1/*
2 * Broadcom BCM63xx SPI controller support
3 *
4 * Copyright (C) 2009-2012 Florian Fainelli <florian@openwrt.org>
5 * Copyright (C) 2010 Tanguy Bouzeloc <tanguy.bouzeloc@efixo.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 */
17
18#include <linux/kernel.h>
19#include <linux/clk.h>
20#include <linux/io.h>
21#include <linux/module.h>
22#include <linux/platform_device.h>
23#include <linux/delay.h>
24#include <linux/interrupt.h>
25#include <linux/spi/spi.h>
26#include <linux/completion.h>
27#include <linux/err.h>
28#include <linux/pm_runtime.h>
29
30/* BCM 6338/6348 SPI core */
31#define SPI_6348_RSET_SIZE		64
32#define SPI_6348_CMD			0x00	/* 16-bits register */
33#define SPI_6348_INT_STATUS		0x02
34#define SPI_6348_INT_MASK_ST		0x03
35#define SPI_6348_INT_MASK		0x04
36#define SPI_6348_ST			0x05
37#define SPI_6348_CLK_CFG		0x06
38#define SPI_6348_FILL_BYTE		0x07
39#define SPI_6348_MSG_TAIL		0x09
40#define SPI_6348_RX_TAIL		0x0b
41#define SPI_6348_MSG_CTL		0x40	/* 8-bits register */
42#define SPI_6348_MSG_CTL_WIDTH		8
43#define SPI_6348_MSG_DATA		0x41
44#define SPI_6348_MSG_DATA_SIZE		0x3f
45#define SPI_6348_RX_DATA		0x80
46#define SPI_6348_RX_DATA_SIZE		0x3f
47
48/* BCM 3368/6358/6262/6368 SPI core */
49#define SPI_6358_RSET_SIZE		1804
50#define SPI_6358_MSG_CTL		0x00	/* 16-bits register */
51#define SPI_6358_MSG_CTL_WIDTH		16
52#define SPI_6358_MSG_DATA		0x02
53#define SPI_6358_MSG_DATA_SIZE		0x21e
54#define SPI_6358_RX_DATA		0x400
55#define SPI_6358_RX_DATA_SIZE		0x220
56#define SPI_6358_CMD			0x700	/* 16-bits register */
57#define SPI_6358_INT_STATUS		0x702
58#define SPI_6358_INT_MASK_ST		0x703
59#define SPI_6358_INT_MASK		0x704
60#define SPI_6358_ST			0x705
61#define SPI_6358_CLK_CFG		0x706
62#define SPI_6358_FILL_BYTE		0x707
63#define SPI_6358_MSG_TAIL		0x709
64#define SPI_6358_RX_TAIL		0x70B
65
66/* Shared SPI definitions */
67
68/* Message configuration */
69#define SPI_FD_RW			0x00
70#define SPI_HD_W			0x01
71#define SPI_HD_R			0x02
72#define SPI_BYTE_CNT_SHIFT		0
73#define SPI_6348_MSG_TYPE_SHIFT		6
74#define SPI_6358_MSG_TYPE_SHIFT		14
75
76/* Command */
77#define SPI_CMD_NOOP			0x00
78#define SPI_CMD_SOFT_RESET		0x01
79#define SPI_CMD_HARD_RESET		0x02
80#define SPI_CMD_START_IMMEDIATE		0x03
81#define SPI_CMD_COMMAND_SHIFT		0
82#define SPI_CMD_COMMAND_MASK		0x000f
83#define SPI_CMD_DEVICE_ID_SHIFT		4
84#define SPI_CMD_PREPEND_BYTE_CNT_SHIFT	8
85#define SPI_CMD_ONE_BYTE_SHIFT		11
86#define SPI_CMD_ONE_WIRE_SHIFT		12
87#define SPI_DEV_ID_0			0
88#define SPI_DEV_ID_1			1
89#define SPI_DEV_ID_2			2
90#define SPI_DEV_ID_3			3
91
92/* Interrupt mask */
93#define SPI_INTR_CMD_DONE		0x01
94#define SPI_INTR_RX_OVERFLOW		0x02
95#define SPI_INTR_TX_UNDERFLOW		0x04
96#define SPI_INTR_TX_OVERFLOW		0x08
97#define SPI_INTR_RX_UNDERFLOW		0x10
98#define SPI_INTR_CLEAR_ALL		0x1f
99
100/* Status */
101#define SPI_RX_EMPTY			0x02
102#define SPI_CMD_BUSY			0x04
103#define SPI_SERIAL_BUSY			0x08
104
105/* Clock configuration */
106#define SPI_CLK_20MHZ			0x00
107#define SPI_CLK_0_391MHZ		0x01
108#define SPI_CLK_0_781MHZ		0x02	/* default */
109#define SPI_CLK_1_563MHZ		0x03
110#define SPI_CLK_3_125MHZ		0x04
111#define SPI_CLK_6_250MHZ		0x05
112#define SPI_CLK_12_50MHZ		0x06
113#define SPI_CLK_MASK			0x07
114#define SPI_SSOFFTIME_MASK		0x38
115#define SPI_SSOFFTIME_SHIFT		3
116#define SPI_BYTE_SWAP			0x80
117
118enum bcm63xx_regs_spi {
119	SPI_CMD,
120	SPI_INT_STATUS,
121	SPI_INT_MASK_ST,
122	SPI_INT_MASK,
123	SPI_ST,
124	SPI_CLK_CFG,
125	SPI_FILL_BYTE,
126	SPI_MSG_TAIL,
127	SPI_RX_TAIL,
128	SPI_MSG_CTL,
129	SPI_MSG_DATA,
130	SPI_RX_DATA,
131	SPI_MSG_TYPE_SHIFT,
132	SPI_MSG_CTL_WIDTH,
133	SPI_MSG_DATA_SIZE,
134};
135
136#define BCM63XX_SPI_MAX_PREPEND		15
137
138#define BCM63XX_SPI_MAX_CS		8
139#define BCM63XX_SPI_BUS_NUM		0
140
141struct bcm63xx_spi {
142	struct completion	done;
143
144	void __iomem		*regs;
145	int			irq;
146
147	/* Platform data */
148	const unsigned long	*reg_offsets;
149	unsigned		fifo_size;
150	unsigned int		msg_type_shift;
151	unsigned int		msg_ctl_width;
152
153	/* data iomem */
154	u8 __iomem		*tx_io;
155	const u8 __iomem	*rx_io;
156
157	struct clk		*clk;
158	struct platform_device	*pdev;
159};
160
161static inline u8 bcm_spi_readb(struct bcm63xx_spi *bs,
162			       unsigned int offset)
163{
164	return readb(bs->regs + bs->reg_offsets[offset]);
165}
166
167static inline u16 bcm_spi_readw(struct bcm63xx_spi *bs,
168				unsigned int offset)
169{
170#ifdef CONFIG_CPU_BIG_ENDIAN
171	return ioread16be(bs->regs + bs->reg_offsets[offset]);
172#else
173	return readw(bs->regs + bs->reg_offsets[offset]);
174#endif
175}
176
177static inline void bcm_spi_writeb(struct bcm63xx_spi *bs,
178				  u8 value, unsigned int offset)
179{
180	writeb(value, bs->regs + bs->reg_offsets[offset]);
181}
182
183static inline void bcm_spi_writew(struct bcm63xx_spi *bs,
184				  u16 value, unsigned int offset)
185{
186#ifdef CONFIG_CPU_BIG_ENDIAN
187	iowrite16be(value, bs->regs + bs->reg_offsets[offset]);
188#else
189	writew(value, bs->regs + bs->reg_offsets[offset]);
190#endif
191}
192
193static const unsigned bcm63xx_spi_freq_table[SPI_CLK_MASK][2] = {
194	{ 20000000, SPI_CLK_20MHZ },
195	{ 12500000, SPI_CLK_12_50MHZ },
196	{  6250000, SPI_CLK_6_250MHZ },
197	{  3125000, SPI_CLK_3_125MHZ },
198	{  1563000, SPI_CLK_1_563MHZ },
199	{   781000, SPI_CLK_0_781MHZ },
200	{   391000, SPI_CLK_0_391MHZ }
201};
202
203static void bcm63xx_spi_setup_transfer(struct spi_device *spi,
204				      struct spi_transfer *t)
205{
206	struct bcm63xx_spi *bs = spi_master_get_devdata(spi->master);
207	u8 clk_cfg, reg;
208	int i;
209
210	/* Find the closest clock configuration */
211	for (i = 0; i < SPI_CLK_MASK; i++) {
212		if (t->speed_hz >= bcm63xx_spi_freq_table[i][0]) {
213			clk_cfg = bcm63xx_spi_freq_table[i][1];
214			break;
215		}
216	}
217
218	/* No matching configuration found, default to lowest */
219	if (i == SPI_CLK_MASK)
220		clk_cfg = SPI_CLK_0_391MHZ;
221
222	/* clear existing clock configuration bits of the register */
223	reg = bcm_spi_readb(bs, SPI_CLK_CFG);
224	reg &= ~SPI_CLK_MASK;
225	reg |= clk_cfg;
226
227	bcm_spi_writeb(bs, reg, SPI_CLK_CFG);
228	dev_dbg(&spi->dev, "Setting clock register to %02x (hz %d)\n",
229		clk_cfg, t->speed_hz);
230}
231
232/* the spi->mode bits understood by this driver: */
233#define MODEBITS (SPI_CPOL | SPI_CPHA)
234
235static int bcm63xx_txrx_bufs(struct spi_device *spi, struct spi_transfer *first,
236				unsigned int num_transfers)
237{
238	struct bcm63xx_spi *bs = spi_master_get_devdata(spi->master);
239	u16 msg_ctl;
240	u16 cmd;
241	unsigned int i, timeout = 0, prepend_len = 0, len = 0;
242	struct spi_transfer *t = first;
243	bool do_rx = false;
244	bool do_tx = false;
245
246	/* Disable the CMD_DONE interrupt */
247	bcm_spi_writeb(bs, 0, SPI_INT_MASK);
248
249	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
250		t->tx_buf, t->rx_buf, t->len);
251
252	if (num_transfers > 1 && t->tx_buf && t->len <= BCM63XX_SPI_MAX_PREPEND)
253		prepend_len = t->len;
254
255	/* prepare the buffer */
256	for (i = 0; i < num_transfers; i++) {
257		if (t->tx_buf) {
258			do_tx = true;
259			memcpy_toio(bs->tx_io + len, t->tx_buf, t->len);
260
261			/* don't prepend more than one tx */
262			if (t != first)
263				prepend_len = 0;
264		}
265
266		if (t->rx_buf) {
267			do_rx = true;
268			/* prepend is half-duplex write only */
269			if (t == first)
270				prepend_len = 0;
271		}
272
273		len += t->len;
274
275		t = list_entry(t->transfer_list.next, struct spi_transfer,
276			       transfer_list);
277	}
278
279	reinit_completion(&bs->done);
280
281	/* Fill in the Message control register */
282	msg_ctl = (len << SPI_BYTE_CNT_SHIFT);
283
284	if (do_rx && do_tx && prepend_len == 0)
285		msg_ctl |= (SPI_FD_RW << bs->msg_type_shift);
286	else if (do_rx)
287		msg_ctl |= (SPI_HD_R << bs->msg_type_shift);
288	else if (do_tx)
289		msg_ctl |= (SPI_HD_W << bs->msg_type_shift);
290
291	switch (bs->msg_ctl_width) {
292	case 8:
293		bcm_spi_writeb(bs, msg_ctl, SPI_MSG_CTL);
294		break;
295	case 16:
296		bcm_spi_writew(bs, msg_ctl, SPI_MSG_CTL);
297		break;
298	}
299
300	/* Issue the transfer */
301	cmd = SPI_CMD_START_IMMEDIATE;
302	cmd |= (prepend_len << SPI_CMD_PREPEND_BYTE_CNT_SHIFT);
303	cmd |= (spi->chip_select << SPI_CMD_DEVICE_ID_SHIFT);
304	bcm_spi_writew(bs, cmd, SPI_CMD);
305
306	/* Enable the CMD_DONE interrupt */
307	bcm_spi_writeb(bs, SPI_INTR_CMD_DONE, SPI_INT_MASK);
308
309	timeout = wait_for_completion_timeout(&bs->done, HZ);
310	if (!timeout)
311		return -ETIMEDOUT;
312
313	if (!do_rx)
314		return 0;
315
316	len = 0;
317	t = first;
318	/* Read out all the data */
319	for (i = 0; i < num_transfers; i++) {
320		if (t->rx_buf)
321			memcpy_fromio(t->rx_buf, bs->rx_io + len, t->len);
322
323		if (t != first || prepend_len == 0)
324			len += t->len;
325
326		t = list_entry(t->transfer_list.next, struct spi_transfer,
327			       transfer_list);
328	}
329
330	return 0;
331}
332
333static int bcm63xx_spi_transfer_one(struct spi_master *master,
334					struct spi_message *m)
335{
336	struct bcm63xx_spi *bs = spi_master_get_devdata(master);
337	struct spi_transfer *t, *first = NULL;
338	struct spi_device *spi = m->spi;
339	int status = 0;
340	unsigned int n_transfers = 0, total_len = 0;
341	bool can_use_prepend = false;
342
343	/*
344	 * This SPI controller does not support keeping CS active after a
345	 * transfer.
346	 * Work around this by merging as many transfers we can into one big
347	 * full-duplex transfers.
348	 */
349	list_for_each_entry(t, &m->transfers, transfer_list) {
350		if (!first)
351			first = t;
352
353		n_transfers++;
354		total_len += t->len;
355
356		if (n_transfers == 2 && !first->rx_buf && !t->tx_buf &&
357		    first->len <= BCM63XX_SPI_MAX_PREPEND)
358			can_use_prepend = true;
359		else if (can_use_prepend && t->tx_buf)
360			can_use_prepend = false;
361
362		/* we can only transfer one fifo worth of data */
363		if ((can_use_prepend &&
364		     total_len > (bs->fifo_size + BCM63XX_SPI_MAX_PREPEND)) ||
365		    (!can_use_prepend && total_len > bs->fifo_size)) {
366			dev_err(&spi->dev, "unable to do transfers larger than FIFO size (%i > %i)\n",
367				total_len, bs->fifo_size);
368			status = -EINVAL;
369			goto exit;
370		}
371
372		/* all combined transfers have to have the same speed */
373		if (t->speed_hz != first->speed_hz) {
374			dev_err(&spi->dev, "unable to change speed between transfers\n");
375			status = -EINVAL;
376			goto exit;
377		}
378
379		/* CS will be deasserted directly after transfer */
380		if (t->delay_usecs) {
381			dev_err(&spi->dev, "unable to keep CS asserted after transfer\n");
382			status = -EINVAL;
383			goto exit;
384		}
385
386		if (t->cs_change ||
387		    list_is_last(&t->transfer_list, &m->transfers)) {
388			/* configure adapter for a new transfer */
389			bcm63xx_spi_setup_transfer(spi, first);
390
391			/* send the data */
392			status = bcm63xx_txrx_bufs(spi, first, n_transfers);
393			if (status)
394				goto exit;
395
396			m->actual_length += total_len;
397
398			first = NULL;
399			n_transfers = 0;
400			total_len = 0;
401			can_use_prepend = false;
402		}
403	}
404exit:
405	m->status = status;
406	spi_finalize_current_message(master);
407
408	return 0;
409}
410
411/* This driver supports single master mode only. Hence
412 * CMD_DONE is the only interrupt we care about
413 */
414static irqreturn_t bcm63xx_spi_interrupt(int irq, void *dev_id)
415{
416	struct spi_master *master = (struct spi_master *)dev_id;
417	struct bcm63xx_spi *bs = spi_master_get_devdata(master);
418	u8 intr;
419
420	/* Read interupts and clear them immediately */
421	intr = bcm_spi_readb(bs, SPI_INT_STATUS);
422	bcm_spi_writeb(bs, SPI_INTR_CLEAR_ALL, SPI_INT_STATUS);
423	bcm_spi_writeb(bs, 0, SPI_INT_MASK);
424
425	/* A transfer completed */
426	if (intr & SPI_INTR_CMD_DONE)
427		complete(&bs->done);
428
429	return IRQ_HANDLED;
430}
431
432static const unsigned long bcm6348_spi_reg_offsets[] = {
433	[SPI_CMD]		= SPI_6348_CMD,
434	[SPI_INT_STATUS]	= SPI_6348_INT_STATUS,
435	[SPI_INT_MASK_ST]	= SPI_6348_INT_MASK_ST,
436	[SPI_INT_MASK]		= SPI_6348_INT_MASK,
437	[SPI_ST]		= SPI_6348_ST,
438	[SPI_CLK_CFG]		= SPI_6348_CLK_CFG,
439	[SPI_FILL_BYTE]		= SPI_6348_FILL_BYTE,
440	[SPI_MSG_TAIL]		= SPI_6348_MSG_TAIL,
441	[SPI_RX_TAIL]		= SPI_6348_RX_TAIL,
442	[SPI_MSG_CTL]		= SPI_6348_MSG_CTL,
443	[SPI_MSG_DATA]		= SPI_6348_MSG_DATA,
444	[SPI_RX_DATA]		= SPI_6348_RX_DATA,
445	[SPI_MSG_TYPE_SHIFT]	= SPI_6348_MSG_TYPE_SHIFT,
446	[SPI_MSG_CTL_WIDTH]	= SPI_6348_MSG_CTL_WIDTH,
447	[SPI_MSG_DATA_SIZE]	= SPI_6348_MSG_DATA_SIZE,
448};
449
450static const unsigned long bcm6358_spi_reg_offsets[] = {
451	[SPI_CMD]		= SPI_6358_CMD,
452	[SPI_INT_STATUS]	= SPI_6358_INT_STATUS,
453	[SPI_INT_MASK_ST]	= SPI_6358_INT_MASK_ST,
454	[SPI_INT_MASK]		= SPI_6358_INT_MASK,
455	[SPI_ST]		= SPI_6358_ST,
456	[SPI_CLK_CFG]		= SPI_6358_CLK_CFG,
457	[SPI_FILL_BYTE]		= SPI_6358_FILL_BYTE,
458	[SPI_MSG_TAIL]		= SPI_6358_MSG_TAIL,
459	[SPI_RX_TAIL]		= SPI_6358_RX_TAIL,
460	[SPI_MSG_CTL]		= SPI_6358_MSG_CTL,
461	[SPI_MSG_DATA]		= SPI_6358_MSG_DATA,
462	[SPI_RX_DATA]		= SPI_6358_RX_DATA,
463	[SPI_MSG_TYPE_SHIFT]	= SPI_6358_MSG_TYPE_SHIFT,
464	[SPI_MSG_CTL_WIDTH]	= SPI_6358_MSG_CTL_WIDTH,
465	[SPI_MSG_DATA_SIZE]	= SPI_6358_MSG_DATA_SIZE,
466};
467
468static const struct platform_device_id bcm63xx_spi_dev_match[] = {
469	{
470		.name = "bcm6348-spi",
471		.driver_data = (unsigned long)bcm6348_spi_reg_offsets,
472	},
473	{
474		.name = "bcm6358-spi",
475		.driver_data = (unsigned long)bcm6358_spi_reg_offsets,
476	},
477	{
478	},
479};
480
481static int bcm63xx_spi_probe(struct platform_device *pdev)
482{
483	struct resource *r;
484	const unsigned long *bcm63xx_spireg;
485	struct device *dev = &pdev->dev;
486	int irq;
487	struct spi_master *master;
488	struct clk *clk;
489	struct bcm63xx_spi *bs;
490	int ret;
491
492	if (!pdev->id_entry->driver_data)
493		return -EINVAL;
494
495	bcm63xx_spireg = (const unsigned long *)pdev->id_entry->driver_data;
496
497	irq = platform_get_irq(pdev, 0);
498	if (irq < 0) {
499		dev_err(dev, "no irq\n");
500		return -ENXIO;
501	}
502
503	clk = devm_clk_get(dev, "spi");
504	if (IS_ERR(clk)) {
505		dev_err(dev, "no clock for device\n");
506		return PTR_ERR(clk);
507	}
508
509	master = spi_alloc_master(dev, sizeof(*bs));
510	if (!master) {
511		dev_err(dev, "out of memory\n");
512		return -ENOMEM;
513	}
514
515	bs = spi_master_get_devdata(master);
516	init_completion(&bs->done);
517
518	platform_set_drvdata(pdev, master);
519	bs->pdev = pdev;
520
521	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
522	bs->regs = devm_ioremap_resource(&pdev->dev, r);
523	if (IS_ERR(bs->regs)) {
524		ret = PTR_ERR(bs->regs);
525		goto out_err;
526	}
527
528	bs->irq = irq;
529	bs->clk = clk;
530	bs->reg_offsets = bcm63xx_spireg;
531	bs->fifo_size = bs->reg_offsets[SPI_MSG_DATA_SIZE];
532
533	ret = devm_request_irq(&pdev->dev, irq, bcm63xx_spi_interrupt, 0,
534							pdev->name, master);
535	if (ret) {
536		dev_err(dev, "unable to request irq\n");
537		goto out_err;
538	}
539
540	master->bus_num = BCM63XX_SPI_BUS_NUM;
541	master->num_chipselect = BCM63XX_SPI_MAX_CS;
542	master->transfer_one_message = bcm63xx_spi_transfer_one;
543	master->mode_bits = MODEBITS;
544	master->bits_per_word_mask = SPI_BPW_MASK(8);
545	master->auto_runtime_pm = true;
546	bs->msg_type_shift = bs->reg_offsets[SPI_MSG_TYPE_SHIFT];
547	bs->msg_ctl_width = bs->reg_offsets[SPI_MSG_CTL_WIDTH];
548	bs->tx_io = (u8 *)(bs->regs + bs->reg_offsets[SPI_MSG_DATA]);
549	bs->rx_io = (const u8 *)(bs->regs + bs->reg_offsets[SPI_RX_DATA]);
550
551	/* Initialize hardware */
552	ret = clk_prepare_enable(bs->clk);
553	if (ret)
554		goto out_err;
555
556	bcm_spi_writeb(bs, SPI_INTR_CLEAR_ALL, SPI_INT_STATUS);
557
558	/* register and we are done */
559	ret = devm_spi_register_master(dev, master);
560	if (ret) {
561		dev_err(dev, "spi register failed\n");
562		goto out_clk_disable;
563	}
564
565	dev_info(dev, "at %pr (irq %d, FIFOs size %d)\n",
566		 r, irq, bs->fifo_size);
567
568	return 0;
569
570out_clk_disable:
571	clk_disable_unprepare(clk);
572out_err:
573	spi_master_put(master);
574	return ret;
575}
576
577static int bcm63xx_spi_remove(struct platform_device *pdev)
578{
579	struct spi_master *master = platform_get_drvdata(pdev);
580	struct bcm63xx_spi *bs = spi_master_get_devdata(master);
581
582	/* reset spi block */
583	bcm_spi_writeb(bs, 0, SPI_INT_MASK);
584
585	/* HW shutdown */
586	clk_disable_unprepare(bs->clk);
587
588	return 0;
589}
590
591#ifdef CONFIG_PM_SLEEP
592static int bcm63xx_spi_suspend(struct device *dev)
593{
594	struct spi_master *master = dev_get_drvdata(dev);
595	struct bcm63xx_spi *bs = spi_master_get_devdata(master);
596
597	spi_master_suspend(master);
598
599	clk_disable_unprepare(bs->clk);
600
601	return 0;
602}
603
604static int bcm63xx_spi_resume(struct device *dev)
605{
606	struct spi_master *master = dev_get_drvdata(dev);
607	struct bcm63xx_spi *bs = spi_master_get_devdata(master);
608	int ret;
609
610	ret = clk_prepare_enable(bs->clk);
611	if (ret)
612		return ret;
613
614	spi_master_resume(master);
615
616	return 0;
617}
618#endif
619
620static const struct dev_pm_ops bcm63xx_spi_pm_ops = {
621	SET_SYSTEM_SLEEP_PM_OPS(bcm63xx_spi_suspend, bcm63xx_spi_resume)
622};
623
624static struct platform_driver bcm63xx_spi_driver = {
625	.driver = {
626		.name	= "bcm63xx-spi",
627		.pm	= &bcm63xx_spi_pm_ops,
628	},
629	.id_table	= bcm63xx_spi_dev_match,
630	.probe		= bcm63xx_spi_probe,
631	.remove		= bcm63xx_spi_remove,
632};
633
634module_platform_driver(bcm63xx_spi_driver);
635
636MODULE_ALIAS("platform:bcm63xx_spi");
637MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
638MODULE_AUTHOR("Tanguy Bouzeloc <tanguy.bouzeloc@efixo.com>");
639MODULE_DESCRIPTION("Broadcom BCM63xx SPI Controller driver");
640MODULE_LICENSE("GPL");
641