1/*
2 * This file is provided under a dual BSD/GPLv2 license.  When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 *   * Redistributions of source code must retain the above copyright
34 *     notice, this list of conditions and the following disclaimer.
35 *   * Redistributions in binary form must reproduce the above copyright
36 *     notice, this list of conditions and the following disclaimer in
37 *     the documentation and/or other materials provided with the
38 *     distribution.
39 *   * Neither the name of Intel Corporation nor the names of its
40 *     contributors may be used to endorse or promote products derived
41 *     from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55#include <linux/circ_buf.h>
56#include <linux/device.h>
57#include <scsi/sas.h>
58#include "host.h"
59#include "isci.h"
60#include "port.h"
61#include "probe_roms.h"
62#include "remote_device.h"
63#include "request.h"
64#include "scu_completion_codes.h"
65#include "scu_event_codes.h"
66#include "registers.h"
67#include "scu_remote_node_context.h"
68#include "scu_task_context.h"
69
70#define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
71
72#define smu_max_ports(dcc_value) \
73	(\
74		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
76	)
77
78#define smu_max_task_contexts(dcc_value)	\
79	(\
80		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
82	)
83
84#define smu_max_rncs(dcc_value) \
85	(\
86		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
88	)
89
90#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
91
92/**
93 *
94 *
95 * The number of milliseconds to wait while a given phy is consuming power
96 * before allowing another set of phys to consume power. Ultimately, this will
97 * be specified by OEM parameter.
98 */
99#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
100
101/**
102 * NORMALIZE_PUT_POINTER() -
103 *
104 * This macro will normalize the completion queue put pointer so its value can
105 * be used as an array inde
106 */
107#define NORMALIZE_PUT_POINTER(x) \
108	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
109
110
111/**
112 * NORMALIZE_EVENT_POINTER() -
113 *
114 * This macro will normalize the completion queue event entry so its value can
115 * be used as an index.
116 */
117#define NORMALIZE_EVENT_POINTER(x) \
118	(\
119		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
120		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
121	)
122
123/**
124 * NORMALIZE_GET_POINTER() -
125 *
126 * This macro will normalize the completion queue get pointer so its value can
127 * be used as an index into an array
128 */
129#define NORMALIZE_GET_POINTER(x) \
130	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
131
132/**
133 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
134 *
135 * This macro will normalize the completion queue cycle pointer so it matches
136 * the completion queue cycle bit
137 */
138#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
139	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
140
141/**
142 * COMPLETION_QUEUE_CYCLE_BIT() -
143 *
144 * This macro will return the cycle bit of the completion queue entry
145 */
146#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
147
148/* Init the state machine and call the state entry function (if any) */
149void sci_init_sm(struct sci_base_state_machine *sm,
150		 const struct sci_base_state *state_table, u32 initial_state)
151{
152	sci_state_transition_t handler;
153
154	sm->initial_state_id    = initial_state;
155	sm->previous_state_id   = initial_state;
156	sm->current_state_id    = initial_state;
157	sm->state_table         = state_table;
158
159	handler = sm->state_table[initial_state].enter_state;
160	if (handler)
161		handler(sm);
162}
163
164/* Call the state exit fn, update the current state, call the state entry fn */
165void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
166{
167	sci_state_transition_t handler;
168
169	handler = sm->state_table[sm->current_state_id].exit_state;
170	if (handler)
171		handler(sm);
172
173	sm->previous_state_id = sm->current_state_id;
174	sm->current_state_id = next_state;
175
176	handler = sm->state_table[sm->current_state_id].enter_state;
177	if (handler)
178		handler(sm);
179}
180
181static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
182{
183	u32 get_value = ihost->completion_queue_get;
184	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
185
186	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
187	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
188		return true;
189
190	return false;
191}
192
193static bool sci_controller_isr(struct isci_host *ihost)
194{
195	if (sci_controller_completion_queue_has_entries(ihost))
196		return true;
197
198	/* we have a spurious interrupt it could be that we have already
199	 * emptied the completion queue from a previous interrupt
200	 * FIXME: really!?
201	 */
202	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203
204	/* There is a race in the hardware that could cause us not to be
205	 * notified of an interrupt completion if we do not take this
206	 * step.  We will mask then unmask the interrupts so if there is
207	 * another interrupt pending the clearing of the interrupt
208	 * source we get the next interrupt message.
209	 */
210	spin_lock(&ihost->scic_lock);
211	if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
212		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
213		writel(0, &ihost->smu_registers->interrupt_mask);
214	}
215	spin_unlock(&ihost->scic_lock);
216
217	return false;
218}
219
220irqreturn_t isci_msix_isr(int vec, void *data)
221{
222	struct isci_host *ihost = data;
223
224	if (sci_controller_isr(ihost))
225		tasklet_schedule(&ihost->completion_tasklet);
226
227	return IRQ_HANDLED;
228}
229
230static bool sci_controller_error_isr(struct isci_host *ihost)
231{
232	u32 interrupt_status;
233
234	interrupt_status =
235		readl(&ihost->smu_registers->interrupt_status);
236	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
237
238	if (interrupt_status != 0) {
239		/*
240		 * There is an error interrupt pending so let it through and handle
241		 * in the callback */
242		return true;
243	}
244
245	/*
246	 * There is a race in the hardware that could cause us not to be notified
247	 * of an interrupt completion if we do not take this step.  We will mask
248	 * then unmask the error interrupts so if there was another interrupt
249	 * pending we will be notified.
250	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
251	writel(0xff, &ihost->smu_registers->interrupt_mask);
252	writel(0, &ihost->smu_registers->interrupt_mask);
253
254	return false;
255}
256
257static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
258{
259	u32 index = SCU_GET_COMPLETION_INDEX(ent);
260	struct isci_request *ireq = ihost->reqs[index];
261
262	/* Make sure that we really want to process this IO request */
263	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
264	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
265	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
266		/* Yep this is a valid io request pass it along to the
267		 * io request handler
268		 */
269		sci_io_request_tc_completion(ireq, ent);
270}
271
272static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
273{
274	u32 index;
275	struct isci_request *ireq;
276	struct isci_remote_device *idev;
277
278	index = SCU_GET_COMPLETION_INDEX(ent);
279
280	switch (scu_get_command_request_type(ent)) {
281	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
282	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
283		ireq = ihost->reqs[index];
284		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
285			 __func__, ent, ireq);
286		/* @todo For a post TC operation we need to fail the IO
287		 * request
288		 */
289		break;
290	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
291	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
292	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
293		idev = ihost->device_table[index];
294		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
295			 __func__, ent, idev);
296		/* @todo For a port RNC operation we need to fail the
297		 * device
298		 */
299		break;
300	default:
301		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
302			 __func__, ent);
303		break;
304	}
305}
306
307static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
308{
309	u32 index;
310	u32 frame_index;
311
312	struct scu_unsolicited_frame_header *frame_header;
313	struct isci_phy *iphy;
314	struct isci_remote_device *idev;
315
316	enum sci_status result = SCI_FAILURE;
317
318	frame_index = SCU_GET_FRAME_INDEX(ent);
319
320	frame_header = ihost->uf_control.buffers.array[frame_index].header;
321	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
322
323	if (SCU_GET_FRAME_ERROR(ent)) {
324		/*
325		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
326		 * /       this cause a problem? We expect the phy initialization will
327		 * /       fail if there is an error in the frame. */
328		sci_controller_release_frame(ihost, frame_index);
329		return;
330	}
331
332	if (frame_header->is_address_frame) {
333		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
334		iphy = &ihost->phys[index];
335		result = sci_phy_frame_handler(iphy, frame_index);
336	} else {
337
338		index = SCU_GET_COMPLETION_INDEX(ent);
339
340		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
341			/*
342			 * This is a signature fis or a frame from a direct attached SATA
343			 * device that has not yet been created.  In either case forwared
344			 * the frame to the PE and let it take care of the frame data. */
345			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
346			iphy = &ihost->phys[index];
347			result = sci_phy_frame_handler(iphy, frame_index);
348		} else {
349			if (index < ihost->remote_node_entries)
350				idev = ihost->device_table[index];
351			else
352				idev = NULL;
353
354			if (idev != NULL)
355				result = sci_remote_device_frame_handler(idev, frame_index);
356			else
357				sci_controller_release_frame(ihost, frame_index);
358		}
359	}
360
361	if (result != SCI_SUCCESS) {
362		/*
363		 * / @todo Is there any reason to report some additional error message
364		 * /       when we get this failure notifiction? */
365	}
366}
367
368static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
369{
370	struct isci_remote_device *idev;
371	struct isci_request *ireq;
372	struct isci_phy *iphy;
373	u32 index;
374
375	index = SCU_GET_COMPLETION_INDEX(ent);
376
377	switch (scu_get_event_type(ent)) {
378	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
379		/* / @todo The driver did something wrong and we need to fix the condtion. */
380		dev_err(&ihost->pdev->dev,
381			"%s: SCIC Controller 0x%p received SMU command error "
382			"0x%x\n",
383			__func__,
384			ihost,
385			ent);
386		break;
387
388	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
389	case SCU_EVENT_TYPE_SMU_ERROR:
390	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
391		/*
392		 * / @todo This is a hardware failure and its likely that we want to
393		 * /       reset the controller. */
394		dev_err(&ihost->pdev->dev,
395			"%s: SCIC Controller 0x%p received fatal controller "
396			"event  0x%x\n",
397			__func__,
398			ihost,
399			ent);
400		break;
401
402	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
403		ireq = ihost->reqs[index];
404		sci_io_request_event_handler(ireq, ent);
405		break;
406
407	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
408		switch (scu_get_event_specifier(ent)) {
409		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
410		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
411			ireq = ihost->reqs[index];
412			if (ireq != NULL)
413				sci_io_request_event_handler(ireq, ent);
414			else
415				dev_warn(&ihost->pdev->dev,
416					 "%s: SCIC Controller 0x%p received "
417					 "event 0x%x for io request object "
418					 "that doesnt exist.\n",
419					 __func__,
420					 ihost,
421					 ent);
422
423			break;
424
425		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
426			idev = ihost->device_table[index];
427			if (idev != NULL)
428				sci_remote_device_event_handler(idev, ent);
429			else
430				dev_warn(&ihost->pdev->dev,
431					 "%s: SCIC Controller 0x%p received "
432					 "event 0x%x for remote device object "
433					 "that doesnt exist.\n",
434					 __func__,
435					 ihost,
436					 ent);
437
438			break;
439		}
440		break;
441
442	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
443	/*
444	 * direct the broadcast change event to the phy first and then let
445	 * the phy redirect the broadcast change to the port object */
446	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
447	/*
448	 * direct error counter event to the phy object since that is where
449	 * we get the event notification.  This is a type 4 event. */
450	case SCU_EVENT_TYPE_OSSP_EVENT:
451		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
452		iphy = &ihost->phys[index];
453		sci_phy_event_handler(iphy, ent);
454		break;
455
456	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
457	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
458	case SCU_EVENT_TYPE_RNC_OPS_MISC:
459		if (index < ihost->remote_node_entries) {
460			idev = ihost->device_table[index];
461
462			if (idev != NULL)
463				sci_remote_device_event_handler(idev, ent);
464		} else
465			dev_err(&ihost->pdev->dev,
466				"%s: SCIC Controller 0x%p received event 0x%x "
467				"for remote device object 0x%0x that doesnt "
468				"exist.\n",
469				__func__,
470				ihost,
471				ent,
472				index);
473
474		break;
475
476	default:
477		dev_warn(&ihost->pdev->dev,
478			 "%s: SCIC Controller received unknown event code %x\n",
479			 __func__,
480			 ent);
481		break;
482	}
483}
484
485static void sci_controller_process_completions(struct isci_host *ihost)
486{
487	u32 completion_count = 0;
488	u32 ent;
489	u32 get_index;
490	u32 get_cycle;
491	u32 event_get;
492	u32 event_cycle;
493
494	dev_dbg(&ihost->pdev->dev,
495		"%s: completion queue beginning get:0x%08x\n",
496		__func__,
497		ihost->completion_queue_get);
498
499	/* Get the component parts of the completion queue */
500	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
501	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
502
503	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
504	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
505
506	while (
507		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
508		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
509		) {
510		completion_count++;
511
512		ent = ihost->completion_queue[get_index];
513
514		/* increment the get pointer and check for rollover to toggle the cycle bit */
515		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
516			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
517		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
518
519		dev_dbg(&ihost->pdev->dev,
520			"%s: completion queue entry:0x%08x\n",
521			__func__,
522			ent);
523
524		switch (SCU_GET_COMPLETION_TYPE(ent)) {
525		case SCU_COMPLETION_TYPE_TASK:
526			sci_controller_task_completion(ihost, ent);
527			break;
528
529		case SCU_COMPLETION_TYPE_SDMA:
530			sci_controller_sdma_completion(ihost, ent);
531			break;
532
533		case SCU_COMPLETION_TYPE_UFI:
534			sci_controller_unsolicited_frame(ihost, ent);
535			break;
536
537		case SCU_COMPLETION_TYPE_EVENT:
538			sci_controller_event_completion(ihost, ent);
539			break;
540
541		case SCU_COMPLETION_TYPE_NOTIFY: {
542			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
543				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
544			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
545
546			sci_controller_event_completion(ihost, ent);
547			break;
548		}
549		default:
550			dev_warn(&ihost->pdev->dev,
551				 "%s: SCIC Controller received unknown "
552				 "completion type %x\n",
553				 __func__,
554				 ent);
555			break;
556		}
557	}
558
559	/* Update the get register if we completed one or more entries */
560	if (completion_count > 0) {
561		ihost->completion_queue_get =
562			SMU_CQGR_GEN_BIT(ENABLE) |
563			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
564			event_cycle |
565			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
566			get_cycle |
567			SMU_CQGR_GEN_VAL(POINTER, get_index);
568
569		writel(ihost->completion_queue_get,
570		       &ihost->smu_registers->completion_queue_get);
571
572	}
573
574	dev_dbg(&ihost->pdev->dev,
575		"%s: completion queue ending get:0x%08x\n",
576		__func__,
577		ihost->completion_queue_get);
578
579}
580
581static void sci_controller_error_handler(struct isci_host *ihost)
582{
583	u32 interrupt_status;
584
585	interrupt_status =
586		readl(&ihost->smu_registers->interrupt_status);
587
588	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
589	    sci_controller_completion_queue_has_entries(ihost)) {
590
591		sci_controller_process_completions(ihost);
592		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
593	} else {
594		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
595			interrupt_status);
596
597		sci_change_state(&ihost->sm, SCIC_FAILED);
598
599		return;
600	}
601
602	/* If we dont process any completions I am not sure that we want to do this.
603	 * We are in the middle of a hardware fault and should probably be reset.
604	 */
605	writel(0, &ihost->smu_registers->interrupt_mask);
606}
607
608irqreturn_t isci_intx_isr(int vec, void *data)
609{
610	irqreturn_t ret = IRQ_NONE;
611	struct isci_host *ihost = data;
612
613	if (sci_controller_isr(ihost)) {
614		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
615		tasklet_schedule(&ihost->completion_tasklet);
616		ret = IRQ_HANDLED;
617	} else if (sci_controller_error_isr(ihost)) {
618		spin_lock(&ihost->scic_lock);
619		sci_controller_error_handler(ihost);
620		spin_unlock(&ihost->scic_lock);
621		ret = IRQ_HANDLED;
622	}
623
624	return ret;
625}
626
627irqreturn_t isci_error_isr(int vec, void *data)
628{
629	struct isci_host *ihost = data;
630
631	if (sci_controller_error_isr(ihost))
632		sci_controller_error_handler(ihost);
633
634	return IRQ_HANDLED;
635}
636
637/**
638 * isci_host_start_complete() - This function is called by the core library,
639 *    through the ISCI Module, to indicate controller start status.
640 * @isci_host: This parameter specifies the ISCI host object
641 * @completion_status: This parameter specifies the completion status from the
642 *    core library.
643 *
644 */
645static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
646{
647	if (completion_status != SCI_SUCCESS)
648		dev_info(&ihost->pdev->dev,
649			"controller start timed out, continuing...\n");
650	clear_bit(IHOST_START_PENDING, &ihost->flags);
651	wake_up(&ihost->eventq);
652}
653
654int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
655{
656	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
657	struct isci_host *ihost = ha->lldd_ha;
658
659	if (test_bit(IHOST_START_PENDING, &ihost->flags))
660		return 0;
661
662	sas_drain_work(ha);
663
664	return 1;
665}
666
667/**
668 * sci_controller_get_suggested_start_timeout() - This method returns the
669 *    suggested sci_controller_start() timeout amount.  The user is free to
670 *    use any timeout value, but this method provides the suggested minimum
671 *    start timeout value.  The returned value is based upon empirical
672 *    information determined as a result of interoperability testing.
673 * @controller: the handle to the controller object for which to return the
674 *    suggested start timeout.
675 *
676 * This method returns the number of milliseconds for the suggested start
677 * operation timeout.
678 */
679static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
680{
681	/* Validate the user supplied parameters. */
682	if (!ihost)
683		return 0;
684
685	/*
686	 * The suggested minimum timeout value for a controller start operation:
687	 *
688	 *     Signature FIS Timeout
689	 *   + Phy Start Timeout
690	 *   + Number of Phy Spin Up Intervals
691	 *   ---------------------------------
692	 *   Number of milliseconds for the controller start operation.
693	 *
694	 * NOTE: The number of phy spin up intervals will be equivalent
695	 *       to the number of phys divided by the number phys allowed
696	 *       per interval - 1 (once OEM parameters are supported).
697	 *       Currently we assume only 1 phy per interval. */
698
699	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
700		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
701		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
702}
703
704static void sci_controller_enable_interrupts(struct isci_host *ihost)
705{
706	set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
707	writel(0, &ihost->smu_registers->interrupt_mask);
708}
709
710void sci_controller_disable_interrupts(struct isci_host *ihost)
711{
712	clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
713	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
714	readl(&ihost->smu_registers->interrupt_mask); /* flush */
715}
716
717static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
718{
719	u32 port_task_scheduler_value;
720
721	port_task_scheduler_value =
722		readl(&ihost->scu_registers->peg0.ptsg.control);
723	port_task_scheduler_value |=
724		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
725		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
726	writel(port_task_scheduler_value,
727	       &ihost->scu_registers->peg0.ptsg.control);
728}
729
730static void sci_controller_assign_task_entries(struct isci_host *ihost)
731{
732	u32 task_assignment;
733
734	/*
735	 * Assign all the TCs to function 0
736	 * TODO: Do we actually need to read this register to write it back?
737	 */
738
739	task_assignment =
740		readl(&ihost->smu_registers->task_context_assignment[0]);
741
742	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
743		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
744		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
745
746	writel(task_assignment,
747		&ihost->smu_registers->task_context_assignment[0]);
748
749}
750
751static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
752{
753	u32 index;
754	u32 completion_queue_control_value;
755	u32 completion_queue_get_value;
756	u32 completion_queue_put_value;
757
758	ihost->completion_queue_get = 0;
759
760	completion_queue_control_value =
761		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
762		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
763
764	writel(completion_queue_control_value,
765	       &ihost->smu_registers->completion_queue_control);
766
767
768	/* Set the completion queue get pointer and enable the queue */
769	completion_queue_get_value = (
770		(SMU_CQGR_GEN_VAL(POINTER, 0))
771		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
772		| (SMU_CQGR_GEN_BIT(ENABLE))
773		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
774		);
775
776	writel(completion_queue_get_value,
777	       &ihost->smu_registers->completion_queue_get);
778
779	/* Set the completion queue put pointer */
780	completion_queue_put_value = (
781		(SMU_CQPR_GEN_VAL(POINTER, 0))
782		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
783		);
784
785	writel(completion_queue_put_value,
786	       &ihost->smu_registers->completion_queue_put);
787
788	/* Initialize the cycle bit of the completion queue entries */
789	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
790		/*
791		 * If get.cycle_bit != completion_queue.cycle_bit
792		 * its not a valid completion queue entry
793		 * so at system start all entries are invalid */
794		ihost->completion_queue[index] = 0x80000000;
795	}
796}
797
798static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
799{
800	u32 frame_queue_control_value;
801	u32 frame_queue_get_value;
802	u32 frame_queue_put_value;
803
804	/* Write the queue size */
805	frame_queue_control_value =
806		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
807
808	writel(frame_queue_control_value,
809	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
810
811	/* Setup the get pointer for the unsolicited frame queue */
812	frame_queue_get_value = (
813		SCU_UFQGP_GEN_VAL(POINTER, 0)
814		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
815		);
816
817	writel(frame_queue_get_value,
818	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
819	/* Setup the put pointer for the unsolicited frame queue */
820	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
821	writel(frame_queue_put_value,
822	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
823}
824
825void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
826{
827	if (ihost->sm.current_state_id == SCIC_STARTING) {
828		/*
829		 * We move into the ready state, because some of the phys/ports
830		 * may be up and operational.
831		 */
832		sci_change_state(&ihost->sm, SCIC_READY);
833
834		isci_host_start_complete(ihost, status);
835	}
836}
837
838static bool is_phy_starting(struct isci_phy *iphy)
839{
840	enum sci_phy_states state;
841
842	state = iphy->sm.current_state_id;
843	switch (state) {
844	case SCI_PHY_STARTING:
845	case SCI_PHY_SUB_INITIAL:
846	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
847	case SCI_PHY_SUB_AWAIT_IAF_UF:
848	case SCI_PHY_SUB_AWAIT_SAS_POWER:
849	case SCI_PHY_SUB_AWAIT_SATA_POWER:
850	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
851	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
852	case SCI_PHY_SUB_AWAIT_OSSP_EN:
853	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
854	case SCI_PHY_SUB_FINAL:
855		return true;
856	default:
857		return false;
858	}
859}
860
861bool is_controller_start_complete(struct isci_host *ihost)
862{
863	int i;
864
865	for (i = 0; i < SCI_MAX_PHYS; i++) {
866		struct isci_phy *iphy = &ihost->phys[i];
867		u32 state = iphy->sm.current_state_id;
868
869		/* in apc mode we need to check every phy, in
870		 * mpc mode we only need to check phys that have
871		 * been configured into a port
872		 */
873		if (is_port_config_apc(ihost))
874			/* pass */;
875		else if (!phy_get_non_dummy_port(iphy))
876			continue;
877
878		/* The controller start operation is complete iff:
879		 * - all links have been given an opportunity to start
880		 * - have no indication of a connected device
881		 * - have an indication of a connected device and it has
882		 *   finished the link training process.
883		 */
884		if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
885		    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
886		    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
887		    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
888			return false;
889	}
890
891	return true;
892}
893
894/**
895 * sci_controller_start_next_phy - start phy
896 * @scic: controller
897 *
898 * If all the phys have been started, then attempt to transition the
899 * controller to the READY state and inform the user
900 * (sci_cb_controller_start_complete()).
901 */
902static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
903{
904	struct sci_oem_params *oem = &ihost->oem_parameters;
905	struct isci_phy *iphy;
906	enum sci_status status;
907
908	status = SCI_SUCCESS;
909
910	if (ihost->phy_startup_timer_pending)
911		return status;
912
913	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
914		if (is_controller_start_complete(ihost)) {
915			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
916			sci_del_timer(&ihost->phy_timer);
917			ihost->phy_startup_timer_pending = false;
918		}
919	} else {
920		iphy = &ihost->phys[ihost->next_phy_to_start];
921
922		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
923			if (phy_get_non_dummy_port(iphy) == NULL) {
924				ihost->next_phy_to_start++;
925
926				/* Caution recursion ahead be forwarned
927				 *
928				 * The PHY was never added to a PORT in MPC mode
929				 * so start the next phy in sequence This phy
930				 * will never go link up and will not draw power
931				 * the OEM parameters either configured the phy
932				 * incorrectly for the PORT or it was never
933				 * assigned to a PORT
934				 */
935				return sci_controller_start_next_phy(ihost);
936			}
937		}
938
939		status = sci_phy_start(iphy);
940
941		if (status == SCI_SUCCESS) {
942			sci_mod_timer(&ihost->phy_timer,
943				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
944			ihost->phy_startup_timer_pending = true;
945		} else {
946			dev_warn(&ihost->pdev->dev,
947				 "%s: Controller stop operation failed "
948				 "to stop phy %d because of status "
949				 "%d.\n",
950				 __func__,
951				 ihost->phys[ihost->next_phy_to_start].phy_index,
952				 status);
953		}
954
955		ihost->next_phy_to_start++;
956	}
957
958	return status;
959}
960
961static void phy_startup_timeout(unsigned long data)
962{
963	struct sci_timer *tmr = (struct sci_timer *)data;
964	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
965	unsigned long flags;
966	enum sci_status status;
967
968	spin_lock_irqsave(&ihost->scic_lock, flags);
969
970	if (tmr->cancel)
971		goto done;
972
973	ihost->phy_startup_timer_pending = false;
974
975	do {
976		status = sci_controller_start_next_phy(ihost);
977	} while (status != SCI_SUCCESS);
978
979done:
980	spin_unlock_irqrestore(&ihost->scic_lock, flags);
981}
982
983static u16 isci_tci_active(struct isci_host *ihost)
984{
985	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
986}
987
988static enum sci_status sci_controller_start(struct isci_host *ihost,
989					     u32 timeout)
990{
991	enum sci_status result;
992	u16 index;
993
994	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
995		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
996			 __func__, ihost->sm.current_state_id);
997		return SCI_FAILURE_INVALID_STATE;
998	}
999
1000	/* Build the TCi free pool */
1001	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1002	ihost->tci_head = 0;
1003	ihost->tci_tail = 0;
1004	for (index = 0; index < ihost->task_context_entries; index++)
1005		isci_tci_free(ihost, index);
1006
1007	/* Build the RNi free pool */
1008	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1009					 ihost->remote_node_entries);
1010
1011	/*
1012	 * Before anything else lets make sure we will not be
1013	 * interrupted by the hardware.
1014	 */
1015	sci_controller_disable_interrupts(ihost);
1016
1017	/* Enable the port task scheduler */
1018	sci_controller_enable_port_task_scheduler(ihost);
1019
1020	/* Assign all the task entries to ihost physical function */
1021	sci_controller_assign_task_entries(ihost);
1022
1023	/* Now initialize the completion queue */
1024	sci_controller_initialize_completion_queue(ihost);
1025
1026	/* Initialize the unsolicited frame queue for use */
1027	sci_controller_initialize_unsolicited_frame_queue(ihost);
1028
1029	/* Start all of the ports on this controller */
1030	for (index = 0; index < ihost->logical_port_entries; index++) {
1031		struct isci_port *iport = &ihost->ports[index];
1032
1033		result = sci_port_start(iport);
1034		if (result)
1035			return result;
1036	}
1037
1038	sci_controller_start_next_phy(ihost);
1039
1040	sci_mod_timer(&ihost->timer, timeout);
1041
1042	sci_change_state(&ihost->sm, SCIC_STARTING);
1043
1044	return SCI_SUCCESS;
1045}
1046
1047void isci_host_start(struct Scsi_Host *shost)
1048{
1049	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1050	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1051
1052	set_bit(IHOST_START_PENDING, &ihost->flags);
1053
1054	spin_lock_irq(&ihost->scic_lock);
1055	sci_controller_start(ihost, tmo);
1056	sci_controller_enable_interrupts(ihost);
1057	spin_unlock_irq(&ihost->scic_lock);
1058}
1059
1060static void isci_host_stop_complete(struct isci_host *ihost)
1061{
1062	sci_controller_disable_interrupts(ihost);
1063	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1064	wake_up(&ihost->eventq);
1065}
1066
1067static void sci_controller_completion_handler(struct isci_host *ihost)
1068{
1069	/* Empty out the completion queue */
1070	if (sci_controller_completion_queue_has_entries(ihost))
1071		sci_controller_process_completions(ihost);
1072
1073	/* Clear the interrupt and enable all interrupts again */
1074	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1075	/* Could we write the value of SMU_ISR_COMPLETION? */
1076	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1077	writel(0, &ihost->smu_registers->interrupt_mask);
1078}
1079
1080void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1081{
1082	if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1083	    !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1084		if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1085			/* Normal notification (task_done) */
1086			dev_dbg(&ihost->pdev->dev,
1087				"%s: Normal - ireq/task = %p/%p\n",
1088				__func__, ireq, task);
1089			task->lldd_task = NULL;
1090			task->task_done(task);
1091		} else {
1092			dev_dbg(&ihost->pdev->dev,
1093				"%s: Error - ireq/task = %p/%p\n",
1094				__func__, ireq, task);
1095			if (sas_protocol_ata(task->task_proto))
1096				task->lldd_task = NULL;
1097			sas_task_abort(task);
1098		}
1099	} else
1100		task->lldd_task = NULL;
1101
1102	if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1103		wake_up_all(&ihost->eventq);
1104
1105	if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1106		isci_free_tag(ihost, ireq->io_tag);
1107}
1108/**
1109 * isci_host_completion_routine() - This function is the delayed service
1110 *    routine that calls the sci core library's completion handler. It's
1111 *    scheduled as a tasklet from the interrupt service routine when interrupts
1112 *    in use, or set as the timeout function in polled mode.
1113 * @data: This parameter specifies the ISCI host object
1114 *
1115 */
1116void isci_host_completion_routine(unsigned long data)
1117{
1118	struct isci_host *ihost = (struct isci_host *)data;
1119	u16 active;
1120
1121	spin_lock_irq(&ihost->scic_lock);
1122	sci_controller_completion_handler(ihost);
1123	spin_unlock_irq(&ihost->scic_lock);
1124
1125	/*
1126	 * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1127	 * issued for hardware issue workaround
1128	 */
1129	active = isci_tci_active(ihost) - SCI_MAX_PORTS;
1130
1131	/*
1132	 * the coalesence timeout doubles at each encoding step, so
1133	 * update it based on the ilog2 value of the outstanding requests
1134	 */
1135	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1136	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1137	       &ihost->smu_registers->interrupt_coalesce_control);
1138}
1139
1140/**
1141 * sci_controller_stop() - This method will stop an individual controller
1142 *    object.This method will invoke the associated user callback upon
1143 *    completion.  The completion callback is called when the following
1144 *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1145 *    controller has been quiesced. This method will ensure that all IO
1146 *    requests are quiesced, phys are stopped, and all additional operation by
1147 *    the hardware is halted.
1148 * @controller: the handle to the controller object to stop.
1149 * @timeout: This parameter specifies the number of milliseconds in which the
1150 *    stop operation should complete.
1151 *
1152 * The controller must be in the STARTED or STOPPED state. Indicate if the
1153 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1154 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1155 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1156 * controller is not either in the STARTED or STOPPED states.
1157 */
1158static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1159{
1160	if (ihost->sm.current_state_id != SCIC_READY) {
1161		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1162			 __func__, ihost->sm.current_state_id);
1163		return SCI_FAILURE_INVALID_STATE;
1164	}
1165
1166	sci_mod_timer(&ihost->timer, timeout);
1167	sci_change_state(&ihost->sm, SCIC_STOPPING);
1168	return SCI_SUCCESS;
1169}
1170
1171/**
1172 * sci_controller_reset() - This method will reset the supplied core
1173 *    controller regardless of the state of said controller.  This operation is
1174 *    considered destructive.  In other words, all current operations are wiped
1175 *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1176 *    requests are not aborted or completed at the actual remote device.
1177 * @controller: the handle to the controller object to reset.
1178 *
1179 * Indicate if the controller reset method succeeded or failed in some way.
1180 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1181 * the controller reset operation is unable to complete.
1182 */
1183static enum sci_status sci_controller_reset(struct isci_host *ihost)
1184{
1185	switch (ihost->sm.current_state_id) {
1186	case SCIC_RESET:
1187	case SCIC_READY:
1188	case SCIC_STOPPING:
1189	case SCIC_FAILED:
1190		/*
1191		 * The reset operation is not a graceful cleanup, just
1192		 * perform the state transition.
1193		 */
1194		sci_change_state(&ihost->sm, SCIC_RESETTING);
1195		return SCI_SUCCESS;
1196	default:
1197		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1198			 __func__, ihost->sm.current_state_id);
1199		return SCI_FAILURE_INVALID_STATE;
1200	}
1201}
1202
1203static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1204{
1205	u32 index;
1206	enum sci_status status;
1207	enum sci_status phy_status;
1208
1209	status = SCI_SUCCESS;
1210
1211	for (index = 0; index < SCI_MAX_PHYS; index++) {
1212		phy_status = sci_phy_stop(&ihost->phys[index]);
1213
1214		if (phy_status != SCI_SUCCESS &&
1215		    phy_status != SCI_FAILURE_INVALID_STATE) {
1216			status = SCI_FAILURE;
1217
1218			dev_warn(&ihost->pdev->dev,
1219				 "%s: Controller stop operation failed to stop "
1220				 "phy %d because of status %d.\n",
1221				 __func__,
1222				 ihost->phys[index].phy_index, phy_status);
1223		}
1224	}
1225
1226	return status;
1227}
1228
1229
1230/**
1231 * isci_host_deinit - shutdown frame reception and dma
1232 * @ihost: host to take down
1233 *
1234 * This is called in either the driver shutdown or the suspend path.  In
1235 * the shutdown case libsas went through port teardown and normal device
1236 * removal (i.e. physical links stayed up to service scsi_device removal
1237 * commands).  In the suspend case we disable the hardware without
1238 * notifying libsas of the link down events since we want libsas to
1239 * remember the domain across the suspend/resume cycle
1240 */
1241void isci_host_deinit(struct isci_host *ihost)
1242{
1243	int i;
1244
1245	/* disable output data selects */
1246	for (i = 0; i < isci_gpio_count(ihost); i++)
1247		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1248
1249	set_bit(IHOST_STOP_PENDING, &ihost->flags);
1250
1251	spin_lock_irq(&ihost->scic_lock);
1252	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1253	spin_unlock_irq(&ihost->scic_lock);
1254
1255	wait_for_stop(ihost);
1256
1257	/* phy stop is after controller stop to allow port and device to
1258	 * go idle before shutting down the phys, but the expectation is
1259	 * that i/o has been shut off well before we reach this
1260	 * function.
1261	 */
1262	sci_controller_stop_phys(ihost);
1263
1264	/* disable sgpio: where the above wait should give time for the
1265	 * enclosure to sample the gpios going inactive
1266	 */
1267	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1268
1269	spin_lock_irq(&ihost->scic_lock);
1270	sci_controller_reset(ihost);
1271	spin_unlock_irq(&ihost->scic_lock);
1272
1273	/* Cancel any/all outstanding port timers */
1274	for (i = 0; i < ihost->logical_port_entries; i++) {
1275		struct isci_port *iport = &ihost->ports[i];
1276		del_timer_sync(&iport->timer.timer);
1277	}
1278
1279	/* Cancel any/all outstanding phy timers */
1280	for (i = 0; i < SCI_MAX_PHYS; i++) {
1281		struct isci_phy *iphy = &ihost->phys[i];
1282		del_timer_sync(&iphy->sata_timer.timer);
1283	}
1284
1285	del_timer_sync(&ihost->port_agent.timer.timer);
1286
1287	del_timer_sync(&ihost->power_control.timer.timer);
1288
1289	del_timer_sync(&ihost->timer.timer);
1290
1291	del_timer_sync(&ihost->phy_timer.timer);
1292}
1293
1294static void __iomem *scu_base(struct isci_host *isci_host)
1295{
1296	struct pci_dev *pdev = isci_host->pdev;
1297	int id = isci_host->id;
1298
1299	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1300}
1301
1302static void __iomem *smu_base(struct isci_host *isci_host)
1303{
1304	struct pci_dev *pdev = isci_host->pdev;
1305	int id = isci_host->id;
1306
1307	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1308}
1309
1310static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1311{
1312	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1313
1314	sci_change_state(&ihost->sm, SCIC_RESET);
1315}
1316
1317static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1318{
1319	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1320
1321	sci_del_timer(&ihost->timer);
1322}
1323
1324#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1325#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1326#define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1327#define INTERRUPT_COALESCE_NUMBER_MAX                        256
1328#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1329#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1330
1331/**
1332 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1333 *    configure the interrupt coalescence.
1334 * @controller: This parameter represents the handle to the controller object
1335 *    for which its interrupt coalesce register is overridden.
1336 * @coalesce_number: Used to control the number of entries in the Completion
1337 *    Queue before an interrupt is generated. If the number of entries exceed
1338 *    this number, an interrupt will be generated. The valid range of the input
1339 *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1340 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1341 *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1342 *    interrupt coalescing timeout.
1343 *
1344 * Indicate if the user successfully set the interrupt coalesce parameters.
1345 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1346 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1347 */
1348static enum sci_status
1349sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1350					 u32 coalesce_number,
1351					 u32 coalesce_timeout)
1352{
1353	u8 timeout_encode = 0;
1354	u32 min = 0;
1355	u32 max = 0;
1356
1357	/* Check if the input parameters fall in the range. */
1358	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1359		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1360
1361	/*
1362	 *  Defined encoding for interrupt coalescing timeout:
1363	 *              Value   Min      Max     Units
1364	 *              -----   ---      ---     -----
1365	 *              0       -        -       Disabled
1366	 *              1       13.3     20.0    ns
1367	 *              2       26.7     40.0
1368	 *              3       53.3     80.0
1369	 *              4       106.7    160.0
1370	 *              5       213.3    320.0
1371	 *              6       426.7    640.0
1372	 *              7       853.3    1280.0
1373	 *              8       1.7      2.6     us
1374	 *              9       3.4      5.1
1375	 *              10      6.8      10.2
1376	 *              11      13.7     20.5
1377	 *              12      27.3     41.0
1378	 *              13      54.6     81.9
1379	 *              14      109.2    163.8
1380	 *              15      218.5    327.7
1381	 *              16      436.9    655.4
1382	 *              17      873.8    1310.7
1383	 *              18      1.7      2.6     ms
1384	 *              19      3.5      5.2
1385	 *              20      7.0      10.5
1386	 *              21      14.0     21.0
1387	 *              22      28.0     41.9
1388	 *              23      55.9     83.9
1389	 *              24      111.8    167.8
1390	 *              25      223.7    335.5
1391	 *              26      447.4    671.1
1392	 *              27      894.8    1342.2
1393	 *              28      1.8      2.7     s
1394	 *              Others Undefined */
1395
1396	/*
1397	 * Use the table above to decide the encode of interrupt coalescing timeout
1398	 * value for register writing. */
1399	if (coalesce_timeout == 0)
1400		timeout_encode = 0;
1401	else{
1402		/* make the timeout value in unit of (10 ns). */
1403		coalesce_timeout = coalesce_timeout * 100;
1404		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1405		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1406
1407		/* get the encode of timeout for register writing. */
1408		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1409		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1410		      timeout_encode++) {
1411			if (min <= coalesce_timeout &&  max > coalesce_timeout)
1412				break;
1413			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1414				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1415				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1416					break;
1417				else{
1418					timeout_encode++;
1419					break;
1420				}
1421			} else {
1422				max = max * 2;
1423				min = min * 2;
1424			}
1425		}
1426
1427		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1428			/* the value is out of range. */
1429			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1430	}
1431
1432	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1433	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1434	       &ihost->smu_registers->interrupt_coalesce_control);
1435
1436
1437	ihost->interrupt_coalesce_number = (u16)coalesce_number;
1438	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1439
1440	return SCI_SUCCESS;
1441}
1442
1443
1444static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1445{
1446	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1447	u32 val;
1448
1449	/* enable clock gating for power control of the scu unit */
1450	val = readl(&ihost->smu_registers->clock_gating_control);
1451	val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1452		 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1453		 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1454	val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1455	writel(val, &ihost->smu_registers->clock_gating_control);
1456
1457	/* set the default interrupt coalescence number and timeout value. */
1458	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1459}
1460
1461static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1462{
1463	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1464
1465	/* disable interrupt coalescence. */
1466	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1467}
1468
1469static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1470{
1471	u32 index;
1472	enum sci_status port_status;
1473	enum sci_status status = SCI_SUCCESS;
1474
1475	for (index = 0; index < ihost->logical_port_entries; index++) {
1476		struct isci_port *iport = &ihost->ports[index];
1477
1478		port_status = sci_port_stop(iport);
1479
1480		if ((port_status != SCI_SUCCESS) &&
1481		    (port_status != SCI_FAILURE_INVALID_STATE)) {
1482			status = SCI_FAILURE;
1483
1484			dev_warn(&ihost->pdev->dev,
1485				 "%s: Controller stop operation failed to "
1486				 "stop port %d because of status %d.\n",
1487				 __func__,
1488				 iport->logical_port_index,
1489				 port_status);
1490		}
1491	}
1492
1493	return status;
1494}
1495
1496static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1497{
1498	u32 index;
1499	enum sci_status status;
1500	enum sci_status device_status;
1501
1502	status = SCI_SUCCESS;
1503
1504	for (index = 0; index < ihost->remote_node_entries; index++) {
1505		if (ihost->device_table[index] != NULL) {
1506			/* / @todo What timeout value do we want to provide to this request? */
1507			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1508
1509			if ((device_status != SCI_SUCCESS) &&
1510			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1511				dev_warn(&ihost->pdev->dev,
1512					 "%s: Controller stop operation failed "
1513					 "to stop device 0x%p because of "
1514					 "status %d.\n",
1515					 __func__,
1516					 ihost->device_table[index], device_status);
1517			}
1518		}
1519	}
1520
1521	return status;
1522}
1523
1524static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1525{
1526	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1527
1528	sci_controller_stop_devices(ihost);
1529	sci_controller_stop_ports(ihost);
1530
1531	if (!sci_controller_has_remote_devices_stopping(ihost))
1532		isci_host_stop_complete(ihost);
1533}
1534
1535static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1536{
1537	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1538
1539	sci_del_timer(&ihost->timer);
1540}
1541
1542static void sci_controller_reset_hardware(struct isci_host *ihost)
1543{
1544	/* Disable interrupts so we dont take any spurious interrupts */
1545	sci_controller_disable_interrupts(ihost);
1546
1547	/* Reset the SCU */
1548	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1549
1550	/* Delay for 1ms to before clearing the CQP and UFQPR. */
1551	udelay(1000);
1552
1553	/* The write to the CQGR clears the CQP */
1554	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1555
1556	/* The write to the UFQGP clears the UFQPR */
1557	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1558
1559	/* clear all interrupts */
1560	writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1561}
1562
1563static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1564{
1565	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1566
1567	sci_controller_reset_hardware(ihost);
1568	sci_change_state(&ihost->sm, SCIC_RESET);
1569}
1570
1571static const struct sci_base_state sci_controller_state_table[] = {
1572	[SCIC_INITIAL] = {
1573		.enter_state = sci_controller_initial_state_enter,
1574	},
1575	[SCIC_RESET] = {},
1576	[SCIC_INITIALIZING] = {},
1577	[SCIC_INITIALIZED] = {},
1578	[SCIC_STARTING] = {
1579		.exit_state  = sci_controller_starting_state_exit,
1580	},
1581	[SCIC_READY] = {
1582		.enter_state = sci_controller_ready_state_enter,
1583		.exit_state  = sci_controller_ready_state_exit,
1584	},
1585	[SCIC_RESETTING] = {
1586		.enter_state = sci_controller_resetting_state_enter,
1587	},
1588	[SCIC_STOPPING] = {
1589		.enter_state = sci_controller_stopping_state_enter,
1590		.exit_state = sci_controller_stopping_state_exit,
1591	},
1592	[SCIC_FAILED] = {}
1593};
1594
1595static void controller_timeout(unsigned long data)
1596{
1597	struct sci_timer *tmr = (struct sci_timer *)data;
1598	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1599	struct sci_base_state_machine *sm = &ihost->sm;
1600	unsigned long flags;
1601
1602	spin_lock_irqsave(&ihost->scic_lock, flags);
1603
1604	if (tmr->cancel)
1605		goto done;
1606
1607	if (sm->current_state_id == SCIC_STARTING)
1608		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1609	else if (sm->current_state_id == SCIC_STOPPING) {
1610		sci_change_state(sm, SCIC_FAILED);
1611		isci_host_stop_complete(ihost);
1612	} else	/* / @todo Now what do we want to do in this case? */
1613		dev_err(&ihost->pdev->dev,
1614			"%s: Controller timer fired when controller was not "
1615			"in a state being timed.\n",
1616			__func__);
1617
1618done:
1619	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1620}
1621
1622static enum sci_status sci_controller_construct(struct isci_host *ihost,
1623						void __iomem *scu_base,
1624						void __iomem *smu_base)
1625{
1626	u8 i;
1627
1628	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1629
1630	ihost->scu_registers = scu_base;
1631	ihost->smu_registers = smu_base;
1632
1633	sci_port_configuration_agent_construct(&ihost->port_agent);
1634
1635	/* Construct the ports for this controller */
1636	for (i = 0; i < SCI_MAX_PORTS; i++)
1637		sci_port_construct(&ihost->ports[i], i, ihost);
1638	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1639
1640	/* Construct the phys for this controller */
1641	for (i = 0; i < SCI_MAX_PHYS; i++) {
1642		/* Add all the PHYs to the dummy port */
1643		sci_phy_construct(&ihost->phys[i],
1644				  &ihost->ports[SCI_MAX_PORTS], i);
1645	}
1646
1647	ihost->invalid_phy_mask = 0;
1648
1649	sci_init_timer(&ihost->timer, controller_timeout);
1650
1651	return sci_controller_reset(ihost);
1652}
1653
1654int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1655{
1656	int i;
1657
1658	for (i = 0; i < SCI_MAX_PORTS; i++)
1659		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1660			return -EINVAL;
1661
1662	for (i = 0; i < SCI_MAX_PHYS; i++)
1663		if (oem->phys[i].sas_address.high == 0 &&
1664		    oem->phys[i].sas_address.low == 0)
1665			return -EINVAL;
1666
1667	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1668		for (i = 0; i < SCI_MAX_PHYS; i++)
1669			if (oem->ports[i].phy_mask != 0)
1670				return -EINVAL;
1671	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1672		u8 phy_mask = 0;
1673
1674		for (i = 0; i < SCI_MAX_PHYS; i++)
1675			phy_mask |= oem->ports[i].phy_mask;
1676
1677		if (phy_mask == 0)
1678			return -EINVAL;
1679	} else
1680		return -EINVAL;
1681
1682	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1683	    oem->controller.max_concurr_spin_up < 1)
1684		return -EINVAL;
1685
1686	if (oem->controller.do_enable_ssc) {
1687		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1688			return -EINVAL;
1689
1690		if (version >= ISCI_ROM_VER_1_1) {
1691			u8 test = oem->controller.ssc_sata_tx_spread_level;
1692
1693			switch (test) {
1694			case 0:
1695			case 2:
1696			case 3:
1697			case 6:
1698			case 7:
1699				break;
1700			default:
1701				return -EINVAL;
1702			}
1703
1704			test = oem->controller.ssc_sas_tx_spread_level;
1705			if (oem->controller.ssc_sas_tx_type == 0) {
1706				switch (test) {
1707				case 0:
1708				case 2:
1709				case 3:
1710					break;
1711				default:
1712					return -EINVAL;
1713				}
1714			} else if (oem->controller.ssc_sas_tx_type == 1) {
1715				switch (test) {
1716				case 0:
1717				case 3:
1718				case 6:
1719					break;
1720				default:
1721					return -EINVAL;
1722				}
1723			}
1724		}
1725	}
1726
1727	return 0;
1728}
1729
1730static u8 max_spin_up(struct isci_host *ihost)
1731{
1732	if (ihost->user_parameters.max_concurr_spinup)
1733		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1734			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1735	else
1736		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1737			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1738}
1739
1740static void power_control_timeout(unsigned long data)
1741{
1742	struct sci_timer *tmr = (struct sci_timer *)data;
1743	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1744	struct isci_phy *iphy;
1745	unsigned long flags;
1746	u8 i;
1747
1748	spin_lock_irqsave(&ihost->scic_lock, flags);
1749
1750	if (tmr->cancel)
1751		goto done;
1752
1753	ihost->power_control.phys_granted_power = 0;
1754
1755	if (ihost->power_control.phys_waiting == 0) {
1756		ihost->power_control.timer_started = false;
1757		goto done;
1758	}
1759
1760	for (i = 0; i < SCI_MAX_PHYS; i++) {
1761
1762		if (ihost->power_control.phys_waiting == 0)
1763			break;
1764
1765		iphy = ihost->power_control.requesters[i];
1766		if (iphy == NULL)
1767			continue;
1768
1769		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1770			break;
1771
1772		ihost->power_control.requesters[i] = NULL;
1773		ihost->power_control.phys_waiting--;
1774		ihost->power_control.phys_granted_power++;
1775		sci_phy_consume_power_handler(iphy);
1776
1777		if (iphy->protocol == SAS_PROTOCOL_SSP) {
1778			u8 j;
1779
1780			for (j = 0; j < SCI_MAX_PHYS; j++) {
1781				struct isci_phy *requester = ihost->power_control.requesters[j];
1782
1783				/*
1784				 * Search the power_control queue to see if there are other phys
1785				 * attached to the same remote device. If found, take all of
1786				 * them out of await_sas_power state.
1787				 */
1788				if (requester != NULL && requester != iphy) {
1789					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1790							  iphy->frame_rcvd.iaf.sas_addr,
1791							  sizeof(requester->frame_rcvd.iaf.sas_addr));
1792
1793					if (other == 0) {
1794						ihost->power_control.requesters[j] = NULL;
1795						ihost->power_control.phys_waiting--;
1796						sci_phy_consume_power_handler(requester);
1797					}
1798				}
1799			}
1800		}
1801	}
1802
1803	/*
1804	 * It doesn't matter if the power list is empty, we need to start the
1805	 * timer in case another phy becomes ready.
1806	 */
1807	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1808	ihost->power_control.timer_started = true;
1809
1810done:
1811	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1812}
1813
1814void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1815					       struct isci_phy *iphy)
1816{
1817	BUG_ON(iphy == NULL);
1818
1819	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1820		ihost->power_control.phys_granted_power++;
1821		sci_phy_consume_power_handler(iphy);
1822
1823		/*
1824		 * stop and start the power_control timer. When the timer fires, the
1825		 * no_of_phys_granted_power will be set to 0
1826		 */
1827		if (ihost->power_control.timer_started)
1828			sci_del_timer(&ihost->power_control.timer);
1829
1830		sci_mod_timer(&ihost->power_control.timer,
1831				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1832		ihost->power_control.timer_started = true;
1833
1834	} else {
1835		/*
1836		 * There are phys, attached to the same sas address as this phy, are
1837		 * already in READY state, this phy don't need wait.
1838		 */
1839		u8 i;
1840		struct isci_phy *current_phy;
1841
1842		for (i = 0; i < SCI_MAX_PHYS; i++) {
1843			u8 other;
1844			current_phy = &ihost->phys[i];
1845
1846			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1847				       iphy->frame_rcvd.iaf.sas_addr,
1848				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1849
1850			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1851			    current_phy->protocol == SAS_PROTOCOL_SSP &&
1852			    other == 0) {
1853				sci_phy_consume_power_handler(iphy);
1854				break;
1855			}
1856		}
1857
1858		if (i == SCI_MAX_PHYS) {
1859			/* Add the phy in the waiting list */
1860			ihost->power_control.requesters[iphy->phy_index] = iphy;
1861			ihost->power_control.phys_waiting++;
1862		}
1863	}
1864}
1865
1866void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1867					       struct isci_phy *iphy)
1868{
1869	BUG_ON(iphy == NULL);
1870
1871	if (ihost->power_control.requesters[iphy->phy_index])
1872		ihost->power_control.phys_waiting--;
1873
1874	ihost->power_control.requesters[iphy->phy_index] = NULL;
1875}
1876
1877static int is_long_cable(int phy, unsigned char selection_byte)
1878{
1879	return !!(selection_byte & (1 << phy));
1880}
1881
1882static int is_medium_cable(int phy, unsigned char selection_byte)
1883{
1884	return !!(selection_byte & (1 << (phy + 4)));
1885}
1886
1887static enum cable_selections decode_selection_byte(
1888	int phy,
1889	unsigned char selection_byte)
1890{
1891	return ((selection_byte & (1 << phy)) ? 1 : 0)
1892		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1893}
1894
1895static unsigned char *to_cable_select(struct isci_host *ihost)
1896{
1897	if (is_cable_select_overridden())
1898		return ((unsigned char *)&cable_selection_override)
1899			+ ihost->id;
1900	else
1901		return &ihost->oem_parameters.controller.cable_selection_mask;
1902}
1903
1904enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1905{
1906	return decode_selection_byte(phy, *to_cable_select(ihost));
1907}
1908
1909char *lookup_cable_names(enum cable_selections selection)
1910{
1911	static char *cable_names[] = {
1912		[short_cable]     = "short",
1913		[long_cable]      = "long",
1914		[medium_cable]    = "medium",
1915		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1916	};
1917	return (selection <= undefined_cable) ? cable_names[selection]
1918					      : cable_names[undefined_cable];
1919}
1920
1921#define AFE_REGISTER_WRITE_DELAY 10
1922
1923static void sci_controller_afe_initialization(struct isci_host *ihost)
1924{
1925	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1926	const struct sci_oem_params *oem = &ihost->oem_parameters;
1927	struct pci_dev *pdev = ihost->pdev;
1928	u32 afe_status;
1929	u32 phy_id;
1930	unsigned char cable_selection_mask = *to_cable_select(ihost);
1931
1932	/* Clear DFX Status registers */
1933	writel(0x0081000f, &afe->afe_dfx_master_control0);
1934	udelay(AFE_REGISTER_WRITE_DELAY);
1935
1936	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1937		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1938		 * Timer, PM Stagger Timer
1939		 */
1940		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1941		udelay(AFE_REGISTER_WRITE_DELAY);
1942	}
1943
1944	/* Configure bias currents to normal */
1945	if (is_a2(pdev))
1946		writel(0x00005A00, &afe->afe_bias_control);
1947	else if (is_b0(pdev) || is_c0(pdev))
1948		writel(0x00005F00, &afe->afe_bias_control);
1949	else if (is_c1(pdev))
1950		writel(0x00005500, &afe->afe_bias_control);
1951
1952	udelay(AFE_REGISTER_WRITE_DELAY);
1953
1954	/* Enable PLL */
1955	if (is_a2(pdev))
1956		writel(0x80040908, &afe->afe_pll_control0);
1957	else if (is_b0(pdev) || is_c0(pdev))
1958		writel(0x80040A08, &afe->afe_pll_control0);
1959	else if (is_c1(pdev)) {
1960		writel(0x80000B08, &afe->afe_pll_control0);
1961		udelay(AFE_REGISTER_WRITE_DELAY);
1962		writel(0x00000B08, &afe->afe_pll_control0);
1963		udelay(AFE_REGISTER_WRITE_DELAY);
1964		writel(0x80000B08, &afe->afe_pll_control0);
1965	}
1966
1967	udelay(AFE_REGISTER_WRITE_DELAY);
1968
1969	/* Wait for the PLL to lock */
1970	do {
1971		afe_status = readl(&afe->afe_common_block_status);
1972		udelay(AFE_REGISTER_WRITE_DELAY);
1973	} while ((afe_status & 0x00001000) == 0);
1974
1975	if (is_a2(pdev)) {
1976		/* Shorten SAS SNW lock time (RxLock timer value from 76
1977		 * us to 50 us)
1978		 */
1979		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1980		udelay(AFE_REGISTER_WRITE_DELAY);
1981	}
1982
1983	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1984		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
1985		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1986		int cable_length_long =
1987			is_long_cable(phy_id, cable_selection_mask);
1988		int cable_length_medium =
1989			is_medium_cable(phy_id, cable_selection_mask);
1990
1991		if (is_a2(pdev)) {
1992			/* All defaults, except the Receive Word
1993			 * Alignament/Comma Detect Enable....(0xe800)
1994			 */
1995			writel(0x00004512, &xcvr->afe_xcvr_control0);
1996			udelay(AFE_REGISTER_WRITE_DELAY);
1997
1998			writel(0x0050100F, &xcvr->afe_xcvr_control1);
1999			udelay(AFE_REGISTER_WRITE_DELAY);
2000		} else if (is_b0(pdev)) {
2001			/* Configure transmitter SSC parameters */
2002			writel(0x00030000, &xcvr->afe_tx_ssc_control);
2003			udelay(AFE_REGISTER_WRITE_DELAY);
2004		} else if (is_c0(pdev)) {
2005			/* Configure transmitter SSC parameters */
2006			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2007			udelay(AFE_REGISTER_WRITE_DELAY);
2008
2009			/* All defaults, except the Receive Word
2010			 * Alignament/Comma Detect Enable....(0xe800)
2011			 */
2012			writel(0x00014500, &xcvr->afe_xcvr_control0);
2013			udelay(AFE_REGISTER_WRITE_DELAY);
2014		} else if (is_c1(pdev)) {
2015			/* Configure transmitter SSC parameters */
2016			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2017			udelay(AFE_REGISTER_WRITE_DELAY);
2018
2019			/* All defaults, except the Receive Word
2020			 * Alignament/Comma Detect Enable....(0xe800)
2021			 */
2022			writel(0x0001C500, &xcvr->afe_xcvr_control0);
2023			udelay(AFE_REGISTER_WRITE_DELAY);
2024		}
2025
2026		/* Power up TX and RX out from power down (PWRDNTX and
2027		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2028		 */
2029		if (is_a2(pdev))
2030			writel(0x000003F0, &xcvr->afe_channel_control);
2031		else if (is_b0(pdev)) {
2032			writel(0x000003D7, &xcvr->afe_channel_control);
2033			udelay(AFE_REGISTER_WRITE_DELAY);
2034
2035			writel(0x000003D4, &xcvr->afe_channel_control);
2036		} else if (is_c0(pdev)) {
2037			writel(0x000001E7, &xcvr->afe_channel_control);
2038			udelay(AFE_REGISTER_WRITE_DELAY);
2039
2040			writel(0x000001E4, &xcvr->afe_channel_control);
2041		} else if (is_c1(pdev)) {
2042			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2043			       &xcvr->afe_channel_control);
2044			udelay(AFE_REGISTER_WRITE_DELAY);
2045
2046			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2047			       &xcvr->afe_channel_control);
2048		}
2049		udelay(AFE_REGISTER_WRITE_DELAY);
2050
2051		if (is_a2(pdev)) {
2052			/* Enable TX equalization (0xe824) */
2053			writel(0x00040000, &xcvr->afe_tx_control);
2054			udelay(AFE_REGISTER_WRITE_DELAY);
2055		}
2056
2057		if (is_a2(pdev) || is_b0(pdev))
2058			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2059			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2060			 * Enabled) ....(0xe800)
2061			 */
2062			writel(0x00004100, &xcvr->afe_xcvr_control0);
2063		else if (is_c0(pdev))
2064			writel(0x00014100, &xcvr->afe_xcvr_control0);
2065		else if (is_c1(pdev))
2066			writel(0x0001C100, &xcvr->afe_xcvr_control0);
2067		udelay(AFE_REGISTER_WRITE_DELAY);
2068
2069		/* Leave DFE/FFE on */
2070		if (is_a2(pdev))
2071			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2072		else if (is_b0(pdev)) {
2073			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2074			udelay(AFE_REGISTER_WRITE_DELAY);
2075			/* Enable TX equalization (0xe824) */
2076			writel(0x00040000, &xcvr->afe_tx_control);
2077		} else if (is_c0(pdev)) {
2078			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2079			udelay(AFE_REGISTER_WRITE_DELAY);
2080
2081			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2082			udelay(AFE_REGISTER_WRITE_DELAY);
2083
2084			/* Enable TX equalization (0xe824) */
2085			writel(0x00040000, &xcvr->afe_tx_control);
2086		} else if (is_c1(pdev)) {
2087			writel(cable_length_long ? 0x01500C0C :
2088			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
2089			       &xcvr->afe_xcvr_control1);
2090			udelay(AFE_REGISTER_WRITE_DELAY);
2091
2092			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2093			udelay(AFE_REGISTER_WRITE_DELAY);
2094
2095			writel(cable_length_long ? 0x33091C1F :
2096			       cable_length_medium ? 0x3315181F : 0x2B17161F,
2097			       &xcvr->afe_rx_ssc_control0);
2098			udelay(AFE_REGISTER_WRITE_DELAY);
2099
2100			/* Enable TX equalization (0xe824) */
2101			writel(0x00040000, &xcvr->afe_tx_control);
2102		}
2103
2104		udelay(AFE_REGISTER_WRITE_DELAY);
2105
2106		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2107		udelay(AFE_REGISTER_WRITE_DELAY);
2108
2109		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2110		udelay(AFE_REGISTER_WRITE_DELAY);
2111
2112		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2113		udelay(AFE_REGISTER_WRITE_DELAY);
2114
2115		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2116		udelay(AFE_REGISTER_WRITE_DELAY);
2117	}
2118
2119	/* Transfer control to the PEs */
2120	writel(0x00010f00, &afe->afe_dfx_master_control0);
2121	udelay(AFE_REGISTER_WRITE_DELAY);
2122}
2123
2124static void sci_controller_initialize_power_control(struct isci_host *ihost)
2125{
2126	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2127
2128	memset(ihost->power_control.requesters, 0,
2129	       sizeof(ihost->power_control.requesters));
2130
2131	ihost->power_control.phys_waiting = 0;
2132	ihost->power_control.phys_granted_power = 0;
2133}
2134
2135static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2136{
2137	struct sci_base_state_machine *sm = &ihost->sm;
2138	enum sci_status result = SCI_FAILURE;
2139	unsigned long i, state, val;
2140
2141	if (ihost->sm.current_state_id != SCIC_RESET) {
2142		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2143			 __func__, ihost->sm.current_state_id);
2144		return SCI_FAILURE_INVALID_STATE;
2145	}
2146
2147	sci_change_state(sm, SCIC_INITIALIZING);
2148
2149	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2150
2151	ihost->next_phy_to_start = 0;
2152	ihost->phy_startup_timer_pending = false;
2153
2154	sci_controller_initialize_power_control(ihost);
2155
2156	/*
2157	 * There is nothing to do here for B0 since we do not have to
2158	 * program the AFE registers.
2159	 * / @todo The AFE settings are supposed to be correct for the B0 but
2160	 * /       presently they seem to be wrong. */
2161	sci_controller_afe_initialization(ihost);
2162
2163
2164	/* Take the hardware out of reset */
2165	writel(0, &ihost->smu_registers->soft_reset_control);
2166
2167	/*
2168	 * / @todo Provide meaningfull error code for hardware failure
2169	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2170	for (i = 100; i >= 1; i--) {
2171		u32 status;
2172
2173		/* Loop until the hardware reports success */
2174		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2175		status = readl(&ihost->smu_registers->control_status);
2176
2177		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2178			break;
2179	}
2180	if (i == 0)
2181		goto out;
2182
2183	/*
2184	 * Determine what are the actaul device capacities that the
2185	 * hardware will support */
2186	val = readl(&ihost->smu_registers->device_context_capacity);
2187
2188	/* Record the smaller of the two capacity values */
2189	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2190	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2191	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2192
2193	/*
2194	 * Make all PEs that are unassigned match up with the
2195	 * logical ports
2196	 */
2197	for (i = 0; i < ihost->logical_port_entries; i++) {
2198		struct scu_port_task_scheduler_group_registers __iomem
2199			*ptsg = &ihost->scu_registers->peg0.ptsg;
2200
2201		writel(i, &ptsg->protocol_engine[i]);
2202	}
2203
2204	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2205	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2206	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2207	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2208
2209	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2210	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2211	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2212
2213	/*
2214	 * Initialize the PHYs before the PORTs because the PHY registers
2215	 * are accessed during the port initialization.
2216	 */
2217	for (i = 0; i < SCI_MAX_PHYS; i++) {
2218		result = sci_phy_initialize(&ihost->phys[i],
2219					    &ihost->scu_registers->peg0.pe[i].tl,
2220					    &ihost->scu_registers->peg0.pe[i].ll);
2221		if (result != SCI_SUCCESS)
2222			goto out;
2223	}
2224
2225	for (i = 0; i < ihost->logical_port_entries; i++) {
2226		struct isci_port *iport = &ihost->ports[i];
2227
2228		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2229		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2230		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2231	}
2232
2233	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2234
2235 out:
2236	/* Advance the controller state machine */
2237	if (result == SCI_SUCCESS)
2238		state = SCIC_INITIALIZED;
2239	else
2240		state = SCIC_FAILED;
2241	sci_change_state(sm, state);
2242
2243	return result;
2244}
2245
2246static int sci_controller_dma_alloc(struct isci_host *ihost)
2247{
2248	struct device *dev = &ihost->pdev->dev;
2249	size_t size;
2250	int i;
2251
2252	/* detect re-initialization */
2253	if (ihost->completion_queue)
2254		return 0;
2255
2256	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2257	ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2258						      GFP_KERNEL);
2259	if (!ihost->completion_queue)
2260		return -ENOMEM;
2261
2262	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2263	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2264							       GFP_KERNEL);
2265
2266	if (!ihost->remote_node_context_table)
2267		return -ENOMEM;
2268
2269	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2270	ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2271							GFP_KERNEL);
2272	if (!ihost->task_context_table)
2273		return -ENOMEM;
2274
2275	size = SCI_UFI_TOTAL_SIZE;
2276	ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2277	if (!ihost->ufi_buf)
2278		return -ENOMEM;
2279
2280	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2281		struct isci_request *ireq;
2282		dma_addr_t dma;
2283
2284		ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2285		if (!ireq)
2286			return -ENOMEM;
2287
2288		ireq->tc = &ihost->task_context_table[i];
2289		ireq->owning_controller = ihost;
2290		ireq->request_daddr = dma;
2291		ireq->isci_host = ihost;
2292		ihost->reqs[i] = ireq;
2293	}
2294
2295	return 0;
2296}
2297
2298static int sci_controller_mem_init(struct isci_host *ihost)
2299{
2300	int err = sci_controller_dma_alloc(ihost);
2301
2302	if (err)
2303		return err;
2304
2305	writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2306	writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2307
2308	writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2309	writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2310
2311	writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2312	writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2313
2314	sci_unsolicited_frame_control_construct(ihost);
2315
2316	/*
2317	 * Inform the silicon as to the location of the UF headers and
2318	 * address table.
2319	 */
2320	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2321		&ihost->scu_registers->sdma.uf_header_base_address_lower);
2322	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2323		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2324
2325	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2326		&ihost->scu_registers->sdma.uf_address_table_lower);
2327	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2328		&ihost->scu_registers->sdma.uf_address_table_upper);
2329
2330	return 0;
2331}
2332
2333/**
2334 * isci_host_init - (re-)initialize hardware and internal (private) state
2335 * @ihost: host to init
2336 *
2337 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2338 * one-time initialization objects like locks and waitqueues, are
2339 * not touched (they are initialized in isci_host_alloc)
2340 */
2341int isci_host_init(struct isci_host *ihost)
2342{
2343	int i, err;
2344	enum sci_status status;
2345
2346	spin_lock_irq(&ihost->scic_lock);
2347	status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2348	spin_unlock_irq(&ihost->scic_lock);
2349	if (status != SCI_SUCCESS) {
2350		dev_err(&ihost->pdev->dev,
2351			"%s: sci_controller_construct failed - status = %x\n",
2352			__func__,
2353			status);
2354		return -ENODEV;
2355	}
2356
2357	spin_lock_irq(&ihost->scic_lock);
2358	status = sci_controller_initialize(ihost);
2359	spin_unlock_irq(&ihost->scic_lock);
2360	if (status != SCI_SUCCESS) {
2361		dev_warn(&ihost->pdev->dev,
2362			 "%s: sci_controller_initialize failed -"
2363			 " status = 0x%x\n",
2364			 __func__, status);
2365		return -ENODEV;
2366	}
2367
2368	err = sci_controller_mem_init(ihost);
2369	if (err)
2370		return err;
2371
2372	/* enable sgpio */
2373	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2374	for (i = 0; i < isci_gpio_count(ihost); i++)
2375		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2376	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2377
2378	return 0;
2379}
2380
2381void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2382			    struct isci_phy *iphy)
2383{
2384	switch (ihost->sm.current_state_id) {
2385	case SCIC_STARTING:
2386		sci_del_timer(&ihost->phy_timer);
2387		ihost->phy_startup_timer_pending = false;
2388		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2389						  iport, iphy);
2390		sci_controller_start_next_phy(ihost);
2391		break;
2392	case SCIC_READY:
2393		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2394						  iport, iphy);
2395		break;
2396	default:
2397		dev_dbg(&ihost->pdev->dev,
2398			"%s: SCIC Controller linkup event from phy %d in "
2399			"unexpected state %d\n", __func__, iphy->phy_index,
2400			ihost->sm.current_state_id);
2401	}
2402}
2403
2404void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2405			      struct isci_phy *iphy)
2406{
2407	switch (ihost->sm.current_state_id) {
2408	case SCIC_STARTING:
2409	case SCIC_READY:
2410		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2411						   iport, iphy);
2412		break;
2413	default:
2414		dev_dbg(&ihost->pdev->dev,
2415			"%s: SCIC Controller linkdown event from phy %d in "
2416			"unexpected state %d\n",
2417			__func__,
2418			iphy->phy_index,
2419			ihost->sm.current_state_id);
2420	}
2421}
2422
2423bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2424{
2425	u32 index;
2426
2427	for (index = 0; index < ihost->remote_node_entries; index++) {
2428		if ((ihost->device_table[index] != NULL) &&
2429		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2430			return true;
2431	}
2432
2433	return false;
2434}
2435
2436void sci_controller_remote_device_stopped(struct isci_host *ihost,
2437					  struct isci_remote_device *idev)
2438{
2439	if (ihost->sm.current_state_id != SCIC_STOPPING) {
2440		dev_dbg(&ihost->pdev->dev,
2441			"SCIC Controller 0x%p remote device stopped event "
2442			"from device 0x%p in unexpected state %d\n",
2443			ihost, idev,
2444			ihost->sm.current_state_id);
2445		return;
2446	}
2447
2448	if (!sci_controller_has_remote_devices_stopping(ihost))
2449		isci_host_stop_complete(ihost);
2450}
2451
2452void sci_controller_post_request(struct isci_host *ihost, u32 request)
2453{
2454	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2455		__func__, ihost->id, request);
2456
2457	writel(request, &ihost->smu_registers->post_context_port);
2458}
2459
2460struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2461{
2462	u16 task_index;
2463	u16 task_sequence;
2464
2465	task_index = ISCI_TAG_TCI(io_tag);
2466
2467	if (task_index < ihost->task_context_entries) {
2468		struct isci_request *ireq = ihost->reqs[task_index];
2469
2470		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2471			task_sequence = ISCI_TAG_SEQ(io_tag);
2472
2473			if (task_sequence == ihost->io_request_sequence[task_index])
2474				return ireq;
2475		}
2476	}
2477
2478	return NULL;
2479}
2480
2481/**
2482 * This method allocates remote node index and the reserves the remote node
2483 *    context space for use. This method can fail if there are no more remote
2484 *    node index available.
2485 * @scic: This is the controller object which contains the set of
2486 *    free remote node ids
2487 * @sci_dev: This is the device object which is requesting the a remote node
2488 *    id
2489 * @node_id: This is the remote node id that is assinged to the device if one
2490 *    is available
2491 *
2492 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2493 * node index available.
2494 */
2495enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2496							    struct isci_remote_device *idev,
2497							    u16 *node_id)
2498{
2499	u16 node_index;
2500	u32 remote_node_count = sci_remote_device_node_count(idev);
2501
2502	node_index = sci_remote_node_table_allocate_remote_node(
2503		&ihost->available_remote_nodes, remote_node_count
2504		);
2505
2506	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2507		ihost->device_table[node_index] = idev;
2508
2509		*node_id = node_index;
2510
2511		return SCI_SUCCESS;
2512	}
2513
2514	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2515}
2516
2517void sci_controller_free_remote_node_context(struct isci_host *ihost,
2518					     struct isci_remote_device *idev,
2519					     u16 node_id)
2520{
2521	u32 remote_node_count = sci_remote_device_node_count(idev);
2522
2523	if (ihost->device_table[node_id] == idev) {
2524		ihost->device_table[node_id] = NULL;
2525
2526		sci_remote_node_table_release_remote_node_index(
2527			&ihost->available_remote_nodes, remote_node_count, node_id
2528			);
2529	}
2530}
2531
2532void sci_controller_copy_sata_response(void *response_buffer,
2533				       void *frame_header,
2534				       void *frame_buffer)
2535{
2536	/* XXX type safety? */
2537	memcpy(response_buffer, frame_header, sizeof(u32));
2538
2539	memcpy(response_buffer + sizeof(u32),
2540	       frame_buffer,
2541	       sizeof(struct dev_to_host_fis) - sizeof(u32));
2542}
2543
2544void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2545{
2546	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2547		writel(ihost->uf_control.get,
2548			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2549}
2550
2551void isci_tci_free(struct isci_host *ihost, u16 tci)
2552{
2553	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2554
2555	ihost->tci_pool[tail] = tci;
2556	ihost->tci_tail = tail + 1;
2557}
2558
2559static u16 isci_tci_alloc(struct isci_host *ihost)
2560{
2561	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2562	u16 tci = ihost->tci_pool[head];
2563
2564	ihost->tci_head = head + 1;
2565	return tci;
2566}
2567
2568static u16 isci_tci_space(struct isci_host *ihost)
2569{
2570	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2571}
2572
2573u16 isci_alloc_tag(struct isci_host *ihost)
2574{
2575	if (isci_tci_space(ihost)) {
2576		u16 tci = isci_tci_alloc(ihost);
2577		u8 seq = ihost->io_request_sequence[tci];
2578
2579		return ISCI_TAG(seq, tci);
2580	}
2581
2582	return SCI_CONTROLLER_INVALID_IO_TAG;
2583}
2584
2585enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2586{
2587	u16 tci = ISCI_TAG_TCI(io_tag);
2588	u16 seq = ISCI_TAG_SEQ(io_tag);
2589
2590	/* prevent tail from passing head */
2591	if (isci_tci_active(ihost) == 0)
2592		return SCI_FAILURE_INVALID_IO_TAG;
2593
2594	if (seq == ihost->io_request_sequence[tci]) {
2595		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2596
2597		isci_tci_free(ihost, tci);
2598
2599		return SCI_SUCCESS;
2600	}
2601	return SCI_FAILURE_INVALID_IO_TAG;
2602}
2603
2604enum sci_status sci_controller_start_io(struct isci_host *ihost,
2605					struct isci_remote_device *idev,
2606					struct isci_request *ireq)
2607{
2608	enum sci_status status;
2609
2610	if (ihost->sm.current_state_id != SCIC_READY) {
2611		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2612			 __func__, ihost->sm.current_state_id);
2613		return SCI_FAILURE_INVALID_STATE;
2614	}
2615
2616	status = sci_remote_device_start_io(ihost, idev, ireq);
2617	if (status != SCI_SUCCESS)
2618		return status;
2619
2620	set_bit(IREQ_ACTIVE, &ireq->flags);
2621	sci_controller_post_request(ihost, ireq->post_context);
2622	return SCI_SUCCESS;
2623}
2624
2625enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2626						 struct isci_remote_device *idev,
2627						 struct isci_request *ireq)
2628{
2629	/* terminate an ongoing (i.e. started) core IO request.  This does not
2630	 * abort the IO request at the target, but rather removes the IO
2631	 * request from the host controller.
2632	 */
2633	enum sci_status status;
2634
2635	if (ihost->sm.current_state_id != SCIC_READY) {
2636		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2637			 __func__, ihost->sm.current_state_id);
2638		return SCI_FAILURE_INVALID_STATE;
2639	}
2640	status = sci_io_request_terminate(ireq);
2641
2642	dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2643		__func__, status, ireq, ireq->flags);
2644
2645	if ((status == SCI_SUCCESS) &&
2646	    !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2647	    !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2648		/* Utilize the original post context command and or in the
2649		 * POST_TC_ABORT request sub-type.
2650		 */
2651		sci_controller_post_request(
2652			ihost, ireq->post_context |
2653				SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2654	}
2655	return status;
2656}
2657
2658/**
2659 * sci_controller_complete_io() - This method will perform core specific
2660 *    completion operations for an IO request.  After this method is invoked,
2661 *    the user should consider the IO request as invalid until it is properly
2662 *    reused (i.e. re-constructed).
2663 * @ihost: The handle to the controller object for which to complete the
2664 *    IO request.
2665 * @idev: The handle to the remote device object for which to complete
2666 *    the IO request.
2667 * @ireq: the handle to the io request object to complete.
2668 */
2669enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2670					   struct isci_remote_device *idev,
2671					   struct isci_request *ireq)
2672{
2673	enum sci_status status;
2674	u16 index;
2675
2676	switch (ihost->sm.current_state_id) {
2677	case SCIC_STOPPING:
2678		/* XXX: Implement this function */
2679		return SCI_FAILURE;
2680	case SCIC_READY:
2681		status = sci_remote_device_complete_io(ihost, idev, ireq);
2682		if (status != SCI_SUCCESS)
2683			return status;
2684
2685		index = ISCI_TAG_TCI(ireq->io_tag);
2686		clear_bit(IREQ_ACTIVE, &ireq->flags);
2687		return SCI_SUCCESS;
2688	default:
2689		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2690			 __func__, ihost->sm.current_state_id);
2691		return SCI_FAILURE_INVALID_STATE;
2692	}
2693
2694}
2695
2696enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2697{
2698	struct isci_host *ihost = ireq->owning_controller;
2699
2700	if (ihost->sm.current_state_id != SCIC_READY) {
2701		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2702			 __func__, ihost->sm.current_state_id);
2703		return SCI_FAILURE_INVALID_STATE;
2704	}
2705
2706	set_bit(IREQ_ACTIVE, &ireq->flags);
2707	sci_controller_post_request(ihost, ireq->post_context);
2708	return SCI_SUCCESS;
2709}
2710
2711/**
2712 * sci_controller_start_task() - This method is called by the SCIC user to
2713 *    send/start a framework task management request.
2714 * @controller: the handle to the controller object for which to start the task
2715 *    management request.
2716 * @remote_device: the handle to the remote device object for which to start
2717 *    the task management request.
2718 * @task_request: the handle to the task request object to start.
2719 */
2720enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2721					       struct isci_remote_device *idev,
2722					       struct isci_request *ireq)
2723{
2724	enum sci_status status;
2725
2726	if (ihost->sm.current_state_id != SCIC_READY) {
2727		dev_warn(&ihost->pdev->dev,
2728			 "%s: SCIC Controller starting task from invalid "
2729			 "state\n",
2730			 __func__);
2731		return SCI_TASK_FAILURE_INVALID_STATE;
2732	}
2733
2734	status = sci_remote_device_start_task(ihost, idev, ireq);
2735	switch (status) {
2736	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2737		set_bit(IREQ_ACTIVE, &ireq->flags);
2738
2739		/*
2740		 * We will let framework know this task request started successfully,
2741		 * although core is still woring on starting the request (to post tc when
2742		 * RNC is resumed.)
2743		 */
2744		return SCI_SUCCESS;
2745	case SCI_SUCCESS:
2746		set_bit(IREQ_ACTIVE, &ireq->flags);
2747		sci_controller_post_request(ihost, ireq->post_context);
2748		break;
2749	default:
2750		break;
2751	}
2752
2753	return status;
2754}
2755
2756static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2757{
2758	int d;
2759
2760	/* no support for TX_GP_CFG */
2761	if (reg_index == 0)
2762		return -EINVAL;
2763
2764	for (d = 0; d < isci_gpio_count(ihost); d++) {
2765		u32 val = 0x444; /* all ODx.n clear */
2766		int i;
2767
2768		for (i = 0; i < 3; i++) {
2769			int bit = (i << 2) + 2;
2770
2771			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2772						       write_data, reg_index,
2773						       reg_count);
2774			if (bit < 0)
2775				break;
2776
2777			/* if od is set, clear the 'invert' bit */
2778			val &= ~(bit << ((i << 2) + 2));
2779		}
2780
2781		if (i < 3)
2782			break;
2783		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2784	}
2785
2786	/* unless reg_index is > 1, we should always be able to write at
2787	 * least one register
2788	 */
2789	return d > 0;
2790}
2791
2792int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2793		    u8 reg_count, u8 *write_data)
2794{
2795	struct isci_host *ihost = sas_ha->lldd_ha;
2796	int written;
2797
2798	switch (reg_type) {
2799	case SAS_GPIO_REG_TX_GP:
2800		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2801		break;
2802	default:
2803		written = -EINVAL;
2804	}
2805
2806	return written;
2807}
2808