1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <asm/unaligned.h>
18#include "hw.h"
19#include "ar9002_phy.h"
20
21static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22{
23	return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24}
25
26static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27{
28	return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29}
30
31#define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32
33static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34{
35	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
36	int addr, eep_start_loc = 64;
37
38	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
39		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
40			return false;
41		eep_data++;
42	}
43
44	return true;
45}
46
47static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
48{
49	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
50
51	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
52
53	return true;
54}
55
56static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
57{
58	struct ath_common *common = ath9k_hw_common(ah);
59
60	if (!ath9k_hw_use_flash(ah)) {
61		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
62	}
63
64	if (common->bus_ops->ath_bus_type == ATH_USB)
65		return __ath9k_hw_usb_4k_fill_eeprom(ah);
66	else
67		return __ath9k_hw_4k_fill_eeprom(ah);
68}
69
70#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
71static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
72				      struct modal_eep_4k_header *modal_hdr)
73{
74	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
75	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
76	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
77	PR_EEP("Switch Settle", modal_hdr->switchSettling);
78	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
79	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
80	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
81	PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
82	PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
83	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
84	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
85	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
86	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
87	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
88	PR_EEP("xpdGain", modal_hdr->xpdGain);
89	PR_EEP("External PD", modal_hdr->xpd);
90	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
91	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
92	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
93	PR_EEP("O/D Bias Version", modal_hdr->version);
94	PR_EEP("CCK OutputBias", modal_hdr->ob_0);
95	PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
96	PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
97	PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
98	PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
99	PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
100	PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
101	PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
102	PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
103	PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
104	PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
105	PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
106	PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
107	PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
108	PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
109	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
110	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
111	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
112	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
113	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
114	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
115	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
116	PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
117	PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
118	PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
119	PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
120	PR_EEP("TX Diversity", modal_hdr->tx_diversity);
121
122	return len;
123}
124
125static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
126				       u8 *buf, u32 len, u32 size)
127{
128	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
129	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
130
131	if (!dump_base_hdr) {
132		len += scnprintf(buf + len, size - len,
133				 "%20s :\n", "2GHz modal Header");
134		len = ath9k_dump_4k_modal_eeprom(buf, len, size,
135						 &eep->modalHeader);
136		goto out;
137	}
138
139	PR_EEP("Major Version", pBase->version >> 12);
140	PR_EEP("Minor Version", pBase->version & 0xFFF);
141	PR_EEP("Checksum", pBase->checksum);
142	PR_EEP("Length", pBase->length);
143	PR_EEP("RegDomain1", pBase->regDmn[0]);
144	PR_EEP("RegDomain2", pBase->regDmn[1]);
145	PR_EEP("TX Mask", pBase->txMask);
146	PR_EEP("RX Mask", pBase->rxMask);
147	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
148	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
149	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
150					AR5416_OPFLAGS_N_2G_HT20));
151	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
152					AR5416_OPFLAGS_N_2G_HT40));
153	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
154					AR5416_OPFLAGS_N_5G_HT20));
155	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
156					AR5416_OPFLAGS_N_5G_HT40));
157	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
158	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
159	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
160	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
161	PR_EEP("TX Gain type", pBase->txGainType);
162
163	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
164			 pBase->macAddr);
165
166out:
167	if (len > size)
168		len = size;
169
170	return len;
171}
172#else
173static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
174				       u8 *buf, u32 len, u32 size)
175{
176	return 0;
177}
178#endif
179
180
181#undef SIZE_EEPROM_4K
182
183static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
184{
185#define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
186	struct ath_common *common = ath9k_hw_common(ah);
187	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
188	u16 *eepdata, temp, magic, magic2;
189	u32 sum = 0, el;
190	bool need_swap = false;
191	int i, addr;
192
193
194	if (!ath9k_hw_use_flash(ah)) {
195		if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
196					 &magic)) {
197			ath_err(common, "Reading Magic # failed\n");
198			return false;
199		}
200
201		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
202
203		if (magic != AR5416_EEPROM_MAGIC) {
204			magic2 = swab16(magic);
205
206			if (magic2 == AR5416_EEPROM_MAGIC) {
207				need_swap = true;
208				eepdata = (u16 *) (&ah->eeprom);
209
210				for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
211					temp = swab16(*eepdata);
212					*eepdata = temp;
213					eepdata++;
214				}
215			} else {
216				ath_err(common,
217					"Invalid EEPROM Magic. Endianness mismatch.\n");
218				return -EINVAL;
219			}
220		}
221	}
222
223	ath_dbg(common, EEPROM, "need_swap = %s\n",
224		need_swap ? "True" : "False");
225
226	if (need_swap)
227		el = swab16(ah->eeprom.map4k.baseEepHeader.length);
228	else
229		el = ah->eeprom.map4k.baseEepHeader.length;
230
231	if (el > sizeof(struct ar5416_eeprom_4k))
232		el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
233	else
234		el = el / sizeof(u16);
235
236	eepdata = (u16 *)(&ah->eeprom);
237
238	for (i = 0; i < el; i++)
239		sum ^= *eepdata++;
240
241	if (need_swap) {
242		u32 integer;
243		u16 word;
244
245		ath_dbg(common, EEPROM,
246			"EEPROM Endianness is not native.. Changing\n");
247
248		word = swab16(eep->baseEepHeader.length);
249		eep->baseEepHeader.length = word;
250
251		word = swab16(eep->baseEepHeader.checksum);
252		eep->baseEepHeader.checksum = word;
253
254		word = swab16(eep->baseEepHeader.version);
255		eep->baseEepHeader.version = word;
256
257		word = swab16(eep->baseEepHeader.regDmn[0]);
258		eep->baseEepHeader.regDmn[0] = word;
259
260		word = swab16(eep->baseEepHeader.regDmn[1]);
261		eep->baseEepHeader.regDmn[1] = word;
262
263		word = swab16(eep->baseEepHeader.rfSilent);
264		eep->baseEepHeader.rfSilent = word;
265
266		word = swab16(eep->baseEepHeader.blueToothOptions);
267		eep->baseEepHeader.blueToothOptions = word;
268
269		word = swab16(eep->baseEepHeader.deviceCap);
270		eep->baseEepHeader.deviceCap = word;
271
272		integer = swab32(eep->modalHeader.antCtrlCommon);
273		eep->modalHeader.antCtrlCommon = integer;
274
275		for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
276			integer = swab32(eep->modalHeader.antCtrlChain[i]);
277			eep->modalHeader.antCtrlChain[i] = integer;
278		}
279
280		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
281			word = swab16(eep->modalHeader.spurChans[i].spurChan);
282			eep->modalHeader.spurChans[i].spurChan = word;
283		}
284	}
285
286	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
287	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
288		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
289			sum, ah->eep_ops->get_eeprom_ver(ah));
290		return -EINVAL;
291	}
292
293	return 0;
294#undef EEPROM_4K_SIZE
295}
296
297static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
298				  enum eeprom_param param)
299{
300	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
301	struct modal_eep_4k_header *pModal = &eep->modalHeader;
302	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
303	u16 ver_minor;
304
305	ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
306
307	switch (param) {
308	case EEP_NFTHRESH_2:
309		return pModal->noiseFloorThreshCh[0];
310	case EEP_MAC_LSW:
311		return get_unaligned_be16(pBase->macAddr);
312	case EEP_MAC_MID:
313		return get_unaligned_be16(pBase->macAddr + 2);
314	case EEP_MAC_MSW:
315		return get_unaligned_be16(pBase->macAddr + 4);
316	case EEP_REG_0:
317		return pBase->regDmn[0];
318	case EEP_OP_CAP:
319		return pBase->deviceCap;
320	case EEP_OP_MODE:
321		return pBase->opCapFlags;
322	case EEP_RF_SILENT:
323		return pBase->rfSilent;
324	case EEP_OB_2:
325		return pModal->ob_0;
326	case EEP_DB_2:
327		return pModal->db1_1;
328	case EEP_MINOR_REV:
329		return ver_minor;
330	case EEP_TX_MASK:
331		return pBase->txMask;
332	case EEP_RX_MASK:
333		return pBase->rxMask;
334	case EEP_FRAC_N_5G:
335		return 0;
336	case EEP_PWR_TABLE_OFFSET:
337		return AR5416_PWR_TABLE_OFFSET_DB;
338	case EEP_MODAL_VER:
339		return pModal->version;
340	case EEP_ANT_DIV_CTL1:
341		return pModal->antdiv_ctl1;
342	case EEP_TXGAIN_TYPE:
343		return pBase->txGainType;
344	case EEP_ANTENNA_GAIN_2G:
345		return pModal->antennaGainCh[0];
346	default:
347		return 0;
348	}
349}
350
351static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
352				  struct ath9k_channel *chan)
353{
354	struct ath_common *common = ath9k_hw_common(ah);
355	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
356	struct cal_data_per_freq_4k *pRawDataset;
357	u8 *pCalBChans = NULL;
358	u16 pdGainOverlap_t2;
359	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
360	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
361	u16 numPiers, i, j;
362	u16 numXpdGain, xpdMask;
363	u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
364	u32 reg32, regOffset, regChainOffset;
365
366	xpdMask = pEepData->modalHeader.xpdGain;
367
368	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
369	    AR5416_EEP_MINOR_VER_2) {
370		pdGainOverlap_t2 =
371			pEepData->modalHeader.pdGainOverlap;
372	} else {
373		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
374					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
375	}
376
377	pCalBChans = pEepData->calFreqPier2G;
378	numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
379
380	numXpdGain = 0;
381
382	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
383		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
384			if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
385				break;
386			xpdGainValues[numXpdGain] =
387				(u16)(AR5416_PD_GAINS_IN_MASK - i);
388			numXpdGain++;
389		}
390	}
391
392	ENABLE_REG_RMW_BUFFER(ah);
393	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
394		      (numXpdGain - 1) & 0x3);
395	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
396		      xpdGainValues[0]);
397	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
398		      xpdGainValues[1]);
399	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
400	REG_RMW_BUFFER_FLUSH(ah);
401
402	for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
403		regChainOffset = i * 0x1000;
404
405		if (pEepData->baseEepHeader.txMask & (1 << i)) {
406			pRawDataset = pEepData->calPierData2G[i];
407
408			ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
409					    pRawDataset, pCalBChans,
410					    numPiers, pdGainOverlap_t2,
411					    gainBoundaries,
412					    pdadcValues, numXpdGain);
413
414			ENABLE_REGWRITE_BUFFER(ah);
415
416			REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
417				  SM(pdGainOverlap_t2,
418				     AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
419				  | SM(gainBoundaries[0],
420				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
421				  | SM(gainBoundaries[1],
422				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
423				  | SM(gainBoundaries[2],
424				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
425				  | SM(gainBoundaries[3],
426			       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
427
428			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
429			for (j = 0; j < 32; j++) {
430				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
431				REG_WRITE(ah, regOffset, reg32);
432
433				ath_dbg(common, EEPROM,
434					"PDADC (%d,%4x): %4.4x %8.8x\n",
435					i, regChainOffset, regOffset,
436					reg32);
437				ath_dbg(common, EEPROM,
438					"PDADC: Chain %d | "
439					"PDADC %3d Value %3d | "
440					"PDADC %3d Value %3d | "
441					"PDADC %3d Value %3d | "
442					"PDADC %3d Value %3d |\n",
443					i, 4 * j, pdadcValues[4 * j],
444					4 * j + 1, pdadcValues[4 * j + 1],
445					4 * j + 2, pdadcValues[4 * j + 2],
446					4 * j + 3, pdadcValues[4 * j + 3]);
447
448				regOffset += 4;
449			}
450
451			REGWRITE_BUFFER_FLUSH(ah);
452		}
453	}
454}
455
456static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
457						 struct ath9k_channel *chan,
458						 int16_t *ratesArray,
459						 u16 cfgCtl,
460						 u16 antenna_reduction,
461						 u16 powerLimit)
462{
463#define CMP_TEST_GRP \
464	(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==	\
465	 pEepData->ctlIndex[i])						\
466	|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
467	    ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
468
469	int i;
470	u16 twiceMinEdgePower;
471	u16 twiceMaxEdgePower;
472	u16 scaledPower = 0, minCtlPower;
473	u16 numCtlModes;
474	const u16 *pCtlMode;
475	u16 ctlMode, freq;
476	struct chan_centers centers;
477	struct cal_ctl_data_4k *rep;
478	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
479	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
480		0, { 0, 0, 0, 0}
481	};
482	struct cal_target_power_leg targetPowerOfdmExt = {
483		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
484		0, { 0, 0, 0, 0 }
485	};
486	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
487		0, {0, 0, 0, 0}
488	};
489	static const u16 ctlModesFor11g[] = {
490		CTL_11B, CTL_11G, CTL_2GHT20,
491		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
492	};
493
494	ath9k_hw_get_channel_centers(ah, chan, &centers);
495
496	scaledPower = powerLimit - antenna_reduction;
497	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
498	pCtlMode = ctlModesFor11g;
499
500	ath9k_hw_get_legacy_target_powers(ah, chan,
501			pEepData->calTargetPowerCck,
502			AR5416_NUM_2G_CCK_TARGET_POWERS,
503			&targetPowerCck, 4, false);
504	ath9k_hw_get_legacy_target_powers(ah, chan,
505			pEepData->calTargetPower2G,
506			AR5416_NUM_2G_20_TARGET_POWERS,
507			&targetPowerOfdm, 4, false);
508	ath9k_hw_get_target_powers(ah, chan,
509			pEepData->calTargetPower2GHT20,
510			AR5416_NUM_2G_20_TARGET_POWERS,
511			&targetPowerHt20, 8, false);
512
513	if (IS_CHAN_HT40(chan)) {
514		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
515		ath9k_hw_get_target_powers(ah, chan,
516				pEepData->calTargetPower2GHT40,
517				AR5416_NUM_2G_40_TARGET_POWERS,
518				&targetPowerHt40, 8, true);
519		ath9k_hw_get_legacy_target_powers(ah, chan,
520				pEepData->calTargetPowerCck,
521				AR5416_NUM_2G_CCK_TARGET_POWERS,
522				&targetPowerCckExt, 4, true);
523		ath9k_hw_get_legacy_target_powers(ah, chan,
524				pEepData->calTargetPower2G,
525				AR5416_NUM_2G_20_TARGET_POWERS,
526				&targetPowerOfdmExt, 4, true);
527	}
528
529	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
530		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
531			(pCtlMode[ctlMode] == CTL_2GHT40);
532
533		if (isHt40CtlMode)
534			freq = centers.synth_center;
535		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
536			freq = centers.ext_center;
537		else
538			freq = centers.ctl_center;
539
540		twiceMaxEdgePower = MAX_RATE_POWER;
541
542		for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
543			     pEepData->ctlIndex[i]; i++) {
544
545			if (CMP_TEST_GRP) {
546				rep = &(pEepData->ctlData[i]);
547
548				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
549					freq,
550					rep->ctlEdges[
551					ar5416_get_ntxchains(ah->txchainmask) - 1],
552					IS_CHAN_2GHZ(chan),
553					AR5416_EEP4K_NUM_BAND_EDGES);
554
555				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
556					twiceMaxEdgePower =
557						min(twiceMaxEdgePower,
558						    twiceMinEdgePower);
559				} else {
560					twiceMaxEdgePower = twiceMinEdgePower;
561					break;
562				}
563			}
564		}
565
566		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
567
568		switch (pCtlMode[ctlMode]) {
569		case CTL_11B:
570			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
571				targetPowerCck.tPow2x[i] =
572					min((u16)targetPowerCck.tPow2x[i],
573					    minCtlPower);
574			}
575			break;
576		case CTL_11G:
577			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
578				targetPowerOfdm.tPow2x[i] =
579					min((u16)targetPowerOfdm.tPow2x[i],
580					    minCtlPower);
581			}
582			break;
583		case CTL_2GHT20:
584			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
585				targetPowerHt20.tPow2x[i] =
586					min((u16)targetPowerHt20.tPow2x[i],
587					    minCtlPower);
588			}
589			break;
590		case CTL_11B_EXT:
591			targetPowerCckExt.tPow2x[0] =
592				min((u16)targetPowerCckExt.tPow2x[0],
593				    minCtlPower);
594			break;
595		case CTL_11G_EXT:
596			targetPowerOfdmExt.tPow2x[0] =
597				min((u16)targetPowerOfdmExt.tPow2x[0],
598				    minCtlPower);
599			break;
600		case CTL_2GHT40:
601			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
602				targetPowerHt40.tPow2x[i] =
603					min((u16)targetPowerHt40.tPow2x[i],
604					    minCtlPower);
605			}
606			break;
607		default:
608			break;
609		}
610	}
611
612	ratesArray[rate6mb] =
613	ratesArray[rate9mb] =
614	ratesArray[rate12mb] =
615	ratesArray[rate18mb] =
616	ratesArray[rate24mb] =
617	targetPowerOfdm.tPow2x[0];
618
619	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
620	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
621	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
622	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
623
624	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
625		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
626
627	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
628	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
629	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
630	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
631
632	if (IS_CHAN_HT40(chan)) {
633		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
634			ratesArray[rateHt40_0 + i] =
635				targetPowerHt40.tPow2x[i];
636		}
637		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
638		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
639		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
640		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
641	}
642
643#undef CMP_TEST_GRP
644}
645
646static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
647				    struct ath9k_channel *chan,
648				    u16 cfgCtl,
649				    u8 twiceAntennaReduction,
650				    u8 powerLimit, bool test)
651{
652	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
653	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
654	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
655	int16_t ratesArray[Ar5416RateSize];
656	u8 ht40PowerIncForPdadc = 2;
657	int i;
658
659	memset(ratesArray, 0, sizeof(ratesArray));
660
661	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
662	    AR5416_EEP_MINOR_VER_2) {
663		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
664	}
665
666	ath9k_hw_set_4k_power_per_rate_table(ah, chan,
667					     &ratesArray[0], cfgCtl,
668					     twiceAntennaReduction,
669					     powerLimit);
670
671	ath9k_hw_set_4k_power_cal_table(ah, chan);
672
673	regulatory->max_power_level = 0;
674	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
675		if (ratesArray[i] > MAX_RATE_POWER)
676			ratesArray[i] = MAX_RATE_POWER;
677
678		if (ratesArray[i] > regulatory->max_power_level)
679			regulatory->max_power_level = ratesArray[i];
680	}
681
682	if (test)
683	    return;
684
685	for (i = 0; i < Ar5416RateSize; i++)
686		ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
687
688	ENABLE_REGWRITE_BUFFER(ah);
689
690	/* OFDM power per rate */
691	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
692		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
693		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
694		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
695		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
696	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
697		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
698		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
699		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
700		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
701
702	/* CCK power per rate */
703	REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
704		  ATH9K_POW_SM(ratesArray[rate2s], 24)
705		  | ATH9K_POW_SM(ratesArray[rate2l], 16)
706		  | ATH9K_POW_SM(ratesArray[rateXr], 8)
707		  | ATH9K_POW_SM(ratesArray[rate1l], 0));
708	REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
709		  ATH9K_POW_SM(ratesArray[rate11s], 24)
710		  | ATH9K_POW_SM(ratesArray[rate11l], 16)
711		  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
712		  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
713
714	/* HT20 power per rate */
715	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
716		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
717		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
718		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
719		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
720	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
721		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
722		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
723		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
724		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
725
726	/* HT40 power per rate */
727	if (IS_CHAN_HT40(chan)) {
728		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
729			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
730				       ht40PowerIncForPdadc, 24)
731			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
732					 ht40PowerIncForPdadc, 16)
733			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
734					 ht40PowerIncForPdadc, 8)
735			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
736					 ht40PowerIncForPdadc, 0));
737		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
738			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
739				       ht40PowerIncForPdadc, 24)
740			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
741					 ht40PowerIncForPdadc, 16)
742			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
743					 ht40PowerIncForPdadc, 8)
744			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
745					 ht40PowerIncForPdadc, 0));
746		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
747			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
748			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
749			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
750			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
751	}
752
753	/* TPC initializations */
754	if (ah->tpc_enabled) {
755		int ht40_delta;
756
757		ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
758		ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
759		/* Enable TPC */
760		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
761			MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
762	} else {
763		/* Disable TPC */
764		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
765	}
766
767	REGWRITE_BUFFER_FLUSH(ah);
768}
769
770static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
771				 struct modal_eep_4k_header *pModal,
772				 struct ar5416_eeprom_4k *eep,
773				 u8 txRxAttenLocal)
774{
775	ENABLE_REG_RMW_BUFFER(ah);
776	REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0,
777		pModal->antCtrlChain[0], 0);
778
779	REG_RMW(ah, AR_PHY_TIMING_CTRL4(0),
780		SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
781		SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF),
782		AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF);
783
784	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
785	    AR5416_EEP_MINOR_VER_3) {
786		txRxAttenLocal = pModal->txRxAttenCh[0];
787
788		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
789			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
790		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
791			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
792		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
793			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
794			      pModal->xatten2Margin[0]);
795		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
796			      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
797
798		/* Set the block 1 value to block 0 value */
799		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
800			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
801			      pModal->bswMargin[0]);
802		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
803			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
804		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
805			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
806			      pModal->xatten2Margin[0]);
807		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
808			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
809			      pModal->xatten2Db[0]);
810	}
811
812	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
813		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
814	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
815		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
816
817	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
818		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
819	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
820		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
821	REG_RMW_BUFFER_FLUSH(ah);
822}
823
824/*
825 * Read EEPROM header info and program the device for correct operation
826 * given the channel value.
827 */
828static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
829					 struct ath9k_channel *chan)
830{
831	struct ath9k_hw_capabilities *pCap = &ah->caps;
832	struct modal_eep_4k_header *pModal;
833	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
834	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
835	u8 txRxAttenLocal;
836	u8 ob[5], db1[5], db2[5];
837	u8 ant_div_control1, ant_div_control2;
838	u8 bb_desired_scale;
839	u32 regVal;
840
841	pModal = &eep->modalHeader;
842	txRxAttenLocal = 23;
843
844	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
845
846	/* Single chain for 4K EEPROM*/
847	ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
848
849	/* Initialize Ant Diversity settings from EEPROM */
850	if (pModal->version >= 3) {
851		ant_div_control1 = pModal->antdiv_ctl1;
852		ant_div_control2 = pModal->antdiv_ctl2;
853
854		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
855		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
856
857		regVal |= SM(ant_div_control1,
858			     AR_PHY_9285_ANT_DIV_CTL);
859		regVal |= SM(ant_div_control2,
860			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
861		regVal |= SM((ant_div_control2 >> 2),
862			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
863		regVal |= SM((ant_div_control1 >> 1),
864			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
865		regVal |= SM((ant_div_control1 >> 2),
866			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
867
868
869		REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
870		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
871		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
872		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
873		regVal |= SM((ant_div_control1 >> 3),
874			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
875
876		REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
877		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
878
879		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
880			/*
881			 * If diversity combining is enabled,
882			 * set MAIN to LNA1 and ALT to LNA2 initially.
883			 */
884			regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
885			regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
886				     AR_PHY_9285_ANT_DIV_ALT_LNACONF));
887
888			regVal |= (ATH_ANT_DIV_COMB_LNA1 <<
889				   AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S);
890			regVal |= (ATH_ANT_DIV_COMB_LNA2 <<
891				   AR_PHY_9285_ANT_DIV_ALT_LNACONF_S);
892			regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS));
893			regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S);
894			REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
895		}
896	}
897
898	if (pModal->version >= 2) {
899		ob[0] = pModal->ob_0;
900		ob[1] = pModal->ob_1;
901		ob[2] = pModal->ob_2;
902		ob[3] = pModal->ob_3;
903		ob[4] = pModal->ob_4;
904
905		db1[0] = pModal->db1_0;
906		db1[1] = pModal->db1_1;
907		db1[2] = pModal->db1_2;
908		db1[3] = pModal->db1_3;
909		db1[4] = pModal->db1_4;
910
911		db2[0] = pModal->db2_0;
912		db2[1] = pModal->db2_1;
913		db2[2] = pModal->db2_2;
914		db2[3] = pModal->db2_3;
915		db2[4] = pModal->db2_4;
916	} else if (pModal->version == 1) {
917		ob[0] = pModal->ob_0;
918		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
919		db1[0] = pModal->db1_0;
920		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
921		db2[0] = pModal->db2_0;
922		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
923	} else {
924		int i;
925
926		for (i = 0; i < 5; i++) {
927			ob[i] = pModal->ob_0;
928			db1[i] = pModal->db1_0;
929			db2[i] = pModal->db1_0;
930		}
931	}
932
933	ENABLE_REG_RMW_BUFFER(ah);
934	if (AR_SREV_9271(ah)) {
935		ath9k_hw_analog_shift_rmw(ah,
936					  AR9285_AN_RF2G3,
937					  AR9271_AN_RF2G3_OB_cck,
938					  AR9271_AN_RF2G3_OB_cck_S,
939					  ob[0]);
940		ath9k_hw_analog_shift_rmw(ah,
941					  AR9285_AN_RF2G3,
942					  AR9271_AN_RF2G3_OB_psk,
943					  AR9271_AN_RF2G3_OB_psk_S,
944					  ob[1]);
945		ath9k_hw_analog_shift_rmw(ah,
946					  AR9285_AN_RF2G3,
947					  AR9271_AN_RF2G3_OB_qam,
948					  AR9271_AN_RF2G3_OB_qam_S,
949					  ob[2]);
950		ath9k_hw_analog_shift_rmw(ah,
951					  AR9285_AN_RF2G3,
952					  AR9271_AN_RF2G3_DB_1,
953					  AR9271_AN_RF2G3_DB_1_S,
954					  db1[0]);
955		ath9k_hw_analog_shift_rmw(ah,
956					  AR9285_AN_RF2G4,
957					  AR9271_AN_RF2G4_DB_2,
958					  AR9271_AN_RF2G4_DB_2_S,
959					  db2[0]);
960	} else {
961		ath9k_hw_analog_shift_rmw(ah,
962					  AR9285_AN_RF2G3,
963					  AR9285_AN_RF2G3_OB_0,
964					  AR9285_AN_RF2G3_OB_0_S,
965					  ob[0]);
966		ath9k_hw_analog_shift_rmw(ah,
967					  AR9285_AN_RF2G3,
968					  AR9285_AN_RF2G3_OB_1,
969					  AR9285_AN_RF2G3_OB_1_S,
970					  ob[1]);
971		ath9k_hw_analog_shift_rmw(ah,
972					  AR9285_AN_RF2G3,
973					  AR9285_AN_RF2G3_OB_2,
974					  AR9285_AN_RF2G3_OB_2_S,
975					  ob[2]);
976		ath9k_hw_analog_shift_rmw(ah,
977					  AR9285_AN_RF2G3,
978					  AR9285_AN_RF2G3_OB_3,
979					  AR9285_AN_RF2G3_OB_3_S,
980					  ob[3]);
981		ath9k_hw_analog_shift_rmw(ah,
982					  AR9285_AN_RF2G3,
983					  AR9285_AN_RF2G3_OB_4,
984					  AR9285_AN_RF2G3_OB_4_S,
985					  ob[4]);
986
987		ath9k_hw_analog_shift_rmw(ah,
988					  AR9285_AN_RF2G3,
989					  AR9285_AN_RF2G3_DB1_0,
990					  AR9285_AN_RF2G3_DB1_0_S,
991					  db1[0]);
992		ath9k_hw_analog_shift_rmw(ah,
993					  AR9285_AN_RF2G3,
994					  AR9285_AN_RF2G3_DB1_1,
995					  AR9285_AN_RF2G3_DB1_1_S,
996					  db1[1]);
997		ath9k_hw_analog_shift_rmw(ah,
998					  AR9285_AN_RF2G3,
999					  AR9285_AN_RF2G3_DB1_2,
1000					  AR9285_AN_RF2G3_DB1_2_S,
1001					  db1[2]);
1002		ath9k_hw_analog_shift_rmw(ah,
1003					  AR9285_AN_RF2G4,
1004					  AR9285_AN_RF2G4_DB1_3,
1005					  AR9285_AN_RF2G4_DB1_3_S,
1006					  db1[3]);
1007		ath9k_hw_analog_shift_rmw(ah,
1008					  AR9285_AN_RF2G4,
1009					  AR9285_AN_RF2G4_DB1_4,
1010					  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
1011
1012		ath9k_hw_analog_shift_rmw(ah,
1013					  AR9285_AN_RF2G4,
1014					  AR9285_AN_RF2G4_DB2_0,
1015					  AR9285_AN_RF2G4_DB2_0_S,
1016					  db2[0]);
1017		ath9k_hw_analog_shift_rmw(ah,
1018					  AR9285_AN_RF2G4,
1019					  AR9285_AN_RF2G4_DB2_1,
1020					  AR9285_AN_RF2G4_DB2_1_S,
1021					  db2[1]);
1022		ath9k_hw_analog_shift_rmw(ah,
1023					  AR9285_AN_RF2G4,
1024					  AR9285_AN_RF2G4_DB2_2,
1025					  AR9285_AN_RF2G4_DB2_2_S,
1026					  db2[2]);
1027		ath9k_hw_analog_shift_rmw(ah,
1028					  AR9285_AN_RF2G4,
1029					  AR9285_AN_RF2G4_DB2_3,
1030					  AR9285_AN_RF2G4_DB2_3_S,
1031					  db2[3]);
1032		ath9k_hw_analog_shift_rmw(ah,
1033					  AR9285_AN_RF2G4,
1034					  AR9285_AN_RF2G4_DB2_4,
1035					  AR9285_AN_RF2G4_DB2_4_S,
1036					  db2[4]);
1037	}
1038	REG_RMW_BUFFER_FLUSH(ah);
1039
1040	ENABLE_REG_RMW_BUFFER(ah);
1041	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1042		      pModal->switchSettling);
1043	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1044		      pModal->adcDesiredSize);
1045
1046	REG_RMW(ah, AR_PHY_RF_CTL4,
1047		SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1048		SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1049		SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
1050		SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON), 0);
1051
1052	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1053		      pModal->txEndToRxOn);
1054
1055	if (AR_SREV_9271_10(ah))
1056		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1057			      pModal->txEndToRxOn);
1058	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1059		      pModal->thresh62);
1060	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1061		      pModal->thresh62);
1062
1063	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1064						AR5416_EEP_MINOR_VER_2) {
1065		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1066			      pModal->txFrameToDataStart);
1067		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1068			      pModal->txFrameToPaOn);
1069	}
1070
1071	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1072						AR5416_EEP_MINOR_VER_3) {
1073		if (IS_CHAN_HT40(chan))
1074			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1075				      AR_PHY_SETTLING_SWITCH,
1076				      pModal->swSettleHt40);
1077	}
1078
1079	REG_RMW_BUFFER_FLUSH(ah);
1080
1081	bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1082			EEP_4K_BB_DESIRED_SCALE_MASK);
1083	if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1084		u32 pwrctrl, mask, clr;
1085
1086		mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1087		pwrctrl = mask * bb_desired_scale;
1088		clr = mask * 0x1f;
1089		ENABLE_REG_RMW_BUFFER(ah);
1090		REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1091		REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1092		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1093
1094		mask = BIT(0)|BIT(5)|BIT(15);
1095		pwrctrl = mask * bb_desired_scale;
1096		clr = mask * 0x1f;
1097		REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1098
1099		mask = BIT(0)|BIT(5);
1100		pwrctrl = mask * bb_desired_scale;
1101		clr = mask * 0x1f;
1102		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1103		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1104		REG_RMW_BUFFER_FLUSH(ah);
1105	}
1106}
1107
1108static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1109{
1110	return ah->eeprom.map4k.modalHeader.spurChans[i].spurChan;
1111}
1112
1113const struct eeprom_ops eep_4k_ops = {
1114	.check_eeprom		= ath9k_hw_4k_check_eeprom,
1115	.get_eeprom		= ath9k_hw_4k_get_eeprom,
1116	.fill_eeprom		= ath9k_hw_4k_fill_eeprom,
1117	.dump_eeprom		= ath9k_hw_4k_dump_eeprom,
1118	.get_eeprom_ver		= ath9k_hw_4k_get_eeprom_ver,
1119	.get_eeprom_rev		= ath9k_hw_4k_get_eeprom_rev,
1120	.set_board_values	= ath9k_hw_4k_set_board_values,
1121	.set_txpower		= ath9k_hw_4k_set_txpower,
1122	.get_spur_channel	= ath9k_hw_4k_get_spur_channel
1123};
1124