226	 * current cycle.  But if the root hub isn't running then
1227	 * process all the QHs on the list.
1228	 */
1229	fotg210->intr_unlinking = true;
1230	while (fotg210->intr_unlink) {
1231		struct fotg210_qh *qh = fotg210->intr_unlink;
1232
1233		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1234			break;
1235		fotg210->intr_unlink = qh->unlink_next;
1236		qh->unlink_next = NULL;
1237		end_unlink_intr(fotg210, qh);
1238	}
1239
1240	/* Handle remaining entries later */
1241	if (fotg210->intr_unlink) {
1242		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1243				true);
1244		++fotg210->intr_unlink_cycle;
1245	}
1246	fotg210->intr_unlinking = false;
1247}
1248
1249
1250/* Start another free-iTDs/siTDs cycle */
1251static void start_free_itds(struct fotg210_hcd *fotg210)
1252{
1253	if (!(fotg210->enabled_hrtimer_events &
1254			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1255		fotg210->last_itd_to_free = list_entry(
1256				fotg210->cached_itd_list.prev,
1257				struct fotg210_itd, itd_list);
1258		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1259	}
1260}
1261
1262/* Wait for controller to stop using old iTDs and siTDs */
1263static void end_free_itds(struct fotg210_hcd *fotg210)
1264{
1265	struct fotg210_itd *itd, *n;
1266
1267	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1268		fotg210->last_itd_to_free = NULL;
1269
1270	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1271		list_del(&itd->itd_list);
1272		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1273		if (itd == fotg210->last_itd_to_free)
1274			break;
1275	}
1276
1277	if (!list_empty(&fotg210->cached_itd_list))
1278		start_free_itds(fotg210);
1279}
1280
1281
1282/* Handle lost (or very late) IAA interrupts */
1283static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1284{
1285	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1286		return;
1287
1288	/*
1289	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1290	 * So we need this watchdog, but must protect it against both
1291	 * (a) SMP races against real IAA firing and retriggering, and
1292	 * (b) clean HC shutdown, when IAA watchdog was pending.
1293	 */
1294	if (fotg210->async_iaa) {
1295		u32 cmd, status;
1296
1297		/* If we get here, IAA is *REALLY* late.  It's barely
1298		 * conceivable that the system is so busy that CMD_IAAD
1299		 * is still legitimately set, so let's be sure it's
1300		 * clear before we read STS_IAA.  (The HC should clear
1301		 * CMD_IAAD when it sets STS_IAA.)
1302		 */
1303		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1304
1305		/*
1306		 * If IAA is set here it either legitimately triggered
1307		 * after the watchdog timer expired (_way_ late, so we'll
1308		 * still count it as lost) ... or a silicon erratum:
1309		 * - VIA seems to set IAA without triggering the IRQ;
1310		 * - IAAD potentially cleared without setting IAA.
1311		 */
1312		status = fotg210_readl(fotg210, &fotg210->regs->status);
1313		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1314			COUNT(fotg210->stats.lost_iaa);
1315			fotg210_writel(fotg210, STS_IAA,
1316					&fotg210->regs->status);
1317		}
1318
1319		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1320				status, cmd);
1321		end_unlink_async(fotg210);
1322	}
1323}
1324
1325
1326/* Enable the I/O watchdog, if appropriate */
1327static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1328{
1329	/* Not needed if the controller isn't running or it's already enabled */
1330	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1331			(fotg210->enabled_hrtimer_events &
1332			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1333		return;
1334
1335	/*
1336	 * Isochronous transfers always need the watchdog.
1337	 * For other sorts we use it only if the flag is set.
1338	 */
1339	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1340			fotg210->async_count + fotg210->intr_count > 0))
1341		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1342				true);
1343}
1344
1345
1346/* Handler functions for the hrtimer event types.
1347 * Keep this array in the same order as the event types indexed by
1348 * enum fotg210_hrtimer_event in fotg210.h.
1349 */
1350static void (*event_handlers[])(struct fotg210_hcd *) = {
1351	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1352	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1353	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1354	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1355	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1356	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1357	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1358	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1359	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1360	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1361};
1362
1363static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1364{
1365	struct fotg210_hcd *fotg210 =
1366			container_of(t, struct fotg210_hcd, hrtimer);
1367	ktime_t now;
1368	unsigned long events;
1369	unsigned long flags;
1370	unsigned e;
1371
1372	spin_lock_irqsave(&fotg210->lock, flags);
1373
1374	events = fotg210->enabled_hrtimer_events;
1375	fotg210->enabled_hrtimer_events = 0;
1376	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1377
1378	/*
1379	 * Check each pending event.  If its time has expired, handle
1380	 * the event; otherwise re-enable it.
1381	 */
1382	now = ktime_get();
1383	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1384		if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1385			event_handlers[e](fotg210);
1386		else
1387			fotg210_enable_event(fotg210, e, false);
1388	}
1389
1390	spin_unlock_irqrestore(&fotg210->lock, flags);
1391	return HRTIMER_NORESTART;
1392}
1393
1394#define fotg210_bus_suspend NULL
1395#define fotg210_bus_resume NULL
1396
1397static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1398		u32 __iomem *status_reg, int port_status)
1399{
1400	if (!(port_status & PORT_CONNECT))
1401		return port_status;
1402
1403	/* if reset finished and it's still not enabled -- handoff */
1404	if (!(port_status & PORT_PE))
1405		/* with integrated TT, there's nobody to hand it to! */
1406		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1407				index + 1);
1408	else
1409		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1410				index + 1);
1411
1412	return port_status;
1413}
1414
1415
1416/* build "status change" packet (one or two bytes) from HC registers */
1417
1418static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1419{
1420	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1421	u32 temp, status;
1422	u32 mask;
1423	int retval = 1;
1424	unsigned long flags;
1425
1426	/* init status to no-changes */
1427	buf[0] = 0;
1428
1429	/* Inform the core about resumes-in-progress by returning
1430	 * a non-zero value even if there are no status changes.
1431	 */
1432	status = fotg210->resuming_ports;
1433
1434	mask = PORT_CSC | PORT_PEC;
1435	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1436
1437	/* no hub change reports (bit 0) for now (power, ...) */
1438
1439	/* port N changes (bit N)? */
1440	spin_lock_irqsave(&fotg210->lock, flags);
1441
1442	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1443
1444	/*
1445	 * Return status information even for ports with OWNER set.
1446	 * Otherwise hub_wq wouldn't see the disconnect event when a
1447	 * high-speed device is switched over to the companion
1448	 * controller by the user.
1449	 */
1450
1451	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1452			(fotg210->reset_done[0] &&
1453			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1454		buf[0] |= 1 << 1;
1455		status = STS_PCD;
1456	}
1457	/* FIXME autosuspend idle root hubs */
1458	spin_unlock_irqrestore(&fotg210->lock, flags);
1459	return status ? retval : 0;
1460}
1461
1462static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1463		struct usb_hub_descriptor *desc)
1464{
1465	int ports = HCS_N_PORTS(fotg210->hcs_params);
1466	u16 temp;
1467
1468	desc->bDescriptorType = USB_DT_HUB;
1469	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1470	desc->bHubContrCurrent = 0;
1471
1472	desc->bNbrPorts = ports;
1473	temp = 1 + (ports / 8);
1474	desc->bDescLength = 7 + 2 * temp;
1475
1476	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1477	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1478	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1479
1480	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1481	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1482	desc->wHubCharacteristics = cpu_to_le16(temp);
1483}
1484
1485static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1486		u16 wIndex, char *buf, u16 wLength)
1487{
1488	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1489	int ports = HCS_N_PORTS(fotg210->hcs_params);
1490	u32 __iomem *status_reg = &fotg210->regs->port_status;
1491	u32 temp, temp1, status;
1492	unsigned long flags;
1493	int retval = 0;
1494	unsigned selector;
1495
1496	/*
1497	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1498	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1499	 * (track current state ourselves) ... blink for diagnostics,
1500	 * power, "this is the one", etc.  EHCI spec supports this.
1501	 */
1502
1503	spin_lock_irqsave(&fotg210->lock, flags);
1504	switch (typeReq) {
1505	case ClearHubFeature:
1506		switch (wValue) {
1507		case C_HUB_LOCAL_POWER:
1508		case C_HUB_OVER_CURRENT:
1509			/* no hub-wide feature/status flags */
1510			break;
1511		default:
1512			goto error;
1513		}
1514		break;
1515	case ClearPortFeature:
1516		if (!wIndex || wIndex > ports)
1517			goto error;
1518		wIndex--;
1519		temp = fotg210_readl(fotg210, status_reg);
1520		temp &= ~PORT_RWC_BITS;
1521
1522		/*
1523		 * Even if OWNER is set, so the port is owned by the
1524		 * companion controller, hub_wq needs to be able to clear
1525		 * the port-change status bits (especially
1526		 * USB_PORT_STAT_C_CONNECTION).
1527		 */
1528
1529		switch (wValue) {
1530		case USB_PORT_FEAT_ENABLE:
1531			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1532			break;
1533		case USB_PORT_FEAT_C_ENABLE:
1534			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1535			break;
1536		case USB_PORT_FEAT_SUSPEND:
1537			if (temp & PORT_RESET)
1538				goto error;
1539			if (!(temp & PORT_SUSPEND))
1540				break;
1541			if ((temp & PORT_PE) == 0)
1542				goto error;
1543
1544			/* resume signaling for 20 msec */
1545			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1546			fotg210->reset_done[wIndex] = jiffies
1547					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1548			break;
1549		case USB_PORT_FEAT_C_SUSPEND:
1550			clear_bit(wIndex, &fotg210->port_c_suspend);
1551			break;
1552		case USB_PORT_FEAT_C_CONNECTION:
1553			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1554			break;
1555		case USB_PORT_FEAT_C_OVER_CURRENT:
1556			fotg210_writel(fotg210, temp | OTGISR_OVC,
1557					&fotg210->regs->otgisr);
1558			break;
1559		case USB_PORT_FEAT_C_RESET:
1560			/* GetPortStatus clears reset */
1561			break;
1562		default:
1563			goto error;
1564		}
1565		fotg210_readl(fotg210, &fotg210->regs->command);
1566		break;
1567	case GetHubDescriptor:
1568		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1569				buf);
1570		break;
1571	case GetHubStatus:
1572		/* no hub-wide feature/status flags */
1573		memset(buf, 0, 4);
1574		/*cpu_to_le32s ((u32 *) buf); */
1575		break;
1576	case GetPortStatus:
1577		if (!wIndex || wIndex > ports)
1578			goto error;
1579		wIndex--;
1580		status = 0;
1581		temp = fotg210_readl(fotg210, status_reg);
1582
1583		/* wPortChange bits */
1584		if (temp & PORT_CSC)
1585			status |= USB_PORT_STAT_C_CONNECTION << 16;
1586		if (temp & PORT_PEC)
1587			status |= USB_PORT_STAT_C_ENABLE << 16;
1588
1589		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1590		if (temp1 & OTGISR_OVC)
1591			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1592
1593		/* whoever resumes must GetPortStatus to complete it!! */
1594		if (temp & PORT_RESUME) {
1595
1596			/* Remote Wakeup received? */
1597			if (!fotg210->reset_done[wIndex]) {
1598				/* resume signaling for 20 msec */
1599				fotg210->reset_done[wIndex] = jiffies
1600						+ msecs_to_jiffies(20);
1601				/* check the port again */
1602				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1603						fotg210->reset_done[wIndex]);
1604			}
1605
1606			/* resume completed? */
1607			else if (time_after_eq(jiffies,
1608					fotg210->reset_done[wIndex])) {
1609				clear_bit(wIndex, &fotg210->suspended_ports);
1610				set_bit(wIndex, &fotg210->port_c_suspend);
1611				fotg210->reset_done[wIndex] = 0;
1612
1613				/* stop resume signaling */
1614				temp = fotg210_readl(fotg210, status_reg);
1615				fotg210_writel(fotg210, temp &
1616						~(PORT_RWC_BITS | PORT_RESUME),
1617						status_reg);
1618				clear_bit(wIndex, &fotg210->resuming_ports);
1619				retval = handshake(fotg210, status_reg,
1620						PORT_RESUME, 0, 2000);/* 2ms */
1621				if (retval != 0) {
1622					fotg210_err(fotg210,
1623							"port %d resume error %d\n",
1624							wIndex + 1, retval);
1625					goto error;
1626				}
1627				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1628			}
1629		}
1630
1631		/* whoever resets must GetPortStatus to complete it!! */
1632		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1633				fotg210->reset_done[wIndex])) {
1634			status |= USB_PORT_STAT_C_RESET << 16;
1635			fotg210->reset_done[wIndex] = 0;
1636			clear_bit(wIndex, &fotg210->resuming_ports);
1637
1638			/* force reset to complete */
1639			fotg210_writel(fotg210,
1640					temp & ~(PORT_RWC_BITS | PORT_RESET),
1641					status_reg);
1642			/* REVISIT:  some hardware needs 550+ usec to clear
1643			 * this bit; seems too long to spin routinely...
1644			 */
1645			retval = handshake(fotg210, status_reg,
1646					PORT_RESET, 0, 1000);
1647			if (retval != 0) {
1648				fotg210_err(fotg210, "port %d reset error %d\n",
1649						wIndex + 1, retval);
1650				goto error;
1651			}
1652
1653			/* see what we found out */
1654			temp = check_reset_complete(fotg210, wIndex, status_reg,
1655					fotg210_readl(fotg210, status_reg));
1656		}
1657
1658		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1659			fotg210->reset_done[wIndex] = 0;
1660			clear_bit(wIndex, &fotg210->resuming_ports);
1661		}
1662
1663		/* transfer dedicated ports to the companion hc */
1664		if ((temp & PORT_CONNECT) &&
1665				test_bit(wIndex, &fotg210->companion_ports)) {
1666			temp &= ~PORT_RWC_BITS;
1667			fotg210_writel(fotg210, temp, status_reg);
1668			fotg210_dbg(fotg210, "port %d --> companion\n",
1669					wIndex + 1);
1670			temp = fotg210_readl(fotg210, status_reg);
1671		}
1672
1673		/*
1674		 * Even if OWNER is set, there's no harm letting hub_wq
1675		 * see the wPortStatus values (they should all be 0 except
1676		 * for PORT_POWER anyway).
1677		 */
1678
1679		if (temp & PORT_CONNECT) {
1680			status |= USB_PORT_STAT_CONNECTION;
1681			status |= fotg210_port_speed(fotg210, temp);
1682		}
1683		if (temp & PORT_PE)
1684			status |= USB_PORT_STAT_ENABLE;
1685
1686		/* maybe the port was unsuspended without our knowledge */
1687		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1688			status |= USB_PORT_STAT_SUSPEND;
1689		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1690			clear_bit(wIndex, &fotg210->suspended_ports);
1691			clear_bit(wIndex, &fotg210->resuming_ports);
1692			fotg210->reset_done[wIndex] = 0;
1693			if (temp & PORT_PE)
1694				set_bit(wIndex, &fotg210->port_c_suspend);
1695		}
1696
1697		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1698		if (temp1 & OTGISR_OVC)
1699			status |= USB_PORT_STAT_OVERCURRENT;
1700		if (temp & PORT_RESET)
1701			status |= USB_PORT_STAT_RESET;
1702		if (test_bit(wIndex, &fotg210->port_c_suspend))
1703			status |= USB_PORT_STAT_C_SUSPEND << 16;
1704
1705		if (status & ~0xffff)	/* only if wPortChange is interesting */
1706			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1707		put_unaligned_le32(status, buf);
1708		break;
1709	case SetHubFeature:
1710		switch (wValue) {
1711		case C_HUB_LOCAL_POWER:
1712		case C_HUB_OVER_CURRENT:
1713			/* no hub-wide feature/status flags */
1714			break;
1715		default:
1716			goto error;
1717		}
1718		break;
1719	case SetPortFeature:
1720		selector = wIndex >> 8;
1721		wIndex &= 0xff;
1722
1723		if (!wIndex || wIndex > ports)
1724			goto error;
1725		wIndex--;
1726		temp = fotg210_readl(fotg210, status_reg);
1727		temp &= ~PORT_RWC_BITS;
1728		switch (wValue) {
1729		case USB_PORT_FEAT_SUSPEND:
1730			if ((temp & PORT_PE) == 0
1731					|| (temp & PORT_RESET) != 0)
1732				goto error;
1733
1734			/* After above check the port must be connected.
1735			 * Set appropriate bit thus could put phy into low power
1736			 * mode if we have hostpc feature
1737			 */
1738			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1739					status_reg);
1740			set_bit(wIndex, &fotg210->suspended_ports);
1741			break;
1742		case USB_PORT_FEAT_RESET:
1743			if (temp & PORT_RESUME)
1744				goto error;
1745			/* line status bits may report this as low speed,
1746			 * which can be fine if this root hub has a
1747			 * transaction translator built in.
1748			 */
1749			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1750			temp |= PORT_RESET;
1751			temp &= ~PORT_PE;
1752
1753			/*
1754			 * caller must wait, then call GetPortStatus
1755			 * usb 2.0 spec says 50 ms resets on root
1756			 */
1757			fotg210->reset_done[wIndex] = jiffies
1758					+ msecs_to_jiffies(50);
1759			fotg210_writel(fotg210, temp, status_reg);
1760			break;
1761
1762		/* For downstream facing ports (these):  one hub port is put
1763		 * into test mode according to USB2 11.24.2.13, then the hub
1764		 * must be reset (which for root hub now means rmmod+modprobe,
1765		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1766		 * about the EHCI-specific stuff.
1767		 */
1768		case USB_PORT_FEAT_TEST:
1769			if (!selector || selector > 5)
1770				goto error;
1771			spin_unlock_irqrestore(&fotg210->lock, flags);
1772			fotg210_quiesce(fotg210);
1773			spin_lock_irqsave(&fotg210->lock, flags);
1774
1775			/* Put all enabled ports into suspend */
1776			temp = fotg210_readl(fotg210, status_reg) &
1777				~PORT_RWC_BITS;
1778			if (temp & PORT_PE)
1779				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1780						status_reg);
1781
1782			spin_unlock_irqrestore(&fotg210->lock, flags);
1783			fotg210_halt(fotg210);
1784			spin_lock_irqsave(&fotg210->lock, flags);
1785
1786			temp = fotg210_readl(fotg210, status_reg);
1787			temp |= selector << 16;
1788			fotg210_writel(fotg210, temp, status_reg);
1789			break;
1790
1791		default:
1792			goto error;
1793		}
1794		fotg210_readl(fotg210, &fotg210->regs->command);
1795		break;
1796
1797	default:
1798error:
1799		/* "stall" on error */
1800		retval = -EPIPE;
1801	}
1802	spin_unlock_irqrestore(&fotg210->lock, flags);
1803	return retval;
1804}
1805
1806static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1807		int portnum)
1808{
1809	return;
1810}
1811
1812static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1813		int portnum)
1814{
1815	return 0;
1816}
1817
1818/* There's basically three types of memory:
1819 *	- data used only by the HCD ... kmalloc is fine
1820 *	- async and periodic schedules, shared by HC and HCD ... these
1821 *	  need to use dma_pool or dma_alloc_coherent
1822 *	- driver buffers, read/written by HC ... single shot DMA mapped
1823 *
1824 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1825 * No memory seen by this driver is pageable.
1826 */
1827
1828/* Allocate the key transfer structures from the previously allocated pool */
1829static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1830		struct fotg210_qtd *qtd, dma_addr_t dma)
1831{
1832	memset(qtd, 0, sizeof(*qtd));
1833	qtd->qtd_dma = dma;
1834	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1835	qtd->hw_next = FOTG210_LIST_END(fotg210);
1836	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1837	INIT_LIST_HEAD(&qtd->qtd_list);
1838}
1839
1840static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1841		gfp_t flags)
1842{
1843	struct fotg210_qtd *qtd;
1844	dma_addr_t dma;
1845
1846	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1847	if (qtd != NULL)
1848		fotg210_qtd_init(fotg210, qtd, dma);
1849
1850	return qtd;
1851}
1852
1853static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1854		struct fotg210_qtd *qtd)
1855{
1856	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1857}
1858
1859
1860static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1861{
1862	/* clean qtds first, and know this is not linked */
1863	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1864		fotg210_dbg(fotg210, "unused qh not empty!\n");
1865		BUG();
1866	}
1867	if (qh->dummy)
1868		fotg210_qtd_free(fotg210, qh->dummy);
1869	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1870	kfree(qh);
1871}
1872
1873static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1874		gfp_t flags)
1875{
1876	struct fotg210_qh *qh;
1877	dma_addr_t dma;
1878
1879	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1880	if (!qh)
1881		goto done;
1882	qh->hw = (struct fotg210_qh_hw *)
1883		dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1884	if (!qh->hw)
1885		goto fail;
1886	memset(qh->hw, 0, sizeof(*qh->hw));
1887	qh->qh_dma = dma;
1888	INIT_LIST_HEAD(&qh->qtd_list);
1889
1890	/* dummy td enables safe urb queuing */
1891	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1892	if (qh->dummy == NULL) {
1893		fotg210_dbg(fotg210, "no dummy td\n");
1894		goto fail1;
1895	}
1896done:
1897	return qh;
1898fail1:
1899	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1900fail:
1901	kfree(qh);
1902	return NULL;
1903}
1904
1905/* The queue heads and transfer descriptors are managed from pools tied
1906 * to each of the "per device" structures.
1907 * This is the initialisation and cleanup code.
1908 */
1909
1910static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1911{
1912	if (fotg210->async)
1913		qh_destroy(fotg210, fotg210->async);
1914	fotg210->async = NULL;
1915
1916	if (fotg210->dummy)
1917		qh_destroy(fotg210, fotg210->dummy);
1918	fotg210->dummy = NULL;
1919
1920	/* DMA consistent memory and pools */
1921	dma_pool_destroy(fotg210->qtd_pool);
1922	fotg210->qtd_pool = NULL;
1923
1924	dma_pool_destroy(fotg210->qh_pool);
1925	fotg210->qh_pool = NULL;
1926
1927	dma_pool_destroy(fotg210->itd_pool);
1928	fotg210->itd_pool = NULL;
1929
1930	if (fotg210->periodic)
1931		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1932				fotg210->periodic_size * sizeof(u32),
1933				fotg210->periodic, fotg210->periodic_dma);
1934	fotg210->periodic = NULL;
1935
1936	/* shadow periodic table */
1937	kfree(fotg210->pshadow);
1938	fotg210->pshadow = NULL;
1939}
1940
1941/* remember to add cleanup code (above) if you add anything here */
1942static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1943{
1944	int i;
1945
1946	/* QTDs for control/bulk/intr transfers */
1947	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1948			fotg210_to_hcd(fotg210)->self.controller,
1949			sizeof(struct fotg210_qtd),
1950			32 /* byte alignment (for hw parts) */,
1951			4096 /* can't cross 4K */);
1952	if (!fotg210->qtd_pool)
1953		goto fail;
1954
1955	/* QHs for control/bulk/intr transfers */
1956	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1957			fotg210_to_hcd(fotg210)->self.controller,
1958			sizeof(struct fotg210_qh_hw),
1959			32 /* byte alignment (for hw parts) */,
1960			4096 /* can't cross 4K */);
1961	if (!fotg210->qh_pool)
1962		goto fail;
1963
1964	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1965	if (!fotg210->async)
1966		goto fail;
1967
1968	/* ITD for high speed ISO transfers */
1969	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1970			fotg210_to_hcd(fotg210)->self.controller,
1971			sizeof(struct fotg210_itd),
1972			64 /* byte alignment (for hw parts) */,
1973			4096 /* can't cross 4K */);
1974	if (!fotg210->itd_pool)
1975		goto fail;
1976
1977	/* Hardware periodic table */
1978	fotg210->periodic = (__le32 *)
1979		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1980				fotg210->periodic_size * sizeof(__le32),
1981				&fotg210->periodic_dma, 0);
1982	if (fotg210->periodic == NULL)
1983		goto fail;
1984
1985	for (i = 0; i < fotg210->periodic_size; i++)
1986		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1987
1988	/* software shadow of hardware table */
1989	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1990			flags);
1991	if (fotg210->pshadow != NULL)
1992		return 0;
1993
1994fail:
1995	fotg210_dbg(fotg210, "couldn't init memory\n");
1996	fotg210_mem_cleanup(fotg210);
1997	return -ENOMEM;
1998}
1999/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
2000 *
2001 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2002 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2003 * buffers needed for the larger number).  We use one QH per endpoint, queue
2004 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2005 *
2006 * ISO traffic uses "ISO TD" (itd) records, and (along with
2007 * interrupts) needs careful scheduling.  Performance improvements can be
2008 * an ongoing challenge.  That's in "ehci-sched.c".
2009 *
2010 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2011 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2012 * (b) special fields in qh entries or (c) split iso entries.  TTs will
2013 * buffer low/full speed data so the host collects it at high speed.
2014 */
2015
2016/* fill a qtd, returning how much of the buffer we were able to queue up */
2017static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2018		dma_addr_t buf, size_t len, int token, int maxpacket)
2019{
2020	int i, count;
2021	u64 addr = buf;
2022
2023	/* one buffer entry per 4K ... first might be short or unaligned */
2024	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2025	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2026	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2027	if (likely(len < count))		/* ... iff needed */
2028		count = len;
2029	else {
2030		buf +=  0x1000;
2031		buf &= ~0x0fff;
2032
2033		/* per-qtd limit: from 16K to 20K (best alignment) */
2034		for (i = 1; count < len && i < 5; i++) {
2035			addr = buf;
2036			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2037			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2038					(u32)(addr >> 32));
2039			buf += 0x1000;
2040			if ((count + 0x1000) < len)
2041				count += 0x1000;
2042			else
2043				count = len;
2044		}
2045
2046		/* short packets may only terminate transfers */
2047		if (count != len)
2048			count -= (count % maxpacket);
2049	}
2050	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2051	qtd->length = count;
2052
2053	return count;
2054}
2055
2056static inline void qh_update(struct fotg210_hcd *fotg210,
2057		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2058{
2059	struct fotg210_qh_hw *hw = qh->hw;
2060
2061	/* writes to an active overlay are unsafe */
2062	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2063
2064	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2065	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2066
2067	/* Except for control endpoints, we make hardware maintain data
2068	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2069	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2070	 * ever clear it.
2071	 */
2072	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2073		unsigned is_out, epnum;
2074
2075		is_out = qh->is_out;
2076		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2077		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2078			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2079			usb_settoggle(qh->dev, epnum, is_out, 1);
2080		}
2081	}
2082
2083	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2084}
2085
2086/* if it weren't for a common silicon quirk (writing the dummy into the qh
2087 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2088 * recovery (including urb dequeue) would need software changes to a QH...
2089 */
2090static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2091{
2092	struct fotg210_qtd *qtd;
2093
2094	if (list_empty(&qh->qtd_list))
2095		qtd = qh->dummy;
2096	else {
2097		qtd = list_entry(qh->qtd_list.next,
2098				struct fotg210_qtd, qtd_list);
2099		/*
2100		 * first qtd may already be partially processed.
2101		 * If we come here during unlink, the QH overlay region
2102		 * might have reference to the just unlinked qtd. The
2103		 * qtd is updated in qh_completions(). Update the QH
2104		 * overlay here.
2105		 */
2106		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2107			qh->hw->hw_qtd_next = qtd->hw_next;
2108			qtd = NULL;
2109		}
2110	}
2111
2112	if (qtd)
2113		qh_update(fotg210, qh, qtd);
2114}
2115
2116static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2117
2118static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2119		struct usb_host_endpoint *ep)
2120{
2121	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2122	struct fotg210_qh *qh = ep->hcpriv;
2123	unsigned long flags;
2124
2125	spin_lock_irqsave(&fotg210->lock, flags);
2126	qh->clearing_tt = 0;
2127	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2128			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2129		qh_link_async(fotg210, qh);
2130	spin_unlock_irqrestore(&fotg210->lock, flags);
2131}
2132
2133static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2134		struct fotg210_qh *qh, struct urb *urb, u32 token)
2135{
2136
2137	/* If an async split transaction gets an error or is unlinked,
2138	 * the TT buffer may be left in an indeterminate state.  We
2139	 * have to clear the TT buffer.
2140	 *
2141	 * Note: this routine is never called for Isochronous transfers.
2142	 */
2143	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2144		struct usb_device *tt = urb->dev->tt->hub;
2145
2146		dev_dbg(&tt->dev,
2147				"clear tt buffer port %d, a%d ep%d t%08x\n",
2148				urb->dev->ttport, urb->dev->devnum,
2149				usb_pipeendpoint(urb->pipe), token);
2150
2151		if (urb->dev->tt->hub !=
2152				fotg210_to_hcd(fotg210)->self.root_hub) {
2153			if (usb_hub_clear_tt_buffer(urb) == 0)
2154				qh->clearing_tt = 1;
2155		}
2156	}
2157}
2158
2159static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2160		size_t length, u32 token)
2161{
2162	int status = -EINPROGRESS;
2163
2164	/* count IN/OUT bytes, not SETUP (even short packets) */
2165	if (likely(QTD_PID(token) != 2))
2166		urb->actual_length += length - QTD_LENGTH(token);
2167
2168	/* don't modify error codes */
2169	if (unlikely(urb->unlinked))
2170		return status;
2171
2172	/* force cleanup after short read; not always an error */
2173	if (unlikely(IS_SHORT_READ(token)))
2174		status = -EREMOTEIO;
2175
2176	/* serious "can't proceed" faults reported by the hardware */
2177	if (token & QTD_STS_HALT) {
2178		if (token & QTD_STS_BABBLE) {
2179			/* FIXME "must" disable babbling device's port too */
2180			status = -EOVERFLOW;
2181		/* CERR nonzero + halt --> stall */
2182		} else if (QTD_CERR(token)) {
2183			status = -EPIPE;
2184
2185		/* In theory, more than one of the following bits can be set
2186		 * since they are sticky and the transaction is retried.
2187		 * Which to test first is rather arbitrary.
2188		 */
2189		} else if (token & QTD_STS_MMF) {
2190			/* fs/ls interrupt xfer missed the complete-split */
2191			status = -EPROTO;
2192		} else if (token & QTD_STS_DBE) {
2193			status = (QTD_PID(token) == 1) /* IN ? */
2194				? -ENOSR  /* hc couldn't read data */
2195				: -ECOMM; /* hc couldn't write data */
2196		} else if (token & QTD_STS_XACT) {
2197			/* timeout, bad CRC, wrong PID, etc */
2198			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2199					urb->dev->devpath,
2200					usb_pipeendpoint(urb->pipe),
2201					usb_pipein(urb->pipe) ? "in" : "out");
2202			status = -EPROTO;
2203		} else {	/* unknown */
2204			status = -EPROTO;
2205		}
2206
2207		fotg210_dbg(fotg210,
2208				"dev%d ep%d%s qtd token %08x --> status %d\n",
2209				usb_pipedevice(urb->pipe),
2210				usb_pipeendpoint(urb->pipe),
2211				usb_pipein(urb->pipe) ? "in" : "out",
2212				token, status);
2213	}
2214
2215	return status;
2216}
2217
2218static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2219		int status)
2220__releases(fotg210->lock)
2221__acquires(fotg210->lock)
2222{
2223	if (likely(urb->hcpriv != NULL)) {
2224		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2225
2226		/* S-mask in a QH means it's an interrupt urb */
2227		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2228
2229			/* ... update hc-wide periodic stats (for usbfs) */
2230			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2231		}
2232	}
2233
2234	if (unlikely(urb->unlinked)) {
2235		COUNT(fotg210->stats.unlink);
2236	} else {
2237		/* report non-error and short read status as zero */
2238		if (status == -EINPROGRESS || status == -EREMOTEIO)
2239			status = 0;
2240		COUNT(fotg210->stats.complete);
2241	}
2242
2243#ifdef FOTG210_URB_TRACE
2244	fotg210_dbg(fotg210,
2245			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2246			__func__, urb->dev->devpath, urb,
2247			usb_pipeendpoint(urb->pipe),
2248			usb_pipein(urb->pipe) ? "in" : "out",
2249			status,
2250			urb->actual_length, urb->transfer_buffer_length);
2251#endif
2252
2253	/* complete() can reenter this HCD */
2254	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2255	spin_unlock(&fotg210->lock);
2256	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2257	spin_lock(&fotg210->lock);
2258}
2259
2260static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2261
2262/* Process and free completed qtds for a qh, returning URBs to drivers.
2263 * Chases up to qh->hw_current.  Returns number of completions called,
2264 * indicating how much "real" work we did.
2265 */
2266static unsigned qh_completions(struct fotg210_hcd *fotg210,
2267		struct fotg210_qh *qh)
2268{
2269	struct fotg210_qtd *last, *end = qh->dummy;
2270	struct list_head *entry, *tmp;
2271	int last_status;
2272	int stopped;
2273	unsigned count = 0;
2274	u8 state;
2275	struct fotg210_qh_hw *hw = qh->hw;
2276
2277	if (unlikely(list_empty(&qh->qtd_list)))
2278		return count;
2279
2280	/* completions (or tasks on other cpus) must never clobber HALT
2281	 * till we've gone through and cleaned everything up, even when
2282	 * they add urbs to this qh's queue or mark them for unlinking.
2283	 *
2284	 * NOTE:  unlinking expects to be done in queue order.
2285	 *
2286	 * It's a bug for qh->qh_state to be anything other than
2287	 * QH_STATE_IDLE, unless our caller is scan_async() or
2288	 * scan_intr().
2289	 */
2290	state = qh->qh_state;
2291	qh->qh_state = QH_STATE_COMPLETING;
2292	stopped = (state == QH_STATE_IDLE);
2293
2294rescan:
2295	last = NULL;
2296	last_status = -EINPROGRESS;
2297	qh->needs_rescan = 0;
2298
2299	/* remove de-activated QTDs from front of queue.
2300	 * after faults (including short reads), cleanup this urb
2301	 * then let the queue advance.
2302	 * if queue is stopped, handles unlinks.
2303	 */
2304	list_for_each_safe(entry, tmp, &qh->qtd_list) {
2305		struct fotg210_qtd *qtd;
2306		struct urb *urb;
2307		u32 token = 0;
2308
2309		qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2310		urb = qtd->urb;
2311
2312		/* clean up any state from previous QTD ...*/
2313		if (last) {
2314			if (likely(last->urb != urb)) {
2315				fotg210_urb_done(fotg210, last->urb,
2316						last_status);
2317				count++;
2318				last_status = -EINPROGRESS;
2319			}
2320			fotg210_qtd_free(fotg210, last);
2321			last = NULL;
2322		}
2323
2324		/* ignore urbs submitted during completions we reported */
2325		if (qtd == end)
2326			break;
2327
2328		/* hardware copies qtd out of qh overlay */
2329		rmb();
2330		token = hc32_to_cpu(fotg210, qtd->hw_token);
2331
2332		/* always clean up qtds the hc de-activated */
2333retry_xacterr:
2334		if ((token & QTD_STS_ACTIVE) == 0) {
2335
2336			/* Report Data Buffer Error: non-fatal but useful */
2337			if (token & QTD_STS_DBE)
2338				fotg210_dbg(fotg210,
2339					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2340					urb, usb_endpoint_num(&urb->ep->desc),
2341					usb_endpoint_dir_in(&urb->ep->desc)
2342						? "in" : "out",
2343					urb->transfer_buffer_length, qtd, qh);
2344
2345			/* on STALL, error, and short reads this urb must
2346			 * complete and all its qtds must be recycled.
2347			 */
2348			if ((token & QTD_STS_HALT) != 0) {
2349
2350				/* retry transaction errors until we
2351				 * reach the software xacterr limit
2352				 */
2353				if ((token & QTD_STS_XACT) &&
2354						QTD_CERR(token) == 0 &&
2355						++qh->xacterrs < QH_XACTERR_MAX &&
2356						!urb->unlinked) {
2357					fotg210_dbg(fotg210,
2358						"detected XactErr len %zu/%zu retry %d\n",
2359						qtd->length - QTD_LENGTH(token),
2360						qtd->length,
2361						qh->xacterrs);
2362
2363					/* reset the token in the qtd and the
2364					 * qh overlay (which still contains
2365					 * the qtd) so that we pick up from
2366					 * where we left off
2367					 */
2368					token &= ~QTD_STS_HALT;
2369					token |= QTD_STS_ACTIVE |
2370						 (FOTG210_TUNE_CERR << 10);
2371					qtd->hw_token = cpu_to_hc32(fotg210,
2372							token);
2373					wmb();
2374					hw->hw_token = cpu_to_hc32(fotg210,
2375							token);
2376					goto retry_xacterr;
2377				}
2378				stopped = 1;
2379
2380			/* magic dummy for some short reads; qh won't advance.
2381			 * that silicon quirk can kick in with this dummy too.
2382			 *
2383			 * other short reads won't stop the queue, including
2384			 * control transfers (status stage handles that) or
2385			 * most other single-qtd reads ... the queue stops if
2386			 * URB_SHORT_NOT_OK was set so the driver submitting
2387			 * the urbs could clean it up.
2388			 */
2389			} else if (IS_SHORT_READ(token) &&
2390					!(qtd->hw_alt_next &
2391					FOTG210_LIST_END(fotg210))) {
2392				stopped = 1;
2393			}
2394
2395		/* stop scanning when we reach qtds the hc is using */
2396		} else if (likely(!stopped
2397				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2398			break;
2399
2400		/* scan the whole queue for unlinks whenever it stops */
2401		} else {
2402			stopped = 1;
2403
2404			/* cancel everything if we halt, suspend, etc */
2405			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2406				last_status = -ESHUTDOWN;
2407
2408			/* this qtd is active; skip it unless a previous qtd
2409			 * for its urb faulted, or its urb was canceled.
2410			 */
2411			else if (last_status == -EINPROGRESS && !urb->unlinked)
2412				continue;
2413
2414			/* qh unlinked; token in overlay may be most current */
2415			if (state == QH_STATE_IDLE &&
2416					cpu_to_hc32(fotg210, qtd->qtd_dma)
2417					== hw->hw_current) {
2418				token = hc32_to_cpu(fotg210, hw->hw_token);
2419
2420				/* An unlink may leave an incomplete
2421				 * async transaction in the TT buffer.
2422				 * We have to clear it.
2423				 */
2424				fotg210_clear_tt_buffer(fotg210, qh, urb,
2425						token);
2426			}
2427		}
2428
2429		/* unless we already know the urb's status, collect qtd status
2430		 * and update count of bytes transferred.  in common short read
2431		 * cases with only one data qtd (including control transfers),
2432		 * queue processing won't halt.  but with two or more qtds (for
2433		 * example, with a 32 KB transfer), when the first qtd gets a
2434		 * short read the second must be removed by hand.
2435		 */
2436		if (last_status == -EINPROGRESS) {
2437			last_status = qtd_copy_status(fotg210, urb,
2438					qtd->length, token);
2439			if (last_status == -EREMOTEIO &&
2440					(qtd->hw_alt_next &
2441					FOTG210_LIST_END(fotg210)))
2442				last_status = -EINPROGRESS;
2443
2444			/* As part of low/full-speed endpoint-halt processing
2445			 * we must clear the TT buffer (11.17.5).
2446			 */
2447			if (unlikely(last_status != -EINPROGRESS &&
2448					last_status != -EREMOTEIO)) {
2449				/* The TT's in some hubs malfunction when they
2450				 * receive this request following a STALL (they
2451				 * stop sending isochronous packets).  Since a
2452				 * STALL can't leave the TT buffer in a busy
2453				 * state (if you believe Figures 11-48 - 11-51
2454				 * in the USB 2.0 spec), we won't clear the TT
2455				 * buffer in this case.  Strictly speaking this
2456				 * is a violation of the spec.
2457				 */
2458				if (last_status != -EPIPE)
2459					fotg210_clear_tt_buffer(fotg210, qh,
2460							urb, token);
2461			}
2462		}
2463
2464		/* if we're removing something not at the queue head,
2465		 * patch the hardware queue pointer.
2466		 */
2467		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2468			last = list_entry(qtd->qtd_list.prev,
2469					struct fotg210_qtd, qtd_list);
2470			last->hw_next = qtd->hw_next;
2471		}
2472
2473		/* remove qtd; it's recycled after possible urb completion */
2474		list_del(&qtd->qtd_list);
2475		last = qtd;
2476
2477		/* reinit the xacterr counter for the next qtd */
2478		qh->xacterrs = 0;
2479	}
2480
2481	/* last urb's completion might still need calling */
2482	if (likely(last != NULL)) {
2483		fotg210_urb_done(fotg210, last->urb, last_status);
2484		count++;
2485		fotg210_qtd_free(fotg210, last);
2486	}
2487
2488	/* Do we need to rescan for URBs dequeued during a giveback? */
2489	if (unlikely(qh->needs_rescan)) {
2490		/* If the QH is already unlinked, do the rescan now. */
2491		if (state == QH_STATE_IDLE)
2492			goto rescan;
2493
2494		/* Otherwise we have to wait until the QH is fully unlinked.
2495		 * Our caller will start an unlink if qh->needs_rescan is
2496		 * set.  But if an unlink has already started, nothing needs
2497		 * to be done.
2498		 */
2499		if (state != QH_STATE_LINKED)
2500			qh->needs_rescan = 0;
2501	}
2502
2503	/* restore original state; caller must unlink or relink */
2504	qh->qh_state = state;
2505
2506	/* be sure the hardware's done with the qh before refreshing
2507	 * it after fault cleanup, or recovering from silicon wrongly
2508	 * overlaying the dummy qtd (which reduces DMA chatter).
2509	 */
2510	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2511		switch (state) {
2512		case QH_STATE_IDLE:
2513			qh_refresh(fotg210, qh);
2514			break;
2515		case QH_STATE_LINKED:
2516			/* We won't refresh a QH that's linked (after the HC
2517			 * stopped the queue).  That avoids a race:
2518			 *  - HC reads first part of QH;
2519			 *  - CPU updates that first part and the token;
2520			 *  - HC reads rest of that QH, including token
2521			 * Result:  HC gets an inconsistent image, and then
2522			 * DMAs to/from the wrong memory (corrupting it).
2523			 *
2524			 * That should be rare for interrupt transfers,
2525			 * except maybe high bandwidth ...
2526			 */
2527
2528			/* Tell the caller to start an unlink */
2529			qh->needs_rescan = 1;
2530			break;
2531		/* otherwise, unlink already started */
2532		}
2533	}
2534
2535	return count;
2536}
2537
2538/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2539#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2540/* ... and packet size, for any kind of endpoint descriptor */
2541#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2542
2543/* reverse of qh_urb_transaction:  free a list of TDs.
2544 * used for cleanup after errors, before HC sees an URB's TDs.
2545 */
2546static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2547		struct list_head *qtd_list)
2548{
2549	struct list_head *entry, *temp;
2550
2551	list_for_each_safe(entry, temp, qtd_list) {
2552		struct fotg210_qtd *qtd;
2553
2554		qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2555		list_del(&qtd->qtd_list);
2556		fotg210_qtd_free(fotg210, qtd);
2557	}
2558}
2559
2560/* create a list of filled qtds for this URB; won't link into qh.
2561 */
2562static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2563		struct urb *urb, struct list_head *head, gfp_t flags)
2564{
2565	struct fotg210_qtd *qtd, *qtd_prev;
2566	dma_addr_t buf;
2567	int len, this_sg_len, maxpacket;
2568	int is_input;
2569	u32 token;
2570	int i;
2571	struct scatterlist *sg;
2572
2573	/*
2574	 * URBs map to sequences of QTDs:  one logical transaction
2575	 */
2576	qtd = fotg210_qtd_alloc(fotg210, flags);
2577	if (unlikely(!qtd))
2578		return NULL;
2579	list_add_tail(&qtd->qtd_list, head);
2580	qtd->urb = urb;
2581
2582	token = QTD_STS_ACTIVE;
2583	token |= (FOTG210_TUNE_CERR << 10);
2584	/* for split transactions, SplitXState initialized to zero */
2585
2586	len = urb->transfer_buffer_length;
2587	is_input = usb_pipein(urb->pipe);
2588	if (usb_pipecontrol(urb->pipe)) {
2589		/* SETUP pid */
2590		qtd_fill(fotg210, qtd, urb->setup_dma,
2591				sizeof(struct usb_ctrlrequest),
2592				token | (2 /* "setup" */ << 8), 8);
2593
2594		/* ... and always at least one more pid */
2595		token ^= QTD_TOGGLE;
2596		qtd_prev = qtd;
2597		qtd = fotg210_qtd_alloc(fotg210, flags);
2598		if (unlikely(!qtd))
2599			goto cleanup;
2600		qtd->urb = urb;
2601		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2602		list_add_tail(&qtd->qtd_list, head);
2603
2604		/* for zero length DATA stages, STATUS is always IN */
2605		if (len == 0)
2606			token |= (1 /* "in" */ << 8);
2607	}
2608
2609	/*
2610	 * data transfer stage:  buffer setup
2611	 */
2612	i = urb->num_mapped_sgs;
2613	if (len > 0 && i > 0) {
2614		sg = urb->sg;
2615		buf = sg_dma_address(sg);
2616
2617		/* urb->transfer_buffer_length may be smaller than the
2618		 * size of the scatterlist (or vice versa)
2619		 */
2620		this_sg_len = min_t(int, sg_dma_len(sg), len);
2621	} else {
2622		sg = NULL;
2623		buf = urb->transfer_dma;
2624		this_sg_len = len;
2625	}
2626
2627	if (is_input)
2628		token |= (1 /* "in" */ << 8);
2629	/* else it's already initted to "out" pid (0 << 8) */
2630
2631	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2632
2633	/*
2634	 * buffer gets wrapped in one or more qtds;
2635	 * last one may be "short" (including zero len)
2636	 * and may serve as a control status ack
2637	 */
2638	for (;;) {
2639		int this_qtd_len;
2640
2641		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2642				maxpacket);
2643		this_sg_len -= this_qtd_len;
2644		len -= this_qtd_len;
2645		buf += this_qtd_len;
2646
2647		/*
2648		 * short reads advance to a "magic" dummy instead of the next
2649		 * qtd ... that forces the queue to stop, for manual cleanup.
2650		 * (this will usually be overridden later.)
2651		 */
2652		if (is_input)
2653			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2654
2655		/* qh makes control packets use qtd toggle; maybe switch it */
2656		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2657			token ^= QTD_TOGGLE;
2658
2659		if (likely(this_sg_len <= 0)) {
2660			if (--i <= 0 || len <= 0)
2661				break;
2662			sg = sg_next(sg);
2663			buf = sg_dma_address(sg);
2664			this_sg_len = min_t(int, sg_dma_len(sg), len);
2665		}
2666
2667		qtd_prev = qtd;
2668		qtd = fotg210_qtd_alloc(fotg210, flags);
2669		if (unlikely(!qtd))
2670			goto cleanup;
2671		qtd->urb = urb;
2672		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2673		list_add_tail(&qtd->qtd_list, head);
2674	}
2675
2676	/*
2677	 * unless the caller requires manual cleanup after short reads,
2678	 * have the alt_next mechanism keep the queue running after the
2679	 * last data qtd (the only one, for control and most other cases).
2680	 */
2681	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2682			usb_pipecontrol(urb->pipe)))
2683		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2684
2685	/*
2686	 * control requests may need a terminating data "status" ack;
2687	 * other OUT ones may need a terminating short packet
2688	 * (zero length).
2689	 */
2690	if (likely(urb->transfer_buffer_length != 0)) {
2691		int one_more = 0;
2692
2693		if (usb_pipecontrol(urb->pipe)) {
2694			one_more = 1;
2695			token ^= 0x0100;	/* "in" <--> "out"  */
2696			token |= QTD_TOGGLE;	/* force DATA1 */
2697		} else if (usb_pipeout(urb->pipe)
2698				&& (urb->transfer_flags & URB_ZERO_PACKET)
2699				&& !(urb->transfer_buffer_length % maxpacket)) {
2700			one_more = 1;
2701		}
2702		if (one_more) {
2703			qtd_prev = qtd;
2704			qtd = fotg210_qtd_alloc(fotg210, flags);
2705			if (unlikely(!qtd))
2706				goto cleanup;
2707			qtd->urb = urb;
2708			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2709			list_add_tail(&qtd->qtd_list, head);
2710
2711			/* never any data in such packets */
2712			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2713		}
2714	}
2715
2716	/* by default, enable interrupt on urb completion */
2717	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2718		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2719	return head;
2720
2721cleanup:
2722	qtd_list_free(fotg210, urb, head);
2723	return NULL;
2724}
2725
2726/* Would be best to create all qh's from config descriptors,
2727 * when each interface/altsetting is established.  Unlink
2728 * any previous qh and cancel its urbs first; endpoints are
2729 * implicitly reset then (data toggle too).
2730 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2731*/
2732
2733
2734/* Each QH holds a qtd list; a QH is used for everything except iso.
2735 *
2736 * For interrupt urbs, the scheduler must set the microframe scheduling
2737 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2738 * just one microframe in the s-mask.  For split interrupt transactions
2739 * there are additional complications: c-mask, maybe FSTNs.
2740 */
2741static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2742		gfp_t flags)
2743{
2744	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2745	u32 info1 = 0, info2 = 0;
2746	int is_input, type;
2747	int maxp = 0;
2748	struct usb_tt *tt = urb->dev->tt;
2749	struct fotg210_qh_hw *hw;
2750
2751	if (!qh)
2752		return qh;
2753
2754	/*
2755	 * init endpoint/device data for this QH
2756	 */
2757	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2758	info1 |= usb_pipedevice(urb->pipe) << 0;
2759
2760	is_input = usb_pipein(urb->pipe);
2761	type = usb_pipetype(urb->pipe);
2762	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2763
2764	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2765	 * acts like up to 3KB, but is built from smaller packets.
2766	 */
2767	if (max_packet(maxp) > 1024) {
2768		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2769				max_packet(maxp));
2770		goto done;
2771	}
2772
2773	/* Compute interrupt scheduling parameters just once, and save.
2774	 * - allowing for high bandwidth, how many nsec/uframe are used?
2775	 * - split transactions need a second CSPLIT uframe; same question
2776	 * - splits also need a schedule gap (for full/low speed I/O)
2777	 * - qh has a polling interval
2778	 *
2779	 * For control/bulk requests, the HC or TT handles these.
2780	 */
2781	if (type == PIPE_INTERRUPT) {
2782		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2783				is_input, 0,
2784				hb_mult(maxp) * max_packet(maxp)));
2785		qh->start = NO_FRAME;
2786
2787		if (urb->dev->speed == USB_SPEED_HIGH) {
2788			qh->c_usecs = 0;
2789			qh->gap_uf = 0;
2790
2791			qh->period = urb->interval >> 3;
2792			if (qh->period == 0 && urb->interval != 1) {
2793				/* NOTE interval 2 or 4 uframes could work.
2794				 * But interval 1 scheduling is simpler, and
2795				 * includes high bandwidth.
2796				 */
2797				urb->interval = 1;
2798			} else if (qh->period > fotg210->periodic_size) {
2799				qh->period = fotg210->periodic_size;
2800				urb->interval = qh->period << 3;
2801			}
2802		} else {
2803			int think_time;
2804
2805			/* gap is f(FS/LS transfer times) */
2806			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2807					is_input, 0, maxp) / (125 * 1000);
2808
2809			/* FIXME this just approximates SPLIT/CSPLIT times */
2810			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2811				qh->c_usecs = qh->usecs + HS_USECS(0);
2812				qh->usecs = HS_USECS(1);
2813			} else {		/* SPLIT+DATA, gap, CSPLIT */
2814				qh->usecs += HS_USECS(1);
2815				qh->c_usecs = HS_USECS(0);
2816			}
2817
2818			think_time = tt ? tt->think_time : 0;
2819			qh->tt_usecs = NS_TO_US(think_time +
2820					usb_calc_bus_time(urb->dev->speed,
2821					is_input, 0, max_packet(maxp)));
2822			qh->period = urb->interval;
2823			if (qh->period > fotg210->periodic_size) {
2824				qh->period = fotg210->periodic_size;
2825				urb->interval = qh->period;
2826			}
2827		}
2828	}
2829
2830	/* support for tt scheduling, and access to toggles */
2831	qh->dev = urb->dev;
2832
2833	/* using TT? */
2834	switch (urb->dev->speed) {
2835	case USB_SPEED_LOW:
2836		info1 |= QH_LOW_SPEED;
2837		/* FALL THROUGH */
2838
2839	case USB_SPEED_FULL:
2840		/* EPS 0 means "full" */
2841		if (type != PIPE_INTERRUPT)
2842			info1 |= (FOTG210_TUNE_RL_TT << 28);
2843		if (type == PIPE_CONTROL) {
2844			info1 |= QH_CONTROL_EP;		/* for TT */
2845			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2846		}
2847		info1 |= maxp << 16;
2848
2849		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2850
2851		/* Some Freescale processors have an erratum in which the
2852		 * port number in the queue head was 0..N-1 instead of 1..N.
2853		 */
2854		if (fotg210_has_fsl_portno_bug(fotg210))
2855			info2 |= (urb->dev->ttport-1) << 23;
2856		else
2857			info2 |= urb->dev->ttport << 23;
2858
2859		/* set the address of the TT; for TDI's integrated
2860		 * root hub tt, leave it zeroed.
2861		 */
2862		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2863			info2 |= tt->hub->devnum << 16;
2864
2865		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2866
2867		break;
2868
2869	case USB_SPEED_HIGH:		/* no TT involved */
2870		info1 |= QH_HIGH_SPEED;
2871		if (type == PIPE_CONTROL) {
2872			info1 |= (FOTG210_TUNE_RL_HS << 28);
2873			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2874			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2875			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2876		} else if (type == PIPE_BULK) {
2877			info1 |= (FOTG210_TUNE_RL_HS << 28);
2878			/* The USB spec says that high speed bulk endpoints
2879			 * always use 512 byte maxpacket.  But some device
2880			 * vendors decided to ignore that, and MSFT is happy
2881			 * to help them do so.  So now people expect to use
2882			 * such nonconformant devices with Linux too; sigh.
2883			 */
2884			info1 |= max_packet(maxp) << 16;
2885			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2886		} else {		/* PIPE_INTERRUPT */
2887			info1 |= max_packet(maxp) << 16;
2888			info2 |= hb_mult(maxp) << 30;
2889		}
2890		break;
2891	default:
2892		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2893				urb->dev->speed);
2894done:
2895		qh_destroy(fotg210, qh);
2896		return NULL;
2897	}
2898
2899	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2900
2901	/* init as live, toggle clear, advance to dummy */
2902	qh->qh_state = QH_STATE_IDLE;
2903	hw = qh->hw;
2904	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2905	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2906	qh->is_out = !is_input;
2907	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2908	qh_refresh(fotg210, qh);
2909	return qh;
2910}
2911
2912static void enable_async(struct fotg210_hcd *fotg210)
2913{
2914	if (fotg210->async_count++)
2915		return;
2916
2917	/* Stop waiting to turn off the async schedule */
2918	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2919
2920	/* Don't start the schedule until ASS is 0 */
2921	fotg210_poll_ASS(fotg210);
2922	turn_on_io_watchdog(fotg210);
2923}
2924
2925static void disable_async(struct fotg210_hcd *fotg210)
2926{
2927	if (--fotg210->async_count)
2928		return;
2929
2930	/* The async schedule and async_unlink list are supposed to be empty */
2931	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2932
2933	/* Don't turn off the schedule until ASS is 1 */
2934	fotg210_poll_ASS(fotg210);
2935}
2936
2937/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2938
2939static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2940{
2941	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2942	struct fotg210_qh *head;
2943
2944	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2945	if (unlikely(qh->clearing_tt))
2946		return;
2947
2948	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2949
2950	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2951	qh_refresh(fotg210, qh);
2952
2953	/* splice right after start */
2954	head = fotg210->async;
2955	qh->qh_next = head->qh_next;
2956	qh->hw->hw_next = head->hw->hw_next;
2957	wmb();
2958
2959	head->qh_next.qh = qh;
2960	head->hw->hw_next = dma;
2961
2962	qh->xacterrs = 0;
2963	qh->qh_state = QH_STATE_LINKED;
2964	/* qtd completions reported later by interrupt */
2965
2966	enable_async(fotg210);
2967}
2968
2969/* For control/bulk/interrupt, return QH with these TDs appended.
2970 * Allocates and initializes the QH if necessary.
2971 * Returns null if it can't allocate a QH it needs to.
2972 * If the QH has TDs (urbs) already, that's great.
2973 */
2974static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2975		struct urb *urb, struct list_head *qtd_list,
2976		int epnum, void **ptr)
2977{
2978	struct fotg210_qh *qh = NULL;
2979	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2980
2981	qh = (struct fotg210_qh *) *ptr;
2982	if (unlikely(qh == NULL)) {
2983		/* can't sleep here, we have fotg210->lock... */
2984		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2985		*ptr = qh;
2986	}
2987	if (likely(qh != NULL)) {
2988		struct fotg210_qtd *qtd;
2989
2990		if (unlikely(list_empty(qtd_list)))
2991			qtd = NULL;
2992		else
2993			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2994					qtd_list);
2995
2996		/* control qh may need patching ... */
2997		if (unlikely(epnum == 0)) {
2998			/* usb_reset_device() briefly reverts to address 0 */
2999			if (usb_pipedevice(urb->pipe) == 0)
3000				qh->hw->hw_info1 &= ~qh_addr_mask;
3001		}
3002
3003		/* just one way to queue requests: swap with the dummy qtd.
3004		 * only hc or qh_refresh() ever modify the overlay.
3005		 */
3006		if (likely(qtd != NULL)) {
3007			struct fotg210_qtd *dummy;
3008			dma_addr_t dma;
3009			__hc32 token;
3010
3011			/* to avoid racing the HC, use the dummy td instead of
3012			 * the first td of our list (becomes new dummy).  both
3013			 * tds stay deactivated until we're done, when the
3014			 * HC is allowed to fetch the old dummy (4.10.2).
3015			 */
3016			token = qtd->hw_token;
3017			qtd->hw_token = HALT_BIT(fotg210);
3018
3019			dummy = qh->dummy;
3020
3021			dma = dummy->qtd_dma;
3022			*dummy = *qtd;
3023			dummy->qtd_dma = dma;
3024
3025			list_del(&qtd->qtd_list);
3026			list_add(&dummy->qtd_list, qtd_list);
3027			list_splice_tail(qtd_list, &qh->qtd_list);
3028
3029			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3030			qh->dummy = qtd;
3031
3032			/* hc must see the new dummy at list end */
3033			dma = qtd->qtd_dma;
3034			qtd = list_entry(qh->qtd_list.prev,
3035					struct fotg210_qtd, qtd_list);
3036			qtd->hw_next = QTD_NEXT(fotg210, dma);
3037
3038			/* let the hc process these next qtds */
3039			wmb();
3040			dummy->hw_token = token;
3041
3042			urb->hcpriv = qh;
3043		}
3044	}
3045	return qh;
3046}
3047
3048static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3049		struct list_head *qtd_list, gfp_t mem_flags)
3050{
3051	int epnum;
3052	unsigned long flags;
3053	struct fotg210_qh *qh = NULL;
3054	int rc;
3055
3056	epnum = urb->ep->desc.bEndpointAddress;
3057
3058#ifdef FOTG210_URB_TRACE
3059	{
3060		struct fotg210_qtd *qtd;
3061
3062		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3063		fotg210_dbg(fotg210,
3064				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3065				__func__, urb->dev->devpath, urb,
3066				epnum & 0x0f, (epnum & USB_DIR_IN)
3067					? "in" : "out",
3068				urb->transfer_buffer_length,
3069				qtd, urb->ep->hcpriv);
3070	}
3071#endif
3072
3073	spin_lock_irqsave(&fotg210->lock, flags);
3074	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3075		rc = -ESHUTDOWN;
3076		goto done;
3077	}
3078	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3079	if (unlikely(rc))
3080		goto done;
3081
3082	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3083	if (unlikely(qh == NULL)) {
3084		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3085		rc = -ENOMEM;
3086		goto done;
3087	}
3088
3089	/* Control/bulk operations through TTs don't need scheduling,
3090	 * the HC and TT handle it when the TT has a buffer ready.
3091	 */
3092	if (likely(qh->qh_state == QH_STATE_IDLE))
3093		qh_link_async(fotg210, qh);
3094done:
3095	spin_unlock_irqrestore(&fotg210->lock, flags);
3096	if (unlikely(qh == NULL))
3097		qtd_list_free(fotg210, urb, qtd_list);
3098	return rc;
3099}
3100
3101static void single_unlink_async(struct fotg210_hcd *fotg210,
3102		struct fotg210_qh *qh)
3103{
3104	struct fotg210_qh *prev;
3105
3106	/* Add to the end of the list of QHs waiting for the next IAAD */
3107	qh->qh_state = QH_STATE_UNLINK;
3108	if (fotg210->async_unlink)
3109		fotg210->async_unlink_last->unlink_next = qh;
3110	else
3111		fotg210->async_unlink = qh;
3112	fotg210->async_unlink_last = qh;
3113
3114	/* Unlink it from the schedule */
3115	prev = fotg210->async;
3116	while (prev->qh_next.qh != qh)
3117		prev = prev->qh_next.qh;
3118
3119	prev->hw->hw_next = qh->hw->hw_next;
3120	prev->qh_next = qh->qh_next;
3121	if (fotg210->qh_scan_next == qh)
3122		fotg210->qh_scan_next = qh->qh_next.qh;
3123}
3124
3125static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3126{
3127	/*
3128	 * Do nothing if an IAA cycle is already running or
3129	 * if one will be started shortly.
3130	 */
3131	if (fotg210->async_iaa || fotg210->async_unlinking)
3132		return;
3133
3134	/* Do all the waiting QHs at once */
3135	fotg210->async_iaa = fotg210->async_unlink;
3136	fotg210->async_unlink = NULL;
3137
3138	/* If the controller isn't running, we don't have to wait for it */
3139	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3140		if (!nested)		/* Avoid recursion */
3141			end_unlink_async(fotg210);
3142
3143	/* Otherwise start a new IAA cycle */
3144	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3145		/* Make sure the unlinks are all visible to the hardware */
3146		wmb();
3147
3148		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3149				&fotg210->regs->command);
3150		fotg210_readl(fotg210, &fotg210->regs->command);
3151		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3152				true);
3153	}
3154}
3155
3156/* the async qh for the qtds being unlinked are now gone from the HC */
3157
3158static void end_unlink_async(struct fotg210_hcd *fotg210)
3159{
3160	struct fotg210_qh *qh;
3161
3162	/* Process the idle QHs */
3163restart:
3164	fotg210->async_unlinking = true;
3165	while (fotg210->async_iaa) {
3166		qh = fotg210->async_iaa;
3167		fotg210->async_iaa = qh->unlink_next;
3168		qh->unlink_next = NULL;
3169
3170		qh->qh_state = QH_STATE_IDLE;
3171		qh->qh_next.qh = NULL;
3172
3173		qh_completions(fotg210, qh);
3174		if (!list_empty(&qh->qtd_list) &&
3175				fotg210->rh_state == FOTG210_RH_RUNNING)
3176			qh_link_async(fotg210, qh);
3177		disable_async(fotg210);
3178	}
3179	fotg210->async_unlinking = false;
3180
3181	/* Start a new IAA cycle if any QHs are waiting for it */
3182	if (fotg210->async_unlink) {
3183		start_iaa_cycle(fotg210, true);
3184		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3185			goto restart;
3186	}
3187}
3188
3189static void unlink_empty_async(struct fotg210_hcd *fotg210)
3190{
3191	struct fotg210_qh *qh, *next;
3192	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3193	bool check_unlinks_later = false;
3194
3195	/* Unlink all the async QHs that have been empty for a timer cycle */
3196	next = fotg210->async->qh_next.qh;
3197	while (next) {
3198		qh = next;
3199		next = qh->qh_next.qh;
3200
3201		if (list_empty(&qh->qtd_list) &&
3202				qh->qh_state == QH_STATE_LINKED) {
3203			if (!stopped && qh->unlink_cycle ==
3204					fotg210->async_unlink_cycle)
3205				check_unlinks_later = true;
3206			else
3207				single_unlink_async(fotg210, qh);
3208		}
3209	}
3210
3211	/* Start a new IAA cycle if any QHs are waiting for it */
3212	if (fotg210->async_unlink)
3213		start_iaa_cycle(fotg210, false);
3214
3215	/* QHs that haven't been empty for long enough will be handled later */
3216	if (check_unlinks_later) {
3217		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3218				true);
3219		++fotg210->async_unlink_cycle;
3220	}
3221}
3222
3223/* makes sure the async qh will become idle */
3224/* caller must own fotg210->lock */
3225
3226static void start_unlink_async(struct fotg210_hcd *fotg210,
3227		struct fotg210_qh *qh)
3228{
3229	/*
3230	 * If the QH isn't linked then there's nothing we can do
3231	 * unless we were called during a giveback, in which case
3232	 * qh_completions() has to deal with it.
3233	 */
3234	if (qh->qh_state != QH_STATE_LINKED) {
3235		if (qh->qh_state == QH_STATE_COMPLETING)
3236			qh->needs_rescan = 1;
3237		return;
3238	}
3239
3240	single_unlink_async(fotg210, qh);
3241	start_iaa_cycle(fotg210, false);
3242}
3243
3244static void scan_async(struct fotg210_hcd *fotg210)
3245{
3246	struct fotg210_qh *qh;
3247	bool check_unlinks_later = false;
3248
3249	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3250	while (fotg210->qh_scan_next) {
3251		qh = fotg210->qh_scan_next;
3252		fotg210->qh_scan_next = qh->qh_next.qh;
3253rescan:
3254		/* clean any finished work for this qh */
3255		if (!list_empty(&qh->qtd_list)) {
3256			int temp;
3257
3258			/*
3259			 * Unlinks could happen here; completion reporting
3260			 * drops the lock.  That's why fotg210->qh_scan_next
3261			 * always holds the next qh to scan; if the next qh
3262			 * gets unlinked then fotg210->qh_scan_next is adjusted
3263			 * in single_unlink_async().
3264			 */
3265			temp = qh_completions(fotg210, qh);
3266			if (qh->needs_rescan) {
3267				start_unlink_async(fotg210, qh);
3268			} else if (list_empty(&qh->qtd_list)
3269					&& qh->qh_state == QH_STATE_LINKED) {
3270				qh->unlink_cycle = fotg210->async_unlink_cycle;
3271				check_unlinks_later = true;
3272			} else if (temp != 0)
3273				goto rescan;
3274		}
3275	}
3276
3277	/*
3278	 * Unlink empty entries, reducing DMA usage as well
3279	 * as HCD schedule-scanning costs.  Delay for any qh
3280	 * we just scanned, there's a not-unusual case that it
3281	 * doesn't stay idle for long.
3282	 */
3283	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3284			!(fotg210->enabled_hrtimer_events &
3285			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3286		fotg210_enable_event(fotg210,
3287				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3288		++fotg210->async_unlink_cycle;
3289	}
3290}
3291/* EHCI scheduled transaction support:  interrupt, iso, split iso
3292 * These are called "periodic" transactions in the EHCI spec.
3293 *
3294 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3295 * with the "asynchronous" transaction support (control/bulk transfers).
3296 * The only real difference is in how interrupt transfers are scheduled.
3297 *
3298 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3299 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3300 * pre-calculated schedule data to make appending to the queue be quick.
3301 */
3302static int fotg210_get_frame(struct usb_hcd *hcd);
3303
3304/* periodic_next_shadow - return "next" pointer on shadow list
3305 * @periodic: host pointer to qh/itd
3306 * @tag: hardware tag for type of this record
3307 */
3308static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3309		union fotg210_shadow *periodic, __hc32 tag)
3310{
3311	switch (hc32_to_cpu(fotg210, tag)) {
3312	case Q_TYPE_QH:
3313		return &periodic->qh->qh_next;
3314	case Q_TYPE_FSTN:
3315		return &periodic->fstn->fstn_next;
3316	default:
3317		return &periodic->itd->itd_next;
3318	}
3319}
3320
3321static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3322		union fotg210_shadow *periodic, __hc32 tag)
3323{
3324	switch (hc32_to_cpu(fotg210, tag)) {
3325	/* our fotg210_shadow.qh is actually software part */
3326	case Q_TYPE_QH:
3327		return &periodic->qh->hw->hw_next;
3328	/* others are hw parts */
3329	default:
3330		return periodic->hw_next;
3331	}
3332}
3333
3334/* caller must hold fotg210->lock */
3335static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3336		void *ptr)
3337{
3338	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3339	__hc32 *hw_p = &fotg210->periodic[frame];
3340	union fotg210_shadow here = *prev_p;
3341
3342	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3343	while (here.ptr && here.ptr != ptr) {
3344		prev_p = periodic_next_shadow(fotg210, prev_p,
3345				Q_NEXT_TYPE(fotg210, *hw_p));
3346		hw_p = shadow_next_periodic(fotg210, &here,
3347				Q_NEXT_TYPE(fotg210, *hw_p));
3348		here = *prev_p;
3349	}
3350	/* an interrupt entry (at list end) could have been shared */
3351	if (!here.ptr)
3352		return;
3353
3354	/* update shadow and hardware lists ... the old "next" pointers
3355	 * from ptr may still be in use, the caller updates them.
3356	 */
3357	*prev_p = *periodic_next_shadow(fotg210, &here,
3358			Q_NEXT_TYPE(fotg210, *hw_p));
3359
3360	*hw_p = *shadow_next_periodic(fotg210, &here,
3361			Q_NEXT_TYPE(fotg210, *hw_p));
3362}
3363
3364/* how many of the uframe's 125 usecs are allocated? */
3365static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3366		unsigned frame, unsigned uframe)
3367{
3368	__hc32 *hw_p = &fotg210->periodic[frame];
3369	union fotg210_shadow *q = &fotg210->pshadow[frame];
3370	unsigned usecs = 0;
3371	struct fotg210_qh_hw *hw;
3372
3373	while (q->ptr) {
3374		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3375		case Q_TYPE_QH:
3376			hw = q->qh->hw;
3377			/* is it in the S-mask? */
3378			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3379				usecs += q->qh->usecs;
3380			/* ... or C-mask? */
3381			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3382					1 << (8 + uframe)))
3383				usecs += q->qh->c_usecs;
3384			hw_p = &hw->hw_next;
3385			q = &q->qh->qh_next;
3386			break;
3387		/* case Q_TYPE_FSTN: */
3388		default:
3389			/* for "save place" FSTNs, count the relevant INTR
3390			 * bandwidth from the previous frame
3391			 */
3392			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3393				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3394
3395			hw_p = &q->fstn->hw_next;
3396			q = &q->fstn->fstn_next;
3397			break;
3398		case Q_TYPE_ITD:
3399			if (q->itd->hw_transaction[uframe])
3400				usecs += q->itd->stream->usecs;
3401			hw_p = &q->itd->hw_next;
3402			q = &q->itd->itd_next;
3403			break;
3404		}
3405	}
3406	if (usecs > fotg210->uframe_periodic_max)
3407		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3408				frame * 8 + uframe, usecs);
3409	return usecs;
3410}
3411
3412static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3413{
3414	if (!dev1->tt || !dev2->tt)
3415		return 0;
3416	if (dev1->tt != dev2->tt)
3417		return 0;
3418	if (dev1->tt->multi)
3419		return dev1->ttport == dev2->ttport;
3420	else
3421		return 1;
3422}
3423
3424/* return true iff the device's transaction translator is available
3425 * for a periodic transfer starting at the specified frame, using
3426 * all the uframes in the mask.
3427 */
3428static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3429		struct usb_device *dev, unsigned frame, u32 uf_mask)
3430{
3431	if (period == 0)	/* error */
3432		return 0;
3433
3434	/* note bandwidth wastage:  split never follows csplit
3435	 * (different dev or endpoint) until the next uframe.
3436	 * calling convention doesn't make that distinction.
3437	 */
3438	for (; frame < fotg210->periodic_size; frame += period) {
3439		union fotg210_shadow here;
3440		__hc32 type;
3441		struct fotg210_qh_hw *hw;
3442
3443		here = fotg210->pshadow[frame];
3444		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3445		while (here.ptr) {
3446			switch (hc32_to_cpu(fotg210, type)) {
3447			case Q_TYPE_ITD:
3448				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3449				here = here.itd->itd_next;
3450				continue;
3451			case Q_TYPE_QH:
3452				hw = here.qh->hw;
3453				if (same_tt(dev, here.qh->dev)) {
3454					u32 mask;
3455
3456					mask = hc32_to_cpu(fotg210,
3457							hw->hw_info2);
3458					/* "knows" no gap is needed */
3459					mask |= mask >> 8;
3460					if (mask & uf_mask)
3461						break;
3462				}
3463				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3464				here = here.qh->qh_next;
3465				continue;
3466			/* case Q_TYPE_FSTN: */
3467			default:
3468				fotg210_dbg(fotg210,
3469						"periodic frame %d bogus type %d\n",
3470						frame, type);
3471			}
3472
3473			/* collision or error */
3474			return 0;
3475		}
3476	}
3477
3478	/* no collision */
3479	return 1;
3480}
3481
3482static void enable_periodic(struct fotg210_hcd *fotg210)
3483{
3484	if (fotg210->periodic_count++)
3485		return;
3486
3487	/* Stop waiting to turn off the periodic schedule */
3488	fotg210->enabled_hrtimer_events &=
3489		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3490
3491	/* Don't start the schedule until PSS is 0 */
3492	fotg210_poll_PSS(fotg210);
3493	turn_on_io_watchdog(fotg210);
3494}
3495
3496static void disable_periodic(struct fotg210_hcd *fotg210)
3497{
3498	if (--fotg210->periodic_count)
3499		return;
3500
3501	/* Don't turn off the schedule until PSS is 1 */
3502	fotg210_poll_PSS(fotg210);
3503}
3504
3505/* periodic schedule slots have iso tds (normal or split) first, then a
3506 * sparse tree for active interrupt transfers.
3507 *
3508 * this just links in a qh; caller guarantees uframe masks are set right.
3509 * no FSTN support (yet; fotg210 0.96+)
3510 */
3511static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3512{
3513	unsigned i;
3514	unsigned period = qh->period;
3515
3516	dev_dbg(&qh->dev->dev,
3517			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3518			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3519			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3520			qh->c_usecs);
3521
3522	/* high bandwidth, or otherwise every microframe */
3523	if (period == 0)
3524		period = 1;
3525
3526	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3527		union fotg210_shadow *prev = &fotg210->pshadow[i];
3528		__hc32 *hw_p = &fotg210->periodic[i];
3529		union fotg210_shadow here = *prev;
3530		__hc32 type = 0;
3531
3532		/* skip the iso nodes at list head */
3533		while (here.ptr) {
3534			type = Q_NEXT_TYPE(fotg210, *hw_p);
3535			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3536				break;
3537			prev = periodic_next_shadow(fotg210, prev, type);
3538			hw_p = shadow_next_periodic(fotg210, &here, type);
3539			here = *prev;
3540		}
3541
3542		/* sorting each branch by period (slow-->fast)
3543		 * enables sharing interior tree nodes
3544		 */
3545		while (here.ptr && qh != here.qh) {
3546			if (qh->period > here.qh->period)
3547				break;
3548			prev = &here.qh->qh_next;
3549			hw_p = &here.qh->hw->hw_next;
3550			here = *prev;
3551		}
3552		/* link in this qh, unless some earlier pass did that */
3553		if (qh != here.qh) {
3554			qh->qh_next = here;
3555			if (here.qh)
3556				qh->hw->hw_next = *hw_p;
3557			wmb();
3558			prev->qh = qh;
3559			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3560		}
3561	}
3562	qh->qh_state = QH_STATE_LINKED;
3563	qh->xacterrs = 0;
3564
3565	/* update per-qh bandwidth for usbfs */
3566	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3567		? ((qh->usecs + qh->c_usecs) / qh->period)
3568		: (qh->usecs * 8);
3569
3570	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3571
3572	/* maybe enable periodic schedule processing */
3573	++fotg210->intr_count;
3574	enable_periodic(fotg210);
3575}
3576
3577static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3578		struct fotg210_qh *qh)
3579{
3580	unsigned i;
3581	unsigned period;
3582
3583	/*
3584	 * If qh is for a low/full-speed device, simply unlinking it
3585	 * could interfere with an ongoing split transaction.  To unlink
3586	 * it safely would require setting the QH_INACTIVATE bit and
3587	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3588	 *
3589	 * We won't bother with any of this.  Instead, we assume that the
3590	 * only reason for unlinking an interrupt QH while the current URB
3591	 * is still active is to dequeue all the URBs (flush the whole
3592	 * endpoint queue).
3593	 *
3594	 * If rebalancing the periodic schedule is ever implemented, this
3595	 * approach will no longer be valid.
3596	 */
3597
3598	/* high bandwidth, or otherwise part of every microframe */
3599	period = qh->period;
3600	if (!period)
3601		period = 1;
3602
3603	for (i = qh->start; i < fotg210->periodic_size; i += period)
3604		periodic_unlink(fotg210, i, qh);
3605
3606	/* update per-qh bandwidth for usbfs */
3607	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3608		? ((qh->usecs + qh->c_usecs) / qh->period)
3609		: (qh->usecs * 8);
3610
3611	dev_dbg(&qh->dev->dev,
3612			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3613			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3614			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3615			qh->c_usecs);
3616
3617	/* qh->qh_next still "live" to HC */
3618	qh->qh_state = QH_STATE_UNLINK;
3619	qh->qh_next.ptr = NULL;
3620
3621	if (fotg210->qh_scan_next == qh)
3622		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3623				struct fotg210_qh, intr_node);
3624	list_del(&qh->intr_node);
3625}
3626
3627static void start_unlink_intr(struct fotg210_hcd *fotg210,
3628		struct fotg210_qh *qh)
3629{
3630	/* If the QH isn't linked then there's nothing we can do
3631	 * unless we were called during a giveback, in which case
3632	 * qh_completions() has to deal with it.
3633	 */
3634	if (qh->qh_state != QH_STATE_LINKED) {
3635		if (qh->qh_state == QH_STATE_COMPLETING)
3636			qh->needs_rescan = 1;
3637		return;
3638	}
3639
3640	qh_unlink_periodic(fotg210, qh);
3641
3642	/* Make sure the unlinks are visible before starting the timer */
3643	wmb();
3644
3645	/*
3646	 * The EHCI spec doesn't say how long it takes the controller to
3647	 * stop accessing an unlinked interrupt QH.  The timer delay is
3648	 * 9 uframes; presumably that will be long enough.
3649	 */
3650	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3651
3652	/* New entries go at the end of the intr_unlink list */
3653	if (fotg210->intr_unlink)
3654		fotg210->intr_unlink_last->unlink_next = qh;
3655	else
3656		fotg210->intr_unlink = qh;
3657	fotg210->intr_unlink_last = qh;
3658
3659	if (fotg210->intr_unlinking)
3660		;	/* Avoid recursive calls */
3661	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3662		fotg210_handle_intr_unlinks(fotg210);
3663	else if (fotg210->intr_unlink == qh) {
3664		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3665				true);
3666		++fotg210->intr_unlink_cycle;
3667	}
3668}
3669
3670static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3671{
3672	struct fotg210_qh_hw *hw = qh->hw;
3673	int rc;
3674
3675	qh->qh_state = QH_STATE_IDLE;
3676	hw->hw_next = FOTG210_LIST_END(fotg210);
3677
3678	qh_completions(fotg210, qh);
3679
3680	/* reschedule QH iff another request is queued */
3681	if (!list_empty(&qh->qtd_list) &&
3682			fotg210->rh_state == FOTG210_RH_RUNNING) {
3683		rc = qh_schedule(fotg210, qh);
3684
3685		/* An error here likely indicates handshake failure
3686		 * or no space left in the schedule.  Neither fault
3687		 * should happen often ...
3688		 *
3689		 * FIXME kill the now-dysfunctional queued urbs
3690		 */
3691		if (rc != 0)
3692			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3693					qh, rc);
3694	}
3695
3696	/* maybe turn off periodic schedule */
3697	--fotg210->intr_count;
3698	disable_periodic(fotg210);
3699}
3700
3701static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3702		unsigned uframe, unsigned period, unsigned usecs)
3703{
3704	int claimed;
3705
3706	/* complete split running into next frame?
3707	 * given FSTN support, we could sometimes check...
3708	 */
3709	if (uframe >= 8)
3710		return 0;
3711
3712	/* convert "usecs we need" to "max already claimed" */
3713	usecs = fotg210->uframe_periodic_max - usecs;
3714
3715	/* we "know" 2 and 4 uframe intervals were rejected; so
3716	 * for period 0, check _every_ microframe in the schedule.
3717	 */
3718	if (unlikely(period == 0)) {
3719		do {
3720			for (uframe = 0; uframe < 7; uframe++) {
3721				claimed = periodic_usecs(fotg210, frame,
3722						uframe);
3723				if (claimed > usecs)
3724					return 0;
3725			}
3726		} while ((frame += 1) < fotg210->periodic_size);
3727
3728	/* just check the specified uframe, at that period */
3729	} else {
3730		do {
3731			claimed = periodic_usecs(fotg210, frame, uframe);
3732			if (claimed > usecs)
3733				return 0;
3734		} while ((frame += period) < fotg210->periodic_size);
3735	}
3736
3737	/* success! */
3738	return 1;
3739}
3740
3741static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3742		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3743{
3744	int retval = -ENOSPC;
3745	u8 mask = 0;
3746
3747	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3748		goto done;
3749
3750	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3751		goto done;
3752	if (!qh->c_usecs) {
3753		retval = 0;
3754		*c_maskp = 0;
3755		goto done;
3756	}
3757
3758	/* Make sure this tt's buffer is also available for CSPLITs.
3759	 * We pessimize a bit; probably the typical full speed case
3760	 * doesn't need the second CSPLIT.
3761	 *
3762	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3763	 * one smart pass...
3764	 */
3765	mask = 0x03 << (uframe + qh->gap_uf);
3766	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3767
3768	mask |= 1 << uframe;
3769	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3770		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3771				qh->period, qh->c_usecs))
3772			goto done;
3773		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3774				qh->period, qh->c_usecs))
3775			goto done;
3776		retval = 0;
3777	}
3778done:
3779	return retval;
3780}
3781
3782/* "first fit" scheduling policy used the first time through,
3783 * or when the previous schedule slot can't be re-used.
3784 */
3785static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3786{
3787	int status;
3788	unsigned uframe;
3789	__hc32 c_mask;
3790	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3791	struct fotg210_qh_hw *hw = qh->hw;
3792
3793	qh_refresh(fotg210, qh);
3794	hw->hw_next = FOTG210_LIST_END(fotg210);
3795	frame = qh->start;
3796
3797	/* reuse the previous schedule slots, if we can */
3798	if (frame < qh->period) {
3799		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3800		status = check_intr_schedule(fotg210, frame, --uframe,
3801				qh, &c_mask);
3802	} else {
3803		uframe = 0;
3804		c_mask = 0;
3805		status = -ENOSPC;
3806	}
3807
3808	/* else scan the schedule to find a group of slots such that all
3809	 * uframes have enough periodic bandwidth available.
3810	 */
3811	if (status) {
3812		/* "normal" case, uframing flexible except with splits */
3813		if (qh->period) {
3814			int i;
3815
3816			for (i = qh->period; status && i > 0; --i) {
3817				frame = ++fotg210->random_frame % qh->period;
3818				for (uframe = 0; uframe < 8; uframe++) {
3819					status = check_intr_schedule(fotg210,
3820							frame, uframe, qh,
3821							&c_mask);
3822					if (status == 0)
3823						break;
3824				}
3825			}
3826
3827		/* qh->period == 0 means every uframe */
3828		} else {
3829			frame = 0;
3830			status = check_intr_schedule(fotg210, 0, 0, qh,
3831					&c_mask);
3832		}
3833		if (status)
3834			goto done;
3835		qh->start = frame;
3836
3837		/* reset S-frame and (maybe) C-frame masks */
3838		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3839		hw->hw_info2 |= qh->period
3840			? cpu_to_hc32(fotg210, 1 << uframe)
3841			: cpu_to_hc32(fotg210, QH_SMASK);
3842		hw->hw_info2 |= c_mask;
3843	} else
3844		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3845
3846	/* stuff into the periodic schedule */
3847	qh_link_periodic(fotg210, qh);
3848done:
3849	return status;
3850}
3851
3852static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3853		struct list_head *qtd_list, gfp_t mem_flags)
3854{
3855	unsigned epnum;
3856	unsigned long flags;
3857	struct fotg210_qh *qh;
3858	int status;
3859	struct list_head empty;
3860
3861	/* get endpoint and transfer/schedule data */
3862	epnum = urb->ep->desc.bEndpointAddress;
3863
3864	spin_lock_irqsave(&fotg210->lock, flags);
3865
3866	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3867		status = -ESHUTDOWN;
3868		goto done_not_linked;
3869	}
3870	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3871	if (unlikely(status))
3872		goto done_not_linked;
3873
3874	/* get qh and force any scheduling errors */
3875	INIT_LIST_HEAD(&empty);
3876	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3877	if (qh == NULL) {
3878		status = -ENOMEM;
3879		goto done;
3880	}
3881	if (qh->qh_state == QH_STATE_IDLE) {
3882		status = qh_schedule(fotg210, qh);
3883		if (status)
3884			goto done;
3885	}
3886
3887	/* then queue the urb's tds to the qh */
3888	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3889	BUG_ON(qh == NULL);
3890
3891	/* ... update usbfs periodic stats */
3892	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3893
3894done:
3895	if (unlikely(status))
3896		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3897done_not_linked:
3898	spin_unlock_irqrestore(&fotg210->lock, flags);
3899	if (status)
3900		qtd_list_free(fotg210, urb, qtd_list);
3901
3902	return status;
3903}
3904
3905static void scan_intr(struct fotg210_hcd *fotg210)
3906{
3907	struct fotg210_qh *qh;
3908
3909	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3910			&fotg210->intr_qh_list, intr_node) {
3911rescan:
3912		/* clean any finished work for this qh */
3913		if (!list_empty(&qh->qtd_list)) {
3914			int temp;
3915
3916			/*
3917			 * Unlinks could happen here; completion reporting
3918			 * drops the lock.  That's why fotg210->qh_scan_next
3919			 * always holds the next qh to scan; if the next qh
3920			 * gets unlinked then fotg210->qh_scan_next is adjusted
3921			 * in qh_unlink_periodic().
3922			 */
3923			temp = qh_completions(fotg210, qh);
3924			if (unlikely(qh->needs_rescan ||
3925					(list_empty(&qh->qtd_list) &&
3926					qh->qh_state == QH_STATE_LINKED)))
3927				start_unlink_intr(fotg210, qh);
3928			else if (temp != 0)
3929				goto rescan;
3930		}
3931	}
3932}
3933
3934/* fotg210_iso_stream ops work with both ITD and SITD */
3935
3936static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3937{
3938	struct fotg210_iso_stream *stream;
3939
3940	stream = kzalloc(sizeof(*stream), mem_flags);
3941	if (likely(stream != NULL)) {
3942		INIT_LIST_HEAD(&stream->td_list);
3943		INIT_LIST_HEAD(&stream->free_list);
3944		stream->next_uframe = -1;
3945	}
3946	return stream;
3947}
3948
3949static void iso_stream_init(struct fotg210_hcd *fotg210,
3950		struct fotg210_iso_stream *stream, struct usb_device *dev,
3951		int pipe, unsigned interval)
3952{
3953	u32 buf1;
3954	unsigned epnum, maxp;
3955	int is_input;
3956	long bandwidth;
3957	unsigned multi;
3958
3959	/*
3960	 * this might be a "high bandwidth" highspeed endpoint,
3961	 * as encoded in the ep descriptor's wMaxPacket field
3962	 */
3963	epnum = usb_pipeendpoint(pipe);
3964	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3965	maxp = usb_maxpacket(dev, pipe, !is_input);
3966	if (is_input)
3967		buf1 = (1 << 11);
3968	else
3969		buf1 = 0;
3970
3971	maxp = max_packet(maxp);
3972	multi = hb_mult(maxp);
3973	buf1 |= maxp;
3974	maxp *= multi;
3975
3976	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3977	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3978	stream->buf2 = cpu_to_hc32(fotg210, multi);
3979
3980	/* usbfs wants to report the average usecs per frame tied up
3981	 * when transfers on this endpoint are scheduled ...
3982	 */
3983	if (dev->speed == USB_SPEED_FULL) {
3984		interval <<= 3;
3985		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3986				is_input, 1, maxp));
3987		stream->usecs /= 8;
3988	} else {
3989		stream->highspeed = 1;
3990		stream->usecs = HS_USECS_ISO(maxp);
3991	}
3992	bandwidth = stream->usecs * 8;
3993	bandwidth /= interval;
3994
3995	stream->bandwidth = bandwidth;
3996	stream->udev = dev;
3997	stream->bEndpointAddress = is_input | epnum;
3998	stream->interval = interval;
3999	stream->maxp = maxp;
4000}
4001
4002static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
4003		struct urb *urb)
4004{
4005	unsigned epnum;
4006	struct fotg210_iso_stream *stream;
4007	struct usb_host_endpoint *ep;
4008	unsigned long flags;
4009
4010	epnum = usb_pipeendpoint(urb->pipe);
4011	if (usb_pipein(urb->pipe))
4012		ep = urb->dev->ep_in[epnum];
4013	else
4014		ep = urb->dev->ep_out[epnum];
4015
4016	spin_lock_irqsave(&fotg210->lock, flags);
4017	stream = ep->hcpriv;
4018
4019	if (unlikely(stream == NULL)) {
4020		stream = iso_stream_alloc(GFP_ATOMIC);
4021		if (likely(stream != NULL)) {
4022			ep->hcpriv = stream;
4023			stream->ep = ep;
4024			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4025					urb->interval);
4026		}
4027
4028	/* if dev->ep[epnum] is a QH, hw is set */
4029	} else if (unlikely(stream->hw != NULL)) {
4030		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4031				urb->dev->devpath, epnum,
4032				usb_pipein(urb->pipe) ? "in" : "out");
4033		stream = NULL;
4034	}
4035
4036	spin_unlock_irqrestore(&fotg210->lock, flags);
4037	return stream;
4038}
4039
4040/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4041
4042static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4043		gfp_t mem_flags)
4044{
4045	struct fotg210_iso_sched *iso_sched;
4046	int size = sizeof(*iso_sched);
4047
4048	size += packets * sizeof(struct fotg210_iso_packet);
4049	iso_sched = kzalloc(size, mem_flags);
4050	if (likely(iso_sched != NULL))
4051		INIT_LIST_HEAD(&iso_sched->td_list);
4052
4053	return iso_sched;
4054}
4055
4056static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4057		struct fotg210_iso_sched *iso_sched,
4058		struct fotg210_iso_stream *stream, struct urb *urb)
4059{
4060	unsigned i;
4061	dma_addr_t dma = urb->transfer_dma;
4062
4063	/* how many uframes are needed for these transfers */
4064	iso_sched->span = urb->number_of_packets * stream->interval;
4065
4066	/* figure out per-uframe itd fields that we'll need later
4067	 * when we fit new itds into the schedule.
4068	 */
4069	for (i = 0; i < urb->number_of_packets; i++) {
4070		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4071		unsigned length;
4072		dma_addr_t buf;
4073		u32 trans;
4074
4075		length = urb->iso_frame_desc[i].length;
4076		buf = dma + urb->iso_frame_desc[i].offset;
4077
4078		trans = FOTG210_ISOC_ACTIVE;
4079		trans |= buf & 0x0fff;
4080		if (unlikely(((i + 1) == urb->number_of_packets))
4081				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4082			trans |= FOTG210_ITD_IOC;
4083		trans |= length << 16;
4084		uframe->transaction = cpu_to_hc32(fotg210, trans);
4085
4086		/* might need to cross a buffer page within a uframe */
4087		uframe->bufp = (buf & ~(u64)0x0fff);
4088		buf += length;
4089		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4090			uframe->cross = 1;
4091	}
4092}
4093
4094static void iso_sched_free(struct fotg210_iso_stream *stream,
4095		struct fotg210_iso_sched *iso_sched)
4096{
4097	if (!iso_sched)
4098		return;
4099	/* caller must hold fotg210->lock!*/
4100	list_splice(&iso_sched->td_list, &stream->free_list);
4101	kfree(iso_sched);
4102}
4103
4104static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4105		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4106{
4107	struct fotg210_itd *itd;
4108	dma_addr_t itd_dma;
4109	int i;
4110	unsigned num_itds;
4111	struct fotg210_iso_sched *sched;
4112	unsigned long flags;
4113
4114	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4115	if (unlikely(sched == NULL))
4116		return -ENOMEM;
4117
4118	itd_sched_init(fotg210, sched, stream, urb);
4119
4120	if (urb->interval < 8)
4121		num_itds = 1 + (sched->span + 7) / 8;
4122	else
4123		num_itds = urb->number_of_packets;
4124
4125	/* allocate/init ITDs */
4126	spin_lock_irqsave(&fotg210->lock, flags);
4127	for (i = 0; i < num_itds; i++) {
4128
4129		/*
4130		 * Use iTDs from the free list, but not iTDs that may
4131		 * still be in use by the hardware.
4132		 */
4133		if (likely(!list_empty(&stream->free_list))) {
4134			itd = list_first_entry(&stream->free_list,
4135					struct fotg210_itd, itd_list);
4136			if (itd->frame == fotg210->now_frame)
4137				goto alloc_itd;
4138			list_del(&itd->itd_list);
4139			itd_dma = itd->itd_dma;
4140		} else {
4141alloc_itd:
4142			spin_unlock_irqrestore(&fotg210->lock, flags);
4143			itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4144					&itd_dma);
4145			spin_lock_irqsave(&fotg210->lock, flags);
4146			if (!itd) {
4147				iso_sched_free(stream, sched);
4148				spin_unlock_irqrestore(&fotg210->lock, flags);
4149				return -ENOMEM;
4150			}
4151		}
4152
4153		memset(itd, 0, sizeof(*itd));
4154		itd->itd_dma = itd_dma;
4155		list_add(&itd->itd_list, &sched->td_list);
4156	}
4157	spin_unlock_irqrestore(&fotg210->lock, flags);
4158
4159	/* temporarily store schedule info in hcpriv */
4160	urb->hcpriv = sched;
4161	urb->error_count = 0;
4162	return 0;
4163}
4164
4165static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4166		u8 usecs, u32 period)
4167{
4168	uframe %= period;
4169	do {
4170		/* can't commit more than uframe_periodic_max usec */
4171		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4172				> (fotg210->uframe_periodic_max - usecs))
4173			return 0;
4174
4175		/* we know urb->interval is 2^N uframes */
4176		uframe += period;
4177	} while (uframe < mod);
4178	return 1;
4179}
4180
4181/* This scheduler plans almost as far into the future as it has actual
4182 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4183 * "as small as possible" to be cache-friendlier.)  That limits the size
4184 * transfers you can stream reliably; avoid more than 64 msec per urb.
4185 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4186 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4187 * and other factors); or more than about 230 msec total (for portability,
4188 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4189 */
4190
4191#define SCHEDULE_SLOP 80 /* microframes */
4192
4193static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4194		struct fotg210_iso_stream *stream)
4195{
4196	u32 now, next, start, period, span;
4197	int status;
4198	unsigned mod = fotg210->periodic_size << 3;
4199	struct fotg210_iso_sched *sched = urb->hcpriv;
4200
4201	period = urb->interval;
4202	span = sched->span;
4203
4204	if (span > mod - SCHEDULE_SLOP) {
4205		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4206		status = -EFBIG;
4207		goto fail;
4208	}
4209
4210	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4211
4212	/* Typical case: reuse current schedule, stream is still active.
4213	 * Hopefully there are no gaps from the host falling behind
4214	 * (irq delays etc), but if there are we'll take the next
4215	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4216	 */
4217	if (likely(!list_empty(&stream->td_list))) {
4218		u32 excess;
4219
4220		/* For high speed devices, allow scheduling within the
4221		 * isochronous scheduling threshold.  For full speed devices
4222		 * and Intel PCI-based controllers, don't (work around for
4223		 * Intel ICH9 bug).
4224		 */
4225		if (!stream->highspeed && fotg210->fs_i_thresh)
4226			next = now + fotg210->i_thresh;
4227		else
4228			next = now;
4229
4230		/* Fell behind (by up to twice the slop amount)?
4231		 * We decide based on the time of the last currently-scheduled
4232		 * slot, not the time of the next available slot.
4233		 */
4234		excess = (stream->next_uframe - period - next) & (mod - 1);
4235		if (excess >= mod - 2 * SCHEDULE_SLOP)
4236			start = next + excess - mod + period *
4237					DIV_ROUND_UP(mod - excess, period);
4238		else
4239			start = next + excess + period;
4240		if (start - now >= mod) {
4241			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4242					urb, start - now - period, period,
4243					mod);
4244			status = -EFBIG;
4245			goto fail;
4246		}
4247	}
4248
4249	/* need to schedule; when's the next (u)frame we could start?
4250	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4251	 * isn't free, the slop should handle reasonably slow cpus.  it
4252	 * can also help high bandwidth if the dma and irq loads don't
4253	 * jump until after the queue is primed.
4254	 */
4255	else {
4256		int done = 0;
4257
4258		start = SCHEDULE_SLOP + (now & ~0x07);
4259
4260		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4261
4262		/* find a uframe slot with enough bandwidth.
4263		 * Early uframes are more precious because full-speed
4264		 * iso IN transfers can't use late uframes,
4265		 * and therefore they should be allocated last.
4266		 */
4267		next = start;
4268		start += period;
4269		do {
4270			start--;
4271			/* check schedule: enough space? */
4272			if (itd_slot_ok(fotg210, mod, start,
4273					stream->usecs, period))
4274				done = 1;
4275		} while (start > next && !done);
4276
4277		/* no room in the schedule */
4278		if (!done) {
4279			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4280					urb, now, now + mod);
4281			status = -ENOSPC;
4282			goto fail;
4283		}
4284	}
4285
4286	/* Tried to schedule too far into the future? */
4287	if (unlikely(start - now + span - period >=
4288			mod - 2 * SCHEDULE_SLOP)) {
4289		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4290				urb, start - now, span - period,
4291				mod - 2 * SCHEDULE_SLOP);
4292		status = -EFBIG;
4293		goto fail;
4294	}
4295
4296	stream->next_uframe = start & (mod - 1);
4297
4298	/* report high speed start in uframes; full speed, in frames */
4299	urb->start_frame = stream->next_uframe;
4300	if (!stream->highspeed)
4301		urb->start_frame >>= 3;
4302
4303	/* Make sure scan_isoc() sees these */
4304	if (fotg210->isoc_count == 0)
4305		fotg210->next_frame = now >> 3;
4306	return 0;
4307
4308fail:
4309	iso_sched_free(stream, sched);
4310	urb->hcpriv = NULL;
4311	return status;
4312}
4313
4314static inline void itd_init(struct fotg210_hcd *fotg210,
4315		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4316{
4317	int i;
4318
4319	/* it's been recently zeroed */
4320	itd->hw_next = FOTG210_LIST_END(fotg210);
4321	itd->hw_bufp[0] = stream->buf0;
4322	itd->hw_bufp[1] = stream->buf1;
4323	itd->hw_bufp[2] = stream->buf2;
4324
4325	for (i = 0; i < 8; i++)
4326		itd->index[i] = -1;
4327
4328	/* All other fields are filled when scheduling */
4329}
4330
4331static inline void itd_patch(struct fotg210_hcd *fotg210,
4332		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4333		unsigned index, u16 uframe)
4334{
4335	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4336	unsigned pg = itd->pg;
4337
4338	uframe &= 0x07;
4339	itd->index[uframe] = index;
4340
4341	itd->hw_transaction[uframe] = uf->transaction;
4342	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4343	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4344	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4345
4346	/* iso_frame_desc[].offset must be strictly increasing */
4347	if (unlikely(uf->cross)) {
4348		u64 bufp = uf->bufp + 4096;
4349
4350		itd->pg = ++pg;
4351		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4352		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4353	}
4354}
4355
4356static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4357		struct fotg210_itd *itd)
4358{
4359	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4360	__hc32 *hw_p = &fotg210->periodic[frame];
4361	union fotg210_shadow here = *prev;
4362	__hc32 type = 0;
4363
4364	/* skip any iso nodes which might belong to previous microframes */
4365	while (here.ptr) {
4366		type = Q_NEXT_TYPE(fotg210, *hw_p);
4367		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4368			break;
4369		prev = periodic_next_shadow(fotg210, prev, type);
4370		hw_p = shadow_next_periodic(fotg210, &here, type);
4371		here = *prev;
4372	}
4373
4374	itd->itd_next = here;
4375	itd->hw_next = *hw_p;
4376	prev->itd = itd;
4377	itd->frame = frame;
4378	wmb();
4379	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4380}
4381
4382/* fit urb's itds into the selected schedule slot; activate as needed */
4383static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4384		unsigned mod, struct fotg210_iso_stream *stream)
4385{
4386	int packet;
4387	unsigned next_uframe, uframe, frame;
4388	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4389	struct fotg210_itd *itd;
4390
4391	next_uframe = stream->next_uframe & (mod - 1);
4392
4393	if (unlikely(list_empty(&stream->td_list))) {
4394		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4395				+= stream->bandwidth;
4396		fotg210_dbg(fotg210,
4397			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4398			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4399			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4400			urb->interval,
4401			next_uframe >> 3, next_uframe & 0x7);
4402	}
4403
4404	/* fill iTDs uframe by uframe */
4405	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4406		if (itd == NULL) {
4407			/* ASSERT:  we have all necessary itds */
4408
4409			/* ASSERT:  no itds for this endpoint in this uframe */
4410
4411			itd = list_entry(iso_sched->td_list.next,
4412					struct fotg210_itd, itd_list);
4413			list_move_tail(&itd->itd_list, &stream->td_list);
4414			itd->stream = stream;
4415			itd->urb = urb;
4416			itd_init(fotg210, stream, itd);
4417		}
4418
4419		uframe = next_uframe & 0x07;
4420		frame = next_uframe >> 3;
4421
4422		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4423
4424		next_uframe += stream->interval;
4425		next_uframe &= mod - 1;
4426		packet++;
4427
4428		/* link completed itds into the schedule */
4429		if (((next_uframe >> 3) != frame)
4430				|| packet == urb->number_of_packets) {
4431			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4432					itd);
4433			itd = NULL;
4434		}
4435	}
4436	stream->next_uframe = next_uframe;
4437
4438	/* don't need that schedule data any more */
4439	iso_sched_free(stream, iso_sched);
4440	urb->hcpriv = NULL;
4441
4442	++fotg210->isoc_count;
4443	enable_periodic(fotg210);
4444}
4445
4446#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4447		FOTG210_ISOC_XACTERR)
4448
4449/* Process and recycle a completed ITD.  Return true iff its urb completed,
4450 * and hence its completion callback probably added things to the hardware
4451 * schedule.
4452 *
4453 * Note that we carefully avoid recycling this descriptor until after any
4454 * completion callback runs, so that it won't be reused quickly.  That is,
4455 * assuming (a) no more than two urbs per frame on this endpoint, and also
4456 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4457 * corrupts things if you reuse completed descriptors very quickly...
4458 */
4459static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4460{
4461	struct urb *urb = itd->urb;
4462	struct usb_iso_packet_descriptor *desc;
4463	u32 t;
4464	unsigned uframe;
4465	int urb_index = -1;
4466	struct fotg210_iso_stream *stream = itd->stream;
4467	struct usb_device *dev;
4468	bool retval = false;
4469
4470	/* for each uframe with a packet */
4471	for (uframe = 0; uframe < 8; uframe++) {
4472		if (likely(itd->index[uframe] == -1))
4473			continue;
4474		urb_index = itd->index[uframe];
4475		desc = &urb->iso_frame_desc[urb_index];
4476
4477		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4478		itd->hw_transaction[uframe] = 0;
4479
4480		/* report transfer status */
4481		if (unlikely(t & ISO_ERRS)) {
4482			urb->error_count++;
4483			if (t & FOTG210_ISOC_BUF_ERR)
4484				desc->status = usb_pipein(urb->pipe)
4485					? -ENOSR  /* hc couldn't read */
4486					: -ECOMM; /* hc couldn't write */
4487			else if (t & FOTG210_ISOC_BABBLE)
4488				desc->status = -EOVERFLOW;
4489			else /* (t & FOTG210_ISOC_XACTERR) */
4490				desc->status = -EPROTO;
4491
4492			/* HC need not update length with this error */
4493			if (!(t & FOTG210_ISOC_BABBLE)) {
4494				desc->actual_length =
4495					fotg210_itdlen(urb, desc, t);
4496				urb->actual_length += desc->actual_length;
4497			}
4498		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4499			desc->status = 0;
4500			desc->actual_length = fotg210_itdlen(urb, desc, t);
4501			urb->actual_length += desc->actual_length;
4502		} else {
4503			/* URB was too late */
4504			desc->status = -EXDEV;
4505		}
4506	}
4507
4508	/* handle completion now? */
4509	if (likely((urb_index + 1) != urb->number_of_packets))
4510		goto done;
4511
4512	/* ASSERT: it's really the last itd for this urb
4513	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4514	 *	BUG_ON (itd->urb == urb);
4515	 */
4516
4517	/* give urb back to the driver; completion often (re)submits */
4518	dev = urb->dev;
4519	fotg210_urb_done(fotg210, urb, 0);
4520	retval = true;
4521	urb = NULL;
4522
4523	--fotg210->isoc_count;
4524	disable_periodic(fotg210);
4525
4526	if (unlikely(list_is_singular(&stream->td_list))) {
4527		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4528				-= stream->bandwidth;
4529		fotg210_dbg(fotg210,
4530			"deschedule devp %s ep%d%s-iso\n",
4531			dev->devpath, stream->bEndpointAddress & 0x0f,
4532			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4533	}
4534
4535done:
4536	itd->urb = NULL;
4537
4538	/* Add to the end of the free list for later reuse */
4539	list_move_tail(&itd->itd_list, &stream->free_list);
4540
4541	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4542	if (list_empty(&stream->td_list)) {
4543		list_splice_tail_init(&stream->free_list,
4544				&fotg210->cached_itd_list);
4545		start_free_itds(fotg210);
4546	}
4547
4548	return retval;
4549}
4550
4551static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4552		gfp_t mem_flags)
4553{
4554	int status = -EINVAL;
4555	unsigned long flags;
4556	struct fotg210_iso_stream *stream;
4557
4558	/* Get iso_stream head */
4559	stream = iso_stream_find(fotg210, urb);
4560	if (unlikely(stream == NULL)) {
4561		fotg210_dbg(fotg210, "can't get iso stream\n");
4562		return -ENOMEM;
4563	}
4564	if (unlikely(urb->interval != stream->interval &&
4565			fotg210_port_speed(fotg210, 0) ==
4566			USB_PORT_STAT_HIGH_SPEED)) {
4567		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4568				stream->interval, urb->interval);
4569		goto done;
4570	}
4571
4572#ifdef FOTG210_URB_TRACE
4573	fotg210_dbg(fotg210,
4574			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4575			__func__, urb->dev->devpath, urb,
4576			usb_pipeendpoint(urb->pipe),
4577			usb_pipein(urb->pipe) ? "in" : "out",
4578			urb->transfer_buffer_length,
4579			urb->number_of_packets, urb->interval,
4580			stream);
4581#endif
4582
4583	/* allocate ITDs w/o locking anything */
4584	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4585	if (unlikely(status < 0)) {
4586		fotg210_dbg(fotg210, "can't init itds\n");
4587		goto done;
4588	}
4589
4590	/* schedule ... need to lock */
4591	spin_lock_irqsave(&fotg210->lock, flags);
4592	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4593		status = -ESHUTDOWN;
4594		goto done_not_linked;
4595	}
4596	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4597	if (unlikely(status))
4598		goto done_not_linked;
4599	status = iso_stream_schedule(fotg210, urb, stream);
4600	if (likely(status == 0))
4601		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4602	else
4603		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4604done_not_linked:
4605	spin_unlock_irqrestore(&fotg210->lock, flags);
4606done:
4607	return status;
4608}
4609
4610static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4611		unsigned now_frame, bool live)
4612{
4613	unsigned uf;
4614	bool modified;
4615	union fotg210_shadow q, *q_p;
4616	__hc32 type, *hw_p;
4617
4618	/* scan each element in frame's queue for completions */
4619	q_p = &fotg210->pshadow[frame];
4620	hw_p = &fotg210->periodic[frame];
4621	q.ptr = q_p->ptr;
4622	type = Q_NEXT_TYPE(fotg210, *hw_p);
4623	modified = false;
4624
4625	while (q.ptr) {
4626		switch (hc32_to_cpu(fotg210, type)) {
4627		case Q_TYPE_ITD:
4628			/* If this ITD is still active, leave it for
4629			 * later processing ... check the next entry.
4630			 * No need to check for activity unless the
4631			 * frame is current.
4632			 */
4633			if (frame == now_frame && live) {
4634				rmb();
4635				for (uf = 0; uf < 8; uf++) {
4636					if (q.itd->hw_transaction[uf] &
4637							ITD_ACTIVE(fotg210))
4638						break;
4639				}
4640				if (uf < 8) {
4641					q_p = &q.itd->itd_next;
4642					hw_p = &q.itd->hw_next;
4643					type = Q_NEXT_TYPE(fotg210,
4644							q.itd->hw_next);
4645					q = *q_p;
4646					break;
4647				}
4648			}
4649
4650			/* Take finished ITDs out of the schedule
4651			 * and process them:  recycle, maybe report
4652			 * URB completion.  HC won't cache the
4653			 * pointer for much longer, if at all.
4654			 */
4655			*q_p = q.itd->itd_next;
4656			*hw_p = q.itd->hw_next;
4657			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4658			wmb();
4659			modified = itd_complete(fotg210, q.itd);
4660			q = *q_p;
4661			break;
4662		default:
4663			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4664					type, frame, q.ptr);
4665			/* FALL THROUGH */
4666		case Q_TYPE_QH:
4667		case Q_TYPE_FSTN:
4668			/* End of the iTDs and siTDs */
4669			q.ptr = NULL;
4670			break;
4671		}
4672
4673		/* assume completion callbacks modify the queue */
4674		if (unlikely(modified && fotg210->isoc_count > 0))
4675			return -EINVAL;
4676	}
4677	return 0;
4678}
4679
4680static void scan_isoc(struct fotg210_hcd *fotg210)
4681{
4682	unsigned uf, now_frame, frame, ret;
4683	unsigned fmask = fotg210->periodic_size - 1;
4684	bool live;
4685
4686	/*
4687	 * When running, scan from last scan point up to "now"
4688	 * else clean up by scanning everything that's left.
4689	 * Touches as few pages as possible:  cache-friendly.
4690	 */
4691	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4692		uf = fotg210_read_frame_index(fotg210);
4693		now_frame = (uf >> 3) & fmask;
4694		live = true;
4695	} else  {
4696		now_frame = (fotg210->next_frame - 1) & fmask;
4697		live = false;
4698	}
4699	fotg210->now_frame = now_frame;
4700
4701	frame = fotg210->next_frame;
4702	for (;;) {
4703		ret = 1;
4704		while (ret != 0)
4705			ret = scan_frame_queue(fotg210, frame,
4706					now_frame, live);
4707
4708		/* Stop when we have reached the current frame */
4709		if (frame == now_frame)
4710			break;
4711		frame = (frame + 1) & fmask;
4712	}
4713	fotg210->next_frame = now_frame;
4714}
4715
4716/* Display / Set uframe_periodic_max
4717 */
4718static ssize_t show_uframe_periodic_max(struct device *dev,
4719		struct device_attribute *attr, char *buf)
4720{
4721	struct fotg210_hcd *fotg210;
4722	int n;
4723
4724	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4725	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4726	return n;
4727}
4728
4729
4730static ssize_t store_uframe_periodic_max(struct device *dev,
4731		struct device_attribute *attr, const char *buf, size_t count)
4732{
4733	struct fotg210_hcd *fotg210;
4734	unsigned uframe_periodic_max;
4735	unsigned frame, uframe;
4736	unsigned short allocated_max;
4737	unsigned long flags;
4738	ssize_t ret;
4739
4740	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4741	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4742		return -EINVAL;
4743
4744	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4745		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4746				uframe_periodic_max);
4747		return -EINVAL;
4748	}
4749
4750	ret = -EINVAL;
4751
4752	/*
4753	 * lock, so that our checking does not race with possible periodic
4754	 * bandwidth allocation through submitting new urbs.
4755	 */
4756	spin_lock_irqsave(&fotg210->lock, flags);
4757
4758	/*
4759	 * for request to decrease max periodic bandwidth, we have to check
4760	 * every microframe in the schedule to see whether the decrease is
4761	 * possible.
4762	 */
4763	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4764		allocated_max = 0;
4765
4766		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4767			for (uframe = 0; uframe < 7; ++uframe)
4768				allocated_max = max(allocated_max,
4769						periodic_usecs(fotg210, frame,
4770						uframe));
4771
4772		if (allocated_max > uframe_periodic_max) {
4773			fotg210_info(fotg210,
4774					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4775					allocated_max, uframe_periodic_max);
4776			goto out_unlock;
4777		}
4778	}
4779
4780	/* increasing is always ok */
4781
4782	fotg210_info(fotg210,
4783			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4784			100 * uframe_periodic_max/125, uframe_periodic_max);
4785
4786	if (uframe_periodic_max != 100)
4787		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4788
4789	fotg210->uframe_periodic_max = uframe_periodic_max;
4790	ret = count;
4791
4792out_unlock:
4793	spin_unlock_irqrestore(&fotg210->lock, flags);
4794	return ret;
4795}
4796
4797static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4798		   store_uframe_periodic_max);
4799
4800static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4801{
4802	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4803	int i = 0;
4804
4805	if (i)
4806		goto out;
4807
4808	i = device_create_file(controller, &dev_attr_uframe_periodic_max);
4809out:
4810	return i;
4811}
4812
4813static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4814{
4815	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4816
4817	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4818}
4819/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4820 * The firmware seems to think that powering off is a wakeup event!
4821 * This routine turns off remote wakeup and everything else, on all ports.
4822 */
4823static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4824{
4825	u32 __iomem *status_reg = &fotg210->regs->port_status;
4826
4827	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4828}
4829
4830/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4831 * Must be called with interrupts enabled and the lock not held.
4832 */
4833static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4834{
4835	fotg210_halt(fotg210);
4836
4837	spin_lock_irq(&fotg210->lock);
4838	fotg210->rh_state = FOTG210_RH_HALTED;
4839	fotg210_turn_off_all_ports(fotg210);
4840	spin_unlock_irq(&fotg210->lock);
4841}
4842
4843/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4844 * This forcibly disables dma and IRQs, helping kexec and other cases
4845 * where the next system software may expect clean state.
4846 */
4847static void fotg210_shutdown(struct usb_hcd *hcd)
4848{
4849	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4850
4851	spin_lock_irq(&fotg210->lock);
4852	fotg210->shutdown = true;
4853	fotg210->rh_state = FOTG210_RH_STOPPING;
4854	fotg210->enabled_hrtimer_events = 0;
4855	spin_unlock_irq(&fotg210->lock);
4856
4857	fotg210_silence_controller(fotg210);
4858
4859	hrtimer_cancel(&fotg210->hrtimer);
4860}
4861
4862/* fotg210_work is called from some interrupts, timers, and so on.
4863 * it calls driver completion functions, after dropping fotg210->lock.
4864 */
4865static void fotg210_work(struct fotg210_hcd *fotg210)
4866{
4867	/* another CPU may drop fotg210->lock during a schedule scan while
4868	 * it reports urb completions.  this flag guards against bogus
4869	 * attempts at re-entrant schedule scanning.
4870	 */
4871	if (fotg210->scanning) {
4872		fotg210->need_rescan = true;
4873		return;
4874	}
4875	fotg210->scanning = true;
4876
4877rescan:
4878	fotg210->need_rescan = false;
4879	if (fotg210->async_count)
4880		scan_async(fotg210);
4881	if (fotg210->intr_count > 0)
4882		scan_intr(fotg210);
4883	if (fotg210->isoc_count > 0)
4884		scan_isoc(fotg210);
4885	if (fotg210->need_rescan)
4886		goto rescan;
4887	fotg210->scanning = false;
4888
4889	/* the IO watchdog guards against hardware or driver bugs that
4890	 * misplace IRQs, and should let us run completely without IRQs.
4891	 * such lossage has been observed on both VT6202 and VT8235.
4892	 */
4893	turn_on_io_watchdog(fotg210);
4894}
4895
4896/* Called when the fotg210_hcd module is removed.
4897 */
4898static void fotg210_stop(struct usb_hcd *hcd)
4899{
4900	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4901
4902	fotg210_dbg(fotg210, "stop\n");
4903
4904	/* no more interrupts ... */
4905
4906	spin_lock_irq(&fotg210->lock);
4907	fotg210->enabled_hrtimer_events = 0;
4908	spin_unlock_irq(&fotg210->lock);
4909
4910	fotg210_quiesce(fotg210);
4911	fotg210_silence_controller(fotg210);
4912	fotg210_reset(fotg210);
4913
4914	hrtimer_cancel(&fotg210->hrtimer);
4915	remove_sysfs_files(fotg210);
4916	remove_debug_files(fotg210);
4917
4918	/* root hub is shut down separately (first, when possible) */
4919	spin_lock_irq(&fotg210->lock);
4920	end_free_itds(fotg210);
4921	spin_unlock_irq(&fotg210->lock);
4922	fotg210_mem_cleanup(fotg210);
4923
4924#ifdef FOTG210_STATS
4925	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4926			fotg210->stats.normal, fotg210->stats.error,
4927			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4928	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4929			fotg210->stats.complete, fotg210->stats.unlink);
4930#endif
4931
4932	dbg_status(fotg210, "fotg210_stop completed",
4933			fotg210_readl(fotg210, &fotg210->regs->status));
4934}
4935
4936/* one-time init, only for memory state */
4937static int hcd_fotg210_init(struct usb_hcd *hcd)
4938{
4939	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4940	u32 temp;
4941	int retval;
4942	u32 hcc_params;
4943	struct fotg210_qh_hw *hw;
4944
4945	spin_lock_init(&fotg210->lock);
4946
4947	/*
4948	 * keep io watchdog by default, those good HCDs could turn off it later
4949	 */
4950	fotg210->need_io_watchdog = 1;
4951
4952	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4953	fotg210->hrtimer.function = fotg210_hrtimer_func;
4954	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4955
4956	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4957
4958	/*
4959	 * by default set standard 80% (== 100 usec/uframe) max periodic
4960	 * bandwidth as required by USB 2.0
4961	 */
4962	fotg210->uframe_periodic_max = 100;
4963
4964	/*
4965	 * hw default: 1K periodic list heads, one per frame.
4966	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4967	 */
4968	fotg210->periodic_size = DEFAULT_I_TDPS;
4969	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4970	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4971
4972	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4973		/* periodic schedule size can be smaller than default */
4974		switch (FOTG210_TUNE_FLS) {
4975		case 0:
4976			fotg210->periodic_size = 1024;
4977			break;
4978		case 1:
4979			fotg210->periodic_size = 512;
4980			break;
4981		case 2:
4982			fotg210->periodic_size = 256;
4983			break;
4984		default:
4985			BUG();
4986		}
4987	}
4988	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4989	if (retval < 0)
4990		return retval;
4991
4992	/* controllers may cache some of the periodic schedule ... */
4993	fotg210->i_thresh = 2;
4994
4995	/*
4996	 * dedicate a qh for the async ring head, since we couldn't unlink
4997	 * a 'real' qh without stopping the async schedule [4.8].  use it
4998	 * as the 'reclamation list head' too.
4999	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
5000	 * from automatically advancing to the next td after short reads.
5001	 */
5002	fotg210->async->qh_next.qh = NULL;
5003	hw = fotg210->async->hw;
5004	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5005	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5006	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5007	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5008	fotg210->async->qh_state = QH_STATE_LINKED;
5009	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5010
5011	/* clear interrupt enables, set irq latency */
5012	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5013		log2_irq_thresh = 0;
5014	temp = 1 << (16 + log2_irq_thresh);
5015	if (HCC_CANPARK(hcc_params)) {
5016		/* HW default park == 3, on hardware that supports it (like
5017		 * NVidia and ALI silicon), maximizes throughput on the async
5018		 * schedule by avoiding QH fetches between transfers.
5019		 *
5020		 * With fast usb storage devices and NForce2, "park" seems to
5021		 * make problems:  throughput reduction (!), data errors...
5022		 */
5023		if (park) {
5024			park = min_t(unsigned, park, 3);
5025			temp |= CMD_PARK;
5026			temp |= park << 8;
5027		}
5028		fotg210_dbg(fotg210, "park %d\n", park);
5029	}
5030	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5031		/* periodic schedule size can be smaller than default */
5032		temp &= ~(3 << 2);
5033		temp |= (FOTG210_TUNE_FLS << 2);
5034	}
5035	fotg210->command = temp;
5036
5037	/* Accept arbitrarily long scatter-gather lists */
5038	if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5039		hcd->self.sg_tablesize = ~0;
5040	return 0;
5041}
5042
5043/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5044static int fotg210_run(struct usb_hcd *hcd)
5045{
5046	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5047	u32 temp;
5048	u32 hcc_params;
5049
5050	hcd->uses_new_polling = 1;
5051
5052	/* EHCI spec section 4.1 */
5053
5054	fotg210_writel(fotg210, fotg210->periodic_dma,
5055			&fotg210->regs->frame_list);
5056	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5057			&fotg210->regs->async_next);
5058
5059	/*
5060	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5061	 * be used; it constrains QH/ITD/SITD and QTD locations.
5062	 * pci_pool consistent memory always uses segment zero.
5063	 * streaming mappings for I/O buffers, like pci_map_single(),
5064	 * can return segments above 4GB, if the device allows.
5065	 *
5066	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5067	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5068	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5069	 * host side drivers though.
5070	 */
5071	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5072
5073	/*
5074	 * Philips, Intel, and maybe others need CMD_RUN before the
5075	 * root hub will detect new devices (why?); NEC doesn't
5076	 */
5077	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5078	fotg210->command |= CMD_RUN;
5079	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5080	dbg_cmd(fotg210, "init", fotg210->command);
5081
5082	/*
5083	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5084	 * are explicitly handed to companion controller(s), so no TT is
5085	 * involved with the root hub.  (Except where one is integrated,
5086	 * and there's no companion controller unless maybe for USB OTG.)
5087	 *
5088	 * Turning on the CF flag will transfer ownership of all ports
5089	 * from the companions to the EHCI controller.  If any of the
5090	 * companions are in the middle of a port reset at the time, it
5091	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5092	 * guarantees that no resets are in progress.  After we set CF,
5093	 * a short delay lets the hardware catch up; new resets shouldn't
5094	 * be started before the port switching actions could complete.
5095	 */
5096	down_write(&ehci_cf_port_reset_rwsem);
5097	fotg210->rh_state = FOTG210_RH_RUNNING;
5098	/* unblock posted writes */
5099	fotg210_readl(fotg210, &fotg210->regs->command);
5100	usleep_range(5000, 10000);
5101	up_write(&ehci_cf_port_reset_rwsem);
5102	fotg210->last_periodic_enable = ktime_get_real();
5103
5104	temp = HC_VERSION(fotg210,
5105			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5106	fotg210_info(fotg210,
5107			"USB %x.%x started, EHCI %x.%02x\n",
5108			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5109			temp >> 8, temp & 0xff);
5110
5111	fotg210_writel(fotg210, INTR_MASK,
5112			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5113
5114	/* GRR this is run-once init(), being done every time the HC starts.
5115	 * So long as they're part of class devices, we can't do it init()
5116	 * since the class device isn't created that early.
5117	 */
5118	create_debug_files(fotg210);
5119	create_sysfs_files(fotg210);
5120
5121	return 0;
5122}
5123
5124static int fotg210_setup(struct usb_hcd *hcd)
5125{
5126	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5127	int retval;
5128
5129	fotg210->regs = (void __iomem *)fotg210->caps +
5130			HC_LENGTH(fotg210,
5131			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5132	dbg_hcs_params(fotg210, "reset");
5133	dbg_hcc_params(fotg210, "reset");
5134
5135	/* cache this readonly data; minimize chip reads */
5136	fotg210->hcs_params = fotg210_readl(fotg210,
5137			&fotg210->caps->hcs_params);
5138
5139	fotg210->sbrn = HCD_USB2;
5140
5141	/* data structure init */
5142	retval = hcd_fotg210_init(hcd);
5143	if (retval)
5144		return retval;
5145
5146	retval = fotg210_halt(fotg210);
5147	if (retval)
5148		return retval;
5149
5150	fotg210_reset(fotg210);
5151
5152	return 0;
5153}
5154
5155static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5156{
5157	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5158	u32 status, masked_status, pcd_status = 0, cmd;
5159	int bh;
5160
5161	spin_lock(&fotg210->lock);
5162
5163	status = fotg210_readl(fotg210, &fotg210->regs->status);
5164
5165	/* e.g. cardbus physical eject */
5166	if (status == ~(u32) 0) {
5167		fotg210_dbg(fotg210, "device removed\n");
5168		goto dead;
5169	}
5170
5171	/*
5172	 * We don't use STS_FLR, but some controllers don't like it to
5173	 * remain on, so mask it out along with the other status bits.
5174	 */
5175	masked_status = status & (INTR_MASK | STS_FLR);
5176
5177	/* Shared IRQ? */
5178	if (!masked_status ||
5179			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5180		spin_unlock(&fotg210->lock);
5181		return IRQ_NONE;
5182	}
5183
5184	/* clear (just) interrupts */
5185	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5186	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5187	bh = 0;
5188
5189	/* unrequested/ignored: Frame List Rollover */
5190	dbg_status(fotg210, "irq", status);
5191
5192	/* INT, ERR, and IAA interrupt rates can be throttled */
5193
5194	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5195	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5196		if (likely((status & STS_ERR) == 0))
5197			COUNT(fotg210->stats.normal);
5198		else
5199			COUNT(fotg210->stats.error);
5200		bh = 1;
5201	}
5202
5203	/* complete the unlinking of some qh [4.15.2.3] */
5204	if (status & STS_IAA) {
5205
5206		/* Turn off the IAA watchdog */
5207		fotg210->enabled_hrtimer_events &=
5208			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5209
5210		/*
5211		 * Mild optimization: Allow another IAAD to reset the
5212		 * hrtimer, if one occurs before the next expiration.
5213		 * In theory we could always cancel the hrtimer, but
5214		 * tests show that about half the time it will be reset
5215		 * for some other event anyway.
5216		 */
5217		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5218			++fotg210->next_hrtimer_event;
5219
5220		/* guard against (alleged) silicon errata */
5221		if (cmd & CMD_IAAD)
5222			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5223		if (fotg210->async_iaa) {
5224			COUNT(fotg210->stats.iaa);
5225			end_unlink_async(fotg210);
5226		} else
5227			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5228	}
5229
5230	/* remote wakeup [4.3.1] */
5231	if (status & STS_PCD) {
5232		int pstatus;
5233		u32 __iomem *status_reg = &fotg210->regs->port_status;
5234
5235		/* kick root hub later */
5236		pcd_status = status;
5237
5238		/* resume root hub? */
5239		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5240			usb_hcd_resume_root_hub(hcd);
5241
5242		pstatus = fotg210_readl(fotg210, status_reg);
5243
5244		if (test_bit(0, &fotg210->suspended_ports) &&
5245				((pstatus & PORT_RESUME) ||
5246				!(pstatus & PORT_SUSPEND)) &&
5247				(pstatus & PORT_PE) &&
5248				fotg210->reset_done[0] == 0) {
5249
5250			/* start 20 msec resume signaling from this port,
5251			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5252			 * stop that signaling.  Use 5 ms extra for safety,
5253			 * like usb_port_resume() does.
5254			 */
5255			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5256			set_bit(0, &fotg210->resuming_ports);
5257			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5258			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5259		}
5260	}
5261
5262	/* PCI errors [4.15.2.4] */
5263	if (unlikely((status & STS_FATAL) != 0)) {
5264		fotg210_err(fotg210, "fatal error\n");
5265		dbg_cmd(fotg210, "fatal", cmd);
5266		dbg_status(fotg210, "fatal", status);
5267dead:
5268		usb_hc_died(hcd);
5269
5270		/* Don't let the controller do anything more */
5271		fotg210->shutdown = true;
5272		fotg210->rh_state = FOTG210_RH_STOPPING;
5273		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5274		fotg210_writel(fotg210, fotg210->command,
5275				&fotg210->regs->command);
5276		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5277		fotg210_handle_controller_death(fotg210);
5278
5279		/* Handle completions when the controller stops */
5280		bh = 0;
5281	}
5282
5283	if (bh)
5284		fotg210_work(fotg210);
5285	spin_unlock(&fotg210->lock);
5286	if (pcd_status)
5287		usb_hcd_poll_rh_status(hcd);
5288	return IRQ_HANDLED;
5289}
5290
5291/* non-error returns are a promise to giveback() the urb later
5292 * we drop ownership so next owner (or urb unlink) can get it
5293 *
5294 * urb + dev is in hcd.self.controller.urb_list
5295 * we're queueing TDs onto software and hardware lists
5296 *
5297 * hcd-specific init for hcpriv hasn't been done yet
5298 *
5299 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5300 * to a (possibly active) QH, and the same QH scanning code.
5301 */
5302static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5303		gfp_t mem_flags)
5304{
5305	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5306	struct list_head qtd_list;
5307
5308	INIT_LIST_HEAD(&qtd_list);
5309
5310	switch (usb_pipetype(urb->pipe)) {
5311	case PIPE_CONTROL:
5312		/* qh_completions() code doesn't handle all the fault cases
5313		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5314		 */
5315		if (urb->transfer_buffer_length > (16 * 1024))
5316			return -EMSGSIZE;
5317		/* FALLTHROUGH */
5318	/* case PIPE_BULK: */
5319	default:
5320		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5321			return -ENOMEM;
5322		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5323
5324	case PIPE_INTERRUPT:
5325		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5326			return -ENOMEM;
5327		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5328
5329	case PIPE_ISOCHRONOUS:
5330		return itd_submit(fotg210, urb, mem_flags);
5331	}
5332}
5333
5334/* remove from hardware lists
5335 * completions normally happen asynchronously
5336 */
5337
5338static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5339{
5340	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5341	struct fotg210_qh *qh;
5342	unsigned long flags;
5343	int rc;
5344
5345	spin_lock_irqsave(&fotg210->lock, flags);
5346	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5347	if (rc)
5348		goto done;
5349
5350	switch (usb_pipetype(urb->pipe)) {
5351	/* case PIPE_CONTROL: */
5352	/* case PIPE_BULK:*/
5353	default:
5354		qh = (struct fotg210_qh *) urb->hcpriv;
5355		if (!qh)
5356			break;
5357		switch (qh->qh_state) {
5358		case QH_STATE_LINKED:
5359		case QH_STATE_COMPLETING:
5360			start_unlink_async(fotg210, qh);
5361			break;
5362		case QH_STATE_UNLINK:
5363		case QH_STATE_UNLINK_WAIT:
5364			/* already started */
5365			break;
5366		case QH_STATE_IDLE:
5367			/* QH might be waiting for a Clear-TT-Buffer */
5368			qh_completions(fotg210, qh);
5369			break;
5370		}
5371		break;
5372
5373	case PIPE_INTERRUPT:
5374		qh = (struct fotg210_qh *) urb->hcpriv;
5375		if (!qh)
5376			break;
5377		switch (qh->qh_state) {
5378		case QH_STATE_LINKED:
5379		case QH_STATE_COMPLETING:
5380			start_unlink_intr(fotg210, qh);
5381			break;
5382		case QH_STATE_IDLE:
5383			qh_completions(fotg210, qh);
5384			break;
5385		default:
5386			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5387					qh, qh->qh_state);
5388			goto done;
5389		}
5390		break;
5391
5392	case PIPE_ISOCHRONOUS:
5393		/* itd... */
5394
5395		/* wait till next completion, do it then. */
5396		/* completion irqs can wait up to 1024 msec, */
5397		break;
5398	}
5399done:
5400	spin_unlock_irqrestore(&fotg210->lock, flags);
5401	return rc;
5402}
5403
5404/* bulk qh holds the data toggle */
5405
5406static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5407		struct usb_host_endpoint *ep)
5408{
5409	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5410	unsigned long flags;
5411	struct fotg210_qh *qh, *tmp;
5412
5413	/* ASSERT:  any requests/urbs are being unlinked */
5414	/* ASSERT:  nobody can be submitting urbs for this any more */
5415
5416rescan:
5417	spin_lock_irqsave(&fotg210->lock, flags);
5418	qh = ep->hcpriv;
5419	if (!qh)
5420		goto done;
5421
5422	/* endpoints can be iso streams.  for now, we don't
5423	 * accelerate iso completions ... so spin a while.
5424	 */
5425	if (qh->hw == NULL) {
5426		struct fotg210_iso_stream *stream = ep->hcpriv;
5427
5428		if (!list_empty(&stream->td_list))
5429			goto idle_timeout;
5430
5431		/* BUG_ON(!list_empty(&stream->free_list)); */
5432		kfree(stream);
5433		goto done;
5434	}
5435
5436	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5437		qh->qh_state = QH_STATE_IDLE;
5438	switch (qh->qh_state) {
5439	case QH_STATE_LINKED:
5440	case QH_STATE_COMPLETING:
5441		for (tmp = fotg210->async->qh_next.qh;
5442				tmp && tmp != qh;
5443				tmp = tmp->qh_next.qh)
5444			continue;
5445		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5446		 * may already be unlinked.
5447		 */
5448		if (tmp)
5449			start_unlink_async(fotg210, qh);
5450		/* FALL THROUGH */
5451	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5452	case QH_STATE_UNLINK_WAIT:
5453idle_timeout:
5454		spin_unlock_irqrestore(&fotg210->lock, flags);
5455		schedule_timeout_uninterruptible(1);
5456		goto rescan;
5457	case QH_STATE_IDLE:		/* fully unlinked */
5458		if (qh->clearing_tt)
5459			goto idle_timeout;
5460		if (list_empty(&qh->qtd_list)) {
5461			qh_destroy(fotg210, qh);
5462			break;
5463		}
5464		/* else FALL THROUGH */
5465	default:
5466		/* caller was supposed to have unlinked any requests;
5467		 * that's not our job.  just leak this memory.
5468		 */
5469		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5470				qh, ep->desc.bEndpointAddress, qh->qh_state,
5471				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5472		break;
5473	}
5474done:
5475	ep->hcpriv = NULL;
5476	spin_unlock_irqrestore(&fotg210->lock, flags);
5477}
5478
5479static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5480		struct usb_host_endpoint *ep)
5481{
5482	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5483	struct fotg210_qh *qh;
5484	int eptype = usb_endpoint_type(&ep->desc);
5485	int epnum = usb_endpoint_num(&ep->desc);
5486	int is_out = usb_endpoint_dir_out(&ep->desc);
5487	unsigned long flags;
5488
5489	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5490		return;
5491
5492	spin_lock_irqsave(&fotg210->lock, flags);
5493	qh = ep->hcpriv;
5494
5495	/* For Bulk and Interrupt endpoints we maintain the toggle state
5496	 * in the hardware; the toggle bits in udev aren't used at all.
5497	 * When an endpoint is reset by usb_clear_halt() we must reset
5498	 * the toggle bit in the QH.
5499	 */
5500	if (qh) {
5501		usb_settoggle(qh->dev, epnum, is_out, 0);
5502		if (!list_empty(&qh->qtd_list)) {
5503			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5504		} else if (qh->qh_state == QH_STATE_LINKED ||
5505				qh->qh_state == QH_STATE_COMPLETING) {
5506
5507			/* The toggle value in the QH can't be updated
5508			 * while the QH is active.  Unlink it now;
5509			 * re-linking will call qh_refresh().
5510			 */
5511			if (eptype == USB_ENDPOINT_XFER_BULK)
5512				start_unlink_async(fotg210, qh);
5513			else
5514				start_unlink_intr(fotg210, qh);
5515		}
5516	}
5517	spin_unlock_irqrestore(&fotg210->lock, flags);
5518}
5519
5520static int fotg210_get_frame(struct usb_hcd *hcd)
5521{
5522	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5523
5524	return (fotg210_read_frame_index(fotg210) >> 3) %
5525		fotg210->periodic_size;
5526}
5527
5528/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5529 * because its registers (and irq) are shared between host/gadget/otg
5530 * functions  and in order to facilitate role switching we cannot
5531 * give the fotg210 driver exclusive access to those.
5532 */
5533MODULE_DESCRIPTION(DRIVER_DESC);
5534MODULE_AUTHOR(DRIVER_AUTHOR);
5535MODULE_LICENSE("GPL");
5536
5537static const struct hc_driver fotg210_fotg210_hc_driver = {
5538	.description		= hcd_name,
5539	.product_desc		= "Faraday USB2.0 Host Controller",
5540	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5541
5542	/*
5543	 * generic hardware linkage
5544	 */
5545	.irq			= fotg210_irq,
5546	.flags			= HCD_MEMORY | HCD_USB2,
5547
5548	/*
5549	 * basic lifecycle operations
5550	 */
5551	.reset			= hcd_fotg210_init,
5552	.start			= fotg210_run,
5553	.stop			= fotg210_stop,
5554	.shutdown		= fotg210_shutdown,
5555
5556	/*
5557	 * managing i/o requests and associated device resources
5558	 */
5559	.urb_enqueue		= fotg210_urb_enqueue,
5560	.urb_dequeue		= fotg210_urb_dequeue,
5561	.endpoint_disable	= fotg210_endpoint_disable,
5562	.endpoint_reset		= fotg210_endpoint_reset,
5563
5564	/*
5565	 * scheduling support
5566	 */
5567	.get_frame_number	= fotg210_get_frame,
5568
5569	/*
5570	 * root hub support
5571	 */
5572	.hub_status_data	= fotg210_hub_status_data,
5573	.hub_control		= fotg210_hub_control,
5574	.bus_suspend		= fotg210_bus_suspend,
5575	.bus_resume		= fotg210_bus_resume,
5576
5577	.relinquish_port	= fotg210_relinquish_port,
5578	.port_handed_over	= fotg210_port_handed_over,
5579
5580	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5581};
5582
5583static void fotg210_init(struct fotg210_hcd *fotg210)
5584{
5585	u32 value;
5586
5587	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5588			&fotg210->regs->gmir);
5589
5590	value = ioread32(&fotg210->regs->otgcsr);
5591	value &= ~OTGCSR_A_BUS_DROP;
5592	value |= OTGCSR_A_BUS_REQ;
5593	iowrite32(value, &fotg210->regs->otgcsr);
5594}
5595
5596/**
5597 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5598 *
5599 * Allocates basic resources for this USB host controller, and
5600 * then invokes the start() method for the HCD associated with it
5601 * through the hotplug entry's driver_data.
5602 */
5603static int fotg210_hcd_probe(struct platform_device *pdev)
5604{
5605	struct device *dev = &pdev->dev;
5606	struct usb_hcd *hcd;
5607	struct resource *res;
5608	int irq;
5609	int retval = -ENODEV;
5610	struct fotg210_hcd *fotg210;
5611
5612	if (usb_disabled())
5613		return -ENODEV;
5614
5615	pdev->dev.power.power_state = PMSG_ON;
5616
5617	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5618	if (!res) {
5619		dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5620				dev_name(dev));
5621		return -ENODEV;
5622	}
5623
5624	irq = res->start;
5625
5626	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5627			dev_name(dev));
5628	if (!hcd) {
5629		dev_err(dev, "failed to create hcd with err %d\n", retval);
5630		retval = -ENOMEM;
5631		goto fail_create_hcd;
5632	}
5633
5634	hcd->has_tt = 1;
5635
5636	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5637	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5638	if (IS_ERR(hcd->regs)) {
5639		retval = PTR_ERR(hcd->regs);
5640		goto failed;
5641	}
5642
5643	hcd->rsrc_start = res->start;
5644	hcd->rsrc_len = resource_size(res);
5645
5646	fotg210 = hcd_to_fotg210(hcd);
5647
5648	fotg210->caps = hcd->regs;
5649
5650	retval = fotg210_setup(hcd);
5651	if (retval)
5652		goto failed;
5653
5654	fotg210_init(fotg210);
5655
5656	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5657	if (retval) {
5658		dev_err(dev, "failed to add hcd with err %d\n", retval);
5659		goto failed;
5660	}
5661	device_wakeup_enable(hcd->self.controller);
5662
5663	return retval;
5664
5665failed:
5666	usb_put_hcd(hcd);
5667fail_create_hcd:
5668	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5669	return retval;
5670}
5671
5672/**
5673 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5674 * @dev: USB Host Controller being removed
5675 *
5676 */
5677static int fotg210_hcd_remove(struct platform_device *pdev)
5678{
5679	struct device *dev = &pdev->dev;
5680	struct usb_hcd *hcd = dev_get_drvdata(dev);
5681
5682	if (!hcd)
5683		return 0;
5684
5685	usb_remove_hcd(hcd);
5686	usb_put_hcd(hcd);
5687
5688	return 0;
5689}
5690
5691static struct platform_driver fotg210_hcd_driver = {
5692	.driver = {
5693		.name   = "fotg210-hcd",
5694	},
5695	.probe  = fotg210_hcd_probe,
5696	.remove = fotg210_hcd_remove,
5697};
5698
5699static int __init fotg210_hcd_init(void)
5700{
5701	int retval = 0;
5702
5703	if (usb_disabled())
5704		return -ENODEV;
5705
5706	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5707	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5708	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5709			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5710		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5711
5712	pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5713			hcd_name, sizeof(struct fotg210_qh),
5714			sizeof(struct fotg210_qtd),
5715			sizeof(struct fotg210_itd));
5716
5717	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5718	if (!fotg210_debug_root) {
5719		retval = -ENOENT;
5720		goto err_debug;
5721	}
5722
5723	retval = platform_driver_register(&fotg210_hcd_driver);
5724	if (retval < 0)
5725		goto clean;
5726	return retval;
5727
5728clean:
5729	debugfs_remove(fotg210_debug_root);
5730	fotg210_debug_root = NULL;
5731err_debug:
5732	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5733	return retval;
5734}
5735module_init(fotg210_hcd_init);
5736
5737static void __exit fotg210_hcd_cleanup(void)
5738{
5739	platform_driver_unregister(&fotg210_hcd_driver);
5740	debugfs_remove(fotg210_debug_root);
5741	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5742}
5743module_exit(fotg210_hcd_cleanup);
5744