1 /*
2 * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver
3 *
4 * Copyright (c) 2008-2009 USI Co., Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 * 3. Neither the names of the above-listed copyright holders nor the names
19 * of any contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * NO WARRANTY
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGES.
38 *
39 */
40
41 #include <linux/slab.h>
42 #include "pm8001_sas.h"
43
44 /**
45 * pm8001_find_tag - from sas task to find out tag that belongs to this task
46 * @task: the task sent to the LLDD
47 * @tag: the found tag associated with the task
48 */
pm8001_find_tag(struct sas_task * task,u32 * tag)49 static int pm8001_find_tag(struct sas_task *task, u32 *tag)
50 {
51 if (task->lldd_task) {
52 struct pm8001_ccb_info *ccb;
53 ccb = task->lldd_task;
54 *tag = ccb->ccb_tag;
55 return 1;
56 }
57 return 0;
58 }
59
60 /**
61 * pm8001_tag_free - free the no more needed tag
62 * @pm8001_ha: our hba struct
63 * @tag: the found tag associated with the task
64 */
pm8001_tag_free(struct pm8001_hba_info * pm8001_ha,u32 tag)65 void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag)
66 {
67 void *bitmap = pm8001_ha->tags;
68 clear_bit(tag, bitmap);
69 }
70
71 /**
72 * pm8001_tag_alloc - allocate a empty tag for task used.
73 * @pm8001_ha: our hba struct
74 * @tag_out: the found empty tag .
75 */
pm8001_tag_alloc(struct pm8001_hba_info * pm8001_ha,u32 * tag_out)76 inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out)
77 {
78 unsigned int tag;
79 void *bitmap = pm8001_ha->tags;
80 unsigned long flags;
81
82 spin_lock_irqsave(&pm8001_ha->bitmap_lock, flags);
83 tag = find_first_zero_bit(bitmap, pm8001_ha->tags_num);
84 if (tag >= pm8001_ha->tags_num) {
85 spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags);
86 return -SAS_QUEUE_FULL;
87 }
88 set_bit(tag, bitmap);
89 spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags);
90 *tag_out = tag;
91 return 0;
92 }
93
pm8001_tag_init(struct pm8001_hba_info * pm8001_ha)94 void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha)
95 {
96 int i;
97 for (i = 0; i < pm8001_ha->tags_num; ++i)
98 pm8001_tag_free(pm8001_ha, i);
99 }
100
101 /**
102 * pm8001_mem_alloc - allocate memory for pm8001.
103 * @pdev: pci device.
104 * @virt_addr: the allocated virtual address
105 * @pphys_addr_hi: the physical address high byte address.
106 * @pphys_addr_lo: the physical address low byte address.
107 * @mem_size: memory size.
108 */
pm8001_mem_alloc(struct pci_dev * pdev,void ** virt_addr,dma_addr_t * pphys_addr,u32 * pphys_addr_hi,u32 * pphys_addr_lo,u32 mem_size,u32 align)109 int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr,
110 dma_addr_t *pphys_addr, u32 *pphys_addr_hi,
111 u32 *pphys_addr_lo, u32 mem_size, u32 align)
112 {
113 caddr_t mem_virt_alloc;
114 dma_addr_t mem_dma_handle;
115 u64 phys_align;
116 u64 align_offset = 0;
117 if (align)
118 align_offset = (dma_addr_t)align - 1;
119 mem_virt_alloc = pci_zalloc_consistent(pdev, mem_size + align,
120 &mem_dma_handle);
121 if (!mem_virt_alloc) {
122 pm8001_printk("memory allocation error\n");
123 return -1;
124 }
125 *pphys_addr = mem_dma_handle;
126 phys_align = (*pphys_addr + align_offset) & ~align_offset;
127 *virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr;
128 *pphys_addr_hi = upper_32_bits(phys_align);
129 *pphys_addr_lo = lower_32_bits(phys_align);
130 return 0;
131 }
132 /**
133 * pm8001_find_ha_by_dev - from domain device which come from sas layer to
134 * find out our hba struct.
135 * @dev: the domain device which from sas layer.
136 */
137 static
pm8001_find_ha_by_dev(struct domain_device * dev)138 struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev)
139 {
140 struct sas_ha_struct *sha = dev->port->ha;
141 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
142 return pm8001_ha;
143 }
144
145 /**
146 * pm8001_phy_control - this function should be registered to
147 * sas_domain_function_template to provide libsas used, note: this is just
148 * control the HBA phy rather than other expander phy if you want control
149 * other phy, you should use SMP command.
150 * @sas_phy: which phy in HBA phys.
151 * @func: the operation.
152 * @funcdata: always NULL.
153 */
pm8001_phy_control(struct asd_sas_phy * sas_phy,enum phy_func func,void * funcdata)154 int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
155 void *funcdata)
156 {
157 int rc = 0, phy_id = sas_phy->id;
158 struct pm8001_hba_info *pm8001_ha = NULL;
159 struct sas_phy_linkrates *rates;
160 DECLARE_COMPLETION_ONSTACK(completion);
161 unsigned long flags;
162 pm8001_ha = sas_phy->ha->lldd_ha;
163 pm8001_ha->phy[phy_id].enable_completion = &completion;
164 switch (func) {
165 case PHY_FUNC_SET_LINK_RATE:
166 rates = funcdata;
167 if (rates->minimum_linkrate) {
168 pm8001_ha->phy[phy_id].minimum_linkrate =
169 rates->minimum_linkrate;
170 }
171 if (rates->maximum_linkrate) {
172 pm8001_ha->phy[phy_id].maximum_linkrate =
173 rates->maximum_linkrate;
174 }
175 if (pm8001_ha->phy[phy_id].phy_state == 0) {
176 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
177 wait_for_completion(&completion);
178 }
179 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
180 PHY_LINK_RESET);
181 break;
182 case PHY_FUNC_HARD_RESET:
183 if (pm8001_ha->phy[phy_id].phy_state == 0) {
184 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
185 wait_for_completion(&completion);
186 }
187 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
188 PHY_HARD_RESET);
189 break;
190 case PHY_FUNC_LINK_RESET:
191 if (pm8001_ha->phy[phy_id].phy_state == 0) {
192 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
193 wait_for_completion(&completion);
194 }
195 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
196 PHY_LINK_RESET);
197 break;
198 case PHY_FUNC_RELEASE_SPINUP_HOLD:
199 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
200 PHY_LINK_RESET);
201 break;
202 case PHY_FUNC_DISABLE:
203 PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id);
204 break;
205 case PHY_FUNC_GET_EVENTS:
206 spin_lock_irqsave(&pm8001_ha->lock, flags);
207 if (pm8001_ha->chip_id == chip_8001) {
208 if (-1 == pm8001_bar4_shift(pm8001_ha,
209 (phy_id < 4) ? 0x30000 : 0x40000)) {
210 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
211 return -EINVAL;
212 }
213 }
214 {
215 struct sas_phy *phy = sas_phy->phy;
216 uint32_t *qp = (uint32_t *)(((char *)
217 pm8001_ha->io_mem[2].memvirtaddr)
218 + 0x1034 + (0x4000 * (phy_id & 3)));
219
220 phy->invalid_dword_count = qp[0];
221 phy->running_disparity_error_count = qp[1];
222 phy->loss_of_dword_sync_count = qp[3];
223 phy->phy_reset_problem_count = qp[4];
224 }
225 if (pm8001_ha->chip_id == chip_8001)
226 pm8001_bar4_shift(pm8001_ha, 0);
227 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
228 return 0;
229 default:
230 rc = -EOPNOTSUPP;
231 }
232 msleep(300);
233 return rc;
234 }
235
236 /**
237 * pm8001_scan_start - we should enable all HBA phys by sending the phy_start
238 * command to HBA.
239 * @shost: the scsi host data.
240 */
pm8001_scan_start(struct Scsi_Host * shost)241 void pm8001_scan_start(struct Scsi_Host *shost)
242 {
243 int i;
244 struct pm8001_hba_info *pm8001_ha;
245 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
246 pm8001_ha = sha->lldd_ha;
247 /* SAS_RE_INITIALIZATION not available in SPCv/ve */
248 if (pm8001_ha->chip_id == chip_8001)
249 PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha);
250 for (i = 0; i < pm8001_ha->chip->n_phy; ++i)
251 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i);
252 }
253
pm8001_scan_finished(struct Scsi_Host * shost,unsigned long time)254 int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time)
255 {
256 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
257
258 /* give the phy enabling interrupt event time to come in (1s
259 * is empirically about all it takes) */
260 if (time < HZ)
261 return 0;
262 /* Wait for discovery to finish */
263 sas_drain_work(ha);
264 return 1;
265 }
266
267 /**
268 * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task
269 * @pm8001_ha: our hba card information
270 * @ccb: the ccb which attached to smp task
271 */
pm8001_task_prep_smp(struct pm8001_hba_info * pm8001_ha,struct pm8001_ccb_info * ccb)272 static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha,
273 struct pm8001_ccb_info *ccb)
274 {
275 return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb);
276 }
277
pm8001_get_ncq_tag(struct sas_task * task,u32 * tag)278 u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag)
279 {
280 struct ata_queued_cmd *qc = task->uldd_task;
281 if (qc) {
282 if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
283 qc->tf.command == ATA_CMD_FPDMA_READ) {
284 *tag = qc->tag;
285 return 1;
286 }
287 }
288 return 0;
289 }
290
291 /**
292 * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task
293 * @pm8001_ha: our hba card information
294 * @ccb: the ccb which attached to sata task
295 */
pm8001_task_prep_ata(struct pm8001_hba_info * pm8001_ha,struct pm8001_ccb_info * ccb)296 static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha,
297 struct pm8001_ccb_info *ccb)
298 {
299 return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb);
300 }
301
302 /**
303 * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data
304 * @pm8001_ha: our hba card information
305 * @ccb: the ccb which attached to TM
306 * @tmf: the task management IU
307 */
pm8001_task_prep_ssp_tm(struct pm8001_hba_info * pm8001_ha,struct pm8001_ccb_info * ccb,struct pm8001_tmf_task * tmf)308 static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha,
309 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf)
310 {
311 return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf);
312 }
313
314 /**
315 * pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task
316 * @pm8001_ha: our hba card information
317 * @ccb: the ccb which attached to ssp task
318 */
pm8001_task_prep_ssp(struct pm8001_hba_info * pm8001_ha,struct pm8001_ccb_info * ccb)319 static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha,
320 struct pm8001_ccb_info *ccb)
321 {
322 return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb);
323 }
324
325 /* Find the local port id that's attached to this device */
sas_find_local_port_id(struct domain_device * dev)326 static int sas_find_local_port_id(struct domain_device *dev)
327 {
328 struct domain_device *pdev = dev->parent;
329
330 /* Directly attached device */
331 if (!pdev)
332 return dev->port->id;
333 while (pdev) {
334 struct domain_device *pdev_p = pdev->parent;
335 if (!pdev_p)
336 return pdev->port->id;
337 pdev = pdev->parent;
338 }
339 return 0;
340 }
341
342 /**
343 * pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware.
344 * @task: the task to be execute.
345 * @num: if can_queue great than 1, the task can be queued up. for SMP task,
346 * we always execute one one time.
347 * @gfp_flags: gfp_flags.
348 * @is_tmf: if it is task management task.
349 * @tmf: the task management IU
350 */
351 #define DEV_IS_GONE(pm8001_dev) \
352 ((!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED)))
pm8001_task_exec(struct sas_task * task,gfp_t gfp_flags,int is_tmf,struct pm8001_tmf_task * tmf)353 static int pm8001_task_exec(struct sas_task *task,
354 gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf)
355 {
356 struct domain_device *dev = task->dev;
357 struct pm8001_hba_info *pm8001_ha;
358 struct pm8001_device *pm8001_dev;
359 struct pm8001_port *port = NULL;
360 struct sas_task *t = task;
361 struct pm8001_ccb_info *ccb;
362 u32 tag = 0xdeadbeef, rc, n_elem = 0;
363 unsigned long flags = 0;
364
365 if (!dev->port) {
366 struct task_status_struct *tsm = &t->task_status;
367 tsm->resp = SAS_TASK_UNDELIVERED;
368 tsm->stat = SAS_PHY_DOWN;
369 if (dev->dev_type != SAS_SATA_DEV)
370 t->task_done(t);
371 return 0;
372 }
373 pm8001_ha = pm8001_find_ha_by_dev(task->dev);
374 PM8001_IO_DBG(pm8001_ha, pm8001_printk("pm8001_task_exec device \n "));
375 spin_lock_irqsave(&pm8001_ha->lock, flags);
376 do {
377 dev = t->dev;
378 pm8001_dev = dev->lldd_dev;
379 port = &pm8001_ha->port[sas_find_local_port_id(dev)];
380 if (DEV_IS_GONE(pm8001_dev) || !port->port_attached) {
381 if (sas_protocol_ata(t->task_proto)) {
382 struct task_status_struct *ts = &t->task_status;
383 ts->resp = SAS_TASK_UNDELIVERED;
384 ts->stat = SAS_PHY_DOWN;
385
386 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
387 t->task_done(t);
388 spin_lock_irqsave(&pm8001_ha->lock, flags);
389 continue;
390 } else {
391 struct task_status_struct *ts = &t->task_status;
392 ts->resp = SAS_TASK_UNDELIVERED;
393 ts->stat = SAS_PHY_DOWN;
394 t->task_done(t);
395 continue;
396 }
397 }
398 rc = pm8001_tag_alloc(pm8001_ha, &tag);
399 if (rc)
400 goto err_out;
401 ccb = &pm8001_ha->ccb_info[tag];
402
403 if (!sas_protocol_ata(t->task_proto)) {
404 if (t->num_scatter) {
405 n_elem = dma_map_sg(pm8001_ha->dev,
406 t->scatter,
407 t->num_scatter,
408 t->data_dir);
409 if (!n_elem) {
410 rc = -ENOMEM;
411 goto err_out_tag;
412 }
413 }
414 } else {
415 n_elem = t->num_scatter;
416 }
417
418 t->lldd_task = ccb;
419 ccb->n_elem = n_elem;
420 ccb->ccb_tag = tag;
421 ccb->task = t;
422 ccb->device = pm8001_dev;
423 switch (t->task_proto) {
424 case SAS_PROTOCOL_SMP:
425 rc = pm8001_task_prep_smp(pm8001_ha, ccb);
426 break;
427 case SAS_PROTOCOL_SSP:
428 if (is_tmf)
429 rc = pm8001_task_prep_ssp_tm(pm8001_ha,
430 ccb, tmf);
431 else
432 rc = pm8001_task_prep_ssp(pm8001_ha, ccb);
433 break;
434 case SAS_PROTOCOL_SATA:
435 case SAS_PROTOCOL_STP:
436 rc = pm8001_task_prep_ata(pm8001_ha, ccb);
437 break;
438 default:
439 dev_printk(KERN_ERR, pm8001_ha->dev,
440 "unknown sas_task proto: 0x%x\n",
441 t->task_proto);
442 rc = -EINVAL;
443 break;
444 }
445
446 if (rc) {
447 PM8001_IO_DBG(pm8001_ha,
448 pm8001_printk("rc is %x\n", rc));
449 goto err_out_tag;
450 }
451 /* TODO: select normal or high priority */
452 spin_lock(&t->task_state_lock);
453 t->task_state_flags |= SAS_TASK_AT_INITIATOR;
454 spin_unlock(&t->task_state_lock);
455 pm8001_dev->running_req++;
456 } while (0);
457 rc = 0;
458 goto out_done;
459
460 err_out_tag:
461 pm8001_tag_free(pm8001_ha, tag);
462 err_out:
463 dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc);
464 if (!sas_protocol_ata(t->task_proto))
465 if (n_elem)
466 dma_unmap_sg(pm8001_ha->dev, t->scatter, n_elem,
467 t->data_dir);
468 out_done:
469 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
470 return rc;
471 }
472
473 /**
474 * pm8001_queue_command - register for upper layer used, all IO commands sent
475 * to HBA are from this interface.
476 * @task: the task to be execute.
477 * @gfp_flags: gfp_flags
478 */
pm8001_queue_command(struct sas_task * task,gfp_t gfp_flags)479 int pm8001_queue_command(struct sas_task *task, gfp_t gfp_flags)
480 {
481 return pm8001_task_exec(task, gfp_flags, 0, NULL);
482 }
483
484 /**
485 * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb.
486 * @pm8001_ha: our hba card information
487 * @ccb: the ccb which attached to ssp task
488 * @task: the task to be free.
489 * @ccb_idx: ccb index.
490 */
pm8001_ccb_task_free(struct pm8001_hba_info * pm8001_ha,struct sas_task * task,struct pm8001_ccb_info * ccb,u32 ccb_idx)491 void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha,
492 struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx)
493 {
494 if (!ccb->task)
495 return;
496 if (!sas_protocol_ata(task->task_proto))
497 if (ccb->n_elem)
498 dma_unmap_sg(pm8001_ha->dev, task->scatter,
499 task->num_scatter, task->data_dir);
500
501 switch (task->task_proto) {
502 case SAS_PROTOCOL_SMP:
503 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1,
504 PCI_DMA_FROMDEVICE);
505 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1,
506 PCI_DMA_TODEVICE);
507 break;
508
509 case SAS_PROTOCOL_SATA:
510 case SAS_PROTOCOL_STP:
511 case SAS_PROTOCOL_SSP:
512 default:
513 /* do nothing */
514 break;
515 }
516 task->lldd_task = NULL;
517 ccb->task = NULL;
518 ccb->ccb_tag = 0xFFFFFFFF;
519 ccb->open_retry = 0;
520 pm8001_tag_free(pm8001_ha, ccb_idx);
521 }
522
523 /**
524 * pm8001_alloc_dev - find a empty pm8001_device
525 * @pm8001_ha: our hba card information
526 */
pm8001_alloc_dev(struct pm8001_hba_info * pm8001_ha)527 struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha)
528 {
529 u32 dev;
530 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) {
531 if (pm8001_ha->devices[dev].dev_type == SAS_PHY_UNUSED) {
532 pm8001_ha->devices[dev].id = dev;
533 return &pm8001_ha->devices[dev];
534 }
535 }
536 if (dev == PM8001_MAX_DEVICES) {
537 PM8001_FAIL_DBG(pm8001_ha,
538 pm8001_printk("max support %d devices, ignore ..\n",
539 PM8001_MAX_DEVICES));
540 }
541 return NULL;
542 }
543 /**
544 * pm8001_find_dev - find a matching pm8001_device
545 * @pm8001_ha: our hba card information
546 */
pm8001_find_dev(struct pm8001_hba_info * pm8001_ha,u32 device_id)547 struct pm8001_device *pm8001_find_dev(struct pm8001_hba_info *pm8001_ha,
548 u32 device_id)
549 {
550 u32 dev;
551 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) {
552 if (pm8001_ha->devices[dev].device_id == device_id)
553 return &pm8001_ha->devices[dev];
554 }
555 if (dev == PM8001_MAX_DEVICES) {
556 PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("NO MATCHING "
557 "DEVICE FOUND !!!\n"));
558 }
559 return NULL;
560 }
561
pm8001_free_dev(struct pm8001_device * pm8001_dev)562 static void pm8001_free_dev(struct pm8001_device *pm8001_dev)
563 {
564 u32 id = pm8001_dev->id;
565 memset(pm8001_dev, 0, sizeof(*pm8001_dev));
566 pm8001_dev->id = id;
567 pm8001_dev->dev_type = SAS_PHY_UNUSED;
568 pm8001_dev->device_id = PM8001_MAX_DEVICES;
569 pm8001_dev->sas_device = NULL;
570 }
571
572 /**
573 * pm8001_dev_found_notify - libsas notify a device is found.
574 * @dev: the device structure which sas layer used.
575 *
576 * when libsas find a sas domain device, it should tell the LLDD that
577 * device is found, and then LLDD register this device to HBA firmware
578 * by the command "OPC_INB_REG_DEV", after that the HBA will assign a
579 * device ID(according to device's sas address) and returned it to LLDD. From
580 * now on, we communicate with HBA FW with the device ID which HBA assigned
581 * rather than sas address. it is the necessary step for our HBA but it is
582 * the optional for other HBA driver.
583 */
pm8001_dev_found_notify(struct domain_device * dev)584 static int pm8001_dev_found_notify(struct domain_device *dev)
585 {
586 unsigned long flags = 0;
587 int res = 0;
588 struct pm8001_hba_info *pm8001_ha = NULL;
589 struct domain_device *parent_dev = dev->parent;
590 struct pm8001_device *pm8001_device;
591 DECLARE_COMPLETION_ONSTACK(completion);
592 u32 flag = 0;
593 pm8001_ha = pm8001_find_ha_by_dev(dev);
594 spin_lock_irqsave(&pm8001_ha->lock, flags);
595
596 pm8001_device = pm8001_alloc_dev(pm8001_ha);
597 if (!pm8001_device) {
598 res = -1;
599 goto found_out;
600 }
601 pm8001_device->sas_device = dev;
602 dev->lldd_dev = pm8001_device;
603 pm8001_device->dev_type = dev->dev_type;
604 pm8001_device->dcompletion = &completion;
605 if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) {
606 int phy_id;
607 struct ex_phy *phy;
608 for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys;
609 phy_id++) {
610 phy = &parent_dev->ex_dev.ex_phy[phy_id];
611 if (SAS_ADDR(phy->attached_sas_addr)
612 == SAS_ADDR(dev->sas_addr)) {
613 pm8001_device->attached_phy = phy_id;
614 break;
615 }
616 }
617 if (phy_id == parent_dev->ex_dev.num_phys) {
618 PM8001_FAIL_DBG(pm8001_ha,
619 pm8001_printk("Error: no attached dev:%016llx"
620 " at ex:%016llx.\n", SAS_ADDR(dev->sas_addr),
621 SAS_ADDR(parent_dev->sas_addr)));
622 res = -1;
623 }
624 } else {
625 if (dev->dev_type == SAS_SATA_DEV) {
626 pm8001_device->attached_phy =
627 dev->rphy->identify.phy_identifier;
628 flag = 1; /* directly sata*/
629 }
630 } /*register this device to HBA*/
631 PM8001_DISC_DBG(pm8001_ha, pm8001_printk("Found device\n"));
632 PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag);
633 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
634 wait_for_completion(&completion);
635 if (dev->dev_type == SAS_END_DEVICE)
636 msleep(50);
637 pm8001_ha->flags = PM8001F_RUN_TIME;
638 return 0;
639 found_out:
640 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
641 return res;
642 }
643
pm8001_dev_found(struct domain_device * dev)644 int pm8001_dev_found(struct domain_device *dev)
645 {
646 return pm8001_dev_found_notify(dev);
647 }
648
pm8001_task_done(struct sas_task * task)649 void pm8001_task_done(struct sas_task *task)
650 {
651 if (!del_timer(&task->slow_task->timer))
652 return;
653 complete(&task->slow_task->completion);
654 }
655
pm8001_tmf_timedout(unsigned long data)656 static void pm8001_tmf_timedout(unsigned long data)
657 {
658 struct sas_task *task = (struct sas_task *)data;
659
660 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
661 complete(&task->slow_task->completion);
662 }
663
664 #define PM8001_TASK_TIMEOUT 20
665 /**
666 * pm8001_exec_internal_tmf_task - execute some task management commands.
667 * @dev: the wanted device.
668 * @tmf: which task management wanted to be take.
669 * @para_len: para_len.
670 * @parameter: ssp task parameter.
671 *
672 * when errors or exception happened, we may want to do something, for example
673 * abort the issued task which result in this execption, it is done by calling
674 * this function, note it is also with the task execute interface.
675 */
pm8001_exec_internal_tmf_task(struct domain_device * dev,void * parameter,u32 para_len,struct pm8001_tmf_task * tmf)676 static int pm8001_exec_internal_tmf_task(struct domain_device *dev,
677 void *parameter, u32 para_len, struct pm8001_tmf_task *tmf)
678 {
679 int res, retry;
680 struct sas_task *task = NULL;
681 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
682 struct pm8001_device *pm8001_dev = dev->lldd_dev;
683 DECLARE_COMPLETION_ONSTACK(completion_setstate);
684
685 for (retry = 0; retry < 3; retry++) {
686 task = sas_alloc_slow_task(GFP_KERNEL);
687 if (!task)
688 return -ENOMEM;
689
690 task->dev = dev;
691 task->task_proto = dev->tproto;
692 memcpy(&task->ssp_task, parameter, para_len);
693 task->task_done = pm8001_task_done;
694 task->slow_task->timer.data = (unsigned long)task;
695 task->slow_task->timer.function = pm8001_tmf_timedout;
696 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ;
697 add_timer(&task->slow_task->timer);
698
699 res = pm8001_task_exec(task, GFP_KERNEL, 1, tmf);
700
701 if (res) {
702 del_timer(&task->slow_task->timer);
703 PM8001_FAIL_DBG(pm8001_ha,
704 pm8001_printk("Executing internal task "
705 "failed\n"));
706 goto ex_err;
707 }
708 wait_for_completion(&task->slow_task->completion);
709 if (pm8001_ha->chip_id != chip_8001) {
710 pm8001_dev->setds_completion = &completion_setstate;
711 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
712 pm8001_dev, 0x01);
713 wait_for_completion(&completion_setstate);
714 }
715 res = -TMF_RESP_FUNC_FAILED;
716 /* Even TMF timed out, return direct. */
717 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
718 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
719 PM8001_FAIL_DBG(pm8001_ha,
720 pm8001_printk("TMF task[%x]timeout.\n",
721 tmf->tmf));
722 goto ex_err;
723 }
724 }
725
726 if (task->task_status.resp == SAS_TASK_COMPLETE &&
727 task->task_status.stat == SAM_STAT_GOOD) {
728 res = TMF_RESP_FUNC_COMPLETE;
729 break;
730 }
731
732 if (task->task_status.resp == SAS_TASK_COMPLETE &&
733 task->task_status.stat == SAS_DATA_UNDERRUN) {
734 /* no error, but return the number of bytes of
735 * underrun */
736 res = task->task_status.residual;
737 break;
738 }
739
740 if (task->task_status.resp == SAS_TASK_COMPLETE &&
741 task->task_status.stat == SAS_DATA_OVERRUN) {
742 PM8001_FAIL_DBG(pm8001_ha,
743 pm8001_printk("Blocked task error.\n"));
744 res = -EMSGSIZE;
745 break;
746 } else {
747 PM8001_EH_DBG(pm8001_ha,
748 pm8001_printk(" Task to dev %016llx response:"
749 "0x%x status 0x%x\n",
750 SAS_ADDR(dev->sas_addr),
751 task->task_status.resp,
752 task->task_status.stat));
753 sas_free_task(task);
754 task = NULL;
755 }
756 }
757 ex_err:
758 BUG_ON(retry == 3 && task != NULL);
759 sas_free_task(task);
760 return res;
761 }
762
763 static int
pm8001_exec_internal_task_abort(struct pm8001_hba_info * pm8001_ha,struct pm8001_device * pm8001_dev,struct domain_device * dev,u32 flag,u32 task_tag)764 pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha,
765 struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag,
766 u32 task_tag)
767 {
768 int res, retry;
769 u32 ccb_tag;
770 struct pm8001_ccb_info *ccb;
771 struct sas_task *task = NULL;
772
773 for (retry = 0; retry < 3; retry++) {
774 task = sas_alloc_slow_task(GFP_KERNEL);
775 if (!task)
776 return -ENOMEM;
777
778 task->dev = dev;
779 task->task_proto = dev->tproto;
780 task->task_done = pm8001_task_done;
781 task->slow_task->timer.data = (unsigned long)task;
782 task->slow_task->timer.function = pm8001_tmf_timedout;
783 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ;
784 add_timer(&task->slow_task->timer);
785
786 res = pm8001_tag_alloc(pm8001_ha, &ccb_tag);
787 if (res)
788 return res;
789 ccb = &pm8001_ha->ccb_info[ccb_tag];
790 ccb->device = pm8001_dev;
791 ccb->ccb_tag = ccb_tag;
792 ccb->task = task;
793 ccb->n_elem = 0;
794
795 res = PM8001_CHIP_DISP->task_abort(pm8001_ha,
796 pm8001_dev, flag, task_tag, ccb_tag);
797
798 if (res) {
799 del_timer(&task->slow_task->timer);
800 PM8001_FAIL_DBG(pm8001_ha,
801 pm8001_printk("Executing internal task "
802 "failed\n"));
803 goto ex_err;
804 }
805 wait_for_completion(&task->slow_task->completion);
806 res = TMF_RESP_FUNC_FAILED;
807 /* Even TMF timed out, return direct. */
808 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
809 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
810 PM8001_FAIL_DBG(pm8001_ha,
811 pm8001_printk("TMF task timeout.\n"));
812 goto ex_err;
813 }
814 }
815
816 if (task->task_status.resp == SAS_TASK_COMPLETE &&
817 task->task_status.stat == SAM_STAT_GOOD) {
818 res = TMF_RESP_FUNC_COMPLETE;
819 break;
820
821 } else {
822 PM8001_EH_DBG(pm8001_ha,
823 pm8001_printk(" Task to dev %016llx response: "
824 "0x%x status 0x%x\n",
825 SAS_ADDR(dev->sas_addr),
826 task->task_status.resp,
827 task->task_status.stat));
828 sas_free_task(task);
829 task = NULL;
830 }
831 }
832 ex_err:
833 BUG_ON(retry == 3 && task != NULL);
834 sas_free_task(task);
835 return res;
836 }
837
838 /**
839 * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify"
840 * @dev: the device structure which sas layer used.
841 */
pm8001_dev_gone_notify(struct domain_device * dev)842 static void pm8001_dev_gone_notify(struct domain_device *dev)
843 {
844 unsigned long flags = 0;
845 struct pm8001_hba_info *pm8001_ha;
846 struct pm8001_device *pm8001_dev = dev->lldd_dev;
847
848 pm8001_ha = pm8001_find_ha_by_dev(dev);
849 spin_lock_irqsave(&pm8001_ha->lock, flags);
850 if (pm8001_dev) {
851 u32 device_id = pm8001_dev->device_id;
852
853 PM8001_DISC_DBG(pm8001_ha,
854 pm8001_printk("found dev[%d:%x] is gone.\n",
855 pm8001_dev->device_id, pm8001_dev->dev_type));
856 if (pm8001_dev->running_req) {
857 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
858 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
859 dev, 1, 0);
860 spin_lock_irqsave(&pm8001_ha->lock, flags);
861 }
862 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id);
863 pm8001_free_dev(pm8001_dev);
864 } else {
865 PM8001_DISC_DBG(pm8001_ha,
866 pm8001_printk("Found dev has gone.\n"));
867 }
868 dev->lldd_dev = NULL;
869 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
870 }
871
pm8001_dev_gone(struct domain_device * dev)872 void pm8001_dev_gone(struct domain_device *dev)
873 {
874 pm8001_dev_gone_notify(dev);
875 }
876
pm8001_issue_ssp_tmf(struct domain_device * dev,u8 * lun,struct pm8001_tmf_task * tmf)877 static int pm8001_issue_ssp_tmf(struct domain_device *dev,
878 u8 *lun, struct pm8001_tmf_task *tmf)
879 {
880 struct sas_ssp_task ssp_task;
881 if (!(dev->tproto & SAS_PROTOCOL_SSP))
882 return TMF_RESP_FUNC_ESUPP;
883
884 strncpy((u8 *)&ssp_task.LUN, lun, 8);
885 return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task),
886 tmf);
887 }
888
889 /* retry commands by ha, by task and/or by device */
pm8001_open_reject_retry(struct pm8001_hba_info * pm8001_ha,struct sas_task * task_to_close,struct pm8001_device * device_to_close)890 void pm8001_open_reject_retry(
891 struct pm8001_hba_info *pm8001_ha,
892 struct sas_task *task_to_close,
893 struct pm8001_device *device_to_close)
894 {
895 int i;
896 unsigned long flags;
897
898 if (pm8001_ha == NULL)
899 return;
900
901 spin_lock_irqsave(&pm8001_ha->lock, flags);
902
903 for (i = 0; i < PM8001_MAX_CCB; i++) {
904 struct sas_task *task;
905 struct task_status_struct *ts;
906 struct pm8001_device *pm8001_dev;
907 unsigned long flags1;
908 u32 tag;
909 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i];
910
911 pm8001_dev = ccb->device;
912 if (!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED))
913 continue;
914 if (!device_to_close) {
915 uintptr_t d = (uintptr_t)pm8001_dev
916 - (uintptr_t)&pm8001_ha->devices;
917 if (((d % sizeof(*pm8001_dev)) != 0)
918 || ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES))
919 continue;
920 } else if (pm8001_dev != device_to_close)
921 continue;
922 tag = ccb->ccb_tag;
923 if (!tag || (tag == 0xFFFFFFFF))
924 continue;
925 task = ccb->task;
926 if (!task || !task->task_done)
927 continue;
928 if (task_to_close && (task != task_to_close))
929 continue;
930 ts = &task->task_status;
931 ts->resp = SAS_TASK_COMPLETE;
932 /* Force the midlayer to retry */
933 ts->stat = SAS_OPEN_REJECT;
934 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
935 if (pm8001_dev)
936 pm8001_dev->running_req--;
937 spin_lock_irqsave(&task->task_state_lock, flags1);
938 task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
939 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
940 task->task_state_flags |= SAS_TASK_STATE_DONE;
941 if (unlikely((task->task_state_flags
942 & SAS_TASK_STATE_ABORTED))) {
943 spin_unlock_irqrestore(&task->task_state_lock,
944 flags1);
945 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag);
946 } else {
947 spin_unlock_irqrestore(&task->task_state_lock,
948 flags1);
949 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag);
950 mb();/* in order to force CPU ordering */
951 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
952 task->task_done(task);
953 spin_lock_irqsave(&pm8001_ha->lock, flags);
954 }
955 }
956
957 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
958 }
959
960 /**
961 * Standard mandates link reset for ATA (type 0) and hard reset for
962 * SSP (type 1) , only for RECOVERY
963 */
pm8001_I_T_nexus_reset(struct domain_device * dev)964 int pm8001_I_T_nexus_reset(struct domain_device *dev)
965 {
966 int rc = TMF_RESP_FUNC_FAILED;
967 struct pm8001_device *pm8001_dev;
968 struct pm8001_hba_info *pm8001_ha;
969 struct sas_phy *phy;
970
971 if (!dev || !dev->lldd_dev)
972 return -ENODEV;
973
974 pm8001_dev = dev->lldd_dev;
975 pm8001_ha = pm8001_find_ha_by_dev(dev);
976 phy = sas_get_local_phy(dev);
977
978 if (dev_is_sata(dev)) {
979 if (scsi_is_sas_phy_local(phy)) {
980 rc = 0;
981 goto out;
982 }
983 rc = sas_phy_reset(phy, 1);
984 if (rc) {
985 PM8001_EH_DBG(pm8001_ha,
986 pm8001_printk("phy reset failed for device %x\n"
987 "with rc %d\n", pm8001_dev->device_id, rc));
988 rc = TMF_RESP_FUNC_FAILED;
989 goto out;
990 }
991 msleep(2000);
992 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
993 dev, 1, 0);
994 if (rc) {
995 PM8001_EH_DBG(pm8001_ha,
996 pm8001_printk("task abort failed %x\n"
997 "with rc %d\n", pm8001_dev->device_id, rc));
998 rc = TMF_RESP_FUNC_FAILED;
999 }
1000 } else {
1001 rc = sas_phy_reset(phy, 1);
1002 msleep(2000);
1003 }
1004 PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n",
1005 pm8001_dev->device_id, rc));
1006 out:
1007 sas_put_local_phy(phy);
1008 return rc;
1009 }
1010
1011 /*
1012 * This function handle the IT_NEXUS_XXX event or completion
1013 * status code for SSP/SATA/SMP I/O request.
1014 */
pm8001_I_T_nexus_event_handler(struct domain_device * dev)1015 int pm8001_I_T_nexus_event_handler(struct domain_device *dev)
1016 {
1017 int rc = TMF_RESP_FUNC_FAILED;
1018 struct pm8001_device *pm8001_dev;
1019 struct pm8001_hba_info *pm8001_ha;
1020 struct sas_phy *phy;
1021 u32 device_id = 0;
1022
1023 if (!dev || !dev->lldd_dev)
1024 return -1;
1025
1026 pm8001_dev = dev->lldd_dev;
1027 device_id = pm8001_dev->device_id;
1028 pm8001_ha = pm8001_find_ha_by_dev(dev);
1029
1030 PM8001_EH_DBG(pm8001_ha,
1031 pm8001_printk("I_T_Nexus handler invoked !!"));
1032
1033 phy = sas_get_local_phy(dev);
1034
1035 if (dev_is_sata(dev)) {
1036 DECLARE_COMPLETION_ONSTACK(completion_setstate);
1037 if (scsi_is_sas_phy_local(phy)) {
1038 rc = 0;
1039 goto out;
1040 }
1041 /* send internal ssp/sata/smp abort command to FW */
1042 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
1043 dev, 1, 0);
1044 msleep(100);
1045
1046 /* deregister the target device */
1047 pm8001_dev_gone_notify(dev);
1048 msleep(200);
1049
1050 /*send phy reset to hard reset target */
1051 rc = sas_phy_reset(phy, 1);
1052 msleep(2000);
1053 pm8001_dev->setds_completion = &completion_setstate;
1054
1055 wait_for_completion(&completion_setstate);
1056 } else {
1057 /* send internal ssp/sata/smp abort command to FW */
1058 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
1059 dev, 1, 0);
1060 msleep(100);
1061
1062 /* deregister the target device */
1063 pm8001_dev_gone_notify(dev);
1064 msleep(200);
1065
1066 /*send phy reset to hard reset target */
1067 rc = sas_phy_reset(phy, 1);
1068 msleep(2000);
1069 }
1070 PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n",
1071 pm8001_dev->device_id, rc));
1072 out:
1073 sas_put_local_phy(phy);
1074
1075 return rc;
1076 }
1077 /* mandatory SAM-3, the task reset the specified LUN*/
pm8001_lu_reset(struct domain_device * dev,u8 * lun)1078 int pm8001_lu_reset(struct domain_device *dev, u8 *lun)
1079 {
1080 int rc = TMF_RESP_FUNC_FAILED;
1081 struct pm8001_tmf_task tmf_task;
1082 struct pm8001_device *pm8001_dev = dev->lldd_dev;
1083 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
1084 DECLARE_COMPLETION_ONSTACK(completion_setstate);
1085 if (dev_is_sata(dev)) {
1086 struct sas_phy *phy = sas_get_local_phy(dev);
1087 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
1088 dev, 1, 0);
1089 rc = sas_phy_reset(phy, 1);
1090 sas_put_local_phy(phy);
1091 pm8001_dev->setds_completion = &completion_setstate;
1092 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
1093 pm8001_dev, 0x01);
1094 wait_for_completion(&completion_setstate);
1095 } else {
1096 tmf_task.tmf = TMF_LU_RESET;
1097 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1098 }
1099 /* If failed, fall-through I_T_Nexus reset */
1100 PM8001_EH_DBG(pm8001_ha, pm8001_printk("for device[%x]:rc=%d\n",
1101 pm8001_dev->device_id, rc));
1102 return rc;
1103 }
1104
1105 /* optional SAM-3 */
pm8001_query_task(struct sas_task * task)1106 int pm8001_query_task(struct sas_task *task)
1107 {
1108 u32 tag = 0xdeadbeef;
1109 int i = 0;
1110 struct scsi_lun lun;
1111 struct pm8001_tmf_task tmf_task;
1112 int rc = TMF_RESP_FUNC_FAILED;
1113 if (unlikely(!task || !task->lldd_task || !task->dev))
1114 return rc;
1115
1116 if (task->task_proto & SAS_PROTOCOL_SSP) {
1117 struct scsi_cmnd *cmnd = task->uldd_task;
1118 struct domain_device *dev = task->dev;
1119 struct pm8001_hba_info *pm8001_ha =
1120 pm8001_find_ha_by_dev(dev);
1121
1122 int_to_scsilun(cmnd->device->lun, &lun);
1123 rc = pm8001_find_tag(task, &tag);
1124 if (rc == 0) {
1125 rc = TMF_RESP_FUNC_FAILED;
1126 return rc;
1127 }
1128 PM8001_EH_DBG(pm8001_ha, pm8001_printk("Query:["));
1129 for (i = 0; i < 16; i++)
1130 printk(KERN_INFO "%02x ", cmnd->cmnd[i]);
1131 printk(KERN_INFO "]\n");
1132 tmf_task.tmf = TMF_QUERY_TASK;
1133 tmf_task.tag_of_task_to_be_managed = tag;
1134
1135 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
1136 switch (rc) {
1137 /* The task is still in Lun, release it then */
1138 case TMF_RESP_FUNC_SUCC:
1139 PM8001_EH_DBG(pm8001_ha,
1140 pm8001_printk("The task is still in Lun\n"));
1141 break;
1142 /* The task is not in Lun or failed, reset the phy */
1143 case TMF_RESP_FUNC_FAILED:
1144 case TMF_RESP_FUNC_COMPLETE:
1145 PM8001_EH_DBG(pm8001_ha,
1146 pm8001_printk("The task is not in Lun or failed,"
1147 " reset the phy\n"));
1148 break;
1149 }
1150 }
1151 pm8001_printk(":rc= %d\n", rc);
1152 return rc;
1153 }
1154
1155 /* mandatory SAM-3, still need free task/ccb info, abord the specified task */
pm8001_abort_task(struct sas_task * task)1156 int pm8001_abort_task(struct sas_task *task)
1157 {
1158 unsigned long flags;
1159 u32 tag = 0xdeadbeef;
1160 u32 device_id;
1161 struct domain_device *dev ;
1162 struct pm8001_hba_info *pm8001_ha = NULL;
1163 struct pm8001_ccb_info *ccb;
1164 struct scsi_lun lun;
1165 struct pm8001_device *pm8001_dev;
1166 struct pm8001_tmf_task tmf_task;
1167 int rc = TMF_RESP_FUNC_FAILED;
1168 if (unlikely(!task || !task->lldd_task || !task->dev))
1169 return rc;
1170 spin_lock_irqsave(&task->task_state_lock, flags);
1171 if (task->task_state_flags & SAS_TASK_STATE_DONE) {
1172 spin_unlock_irqrestore(&task->task_state_lock, flags);
1173 rc = TMF_RESP_FUNC_COMPLETE;
1174 goto out;
1175 }
1176 spin_unlock_irqrestore(&task->task_state_lock, flags);
1177 if (task->task_proto & SAS_PROTOCOL_SSP) {
1178 struct scsi_cmnd *cmnd = task->uldd_task;
1179 dev = task->dev;
1180 ccb = task->lldd_task;
1181 pm8001_dev = dev->lldd_dev;
1182 pm8001_ha = pm8001_find_ha_by_dev(dev);
1183 int_to_scsilun(cmnd->device->lun, &lun);
1184 rc = pm8001_find_tag(task, &tag);
1185 if (rc == 0) {
1186 printk(KERN_INFO "No such tag in %s\n", __func__);
1187 rc = TMF_RESP_FUNC_FAILED;
1188 return rc;
1189 }
1190 device_id = pm8001_dev->device_id;
1191 PM8001_EH_DBG(pm8001_ha,
1192 pm8001_printk("abort io to deviceid= %d\n", device_id));
1193 tmf_task.tmf = TMF_ABORT_TASK;
1194 tmf_task.tag_of_task_to_be_managed = tag;
1195 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
1196 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1197 pm8001_dev->sas_device, 0, tag);
1198 } else if (task->task_proto & SAS_PROTOCOL_SATA ||
1199 task->task_proto & SAS_PROTOCOL_STP) {
1200 dev = task->dev;
1201 pm8001_dev = dev->lldd_dev;
1202 pm8001_ha = pm8001_find_ha_by_dev(dev);
1203 rc = pm8001_find_tag(task, &tag);
1204 if (rc == 0) {
1205 printk(KERN_INFO "No such tag in %s\n", __func__);
1206 rc = TMF_RESP_FUNC_FAILED;
1207 return rc;
1208 }
1209 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1210 pm8001_dev->sas_device, 0, tag);
1211 } else if (task->task_proto & SAS_PROTOCOL_SMP) {
1212 /* SMP */
1213 dev = task->dev;
1214 pm8001_dev = dev->lldd_dev;
1215 pm8001_ha = pm8001_find_ha_by_dev(dev);
1216 rc = pm8001_find_tag(task, &tag);
1217 if (rc == 0) {
1218 printk(KERN_INFO "No such tag in %s\n", __func__);
1219 rc = TMF_RESP_FUNC_FAILED;
1220 return rc;
1221 }
1222 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1223 pm8001_dev->sas_device, 0, tag);
1224
1225 }
1226 out:
1227 if (rc != TMF_RESP_FUNC_COMPLETE)
1228 pm8001_printk("rc= %d\n", rc);
1229 return rc;
1230 }
1231
pm8001_abort_task_set(struct domain_device * dev,u8 * lun)1232 int pm8001_abort_task_set(struct domain_device *dev, u8 *lun)
1233 {
1234 int rc = TMF_RESP_FUNC_FAILED;
1235 struct pm8001_tmf_task tmf_task;
1236
1237 tmf_task.tmf = TMF_ABORT_TASK_SET;
1238 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1239 return rc;
1240 }
1241
pm8001_clear_aca(struct domain_device * dev,u8 * lun)1242 int pm8001_clear_aca(struct domain_device *dev, u8 *lun)
1243 {
1244 int rc = TMF_RESP_FUNC_FAILED;
1245 struct pm8001_tmf_task tmf_task;
1246
1247 tmf_task.tmf = TMF_CLEAR_ACA;
1248 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1249
1250 return rc;
1251 }
1252
pm8001_clear_task_set(struct domain_device * dev,u8 * lun)1253 int pm8001_clear_task_set(struct domain_device *dev, u8 *lun)
1254 {
1255 int rc = TMF_RESP_FUNC_FAILED;
1256 struct pm8001_tmf_task tmf_task;
1257 struct pm8001_device *pm8001_dev = dev->lldd_dev;
1258 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
1259
1260 PM8001_EH_DBG(pm8001_ha,
1261 pm8001_printk("I_T_L_Q clear task set[%x]\n",
1262 pm8001_dev->device_id));
1263 tmf_task.tmf = TMF_CLEAR_TASK_SET;
1264 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1265 return rc;
1266 }
1267
1268