1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT.  See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/wait.h>
37#include <linux/pci.h>
38#include <linux/pci_hotplug.h>
39#include <linux/kthread.h>
40#include "cpqphp.h"
41
42static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
43			u8 behind_bridge, struct resource_lists *resources);
44static int configure_new_function(struct controller *ctrl, struct pci_func *func,
45			u8 behind_bridge, struct resource_lists *resources);
46static void interrupt_event_handler(struct controller *ctrl);
47
48
49static struct task_struct *cpqhp_event_thread;
50static unsigned long pushbutton_pending;	/* = 0 */
51
52/* delay is in jiffies to wait for */
53static void long_delay(int delay)
54{
55	/*
56	 * XXX(hch): if someone is bored please convert all callers
57	 * to call msleep_interruptible directly.  They really want
58	 * to specify timeouts in natural units and spend a lot of
59	 * effort converting them to jiffies..
60	 */
61	msleep_interruptible(jiffies_to_msecs(delay));
62}
63
64
65/* FIXME: The following line needs to be somewhere else... */
66#define WRONG_BUS_FREQUENCY 0x07
67static u8 handle_switch_change(u8 change, struct controller *ctrl)
68{
69	int hp_slot;
70	u8 rc = 0;
71	u16 temp_word;
72	struct pci_func *func;
73	struct event_info *taskInfo;
74
75	if (!change)
76		return 0;
77
78	/* Switch Change */
79	dbg("cpqsbd:  Switch interrupt received.\n");
80
81	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
82		if (change & (0x1L << hp_slot)) {
83			/*
84			 * this one changed.
85			 */
86			func = cpqhp_slot_find(ctrl->bus,
87				(hp_slot + ctrl->slot_device_offset), 0);
88
89			/* this is the structure that tells the worker thread
90			 * what to do
91			 */
92			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93			ctrl->next_event = (ctrl->next_event + 1) % 10;
94			taskInfo->hp_slot = hp_slot;
95
96			rc++;
97
98			temp_word = ctrl->ctrl_int_comp >> 16;
99			func->presence_save = (temp_word >> hp_slot) & 0x01;
100			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101
102			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103				/*
104				 * Switch opened
105				 */
106
107				func->switch_save = 0;
108
109				taskInfo->event_type = INT_SWITCH_OPEN;
110			} else {
111				/*
112				 * Switch closed
113				 */
114
115				func->switch_save = 0x10;
116
117				taskInfo->event_type = INT_SWITCH_CLOSE;
118			}
119		}
120	}
121
122	return rc;
123}
124
125/**
126 * cpqhp_find_slot - find the struct slot of given device
127 * @ctrl: scan lots of this controller
128 * @device: the device id to find
129 */
130static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131{
132	struct slot *slot = ctrl->slot;
133
134	while (slot && (slot->device != device))
135		slot = slot->next;
136
137	return slot;
138}
139
140
141static u8 handle_presence_change(u16 change, struct controller *ctrl)
142{
143	int hp_slot;
144	u8 rc = 0;
145	u8 temp_byte;
146	u16 temp_word;
147	struct pci_func *func;
148	struct event_info *taskInfo;
149	struct slot *p_slot;
150
151	if (!change)
152		return 0;
153
154	/*
155	 * Presence Change
156	 */
157	dbg("cpqsbd:  Presence/Notify input change.\n");
158	dbg("         Changed bits are 0x%4.4x\n", change );
159
160	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
161		if (change & (0x0101 << hp_slot)) {
162			/*
163			 * this one changed.
164			 */
165			func = cpqhp_slot_find(ctrl->bus,
166				(hp_slot + ctrl->slot_device_offset), 0);
167
168			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
169			ctrl->next_event = (ctrl->next_event + 1) % 10;
170			taskInfo->hp_slot = hp_slot;
171
172			rc++;
173
174			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
175			if (!p_slot)
176				return 0;
177
178			/* If the switch closed, must be a button
179			 * If not in button mode, nevermind
180			 */
181			if (func->switch_save && (ctrl->push_button == 1)) {
182				temp_word = ctrl->ctrl_int_comp >> 16;
183				temp_byte = (temp_word >> hp_slot) & 0x01;
184				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185
186				if (temp_byte != func->presence_save) {
187					/*
188					 * button Pressed (doesn't do anything)
189					 */
190					dbg("hp_slot %d button pressed\n", hp_slot);
191					taskInfo->event_type = INT_BUTTON_PRESS;
192				} else {
193					/*
194					 * button Released - TAKE ACTION!!!!
195					 */
196					dbg("hp_slot %d button released\n", hp_slot);
197					taskInfo->event_type = INT_BUTTON_RELEASE;
198
199					/* Cancel if we are still blinking */
200					if ((p_slot->state == BLINKINGON_STATE)
201					    || (p_slot->state == BLINKINGOFF_STATE)) {
202						taskInfo->event_type = INT_BUTTON_CANCEL;
203						dbg("hp_slot %d button cancel\n", hp_slot);
204					} else if ((p_slot->state == POWERON_STATE)
205						   || (p_slot->state == POWEROFF_STATE)) {
206						/* info(msg_button_ignore, p_slot->number); */
207						taskInfo->event_type = INT_BUTTON_IGNORE;
208						dbg("hp_slot %d button ignore\n", hp_slot);
209					}
210				}
211			} else {
212				/* Switch is open, assume a presence change
213				 * Save the presence state
214				 */
215				temp_word = ctrl->ctrl_int_comp >> 16;
216				func->presence_save = (temp_word >> hp_slot) & 0x01;
217				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
218
219				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
220				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
221					/* Present */
222					taskInfo->event_type = INT_PRESENCE_ON;
223				} else {
224					/* Not Present */
225					taskInfo->event_type = INT_PRESENCE_OFF;
226				}
227			}
228		}
229	}
230
231	return rc;
232}
233
234
235static u8 handle_power_fault(u8 change, struct controller *ctrl)
236{
237	int hp_slot;
238	u8 rc = 0;
239	struct pci_func *func;
240	struct event_info *taskInfo;
241
242	if (!change)
243		return 0;
244
245	/*
246	 * power fault
247	 */
248
249	info("power fault interrupt\n");
250
251	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
252		if (change & (0x01 << hp_slot)) {
253			/*
254			 * this one changed.
255			 */
256			func = cpqhp_slot_find(ctrl->bus,
257				(hp_slot + ctrl->slot_device_offset), 0);
258
259			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
260			ctrl->next_event = (ctrl->next_event + 1) % 10;
261			taskInfo->hp_slot = hp_slot;
262
263			rc++;
264
265			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
266				/*
267				 * power fault Cleared
268				 */
269				func->status = 0x00;
270
271				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
272			} else {
273				/*
274				 * power fault
275				 */
276				taskInfo->event_type = INT_POWER_FAULT;
277
278				if (ctrl->rev < 4) {
279					amber_LED_on (ctrl, hp_slot);
280					green_LED_off (ctrl, hp_slot);
281					set_SOGO (ctrl);
282
283					/* this is a fatal condition, we want
284					 * to crash the machine to protect from
285					 * data corruption. simulated_NMI
286					 * shouldn't ever return */
287					/* FIXME
288					simulated_NMI(hp_slot, ctrl); */
289
290					/* The following code causes a software
291					 * crash just in case simulated_NMI did
292					 * return */
293					/*FIXME
294					panic(msg_power_fault); */
295				} else {
296					/* set power fault status for this board */
297					func->status = 0xFF;
298					info("power fault bit %x set\n", hp_slot);
299				}
300			}
301		}
302	}
303
304	return rc;
305}
306
307
308/**
309 * sort_by_size - sort nodes on the list by their length, smallest first.
310 * @head: list to sort
311 */
312static int sort_by_size(struct pci_resource **head)
313{
314	struct pci_resource *current_res;
315	struct pci_resource *next_res;
316	int out_of_order = 1;
317
318	if (!(*head))
319		return 1;
320
321	if (!((*head)->next))
322		return 0;
323
324	while (out_of_order) {
325		out_of_order = 0;
326
327		/* Special case for swapping list head */
328		if (((*head)->next) &&
329		    ((*head)->length > (*head)->next->length)) {
330			out_of_order++;
331			current_res = *head;
332			*head = (*head)->next;
333			current_res->next = (*head)->next;
334			(*head)->next = current_res;
335		}
336
337		current_res = *head;
338
339		while (current_res->next && current_res->next->next) {
340			if (current_res->next->length > current_res->next->next->length) {
341				out_of_order++;
342				next_res = current_res->next;
343				current_res->next = current_res->next->next;
344				current_res = current_res->next;
345				next_res->next = current_res->next;
346				current_res->next = next_res;
347			} else
348				current_res = current_res->next;
349		}
350	}  /* End of out_of_order loop */
351
352	return 0;
353}
354
355
356/**
357 * sort_by_max_size - sort nodes on the list by their length, largest first.
358 * @head: list to sort
359 */
360static int sort_by_max_size(struct pci_resource **head)
361{
362	struct pci_resource *current_res;
363	struct pci_resource *next_res;
364	int out_of_order = 1;
365
366	if (!(*head))
367		return 1;
368
369	if (!((*head)->next))
370		return 0;
371
372	while (out_of_order) {
373		out_of_order = 0;
374
375		/* Special case for swapping list head */
376		if (((*head)->next) &&
377		    ((*head)->length < (*head)->next->length)) {
378			out_of_order++;
379			current_res = *head;
380			*head = (*head)->next;
381			current_res->next = (*head)->next;
382			(*head)->next = current_res;
383		}
384
385		current_res = *head;
386
387		while (current_res->next && current_res->next->next) {
388			if (current_res->next->length < current_res->next->next->length) {
389				out_of_order++;
390				next_res = current_res->next;
391				current_res->next = current_res->next->next;
392				current_res = current_res->next;
393				next_res->next = current_res->next;
394				current_res->next = next_res;
395			} else
396				current_res = current_res->next;
397		}
398	}  /* End of out_of_order loop */
399
400	return 0;
401}
402
403
404/**
405 * do_pre_bridge_resource_split - find node of resources that are unused
406 * @head: new list head
407 * @orig_head: original list head
408 * @alignment: max node size (?)
409 */
410static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
411				struct pci_resource **orig_head, u32 alignment)
412{
413	struct pci_resource *prevnode = NULL;
414	struct pci_resource *node;
415	struct pci_resource *split_node;
416	u32 rc;
417	u32 temp_dword;
418	dbg("do_pre_bridge_resource_split\n");
419
420	if (!(*head) || !(*orig_head))
421		return NULL;
422
423	rc = cpqhp_resource_sort_and_combine(head);
424
425	if (rc)
426		return NULL;
427
428	if ((*head)->base != (*orig_head)->base)
429		return NULL;
430
431	if ((*head)->length == (*orig_head)->length)
432		return NULL;
433
434
435	/* If we got here, there the bridge requires some of the resource, but
436	 * we may be able to split some off of the front
437	 */
438
439	node = *head;
440
441	if (node->length & (alignment -1)) {
442		/* this one isn't an aligned length, so we'll make a new entry
443		 * and split it up.
444		 */
445		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
446
447		if (!split_node)
448			return NULL;
449
450		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
451
452		split_node->base = node->base;
453		split_node->length = temp_dword;
454
455		node->length -= temp_dword;
456		node->base += split_node->length;
457
458		/* Put it in the list */
459		*head = split_node;
460		split_node->next = node;
461	}
462
463	if (node->length < alignment)
464		return NULL;
465
466	/* Now unlink it */
467	if (*head == node) {
468		*head = node->next;
469	} else {
470		prevnode = *head;
471		while (prevnode->next != node)
472			prevnode = prevnode->next;
473
474		prevnode->next = node->next;
475	}
476	node->next = NULL;
477
478	return node;
479}
480
481
482/**
483 * do_bridge_resource_split - find one node of resources that aren't in use
484 * @head: list head
485 * @alignment: max node size (?)
486 */
487static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
488{
489	struct pci_resource *prevnode = NULL;
490	struct pci_resource *node;
491	u32 rc;
492	u32 temp_dword;
493
494	rc = cpqhp_resource_sort_and_combine(head);
495
496	if (rc)
497		return NULL;
498
499	node = *head;
500
501	while (node->next) {
502		prevnode = node;
503		node = node->next;
504		kfree(prevnode);
505	}
506
507	if (node->length < alignment)
508		goto error;
509
510	if (node->base & (alignment - 1)) {
511		/* Short circuit if adjusted size is too small */
512		temp_dword = (node->base | (alignment-1)) + 1;
513		if ((node->length - (temp_dword - node->base)) < alignment)
514			goto error;
515
516		node->length -= (temp_dword - node->base);
517		node->base = temp_dword;
518	}
519
520	if (node->length & (alignment - 1))
521		/* There's stuff in use after this node */
522		goto error;
523
524	return node;
525error:
526	kfree(node);
527	return NULL;
528}
529
530
531/**
532 * get_io_resource - find first node of given size not in ISA aliasing window.
533 * @head: list to search
534 * @size: size of node to find, must be a power of two.
535 *
536 * Description: This function sorts the resource list by size and then returns
537 * returns the first node of "size" length that is not in the ISA aliasing
538 * window.  If it finds a node larger than "size" it will split it up.
539 */
540static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
541{
542	struct pci_resource *prevnode;
543	struct pci_resource *node;
544	struct pci_resource *split_node;
545	u32 temp_dword;
546
547	if (!(*head))
548		return NULL;
549
550	if (cpqhp_resource_sort_and_combine(head))
551		return NULL;
552
553	if (sort_by_size(head))
554		return NULL;
555
556	for (node = *head; node; node = node->next) {
557		if (node->length < size)
558			continue;
559
560		if (node->base & (size - 1)) {
561			/* this one isn't base aligned properly
562			 * so we'll make a new entry and split it up
563			 */
564			temp_dword = (node->base | (size-1)) + 1;
565
566			/* Short circuit if adjusted size is too small */
567			if ((node->length - (temp_dword - node->base)) < size)
568				continue;
569
570			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
571
572			if (!split_node)
573				return NULL;
574
575			split_node->base = node->base;
576			split_node->length = temp_dword - node->base;
577			node->base = temp_dword;
578			node->length -= split_node->length;
579
580			/* Put it in the list */
581			split_node->next = node->next;
582			node->next = split_node;
583		} /* End of non-aligned base */
584
585		/* Don't need to check if too small since we already did */
586		if (node->length > size) {
587			/* this one is longer than we need
588			 * so we'll make a new entry and split it up
589			 */
590			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
591
592			if (!split_node)
593				return NULL;
594
595			split_node->base = node->base + size;
596			split_node->length = node->length - size;
597			node->length = size;
598
599			/* Put it in the list */
600			split_node->next = node->next;
601			node->next = split_node;
602		}  /* End of too big on top end */
603
604		/* For IO make sure it's not in the ISA aliasing space */
605		if (node->base & 0x300L)
606			continue;
607
608		/* If we got here, then it is the right size
609		 * Now take it out of the list and break
610		 */
611		if (*head == node) {
612			*head = node->next;
613		} else {
614			prevnode = *head;
615			while (prevnode->next != node)
616				prevnode = prevnode->next;
617
618			prevnode->next = node->next;
619		}
620		node->next = NULL;
621		break;
622	}
623
624	return node;
625}
626
627
628/**
629 * get_max_resource - get largest node which has at least the given size.
630 * @head: the list to search the node in
631 * @size: the minimum size of the node to find
632 *
633 * Description: Gets the largest node that is at least "size" big from the
634 * list pointed to by head.  It aligns the node on top and bottom
635 * to "size" alignment before returning it.
636 */
637static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
638{
639	struct pci_resource *max;
640	struct pci_resource *temp;
641	struct pci_resource *split_node;
642	u32 temp_dword;
643
644	if (cpqhp_resource_sort_and_combine(head))
645		return NULL;
646
647	if (sort_by_max_size(head))
648		return NULL;
649
650	for (max = *head; max; max = max->next) {
651		/* If not big enough we could probably just bail,
652		 * instead we'll continue to the next.
653		 */
654		if (max->length < size)
655			continue;
656
657		if (max->base & (size - 1)) {
658			/* this one isn't base aligned properly
659			 * so we'll make a new entry and split it up
660			 */
661			temp_dword = (max->base | (size-1)) + 1;
662
663			/* Short circuit if adjusted size is too small */
664			if ((max->length - (temp_dword - max->base)) < size)
665				continue;
666
667			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
668
669			if (!split_node)
670				return NULL;
671
672			split_node->base = max->base;
673			split_node->length = temp_dword - max->base;
674			max->base = temp_dword;
675			max->length -= split_node->length;
676
677			split_node->next = max->next;
678			max->next = split_node;
679		}
680
681		if ((max->base + max->length) & (size - 1)) {
682			/* this one isn't end aligned properly at the top
683			 * so we'll make a new entry and split it up
684			 */
685			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
686
687			if (!split_node)
688				return NULL;
689			temp_dword = ((max->base + max->length) & ~(size - 1));
690			split_node->base = temp_dword;
691			split_node->length = max->length + max->base
692					     - split_node->base;
693			max->length -= split_node->length;
694
695			split_node->next = max->next;
696			max->next = split_node;
697		}
698
699		/* Make sure it didn't shrink too much when we aligned it */
700		if (max->length < size)
701			continue;
702
703		/* Now take it out of the list */
704		temp = *head;
705		if (temp == max) {
706			*head = max->next;
707		} else {
708			while (temp && temp->next != max)
709				temp = temp->next;
710
711			if (temp)
712				temp->next = max->next;
713		}
714
715		max->next = NULL;
716		break;
717	}
718
719	return max;
720}
721
722
723/**
724 * get_resource - find resource of given size and split up larger ones.
725 * @head: the list to search for resources
726 * @size: the size limit to use
727 *
728 * Description: This function sorts the resource list by size and then
729 * returns the first node of "size" length.  If it finds a node
730 * larger than "size" it will split it up.
731 *
732 * size must be a power of two.
733 */
734static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
735{
736	struct pci_resource *prevnode;
737	struct pci_resource *node;
738	struct pci_resource *split_node;
739	u32 temp_dword;
740
741	if (cpqhp_resource_sort_and_combine(head))
742		return NULL;
743
744	if (sort_by_size(head))
745		return NULL;
746
747	for (node = *head; node; node = node->next) {
748		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
749		    __func__, size, node, node->base, node->length);
750		if (node->length < size)
751			continue;
752
753		if (node->base & (size - 1)) {
754			dbg("%s: not aligned\n", __func__);
755			/* this one isn't base aligned properly
756			 * so we'll make a new entry and split it up
757			 */
758			temp_dword = (node->base | (size-1)) + 1;
759
760			/* Short circuit if adjusted size is too small */
761			if ((node->length - (temp_dword - node->base)) < size)
762				continue;
763
764			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
765
766			if (!split_node)
767				return NULL;
768
769			split_node->base = node->base;
770			split_node->length = temp_dword - node->base;
771			node->base = temp_dword;
772			node->length -= split_node->length;
773
774			split_node->next = node->next;
775			node->next = split_node;
776		} /* End of non-aligned base */
777
778		/* Don't need to check if too small since we already did */
779		if (node->length > size) {
780			dbg("%s: too big\n", __func__);
781			/* this one is longer than we need
782			 * so we'll make a new entry and split it up
783			 */
784			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
785
786			if (!split_node)
787				return NULL;
788
789			split_node->base = node->base + size;
790			split_node->length = node->length - size;
791			node->length = size;
792
793			/* Put it in the list */
794			split_node->next = node->next;
795			node->next = split_node;
796		}  /* End of too big on top end */
797
798		dbg("%s: got one!!!\n", __func__);
799		/* If we got here, then it is the right size
800		 * Now take it out of the list */
801		if (*head == node) {
802			*head = node->next;
803		} else {
804			prevnode = *head;
805			while (prevnode->next != node)
806				prevnode = prevnode->next;
807
808			prevnode->next = node->next;
809		}
810		node->next = NULL;
811		break;
812	}
813	return node;
814}
815
816
817/**
818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
819 * @head: the list to sort and clean up
820 *
821 * Description: Sorts all of the nodes in the list in ascending order by
822 * their base addresses.  Also does garbage collection by
823 * combining adjacent nodes.
824 *
825 * Returns %0 if success.
826 */
827int cpqhp_resource_sort_and_combine(struct pci_resource **head)
828{
829	struct pci_resource *node1;
830	struct pci_resource *node2;
831	int out_of_order = 1;
832
833	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
834
835	if (!(*head))
836		return 1;
837
838	dbg("*head->next = %p\n",(*head)->next);
839
840	if (!(*head)->next)
841		return 0;	/* only one item on the list, already sorted! */
842
843	dbg("*head->base = 0x%x\n",(*head)->base);
844	dbg("*head->next->base = 0x%x\n",(*head)->next->base);
845	while (out_of_order) {
846		out_of_order = 0;
847
848		/* Special case for swapping list head */
849		if (((*head)->next) &&
850		    ((*head)->base > (*head)->next->base)) {
851			node1 = *head;
852			(*head) = (*head)->next;
853			node1->next = (*head)->next;
854			(*head)->next = node1;
855			out_of_order++;
856		}
857
858		node1 = (*head);
859
860		while (node1->next && node1->next->next) {
861			if (node1->next->base > node1->next->next->base) {
862				out_of_order++;
863				node2 = node1->next;
864				node1->next = node1->next->next;
865				node1 = node1->next;
866				node2->next = node1->next;
867				node1->next = node2;
868			} else
869				node1 = node1->next;
870		}
871	}  /* End of out_of_order loop */
872
873	node1 = *head;
874
875	while (node1 && node1->next) {
876		if ((node1->base + node1->length) == node1->next->base) {
877			/* Combine */
878			dbg("8..\n");
879			node1->length += node1->next->length;
880			node2 = node1->next;
881			node1->next = node1->next->next;
882			kfree(node2);
883		} else
884			node1 = node1->next;
885	}
886
887	return 0;
888}
889
890
891irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
892{
893	struct controller *ctrl = data;
894	u8 schedule_flag = 0;
895	u8 reset;
896	u16 misc;
897	u32 Diff;
898	u32 temp_dword;
899
900
901	misc = readw(ctrl->hpc_reg + MISC);
902	/*
903	 * Check to see if it was our interrupt
904	 */
905	if (!(misc & 0x000C))
906		return IRQ_NONE;
907
908	if (misc & 0x0004) {
909		/*
910		 * Serial Output interrupt Pending
911		 */
912
913		/* Clear the interrupt */
914		misc |= 0x0004;
915		writew(misc, ctrl->hpc_reg + MISC);
916
917		/* Read to clear posted writes */
918		misc = readw(ctrl->hpc_reg + MISC);
919
920		dbg ("%s - waking up\n", __func__);
921		wake_up_interruptible(&ctrl->queue);
922	}
923
924	if (misc & 0x0008) {
925		/* General-interrupt-input interrupt Pending */
926		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
927
928		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
929
930		/* Clear the interrupt */
931		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
932
933		/* Read it back to clear any posted writes */
934		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
935
936		if (!Diff)
937			/* Clear all interrupts */
938			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
939
940		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
941		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
942		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
943	}
944
945	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
946	if (reset & 0x40) {
947		/* Bus reset has completed */
948		reset &= 0xCF;
949		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
950		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
951		wake_up_interruptible(&ctrl->queue);
952	}
953
954	if (schedule_flag) {
955		wake_up_process(cpqhp_event_thread);
956		dbg("Waking even thread");
957	}
958	return IRQ_HANDLED;
959}
960
961
962/**
963 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
964 * @busnumber: bus where new node is to be located
965 *
966 * Returns pointer to the new node or %NULL if unsuccessful.
967 */
968struct pci_func *cpqhp_slot_create(u8 busnumber)
969{
970	struct pci_func *new_slot;
971	struct pci_func *next;
972
973	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
974	if (new_slot == NULL)
975		return new_slot;
976
977	new_slot->next = NULL;
978	new_slot->configured = 1;
979
980	if (cpqhp_slot_list[busnumber] == NULL) {
981		cpqhp_slot_list[busnumber] = new_slot;
982	} else {
983		next = cpqhp_slot_list[busnumber];
984		while (next->next != NULL)
985			next = next->next;
986		next->next = new_slot;
987	}
988	return new_slot;
989}
990
991
992/**
993 * slot_remove - Removes a node from the linked list of slots.
994 * @old_slot: slot to remove
995 *
996 * Returns %0 if successful, !0 otherwise.
997 */
998static int slot_remove(struct pci_func *old_slot)
999{
1000	struct pci_func *next;
1001
1002	if (old_slot == NULL)
1003		return 1;
1004
1005	next = cpqhp_slot_list[old_slot->bus];
1006	if (next == NULL)
1007		return 1;
1008
1009	if (next == old_slot) {
1010		cpqhp_slot_list[old_slot->bus] = old_slot->next;
1011		cpqhp_destroy_board_resources(old_slot);
1012		kfree(old_slot);
1013		return 0;
1014	}
1015
1016	while ((next->next != old_slot) && (next->next != NULL))
1017		next = next->next;
1018
1019	if (next->next == old_slot) {
1020		next->next = old_slot->next;
1021		cpqhp_destroy_board_resources(old_slot);
1022		kfree(old_slot);
1023		return 0;
1024	} else
1025		return 2;
1026}
1027
1028
1029/**
1030 * bridge_slot_remove - Removes a node from the linked list of slots.
1031 * @bridge: bridge to remove
1032 *
1033 * Returns %0 if successful, !0 otherwise.
1034 */
1035static int bridge_slot_remove(struct pci_func *bridge)
1036{
1037	u8 subordinateBus, secondaryBus;
1038	u8 tempBus;
1039	struct pci_func *next;
1040
1041	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1042	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1043
1044	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1045		next = cpqhp_slot_list[tempBus];
1046
1047		while (!slot_remove(next))
1048			next = cpqhp_slot_list[tempBus];
1049	}
1050
1051	next = cpqhp_slot_list[bridge->bus];
1052
1053	if (next == NULL)
1054		return 1;
1055
1056	if (next == bridge) {
1057		cpqhp_slot_list[bridge->bus] = bridge->next;
1058		goto out;
1059	}
1060
1061	while ((next->next != bridge) && (next->next != NULL))
1062		next = next->next;
1063
1064	if (next->next != bridge)
1065		return 2;
1066	next->next = bridge->next;
1067out:
1068	kfree(bridge);
1069	return 0;
1070}
1071
1072
1073/**
1074 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1075 * @bus: bus to find
1076 * @device: device to find
1077 * @index: is %0 for first function found, %1 for the second...
1078 *
1079 * Returns pointer to the node if successful, %NULL otherwise.
1080 */
1081struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1082{
1083	int found = -1;
1084	struct pci_func *func;
1085
1086	func = cpqhp_slot_list[bus];
1087
1088	if ((func == NULL) || ((func->device == device) && (index == 0)))
1089		return func;
1090
1091	if (func->device == device)
1092		found++;
1093
1094	while (func->next != NULL) {
1095		func = func->next;
1096
1097		if (func->device == device)
1098			found++;
1099
1100		if (found == index)
1101			return func;
1102	}
1103
1104	return NULL;
1105}
1106
1107
1108/* DJZ: I don't think is_bridge will work as is.
1109 * FIXME */
1110static int is_bridge(struct pci_func *func)
1111{
1112	/* Check the header type */
1113	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1114		return 1;
1115	else
1116		return 0;
1117}
1118
1119
1120/**
1121 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1122 * @ctrl: controller to change frequency/mode for.
1123 * @adapter_speed: the speed of the adapter we want to match.
1124 * @hp_slot: the slot number where the adapter is installed.
1125 *
1126 * Returns %0 if we successfully change frequency and/or mode to match the
1127 * adapter speed.
1128 */
1129static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1130{
1131	struct slot *slot;
1132	struct pci_bus *bus = ctrl->pci_bus;
1133	u8 reg;
1134	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1135	u16 reg16;
1136	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1137
1138	if (bus->cur_bus_speed == adapter_speed)
1139		return 0;
1140
1141	/* We don't allow freq/mode changes if we find another adapter running
1142	 * in another slot on this controller
1143	 */
1144	for (slot = ctrl->slot; slot; slot = slot->next) {
1145		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1146			continue;
1147		if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1148			continue;
1149		if (slot->hotplug_slot->info->adapter_status == 0)
1150			continue;
1151		/* If another adapter is running on the same segment but at a
1152		 * lower speed/mode, we allow the new adapter to function at
1153		 * this rate if supported
1154		 */
1155		if (bus->cur_bus_speed < adapter_speed)
1156			return 0;
1157
1158		return 1;
1159	}
1160
1161	/* If the controller doesn't support freq/mode changes and the
1162	 * controller is running at a higher mode, we bail
1163	 */
1164	if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1165		return 1;
1166
1167	/* But we allow the adapter to run at a lower rate if possible */
1168	if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1169		return 0;
1170
1171	/* We try to set the max speed supported by both the adapter and
1172	 * controller
1173	 */
1174	if (bus->max_bus_speed < adapter_speed) {
1175		if (bus->cur_bus_speed == bus->max_bus_speed)
1176			return 0;
1177		adapter_speed = bus->max_bus_speed;
1178	}
1179
1180	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1181	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1182
1183	set_SOGO(ctrl);
1184	wait_for_ctrl_irq(ctrl);
1185
1186	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1187		reg = 0xF5;
1188	else
1189		reg = 0xF4;
1190	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1191
1192	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1193	reg16 &= ~0x000F;
1194	switch (adapter_speed) {
1195		case(PCI_SPEED_133MHz_PCIX):
1196			reg = 0x75;
1197			reg16 |= 0xB;
1198			break;
1199		case(PCI_SPEED_100MHz_PCIX):
1200			reg = 0x74;
1201			reg16 |= 0xA;
1202			break;
1203		case(PCI_SPEED_66MHz_PCIX):
1204			reg = 0x73;
1205			reg16 |= 0x9;
1206			break;
1207		case(PCI_SPEED_66MHz):
1208			reg = 0x73;
1209			reg16 |= 0x1;
1210			break;
1211		default: /* 33MHz PCI 2.2 */
1212			reg = 0x71;
1213			break;
1214
1215	}
1216	reg16 |= 0xB << 12;
1217	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1218
1219	mdelay(5);
1220
1221	/* Reenable interrupts */
1222	writel(0, ctrl->hpc_reg + INT_MASK);
1223
1224	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1225
1226	/* Restart state machine */
1227	reg = ~0xF;
1228	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1229	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1230
1231	/* Only if mode change...*/
1232	if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1233		((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1234			set_SOGO(ctrl);
1235
1236	wait_for_ctrl_irq(ctrl);
1237	mdelay(1100);
1238
1239	/* Restore LED/Slot state */
1240	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1241	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1242
1243	set_SOGO(ctrl);
1244	wait_for_ctrl_irq(ctrl);
1245
1246	bus->cur_bus_speed = adapter_speed;
1247	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1248
1249	info("Successfully changed frequency/mode for adapter in slot %d\n",
1250			slot->number);
1251	return 0;
1252}
1253
1254/* the following routines constitute the bulk of the
1255 * hotplug controller logic
1256 */
1257
1258
1259/**
1260 * board_replaced - Called after a board has been replaced in the system.
1261 * @func: PCI device/function information
1262 * @ctrl: hotplug controller
1263 *
1264 * This is only used if we don't have resources for hot add.
1265 * Turns power on for the board.
1266 * Checks to see if board is the same.
1267 * If board is same, reconfigures it.
1268 * If board isn't same, turns it back off.
1269 */
1270static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1271{
1272	struct pci_bus *bus = ctrl->pci_bus;
1273	u8 hp_slot;
1274	u8 temp_byte;
1275	u8 adapter_speed;
1276	u32 rc = 0;
1277
1278	hp_slot = func->device - ctrl->slot_device_offset;
1279
1280	/*
1281	 * The switch is open.
1282	 */
1283	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1284		rc = INTERLOCK_OPEN;
1285	/*
1286	 * The board is already on
1287	 */
1288	else if (is_slot_enabled (ctrl, hp_slot))
1289		rc = CARD_FUNCTIONING;
1290	else {
1291		mutex_lock(&ctrl->crit_sect);
1292
1293		/* turn on board without attaching to the bus */
1294		enable_slot_power (ctrl, hp_slot);
1295
1296		set_SOGO(ctrl);
1297
1298		/* Wait for SOBS to be unset */
1299		wait_for_ctrl_irq (ctrl);
1300
1301		/* Change bits in slot power register to force another shift out
1302		 * NOTE: this is to work around the timer bug */
1303		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1304		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1305		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1306
1307		set_SOGO(ctrl);
1308
1309		/* Wait for SOBS to be unset */
1310		wait_for_ctrl_irq (ctrl);
1311
1312		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1313		if (bus->cur_bus_speed != adapter_speed)
1314			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1315				rc = WRONG_BUS_FREQUENCY;
1316
1317		/* turn off board without attaching to the bus */
1318		disable_slot_power (ctrl, hp_slot);
1319
1320		set_SOGO(ctrl);
1321
1322		/* Wait for SOBS to be unset */
1323		wait_for_ctrl_irq (ctrl);
1324
1325		mutex_unlock(&ctrl->crit_sect);
1326
1327		if (rc)
1328			return rc;
1329
1330		mutex_lock(&ctrl->crit_sect);
1331
1332		slot_enable (ctrl, hp_slot);
1333		green_LED_blink (ctrl, hp_slot);
1334
1335		amber_LED_off (ctrl, hp_slot);
1336
1337		set_SOGO(ctrl);
1338
1339		/* Wait for SOBS to be unset */
1340		wait_for_ctrl_irq (ctrl);
1341
1342		mutex_unlock(&ctrl->crit_sect);
1343
1344		/* Wait for ~1 second because of hot plug spec */
1345		long_delay(1*HZ);
1346
1347		/* Check for a power fault */
1348		if (func->status == 0xFF) {
1349			/* power fault occurred, but it was benign */
1350			rc = POWER_FAILURE;
1351			func->status = 0;
1352		} else
1353			rc = cpqhp_valid_replace(ctrl, func);
1354
1355		if (!rc) {
1356			/* It must be the same board */
1357
1358			rc = cpqhp_configure_board(ctrl, func);
1359
1360			/* If configuration fails, turn it off
1361			 * Get slot won't work for devices behind
1362			 * bridges, but in this case it will always be
1363			 * called for the "base" bus/dev/func of an
1364			 * adapter.
1365			 */
1366
1367			mutex_lock(&ctrl->crit_sect);
1368
1369			amber_LED_on (ctrl, hp_slot);
1370			green_LED_off (ctrl, hp_slot);
1371			slot_disable (ctrl, hp_slot);
1372
1373			set_SOGO(ctrl);
1374
1375			/* Wait for SOBS to be unset */
1376			wait_for_ctrl_irq (ctrl);
1377
1378			mutex_unlock(&ctrl->crit_sect);
1379
1380			if (rc)
1381				return rc;
1382			else
1383				return 1;
1384
1385		} else {
1386			/* Something is wrong
1387
1388			 * Get slot won't work for devices behind bridges, but
1389			 * in this case it will always be called for the "base"
1390			 * bus/dev/func of an adapter.
1391			 */
1392
1393			mutex_lock(&ctrl->crit_sect);
1394
1395			amber_LED_on (ctrl, hp_slot);
1396			green_LED_off (ctrl, hp_slot);
1397			slot_disable (ctrl, hp_slot);
1398
1399			set_SOGO(ctrl);
1400
1401			/* Wait for SOBS to be unset */
1402			wait_for_ctrl_irq (ctrl);
1403
1404			mutex_unlock(&ctrl->crit_sect);
1405		}
1406
1407	}
1408	return rc;
1409
1410}
1411
1412
1413/**
1414 * board_added - Called after a board has been added to the system.
1415 * @func: PCI device/function info
1416 * @ctrl: hotplug controller
1417 *
1418 * Turns power on for the board.
1419 * Configures board.
1420 */
1421static u32 board_added(struct pci_func *func, struct controller *ctrl)
1422{
1423	u8 hp_slot;
1424	u8 temp_byte;
1425	u8 adapter_speed;
1426	int index;
1427	u32 temp_register = 0xFFFFFFFF;
1428	u32 rc = 0;
1429	struct pci_func *new_slot = NULL;
1430	struct pci_bus *bus = ctrl->pci_bus;
1431	struct slot *p_slot;
1432	struct resource_lists res_lists;
1433
1434	hp_slot = func->device - ctrl->slot_device_offset;
1435	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1436	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
1437
1438	mutex_lock(&ctrl->crit_sect);
1439
1440	/* turn on board without attaching to the bus */
1441	enable_slot_power(ctrl, hp_slot);
1442
1443	set_SOGO(ctrl);
1444
1445	/* Wait for SOBS to be unset */
1446	wait_for_ctrl_irq (ctrl);
1447
1448	/* Change bits in slot power register to force another shift out
1449	 * NOTE: this is to work around the timer bug
1450	 */
1451	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1452	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1453	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1454
1455	set_SOGO(ctrl);
1456
1457	/* Wait for SOBS to be unset */
1458	wait_for_ctrl_irq (ctrl);
1459
1460	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1461	if (bus->cur_bus_speed != adapter_speed)
1462		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1463			rc = WRONG_BUS_FREQUENCY;
1464
1465	/* turn off board without attaching to the bus */
1466	disable_slot_power (ctrl, hp_slot);
1467
1468	set_SOGO(ctrl);
1469
1470	/* Wait for SOBS to be unset */
1471	wait_for_ctrl_irq(ctrl);
1472
1473	mutex_unlock(&ctrl->crit_sect);
1474
1475	if (rc)
1476		return rc;
1477
1478	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1479
1480	/* turn on board and blink green LED */
1481
1482	dbg("%s: before down\n", __func__);
1483	mutex_lock(&ctrl->crit_sect);
1484	dbg("%s: after down\n", __func__);
1485
1486	dbg("%s: before slot_enable\n", __func__);
1487	slot_enable (ctrl, hp_slot);
1488
1489	dbg("%s: before green_LED_blink\n", __func__);
1490	green_LED_blink (ctrl, hp_slot);
1491
1492	dbg("%s: before amber_LED_blink\n", __func__);
1493	amber_LED_off (ctrl, hp_slot);
1494
1495	dbg("%s: before set_SOGO\n", __func__);
1496	set_SOGO(ctrl);
1497
1498	/* Wait for SOBS to be unset */
1499	dbg("%s: before wait_for_ctrl_irq\n", __func__);
1500	wait_for_ctrl_irq (ctrl);
1501	dbg("%s: after wait_for_ctrl_irq\n", __func__);
1502
1503	dbg("%s: before up\n", __func__);
1504	mutex_unlock(&ctrl->crit_sect);
1505	dbg("%s: after up\n", __func__);
1506
1507	/* Wait for ~1 second because of hot plug spec */
1508	dbg("%s: before long_delay\n", __func__);
1509	long_delay(1*HZ);
1510	dbg("%s: after long_delay\n", __func__);
1511
1512	dbg("%s: func status = %x\n", __func__, func->status);
1513	/* Check for a power fault */
1514	if (func->status == 0xFF) {
1515		/* power fault occurred, but it was benign */
1516		temp_register = 0xFFFFFFFF;
1517		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1518		rc = POWER_FAILURE;
1519		func->status = 0;
1520	} else {
1521		/* Get vendor/device ID u32 */
1522		ctrl->pci_bus->number = func->bus;
1523		rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1524		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1525		dbg("%s: temp_register is %x\n", __func__, temp_register);
1526
1527		if (rc != 0) {
1528			/* Something's wrong here */
1529			temp_register = 0xFFFFFFFF;
1530			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1531		}
1532		/* Preset return code.  It will be changed later if things go okay. */
1533		rc = NO_ADAPTER_PRESENT;
1534	}
1535
1536	/* All F's is an empty slot or an invalid board */
1537	if (temp_register != 0xFFFFFFFF) {
1538		res_lists.io_head = ctrl->io_head;
1539		res_lists.mem_head = ctrl->mem_head;
1540		res_lists.p_mem_head = ctrl->p_mem_head;
1541		res_lists.bus_head = ctrl->bus_head;
1542		res_lists.irqs = NULL;
1543
1544		rc = configure_new_device(ctrl, func, 0, &res_lists);
1545
1546		dbg("%s: back from configure_new_device\n", __func__);
1547		ctrl->io_head = res_lists.io_head;
1548		ctrl->mem_head = res_lists.mem_head;
1549		ctrl->p_mem_head = res_lists.p_mem_head;
1550		ctrl->bus_head = res_lists.bus_head;
1551
1552		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1553		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1554		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1555		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1556
1557		if (rc) {
1558			mutex_lock(&ctrl->crit_sect);
1559
1560			amber_LED_on (ctrl, hp_slot);
1561			green_LED_off (ctrl, hp_slot);
1562			slot_disable (ctrl, hp_slot);
1563
1564			set_SOGO(ctrl);
1565
1566			/* Wait for SOBS to be unset */
1567			wait_for_ctrl_irq (ctrl);
1568
1569			mutex_unlock(&ctrl->crit_sect);
1570			return rc;
1571		} else {
1572			cpqhp_save_slot_config(ctrl, func);
1573		}
1574
1575
1576		func->status = 0;
1577		func->switch_save = 0x10;
1578		func->is_a_board = 0x01;
1579
1580		/* next, we will instantiate the linux pci_dev structures (with
1581		 * appropriate driver notification, if already present) */
1582		dbg("%s: configure linux pci_dev structure\n", __func__);
1583		index = 0;
1584		do {
1585			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1586			if (new_slot && !new_slot->pci_dev)
1587				cpqhp_configure_device(ctrl, new_slot);
1588		} while (new_slot);
1589
1590		mutex_lock(&ctrl->crit_sect);
1591
1592		green_LED_on (ctrl, hp_slot);
1593
1594		set_SOGO(ctrl);
1595
1596		/* Wait for SOBS to be unset */
1597		wait_for_ctrl_irq (ctrl);
1598
1599		mutex_unlock(&ctrl->crit_sect);
1600	} else {
1601		mutex_lock(&ctrl->crit_sect);
1602
1603		amber_LED_on (ctrl, hp_slot);
1604		green_LED_off (ctrl, hp_slot);
1605		slot_disable (ctrl, hp_slot);
1606
1607		set_SOGO(ctrl);
1608
1609		/* Wait for SOBS to be unset */
1610		wait_for_ctrl_irq (ctrl);
1611
1612		mutex_unlock(&ctrl->crit_sect);
1613
1614		return rc;
1615	}
1616	return 0;
1617}
1618
1619
1620/**
1621 * remove_board - Turns off slot and LEDs
1622 * @func: PCI device/function info
1623 * @replace_flag: whether replacing or adding a new device
1624 * @ctrl: target controller
1625 */
1626static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1627{
1628	int index;
1629	u8 skip = 0;
1630	u8 device;
1631	u8 hp_slot;
1632	u8 temp_byte;
1633	u32 rc;
1634	struct resource_lists res_lists;
1635	struct pci_func *temp_func;
1636
1637	if (cpqhp_unconfigure_device(func))
1638		return 1;
1639
1640	device = func->device;
1641
1642	hp_slot = func->device - ctrl->slot_device_offset;
1643	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1644
1645	/* When we get here, it is safe to change base address registers.
1646	 * We will attempt to save the base address register lengths */
1647	if (replace_flag || !ctrl->add_support)
1648		rc = cpqhp_save_base_addr_length(ctrl, func);
1649	else if (!func->bus_head && !func->mem_head &&
1650		 !func->p_mem_head && !func->io_head) {
1651		/* Here we check to see if we've saved any of the board's
1652		 * resources already.  If so, we'll skip the attempt to
1653		 * determine what's being used. */
1654		index = 0;
1655		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1656		while (temp_func) {
1657			if (temp_func->bus_head || temp_func->mem_head
1658			    || temp_func->p_mem_head || temp_func->io_head) {
1659				skip = 1;
1660				break;
1661			}
1662			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1663		}
1664
1665		if (!skip)
1666			rc = cpqhp_save_used_resources(ctrl, func);
1667	}
1668	/* Change status to shutdown */
1669	if (func->is_a_board)
1670		func->status = 0x01;
1671	func->configured = 0;
1672
1673	mutex_lock(&ctrl->crit_sect);
1674
1675	green_LED_off (ctrl, hp_slot);
1676	slot_disable (ctrl, hp_slot);
1677
1678	set_SOGO(ctrl);
1679
1680	/* turn off SERR for slot */
1681	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1682	temp_byte &= ~(0x01 << hp_slot);
1683	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1684
1685	/* Wait for SOBS to be unset */
1686	wait_for_ctrl_irq (ctrl);
1687
1688	mutex_unlock(&ctrl->crit_sect);
1689
1690	if (!replace_flag && ctrl->add_support) {
1691		while (func) {
1692			res_lists.io_head = ctrl->io_head;
1693			res_lists.mem_head = ctrl->mem_head;
1694			res_lists.p_mem_head = ctrl->p_mem_head;
1695			res_lists.bus_head = ctrl->bus_head;
1696
1697			cpqhp_return_board_resources(func, &res_lists);
1698
1699			ctrl->io_head = res_lists.io_head;
1700			ctrl->mem_head = res_lists.mem_head;
1701			ctrl->p_mem_head = res_lists.p_mem_head;
1702			ctrl->bus_head = res_lists.bus_head;
1703
1704			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1705			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1706			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1707			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1708
1709			if (is_bridge(func)) {
1710				bridge_slot_remove(func);
1711			} else
1712				slot_remove(func);
1713
1714			func = cpqhp_slot_find(ctrl->bus, device, 0);
1715		}
1716
1717		/* Setup slot structure with entry for empty slot */
1718		func = cpqhp_slot_create(ctrl->bus);
1719
1720		if (func == NULL)
1721			return 1;
1722
1723		func->bus = ctrl->bus;
1724		func->device = device;
1725		func->function = 0;
1726		func->configured = 0;
1727		func->switch_save = 0x10;
1728		func->is_a_board = 0;
1729		func->p_task_event = NULL;
1730	}
1731
1732	return 0;
1733}
1734
1735static void pushbutton_helper_thread(unsigned long data)
1736{
1737	pushbutton_pending = data;
1738	wake_up_process(cpqhp_event_thread);
1739}
1740
1741
1742/* this is the main worker thread */
1743static int event_thread(void *data)
1744{
1745	struct controller *ctrl;
1746
1747	while (1) {
1748		dbg("!!!!event_thread sleeping\n");
1749		set_current_state(TASK_INTERRUPTIBLE);
1750		schedule();
1751
1752		if (kthread_should_stop())
1753			break;
1754		/* Do stuff here */
1755		if (pushbutton_pending)
1756			cpqhp_pushbutton_thread(pushbutton_pending);
1757		else
1758			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1759				interrupt_event_handler(ctrl);
1760	}
1761	dbg("event_thread signals exit\n");
1762	return 0;
1763}
1764
1765int cpqhp_event_start_thread(void)
1766{
1767	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1768	if (IS_ERR(cpqhp_event_thread)) {
1769		err ("Can't start up our event thread\n");
1770		return PTR_ERR(cpqhp_event_thread);
1771	}
1772
1773	return 0;
1774}
1775
1776
1777void cpqhp_event_stop_thread(void)
1778{
1779	kthread_stop(cpqhp_event_thread);
1780}
1781
1782
1783static int update_slot_info(struct controller *ctrl, struct slot *slot)
1784{
1785	struct hotplug_slot_info *info;
1786	int result;
1787
1788	info = kmalloc(sizeof(*info), GFP_KERNEL);
1789	if (!info)
1790		return -ENOMEM;
1791
1792	info->power_status = get_slot_enabled(ctrl, slot);
1793	info->attention_status = cpq_get_attention_status(ctrl, slot);
1794	info->latch_status = cpq_get_latch_status(ctrl, slot);
1795	info->adapter_status = get_presence_status(ctrl, slot);
1796	result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1797	kfree (info);
1798	return result;
1799}
1800
1801static void interrupt_event_handler(struct controller *ctrl)
1802{
1803	int loop = 0;
1804	int change = 1;
1805	struct pci_func *func;
1806	u8 hp_slot;
1807	struct slot *p_slot;
1808
1809	while (change) {
1810		change = 0;
1811
1812		for (loop = 0; loop < 10; loop++) {
1813			/* dbg("loop %d\n", loop); */
1814			if (ctrl->event_queue[loop].event_type != 0) {
1815				hp_slot = ctrl->event_queue[loop].hp_slot;
1816
1817				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1818				if (!func)
1819					return;
1820
1821				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1822				if (!p_slot)
1823					return;
1824
1825				dbg("hp_slot %d, func %p, p_slot %p\n",
1826				    hp_slot, func, p_slot);
1827
1828				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1829					dbg("button pressed\n");
1830				} else if (ctrl->event_queue[loop].event_type ==
1831					   INT_BUTTON_CANCEL) {
1832					dbg("button cancel\n");
1833					del_timer(&p_slot->task_event);
1834
1835					mutex_lock(&ctrl->crit_sect);
1836
1837					if (p_slot->state == BLINKINGOFF_STATE) {
1838						/* slot is on */
1839						dbg("turn on green LED\n");
1840						green_LED_on (ctrl, hp_slot);
1841					} else if (p_slot->state == BLINKINGON_STATE) {
1842						/* slot is off */
1843						dbg("turn off green LED\n");
1844						green_LED_off (ctrl, hp_slot);
1845					}
1846
1847					info(msg_button_cancel, p_slot->number);
1848
1849					p_slot->state = STATIC_STATE;
1850
1851					amber_LED_off (ctrl, hp_slot);
1852
1853					set_SOGO(ctrl);
1854
1855					/* Wait for SOBS to be unset */
1856					wait_for_ctrl_irq (ctrl);
1857
1858					mutex_unlock(&ctrl->crit_sect);
1859				}
1860				/*** button Released (No action on press...) */
1861				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1862					dbg("button release\n");
1863
1864					if (is_slot_enabled (ctrl, hp_slot)) {
1865						dbg("slot is on\n");
1866						p_slot->state = BLINKINGOFF_STATE;
1867						info(msg_button_off, p_slot->number);
1868					} else {
1869						dbg("slot is off\n");
1870						p_slot->state = BLINKINGON_STATE;
1871						info(msg_button_on, p_slot->number);
1872					}
1873					mutex_lock(&ctrl->crit_sect);
1874
1875					dbg("blink green LED and turn off amber\n");
1876
1877					amber_LED_off (ctrl, hp_slot);
1878					green_LED_blink (ctrl, hp_slot);
1879
1880					set_SOGO(ctrl);
1881
1882					/* Wait for SOBS to be unset */
1883					wait_for_ctrl_irq (ctrl);
1884
1885					mutex_unlock(&ctrl->crit_sect);
1886					init_timer(&p_slot->task_event);
1887					p_slot->hp_slot = hp_slot;
1888					p_slot->ctrl = ctrl;
1889/*					p_slot->physical_slot = physical_slot; */
1890					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1891					p_slot->task_event.function = pushbutton_helper_thread;
1892					p_slot->task_event.data = (u32) p_slot;
1893
1894					dbg("add_timer p_slot = %p\n", p_slot);
1895					add_timer(&p_slot->task_event);
1896				}
1897				/***********POWER FAULT */
1898				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1899					dbg("power fault\n");
1900				} else {
1901					/* refresh notification */
1902					update_slot_info(ctrl, p_slot);
1903				}
1904
1905				ctrl->event_queue[loop].event_type = 0;
1906
1907				change = 1;
1908			}
1909		}		/* End of FOR loop */
1910	}
1911
1912	return;
1913}
1914
1915
1916/**
1917 * cpqhp_pushbutton_thread - handle pushbutton events
1918 * @slot: target slot (struct)
1919 *
1920 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1921 * Handles all pending events and exits.
1922 */
1923void cpqhp_pushbutton_thread(unsigned long slot)
1924{
1925	u8 hp_slot;
1926	u8 device;
1927	struct pci_func *func;
1928	struct slot *p_slot = (struct slot *) slot;
1929	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1930
1931	pushbutton_pending = 0;
1932	hp_slot = p_slot->hp_slot;
1933
1934	device = p_slot->device;
1935
1936	if (is_slot_enabled(ctrl, hp_slot)) {
1937		p_slot->state = POWEROFF_STATE;
1938		/* power Down board */
1939		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1940		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1941		if (!func) {
1942			dbg("Error! func NULL in %s\n", __func__);
1943			return ;
1944		}
1945
1946		if (cpqhp_process_SS(ctrl, func) != 0) {
1947			amber_LED_on(ctrl, hp_slot);
1948			green_LED_on(ctrl, hp_slot);
1949
1950			set_SOGO(ctrl);
1951
1952			/* Wait for SOBS to be unset */
1953			wait_for_ctrl_irq(ctrl);
1954		}
1955
1956		p_slot->state = STATIC_STATE;
1957	} else {
1958		p_slot->state = POWERON_STATE;
1959		/* slot is off */
1960
1961		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1962		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1963		if (!func) {
1964			dbg("Error! func NULL in %s\n", __func__);
1965			return ;
1966		}
1967
1968		if (ctrl != NULL) {
1969			if (cpqhp_process_SI(ctrl, func) != 0) {
1970				amber_LED_on(ctrl, hp_slot);
1971				green_LED_off(ctrl, hp_slot);
1972
1973				set_SOGO(ctrl);
1974
1975				/* Wait for SOBS to be unset */
1976				wait_for_ctrl_irq (ctrl);
1977			}
1978		}
1979
1980		p_slot->state = STATIC_STATE;
1981	}
1982
1983	return;
1984}
1985
1986
1987int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1988{
1989	u8 device, hp_slot;
1990	u16 temp_word;
1991	u32 tempdword;
1992	int rc;
1993	struct slot *p_slot;
1994	int physical_slot = 0;
1995
1996	tempdword = 0;
1997
1998	device = func->device;
1999	hp_slot = device - ctrl->slot_device_offset;
2000	p_slot = cpqhp_find_slot(ctrl, device);
2001	if (p_slot)
2002		physical_slot = p_slot->number;
2003
2004	/* Check to see if the interlock is closed */
2005	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2006
2007	if (tempdword & (0x01 << hp_slot))
2008		return 1;
2009
2010	if (func->is_a_board) {
2011		rc = board_replaced(func, ctrl);
2012	} else {
2013		/* add board */
2014		slot_remove(func);
2015
2016		func = cpqhp_slot_create(ctrl->bus);
2017		if (func == NULL)
2018			return 1;
2019
2020		func->bus = ctrl->bus;
2021		func->device = device;
2022		func->function = 0;
2023		func->configured = 0;
2024		func->is_a_board = 1;
2025
2026		/* We have to save the presence info for these slots */
2027		temp_word = ctrl->ctrl_int_comp >> 16;
2028		func->presence_save = (temp_word >> hp_slot) & 0x01;
2029		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2030
2031		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2032			func->switch_save = 0;
2033		} else {
2034			func->switch_save = 0x10;
2035		}
2036
2037		rc = board_added(func, ctrl);
2038		if (rc) {
2039			if (is_bridge(func)) {
2040				bridge_slot_remove(func);
2041			} else
2042				slot_remove(func);
2043
2044			/* Setup slot structure with entry for empty slot */
2045			func = cpqhp_slot_create(ctrl->bus);
2046
2047			if (func == NULL)
2048				return 1;
2049
2050			func->bus = ctrl->bus;
2051			func->device = device;
2052			func->function = 0;
2053			func->configured = 0;
2054			func->is_a_board = 0;
2055
2056			/* We have to save the presence info for these slots */
2057			temp_word = ctrl->ctrl_int_comp >> 16;
2058			func->presence_save = (temp_word >> hp_slot) & 0x01;
2059			func->presence_save |=
2060			(temp_word >> (hp_slot + 7)) & 0x02;
2061
2062			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2063				func->switch_save = 0;
2064			} else {
2065				func->switch_save = 0x10;
2066			}
2067		}
2068	}
2069
2070	if (rc)
2071		dbg("%s: rc = %d\n", __func__, rc);
2072
2073	if (p_slot)
2074		update_slot_info(ctrl, p_slot);
2075
2076	return rc;
2077}
2078
2079
2080int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2081{
2082	u8 device, class_code, header_type, BCR;
2083	u8 index = 0;
2084	u8 replace_flag;
2085	u32 rc = 0;
2086	unsigned int devfn;
2087	struct slot *p_slot;
2088	struct pci_bus *pci_bus = ctrl->pci_bus;
2089	int physical_slot=0;
2090
2091	device = func->device;
2092	func = cpqhp_slot_find(ctrl->bus, device, index++);
2093	p_slot = cpqhp_find_slot(ctrl, device);
2094	if (p_slot)
2095		physical_slot = p_slot->number;
2096
2097	/* Make sure there are no video controllers here */
2098	while (func && !rc) {
2099		pci_bus->number = func->bus;
2100		devfn = PCI_DEVFN(func->device, func->function);
2101
2102		/* Check the Class Code */
2103		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2104		if (rc)
2105			return rc;
2106
2107		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2108			/* Display/Video adapter (not supported) */
2109			rc = REMOVE_NOT_SUPPORTED;
2110		} else {
2111			/* See if it's a bridge */
2112			rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2113			if (rc)
2114				return rc;
2115
2116			/* If it's a bridge, check the VGA Enable bit */
2117			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2118				rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2119				if (rc)
2120					return rc;
2121
2122				/* If the VGA Enable bit is set, remove isn't
2123				 * supported */
2124				if (BCR & PCI_BRIDGE_CTL_VGA)
2125					rc = REMOVE_NOT_SUPPORTED;
2126			}
2127		}
2128
2129		func = cpqhp_slot_find(ctrl->bus, device, index++);
2130	}
2131
2132	func = cpqhp_slot_find(ctrl->bus, device, 0);
2133	if ((func != NULL) && !rc) {
2134		/* FIXME: Replace flag should be passed into process_SS */
2135		replace_flag = !(ctrl->add_support);
2136		rc = remove_board(func, replace_flag, ctrl);
2137	} else if (!rc) {
2138		rc = 1;
2139	}
2140
2141	if (p_slot)
2142		update_slot_info(ctrl, p_slot);
2143
2144	return rc;
2145}
2146
2147/**
2148 * switch_leds - switch the leds, go from one site to the other.
2149 * @ctrl: controller to use
2150 * @num_of_slots: number of slots to use
2151 * @work_LED: LED control value
2152 * @direction: 1 to start from the left side, 0 to start right.
2153 */
2154static void switch_leds(struct controller *ctrl, const int num_of_slots,
2155			u32 *work_LED, const int direction)
2156{
2157	int loop;
2158
2159	for (loop = 0; loop < num_of_slots; loop++) {
2160		if (direction)
2161			*work_LED = *work_LED >> 1;
2162		else
2163			*work_LED = *work_LED << 1;
2164		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2165
2166		set_SOGO(ctrl);
2167
2168		/* Wait for SOGO interrupt */
2169		wait_for_ctrl_irq(ctrl);
2170
2171		/* Get ready for next iteration */
2172		long_delay((2*HZ)/10);
2173	}
2174}
2175
2176/**
2177 * cpqhp_hardware_test - runs hardware tests
2178 * @ctrl: target controller
2179 * @test_num: the number written to the "test" file in sysfs.
2180 *
2181 * For hot plug ctrl folks to play with.
2182 */
2183int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2184{
2185	u32 save_LED;
2186	u32 work_LED;
2187	int loop;
2188	int num_of_slots;
2189
2190	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2191
2192	switch (test_num) {
2193	case 1:
2194		/* Do stuff here! */
2195
2196		/* Do that funky LED thing */
2197		/* so we can restore them later */
2198		save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2199		work_LED = 0x01010101;
2200		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2201		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2202		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2203		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2204
2205		work_LED = 0x01010000;
2206		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2207		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2208		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2209		work_LED = 0x00000101;
2210		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2211		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2212		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2213
2214		work_LED = 0x01010000;
2215		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2216		for (loop = 0; loop < num_of_slots; loop++) {
2217			set_SOGO(ctrl);
2218
2219			/* Wait for SOGO interrupt */
2220			wait_for_ctrl_irq (ctrl);
2221
2222			/* Get ready for next iteration */
2223			long_delay((3*HZ)/10);
2224			work_LED = work_LED >> 16;
2225			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2226
2227			set_SOGO(ctrl);
2228
2229			/* Wait for SOGO interrupt */
2230			wait_for_ctrl_irq (ctrl);
2231
2232			/* Get ready for next iteration */
2233			long_delay((3*HZ)/10);
2234			work_LED = work_LED << 16;
2235			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2236			work_LED = work_LED << 1;
2237			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2238		}
2239
2240		/* put it back the way it was */
2241		writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2242
2243		set_SOGO(ctrl);
2244
2245		/* Wait for SOBS to be unset */
2246		wait_for_ctrl_irq (ctrl);
2247		break;
2248	case 2:
2249		/* Do other stuff here! */
2250		break;
2251	case 3:
2252		/* and more... */
2253		break;
2254	}
2255	return 0;
2256}
2257
2258
2259/**
2260 * configure_new_device - Configures the PCI header information of one board.
2261 * @ctrl: pointer to controller structure
2262 * @func: pointer to function structure
2263 * @behind_bridge: 1 if this is a recursive call, 0 if not
2264 * @resources: pointer to set of resource lists
2265 *
2266 * Returns 0 if success.
2267 */
2268static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2269				 u8 behind_bridge, struct resource_lists  *resources)
2270{
2271	u8 temp_byte, function, max_functions, stop_it;
2272	int rc;
2273	u32 ID;
2274	struct pci_func *new_slot;
2275	int index;
2276
2277	new_slot = func;
2278
2279	dbg("%s\n", __func__);
2280	/* Check for Multi-function device */
2281	ctrl->pci_bus->number = func->bus;
2282	rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2283	if (rc) {
2284		dbg("%s: rc = %d\n", __func__, rc);
2285		return rc;
2286	}
2287
2288	if (temp_byte & 0x80)	/* Multi-function device */
2289		max_functions = 8;
2290	else
2291		max_functions = 1;
2292
2293	function = 0;
2294
2295	do {
2296		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2297
2298		if (rc) {
2299			dbg("configure_new_function failed %d\n",rc);
2300			index = 0;
2301
2302			while (new_slot) {
2303				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2304
2305				if (new_slot)
2306					cpqhp_return_board_resources(new_slot, resources);
2307			}
2308
2309			return rc;
2310		}
2311
2312		function++;
2313
2314		stop_it = 0;
2315
2316		/* The following loop skips to the next present function
2317		 * and creates a board structure */
2318
2319		while ((function < max_functions) && (!stop_it)) {
2320			pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2321
2322			if (ID == 0xFFFFFFFF) {
2323				function++;
2324			} else {
2325				/* Setup slot structure. */
2326				new_slot = cpqhp_slot_create(func->bus);
2327
2328				if (new_slot == NULL)
2329					return 1;
2330
2331				new_slot->bus = func->bus;
2332				new_slot->device = func->device;
2333				new_slot->function = function;
2334				new_slot->is_a_board = 1;
2335				new_slot->status = 0;
2336
2337				stop_it++;
2338			}
2339		}
2340
2341	} while (function < max_functions);
2342	dbg("returning from configure_new_device\n");
2343
2344	return 0;
2345}
2346
2347
2348/*
2349 * Configuration logic that involves the hotplug data structures and
2350 * their bookkeeping
2351 */
2352
2353
2354/**
2355 * configure_new_function - Configures the PCI header information of one device
2356 * @ctrl: pointer to controller structure
2357 * @func: pointer to function structure
2358 * @behind_bridge: 1 if this is a recursive call, 0 if not
2359 * @resources: pointer to set of resource lists
2360 *
2361 * Calls itself recursively for bridged devices.
2362 * Returns 0 if success.
2363 */
2364static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2365				   u8 behind_bridge,
2366				   struct resource_lists *resources)
2367{
2368	int cloop;
2369	u8 IRQ = 0;
2370	u8 temp_byte;
2371	u8 device;
2372	u8 class_code;
2373	u16 command;
2374	u16 temp_word;
2375	u32 temp_dword;
2376	u32 rc;
2377	u32 temp_register;
2378	u32 base;
2379	u32 ID;
2380	unsigned int devfn;
2381	struct pci_resource *mem_node;
2382	struct pci_resource *p_mem_node;
2383	struct pci_resource *io_node;
2384	struct pci_resource *bus_node;
2385	struct pci_resource *hold_mem_node;
2386	struct pci_resource *hold_p_mem_node;
2387	struct pci_resource *hold_IO_node;
2388	struct pci_resource *hold_bus_node;
2389	struct irq_mapping irqs;
2390	struct pci_func *new_slot;
2391	struct pci_bus *pci_bus;
2392	struct resource_lists temp_resources;
2393
2394	pci_bus = ctrl->pci_bus;
2395	pci_bus->number = func->bus;
2396	devfn = PCI_DEVFN(func->device, func->function);
2397
2398	/* Check for Bridge */
2399	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2400	if (rc)
2401		return rc;
2402
2403	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2404		/* set Primary bus */
2405		dbg("set Primary bus = %d\n", func->bus);
2406		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2407		if (rc)
2408			return rc;
2409
2410		/* find range of buses to use */
2411		dbg("find ranges of buses to use\n");
2412		bus_node = get_max_resource(&(resources->bus_head), 1);
2413
2414		/* If we don't have any buses to allocate, we can't continue */
2415		if (!bus_node)
2416			return -ENOMEM;
2417
2418		/* set Secondary bus */
2419		temp_byte = bus_node->base;
2420		dbg("set Secondary bus = %d\n", bus_node->base);
2421		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2422		if (rc)
2423			return rc;
2424
2425		/* set subordinate bus */
2426		temp_byte = bus_node->base + bus_node->length - 1;
2427		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2428		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2429		if (rc)
2430			return rc;
2431
2432		/* set subordinate Latency Timer and base Latency Timer */
2433		temp_byte = 0x40;
2434		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2435		if (rc)
2436			return rc;
2437		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2438		if (rc)
2439			return rc;
2440
2441		/* set Cache Line size */
2442		temp_byte = 0x08;
2443		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2444		if (rc)
2445			return rc;
2446
2447		/* Setup the IO, memory, and prefetchable windows */
2448		io_node = get_max_resource(&(resources->io_head), 0x1000);
2449		if (!io_node)
2450			return -ENOMEM;
2451		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2452		if (!mem_node)
2453			return -ENOMEM;
2454		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2455		if (!p_mem_node)
2456			return -ENOMEM;
2457		dbg("Setup the IO, memory, and prefetchable windows\n");
2458		dbg("io_node\n");
2459		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2460					io_node->length, io_node->next);
2461		dbg("mem_node\n");
2462		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2463					mem_node->length, mem_node->next);
2464		dbg("p_mem_node\n");
2465		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2466					p_mem_node->length, p_mem_node->next);
2467
2468		/* set up the IRQ info */
2469		if (!resources->irqs) {
2470			irqs.barber_pole = 0;
2471			irqs.interrupt[0] = 0;
2472			irqs.interrupt[1] = 0;
2473			irqs.interrupt[2] = 0;
2474			irqs.interrupt[3] = 0;
2475			irqs.valid_INT = 0;
2476		} else {
2477			irqs.barber_pole = resources->irqs->barber_pole;
2478			irqs.interrupt[0] = resources->irqs->interrupt[0];
2479			irqs.interrupt[1] = resources->irqs->interrupt[1];
2480			irqs.interrupt[2] = resources->irqs->interrupt[2];
2481			irqs.interrupt[3] = resources->irqs->interrupt[3];
2482			irqs.valid_INT = resources->irqs->valid_INT;
2483		}
2484
2485		/* set up resource lists that are now aligned on top and bottom
2486		 * for anything behind the bridge. */
2487		temp_resources.bus_head = bus_node;
2488		temp_resources.io_head = io_node;
2489		temp_resources.mem_head = mem_node;
2490		temp_resources.p_mem_head = p_mem_node;
2491		temp_resources.irqs = &irqs;
2492
2493		/* Make copies of the nodes we are going to pass down so that
2494		 * if there is a problem,we can just use these to free resources
2495		 */
2496		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2497		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2498		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2499		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2500
2501		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2502			kfree(hold_bus_node);
2503			kfree(hold_IO_node);
2504			kfree(hold_mem_node);
2505			kfree(hold_p_mem_node);
2506
2507			return 1;
2508		}
2509
2510		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2511
2512		bus_node->base += 1;
2513		bus_node->length -= 1;
2514		bus_node->next = NULL;
2515
2516		/* If we have IO resources copy them and fill in the bridge's
2517		 * IO range registers */
2518		memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2519		io_node->next = NULL;
2520
2521		/* set IO base and Limit registers */
2522		temp_byte = io_node->base >> 8;
2523		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2524
2525		temp_byte = (io_node->base + io_node->length - 1) >> 8;
2526		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2527
2528		/* Copy the memory resources and fill in the bridge's memory
2529		 * range registers.
2530		 */
2531		memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2532		mem_node->next = NULL;
2533
2534		/* set Mem base and Limit registers */
2535		temp_word = mem_node->base >> 16;
2536		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2537
2538		temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2539		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2540
2541		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2542		p_mem_node->next = NULL;
2543
2544		/* set Pre Mem base and Limit registers */
2545		temp_word = p_mem_node->base >> 16;
2546		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2547
2548		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2549		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2550
2551		/* Adjust this to compensate for extra adjustment in first loop
2552		 */
2553		irqs.barber_pole--;
2554
2555		rc = 0;
2556
2557		/* Here we actually find the devices and configure them */
2558		for (device = 0; (device <= 0x1F) && !rc; device++) {
2559			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2560
2561			ID = 0xFFFFFFFF;
2562			pci_bus->number = hold_bus_node->base;
2563			pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2564			pci_bus->number = func->bus;
2565
2566			if (ID != 0xFFFFFFFF) {	  /*  device present */
2567				/* Setup slot structure. */
2568				new_slot = cpqhp_slot_create(hold_bus_node->base);
2569
2570				if (new_slot == NULL) {
2571					rc = -ENOMEM;
2572					continue;
2573				}
2574
2575				new_slot->bus = hold_bus_node->base;
2576				new_slot->device = device;
2577				new_slot->function = 0;
2578				new_slot->is_a_board = 1;
2579				new_slot->status = 0;
2580
2581				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2582				dbg("configure_new_device rc=0x%x\n",rc);
2583			}	/* End of IF (device in slot?) */
2584		}		/* End of FOR loop */
2585
2586		if (rc)
2587			goto free_and_out;
2588		/* save the interrupt routing information */
2589		if (resources->irqs) {
2590			resources->irqs->interrupt[0] = irqs.interrupt[0];
2591			resources->irqs->interrupt[1] = irqs.interrupt[1];
2592			resources->irqs->interrupt[2] = irqs.interrupt[2];
2593			resources->irqs->interrupt[3] = irqs.interrupt[3];
2594			resources->irqs->valid_INT = irqs.valid_INT;
2595		} else if (!behind_bridge) {
2596			/* We need to hook up the interrupts here */
2597			for (cloop = 0; cloop < 4; cloop++) {
2598				if (irqs.valid_INT & (0x01 << cloop)) {
2599					rc = cpqhp_set_irq(func->bus, func->device,
2600							   cloop + 1, irqs.interrupt[cloop]);
2601					if (rc)
2602						goto free_and_out;
2603				}
2604			}	/* end of for loop */
2605		}
2606		/* Return unused bus resources
2607		 * First use the temporary node to store information for
2608		 * the board */
2609		if (bus_node && temp_resources.bus_head) {
2610			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2611
2612			hold_bus_node->next = func->bus_head;
2613			func->bus_head = hold_bus_node;
2614
2615			temp_byte = temp_resources.bus_head->base - 1;
2616
2617			/* set subordinate bus */
2618			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2619
2620			if (temp_resources.bus_head->length == 0) {
2621				kfree(temp_resources.bus_head);
2622				temp_resources.bus_head = NULL;
2623			} else {
2624				return_resource(&(resources->bus_head), temp_resources.bus_head);
2625			}
2626		}
2627
2628		/* If we have IO space available and there is some left,
2629		 * return the unused portion */
2630		if (hold_IO_node && temp_resources.io_head) {
2631			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2632							       &hold_IO_node, 0x1000);
2633
2634			/* Check if we were able to split something off */
2635			if (io_node) {
2636				hold_IO_node->base = io_node->base + io_node->length;
2637
2638				temp_byte = (hold_IO_node->base) >> 8;
2639				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2640
2641				return_resource(&(resources->io_head), io_node);
2642			}
2643
2644			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2645
2646			/* Check if we were able to split something off */
2647			if (io_node) {
2648				/* First use the temporary node to store
2649				 * information for the board */
2650				hold_IO_node->length = io_node->base - hold_IO_node->base;
2651
2652				/* If we used any, add it to the board's list */
2653				if (hold_IO_node->length) {
2654					hold_IO_node->next = func->io_head;
2655					func->io_head = hold_IO_node;
2656
2657					temp_byte = (io_node->base - 1) >> 8;
2658					rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2659
2660					return_resource(&(resources->io_head), io_node);
2661				} else {
2662					/* it doesn't need any IO */
2663					temp_word = 0x0000;
2664					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2665
2666					return_resource(&(resources->io_head), io_node);
2667					kfree(hold_IO_node);
2668				}
2669			} else {
2670				/* it used most of the range */
2671				hold_IO_node->next = func->io_head;
2672				func->io_head = hold_IO_node;
2673			}
2674		} else if (hold_IO_node) {
2675			/* it used the whole range */
2676			hold_IO_node->next = func->io_head;
2677			func->io_head = hold_IO_node;
2678		}
2679		/* If we have memory space available and there is some left,
2680		 * return the unused portion */
2681		if (hold_mem_node && temp_resources.mem_head) {
2682			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2683								&hold_mem_node, 0x100000);
2684
2685			/* Check if we were able to split something off */
2686			if (mem_node) {
2687				hold_mem_node->base = mem_node->base + mem_node->length;
2688
2689				temp_word = (hold_mem_node->base) >> 16;
2690				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2691
2692				return_resource(&(resources->mem_head), mem_node);
2693			}
2694
2695			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2696
2697			/* Check if we were able to split something off */
2698			if (mem_node) {
2699				/* First use the temporary node to store
2700				 * information for the board */
2701				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2702
2703				if (hold_mem_node->length) {
2704					hold_mem_node->next = func->mem_head;
2705					func->mem_head = hold_mem_node;
2706
2707					/* configure end address */
2708					temp_word = (mem_node->base - 1) >> 16;
2709					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2710
2711					/* Return unused resources to the pool */
2712					return_resource(&(resources->mem_head), mem_node);
2713				} else {
2714					/* it doesn't need any Mem */
2715					temp_word = 0x0000;
2716					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2717
2718					return_resource(&(resources->mem_head), mem_node);
2719					kfree(hold_mem_node);
2720				}
2721			} else {
2722				/* it used most of the range */
2723				hold_mem_node->next = func->mem_head;
2724				func->mem_head = hold_mem_node;
2725			}
2726		} else if (hold_mem_node) {
2727			/* it used the whole range */
2728			hold_mem_node->next = func->mem_head;
2729			func->mem_head = hold_mem_node;
2730		}
2731		/* If we have prefetchable memory space available and there
2732		 * is some left at the end, return the unused portion */
2733		if (temp_resources.p_mem_head) {
2734			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2735								  &hold_p_mem_node, 0x100000);
2736
2737			/* Check if we were able to split something off */
2738			if (p_mem_node) {
2739				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2740
2741				temp_word = (hold_p_mem_node->base) >> 16;
2742				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2743
2744				return_resource(&(resources->p_mem_head), p_mem_node);
2745			}
2746
2747			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2748
2749			/* Check if we were able to split something off */
2750			if (p_mem_node) {
2751				/* First use the temporary node to store
2752				 * information for the board */
2753				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2754
2755				/* If we used any, add it to the board's list */
2756				if (hold_p_mem_node->length) {
2757					hold_p_mem_node->next = func->p_mem_head;
2758					func->p_mem_head = hold_p_mem_node;
2759
2760					temp_word = (p_mem_node->base - 1) >> 16;
2761					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2762
2763					return_resource(&(resources->p_mem_head), p_mem_node);
2764				} else {
2765					/* it doesn't need any PMem */
2766					temp_word = 0x0000;
2767					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2768
2769					return_resource(&(resources->p_mem_head), p_mem_node);
2770					kfree(hold_p_mem_node);
2771				}
2772			} else {
2773				/* it used the most of the range */
2774				hold_p_mem_node->next = func->p_mem_head;
2775				func->p_mem_head = hold_p_mem_node;
2776			}
2777		} else if (hold_p_mem_node) {
2778			/* it used the whole range */
2779			hold_p_mem_node->next = func->p_mem_head;
2780			func->p_mem_head = hold_p_mem_node;
2781		}
2782		/* We should be configuring an IRQ and the bridge's base address
2783		 * registers if it needs them.  Although we have never seen such
2784		 * a device */
2785
2786		/* enable card */
2787		command = 0x0157;	/* = PCI_COMMAND_IO |
2788					 *   PCI_COMMAND_MEMORY |
2789					 *   PCI_COMMAND_MASTER |
2790					 *   PCI_COMMAND_INVALIDATE |
2791					 *   PCI_COMMAND_PARITY |
2792					 *   PCI_COMMAND_SERR */
2793		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2794
2795		/* set Bridge Control Register */
2796		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2797					 *   PCI_BRIDGE_CTL_SERR |
2798					 *   PCI_BRIDGE_CTL_NO_ISA */
2799		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2800	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2801		/* Standard device */
2802		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2803
2804		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2805			/* Display (video) adapter (not supported) */
2806			return DEVICE_TYPE_NOT_SUPPORTED;
2807		}
2808		/* Figure out IO and memory needs */
2809		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2810			temp_register = 0xFFFFFFFF;
2811
2812			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2813			rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2814
2815			rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2816			dbg("CND: base = 0x%x\n", temp_register);
2817
2818			if (temp_register) {	  /* If this register is implemented */
2819				if ((temp_register & 0x03L) == 0x01) {
2820					/* Map IO */
2821
2822					/* set base = amount of IO space */
2823					base = temp_register & 0xFFFFFFFC;
2824					base = ~base + 1;
2825
2826					dbg("CND:      length = 0x%x\n", base);
2827					io_node = get_io_resource(&(resources->io_head), base);
2828					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2829					    io_node->base, io_node->length, io_node->next);
2830					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2831
2832					/* allocate the resource to the board */
2833					if (io_node) {
2834						base = io_node->base;
2835
2836						io_node->next = func->io_head;
2837						func->io_head = io_node;
2838					} else
2839						return -ENOMEM;
2840				} else if ((temp_register & 0x0BL) == 0x08) {
2841					/* Map prefetchable memory */
2842					base = temp_register & 0xFFFFFFF0;
2843					base = ~base + 1;
2844
2845					dbg("CND:      length = 0x%x\n", base);
2846					p_mem_node = get_resource(&(resources->p_mem_head), base);
2847
2848					/* allocate the resource to the board */
2849					if (p_mem_node) {
2850						base = p_mem_node->base;
2851
2852						p_mem_node->next = func->p_mem_head;
2853						func->p_mem_head = p_mem_node;
2854					} else
2855						return -ENOMEM;
2856				} else if ((temp_register & 0x0BL) == 0x00) {
2857					/* Map memory */
2858					base = temp_register & 0xFFFFFFF0;
2859					base = ~base + 1;
2860
2861					dbg("CND:      length = 0x%x\n", base);
2862					mem_node = get_resource(&(resources->mem_head), base);
2863
2864					/* allocate the resource to the board */
2865					if (mem_node) {
2866						base = mem_node->base;
2867
2868						mem_node->next = func->mem_head;
2869						func->mem_head = mem_node;
2870					} else
2871						return -ENOMEM;
2872				} else {
2873					/* Reserved bits or requesting space below 1M */
2874					return NOT_ENOUGH_RESOURCES;
2875				}
2876
2877				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2878
2879				/* Check for 64-bit base */
2880				if ((temp_register & 0x07L) == 0x04) {
2881					cloop += 4;
2882
2883					/* Upper 32 bits of address always zero
2884					 * on today's systems */
2885					/* FIXME this is probably not true on
2886					 * Alpha and ia64??? */
2887					base = 0;
2888					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2889				}
2890			}
2891		}		/* End of base register loop */
2892		if (cpqhp_legacy_mode) {
2893			/* Figure out which interrupt pin this function uses */
2894			rc = pci_bus_read_config_byte (pci_bus, devfn,
2895				PCI_INTERRUPT_PIN, &temp_byte);
2896
2897			/* If this function needs an interrupt and we are behind
2898			 * a bridge and the pin is tied to something that's
2899			 * already mapped, set this one the same */
2900			if (temp_byte && resources->irqs &&
2901			    (resources->irqs->valid_INT &
2902			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2903				/* We have to share with something already set up */
2904				IRQ = resources->irqs->interrupt[(temp_byte +
2905					resources->irqs->barber_pole - 1) & 0x03];
2906			} else {
2907				/* Program IRQ based on card type */
2908				rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2909
2910				if (class_code == PCI_BASE_CLASS_STORAGE)
2911					IRQ = cpqhp_disk_irq;
2912				else
2913					IRQ = cpqhp_nic_irq;
2914			}
2915
2916			/* IRQ Line */
2917			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2918		}
2919
2920		if (!behind_bridge) {
2921			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2922			if (rc)
2923				return 1;
2924		} else {
2925			/* TBD - this code may also belong in the other clause
2926			 * of this If statement */
2927			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2928			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2929		}
2930
2931		/* Latency Timer */
2932		temp_byte = 0x40;
2933		rc = pci_bus_write_config_byte(pci_bus, devfn,
2934					PCI_LATENCY_TIMER, temp_byte);
2935
2936		/* Cache Line size */
2937		temp_byte = 0x08;
2938		rc = pci_bus_write_config_byte(pci_bus, devfn,
2939					PCI_CACHE_LINE_SIZE, temp_byte);
2940
2941		/* disable ROM base Address */
2942		temp_dword = 0x00L;
2943		rc = pci_bus_write_config_word(pci_bus, devfn,
2944					PCI_ROM_ADDRESS, temp_dword);
2945
2946		/* enable card */
2947		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
2948					 *   PCI_COMMAND_MEMORY |
2949					 *   PCI_COMMAND_MASTER |
2950					 *   PCI_COMMAND_INVALIDATE |
2951					 *   PCI_COMMAND_PARITY |
2952					 *   PCI_COMMAND_SERR */
2953		rc = pci_bus_write_config_word (pci_bus, devfn,
2954					PCI_COMMAND, temp_word);
2955	} else {		/* End of Not-A-Bridge else */
2956		/* It's some strange type of PCI adapter (Cardbus?) */
2957		return DEVICE_TYPE_NOT_SUPPORTED;
2958	}
2959
2960	func->configured = 1;
2961
2962	return 0;
2963free_and_out:
2964	cpqhp_destroy_resource_list (&temp_resources);
2965
2966	return_resource(&(resources-> bus_head), hold_bus_node);
2967	return_resource(&(resources-> io_head), hold_IO_node);
2968	return_resource(&(resources-> mem_head), hold_mem_node);
2969	return_resource(&(resources-> p_mem_head), hold_p_mem_node);
2970	return rc;
2971}
2972