1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23
24 #include "core.h"
25 #include "debug.h"
26
27 #include "targaddrs.h"
28 #include "bmi.h"
29
30 #include "hif.h"
31 #include "htc.h"
32
33 #include "ce.h"
34 #include "pci.h"
35
36 enum ath10k_pci_irq_mode {
37 ATH10K_PCI_IRQ_AUTO = 0,
38 ATH10K_PCI_IRQ_LEGACY = 1,
39 ATH10K_PCI_IRQ_MSI = 2,
40 };
41
42 enum ath10k_pci_reset_mode {
43 ATH10K_PCI_RESET_AUTO = 0,
44 ATH10K_PCI_RESET_WARM_ONLY = 1,
45 };
46
47 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
48 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
49
50 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
51 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
52
53 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
54 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
55
56 /* how long wait to wait for target to initialise, in ms */
57 #define ATH10K_PCI_TARGET_WAIT 3000
58 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
59
60 static const struct pci_device_id ath10k_pci_id_table[] = {
61 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
62 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
63 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
64 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
65 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
66 {0}
67 };
68
69 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
70 /* QCA988X pre 2.0 chips are not supported because they need some nasty
71 * hacks. ath10k doesn't have them and these devices crash horribly
72 * because of that.
73 */
74 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75
76 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
81
82 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
84 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
85 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
86 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
87
88 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
89
90 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
91 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
92 };
93
94 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
95 static int ath10k_pci_cold_reset(struct ath10k *ar);
96 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
97 static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
98 static int ath10k_pci_init_irq(struct ath10k *ar);
99 static int ath10k_pci_deinit_irq(struct ath10k *ar);
100 static int ath10k_pci_request_irq(struct ath10k *ar);
101 static void ath10k_pci_free_irq(struct ath10k *ar);
102 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
103 struct ath10k_ce_pipe *rx_pipe,
104 struct bmi_xfer *xfer);
105 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
106 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
107 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
108 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
109 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
111
112 static struct ce_attr host_ce_config_wlan[] = {
113 /* CE0: host->target HTC control and raw streams */
114 {
115 .flags = CE_ATTR_FLAGS,
116 .src_nentries = 16,
117 .src_sz_max = 256,
118 .dest_nentries = 0,
119 .send_cb = ath10k_pci_htc_tx_cb,
120 },
121
122 /* CE1: target->host HTT + HTC control */
123 {
124 .flags = CE_ATTR_FLAGS,
125 .src_nentries = 0,
126 .src_sz_max = 2048,
127 .dest_nentries = 512,
128 .recv_cb = ath10k_pci_htt_htc_rx_cb,
129 },
130
131 /* CE2: target->host WMI */
132 {
133 .flags = CE_ATTR_FLAGS,
134 .src_nentries = 0,
135 .src_sz_max = 2048,
136 .dest_nentries = 128,
137 .recv_cb = ath10k_pci_htc_rx_cb,
138 },
139
140 /* CE3: host->target WMI */
141 {
142 .flags = CE_ATTR_FLAGS,
143 .src_nentries = 32,
144 .src_sz_max = 2048,
145 .dest_nentries = 0,
146 .send_cb = ath10k_pci_htc_tx_cb,
147 },
148
149 /* CE4: host->target HTT */
150 {
151 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
152 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
153 .src_sz_max = 256,
154 .dest_nentries = 0,
155 .send_cb = ath10k_pci_htt_tx_cb,
156 },
157
158 /* CE5: target->host HTT (HIF->HTT) */
159 {
160 .flags = CE_ATTR_FLAGS,
161 .src_nentries = 0,
162 .src_sz_max = 512,
163 .dest_nentries = 512,
164 .recv_cb = ath10k_pci_htt_rx_cb,
165 },
166
167 /* CE6: target autonomous hif_memcpy */
168 {
169 .flags = CE_ATTR_FLAGS,
170 .src_nentries = 0,
171 .src_sz_max = 0,
172 .dest_nentries = 0,
173 },
174
175 /* CE7: ce_diag, the Diagnostic Window */
176 {
177 .flags = CE_ATTR_FLAGS,
178 .src_nentries = 2,
179 .src_sz_max = DIAG_TRANSFER_LIMIT,
180 .dest_nentries = 2,
181 },
182
183 /* CE8: target->host pktlog */
184 {
185 .flags = CE_ATTR_FLAGS,
186 .src_nentries = 0,
187 .src_sz_max = 2048,
188 .dest_nentries = 128,
189 },
190
191 /* CE9 target autonomous qcache memcpy */
192 {
193 .flags = CE_ATTR_FLAGS,
194 .src_nentries = 0,
195 .src_sz_max = 0,
196 .dest_nentries = 0,
197 },
198
199 /* CE10: target autonomous hif memcpy */
200 {
201 .flags = CE_ATTR_FLAGS,
202 .src_nentries = 0,
203 .src_sz_max = 0,
204 .dest_nentries = 0,
205 },
206
207 /* CE11: target autonomous hif memcpy */
208 {
209 .flags = CE_ATTR_FLAGS,
210 .src_nentries = 0,
211 .src_sz_max = 0,
212 .dest_nentries = 0,
213 },
214 };
215
216 /* Target firmware's Copy Engine configuration. */
217 static struct ce_pipe_config target_ce_config_wlan[] = {
218 /* CE0: host->target HTC control and raw streams */
219 {
220 .pipenum = __cpu_to_le32(0),
221 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
222 .nentries = __cpu_to_le32(32),
223 .nbytes_max = __cpu_to_le32(256),
224 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
225 .reserved = __cpu_to_le32(0),
226 },
227
228 /* CE1: target->host HTT + HTC control */
229 {
230 .pipenum = __cpu_to_le32(1),
231 .pipedir = __cpu_to_le32(PIPEDIR_IN),
232 .nentries = __cpu_to_le32(32),
233 .nbytes_max = __cpu_to_le32(2048),
234 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
235 .reserved = __cpu_to_le32(0),
236 },
237
238 /* CE2: target->host WMI */
239 {
240 .pipenum = __cpu_to_le32(2),
241 .pipedir = __cpu_to_le32(PIPEDIR_IN),
242 .nentries = __cpu_to_le32(64),
243 .nbytes_max = __cpu_to_le32(2048),
244 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
245 .reserved = __cpu_to_le32(0),
246 },
247
248 /* CE3: host->target WMI */
249 {
250 .pipenum = __cpu_to_le32(3),
251 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
252 .nentries = __cpu_to_le32(32),
253 .nbytes_max = __cpu_to_le32(2048),
254 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
255 .reserved = __cpu_to_le32(0),
256 },
257
258 /* CE4: host->target HTT */
259 {
260 .pipenum = __cpu_to_le32(4),
261 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
262 .nentries = __cpu_to_le32(256),
263 .nbytes_max = __cpu_to_le32(256),
264 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
265 .reserved = __cpu_to_le32(0),
266 },
267
268 /* NB: 50% of src nentries, since tx has 2 frags */
269
270 /* CE5: target->host HTT (HIF->HTT) */
271 {
272 .pipenum = __cpu_to_le32(5),
273 .pipedir = __cpu_to_le32(PIPEDIR_IN),
274 .nentries = __cpu_to_le32(32),
275 .nbytes_max = __cpu_to_le32(512),
276 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
277 .reserved = __cpu_to_le32(0),
278 },
279
280 /* CE6: Reserved for target autonomous hif_memcpy */
281 {
282 .pipenum = __cpu_to_le32(6),
283 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
284 .nentries = __cpu_to_le32(32),
285 .nbytes_max = __cpu_to_le32(4096),
286 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
287 .reserved = __cpu_to_le32(0),
288 },
289
290 /* CE7 used only by Host */
291 {
292 .pipenum = __cpu_to_le32(7),
293 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
294 .nentries = __cpu_to_le32(0),
295 .nbytes_max = __cpu_to_le32(0),
296 .flags = __cpu_to_le32(0),
297 .reserved = __cpu_to_le32(0),
298 },
299
300 /* CE8 target->host packtlog */
301 {
302 .pipenum = __cpu_to_le32(8),
303 .pipedir = __cpu_to_le32(PIPEDIR_IN),
304 .nentries = __cpu_to_le32(64),
305 .nbytes_max = __cpu_to_le32(2048),
306 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
307 .reserved = __cpu_to_le32(0),
308 },
309
310 /* CE9 target autonomous qcache memcpy */
311 {
312 .pipenum = __cpu_to_le32(9),
313 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
314 .nentries = __cpu_to_le32(32),
315 .nbytes_max = __cpu_to_le32(2048),
316 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
317 .reserved = __cpu_to_le32(0),
318 },
319
320 /* It not necessary to send target wlan configuration for CE10 & CE11
321 * as these CEs are not actively used in target.
322 */
323 };
324
325 /*
326 * Map from service/endpoint to Copy Engine.
327 * This table is derived from the CE_PCI TABLE, above.
328 * It is passed to the Target at startup for use by firmware.
329 */
330 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
331 {
332 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
333 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
334 __cpu_to_le32(3),
335 },
336 {
337 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
338 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
339 __cpu_to_le32(2),
340 },
341 {
342 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
343 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
344 __cpu_to_le32(3),
345 },
346 {
347 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
348 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
349 __cpu_to_le32(2),
350 },
351 {
352 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
353 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
354 __cpu_to_le32(3),
355 },
356 {
357 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
358 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
359 __cpu_to_le32(2),
360 },
361 {
362 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
363 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
364 __cpu_to_le32(3),
365 },
366 {
367 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
368 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
369 __cpu_to_le32(2),
370 },
371 {
372 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
373 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
374 __cpu_to_le32(3),
375 },
376 {
377 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
378 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
379 __cpu_to_le32(2),
380 },
381 {
382 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
383 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
384 __cpu_to_le32(0),
385 },
386 {
387 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
388 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
389 __cpu_to_le32(1),
390 },
391 { /* not used */
392 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
393 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
394 __cpu_to_le32(0),
395 },
396 { /* not used */
397 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
398 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
399 __cpu_to_le32(1),
400 },
401 {
402 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
403 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
404 __cpu_to_le32(4),
405 },
406 {
407 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
408 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
409 __cpu_to_le32(5),
410 },
411
412 /* (Additions here) */
413
414 { /* must be last */
415 __cpu_to_le32(0),
416 __cpu_to_le32(0),
417 __cpu_to_le32(0),
418 },
419 };
420
ath10k_pci_is_awake(struct ath10k * ar)421 static bool ath10k_pci_is_awake(struct ath10k *ar)
422 {
423 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
424 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
425 RTC_STATE_ADDRESS);
426
427 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
428 }
429
__ath10k_pci_wake(struct ath10k * ar)430 static void __ath10k_pci_wake(struct ath10k *ar)
431 {
432 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433
434 lockdep_assert_held(&ar_pci->ps_lock);
435
436 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
437 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
438
439 iowrite32(PCIE_SOC_WAKE_V_MASK,
440 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
441 PCIE_SOC_WAKE_ADDRESS);
442 }
443
__ath10k_pci_sleep(struct ath10k * ar)444 static void __ath10k_pci_sleep(struct ath10k *ar)
445 {
446 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
447
448 lockdep_assert_held(&ar_pci->ps_lock);
449
450 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
451 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
452
453 iowrite32(PCIE_SOC_WAKE_RESET,
454 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
455 PCIE_SOC_WAKE_ADDRESS);
456 ar_pci->ps_awake = false;
457 }
458
ath10k_pci_wake_wait(struct ath10k * ar)459 static int ath10k_pci_wake_wait(struct ath10k *ar)
460 {
461 int tot_delay = 0;
462 int curr_delay = 5;
463
464 while (tot_delay < PCIE_WAKE_TIMEOUT) {
465 if (ath10k_pci_is_awake(ar)) {
466 if (tot_delay > PCIE_WAKE_LATE_US)
467 ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
468 tot_delay / 1000);
469 return 0;
470 }
471
472 udelay(curr_delay);
473 tot_delay += curr_delay;
474
475 if (curr_delay < 50)
476 curr_delay += 5;
477 }
478
479 return -ETIMEDOUT;
480 }
481
ath10k_pci_force_wake(struct ath10k * ar)482 static int ath10k_pci_force_wake(struct ath10k *ar)
483 {
484 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
485 unsigned long flags;
486 int ret = 0;
487
488 spin_lock_irqsave(&ar_pci->ps_lock, flags);
489
490 if (!ar_pci->ps_awake) {
491 iowrite32(PCIE_SOC_WAKE_V_MASK,
492 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
493 PCIE_SOC_WAKE_ADDRESS);
494
495 ret = ath10k_pci_wake_wait(ar);
496 if (ret == 0)
497 ar_pci->ps_awake = true;
498 }
499
500 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
501
502 return ret;
503 }
504
ath10k_pci_force_sleep(struct ath10k * ar)505 static void ath10k_pci_force_sleep(struct ath10k *ar)
506 {
507 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
508 unsigned long flags;
509
510 spin_lock_irqsave(&ar_pci->ps_lock, flags);
511
512 iowrite32(PCIE_SOC_WAKE_RESET,
513 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
514 PCIE_SOC_WAKE_ADDRESS);
515 ar_pci->ps_awake = false;
516
517 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
518 }
519
ath10k_pci_wake(struct ath10k * ar)520 static int ath10k_pci_wake(struct ath10k *ar)
521 {
522 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
523 unsigned long flags;
524 int ret = 0;
525
526 if (ar_pci->pci_ps == 0)
527 return ret;
528
529 spin_lock_irqsave(&ar_pci->ps_lock, flags);
530
531 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
532 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
533
534 /* This function can be called very frequently. To avoid excessive
535 * CPU stalls for MMIO reads use a cache var to hold the device state.
536 */
537 if (!ar_pci->ps_awake) {
538 __ath10k_pci_wake(ar);
539
540 ret = ath10k_pci_wake_wait(ar);
541 if (ret == 0)
542 ar_pci->ps_awake = true;
543 }
544
545 if (ret == 0) {
546 ar_pci->ps_wake_refcount++;
547 WARN_ON(ar_pci->ps_wake_refcount == 0);
548 }
549
550 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
551
552 return ret;
553 }
554
ath10k_pci_sleep(struct ath10k * ar)555 static void ath10k_pci_sleep(struct ath10k *ar)
556 {
557 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
558 unsigned long flags;
559
560 if (ar_pci->pci_ps == 0)
561 return;
562
563 spin_lock_irqsave(&ar_pci->ps_lock, flags);
564
565 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
566 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
567
568 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
569 goto skip;
570
571 ar_pci->ps_wake_refcount--;
572
573 mod_timer(&ar_pci->ps_timer, jiffies +
574 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
575
576 skip:
577 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
578 }
579
ath10k_pci_ps_timer(unsigned long ptr)580 static void ath10k_pci_ps_timer(unsigned long ptr)
581 {
582 struct ath10k *ar = (void *)ptr;
583 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
584 unsigned long flags;
585
586 spin_lock_irqsave(&ar_pci->ps_lock, flags);
587
588 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
589 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
590
591 if (ar_pci->ps_wake_refcount > 0)
592 goto skip;
593
594 __ath10k_pci_sleep(ar);
595
596 skip:
597 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
598 }
599
ath10k_pci_sleep_sync(struct ath10k * ar)600 static void ath10k_pci_sleep_sync(struct ath10k *ar)
601 {
602 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
603 unsigned long flags;
604
605 if (ar_pci->pci_ps == 0) {
606 ath10k_pci_force_sleep(ar);
607 return;
608 }
609
610 del_timer_sync(&ar_pci->ps_timer);
611
612 spin_lock_irqsave(&ar_pci->ps_lock, flags);
613 WARN_ON(ar_pci->ps_wake_refcount > 0);
614 __ath10k_pci_sleep(ar);
615 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
616 }
617
ath10k_pci_write32(struct ath10k * ar,u32 offset,u32 value)618 void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
619 {
620 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
621 int ret;
622
623 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
624 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
625 offset, offset + sizeof(value), ar_pci->mem_len);
626 return;
627 }
628
629 ret = ath10k_pci_wake(ar);
630 if (ret) {
631 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
632 value, offset, ret);
633 return;
634 }
635
636 iowrite32(value, ar_pci->mem + offset);
637 ath10k_pci_sleep(ar);
638 }
639
ath10k_pci_read32(struct ath10k * ar,u32 offset)640 u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
641 {
642 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
643 u32 val;
644 int ret;
645
646 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
647 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
648 offset, offset + sizeof(val), ar_pci->mem_len);
649 return 0;
650 }
651
652 ret = ath10k_pci_wake(ar);
653 if (ret) {
654 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
655 offset, ret);
656 return 0xffffffff;
657 }
658
659 val = ioread32(ar_pci->mem + offset);
660 ath10k_pci_sleep(ar);
661
662 return val;
663 }
664
ath10k_pci_soc_read32(struct ath10k * ar,u32 addr)665 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
666 {
667 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
668 }
669
ath10k_pci_soc_write32(struct ath10k * ar,u32 addr,u32 val)670 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
671 {
672 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
673 }
674
ath10k_pci_reg_read32(struct ath10k * ar,u32 addr)675 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
676 {
677 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
678 }
679
ath10k_pci_reg_write32(struct ath10k * ar,u32 addr,u32 val)680 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
681 {
682 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
683 }
684
ath10k_pci_irq_pending(struct ath10k * ar)685 static bool ath10k_pci_irq_pending(struct ath10k *ar)
686 {
687 u32 cause;
688
689 /* Check if the shared legacy irq is for us */
690 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
691 PCIE_INTR_CAUSE_ADDRESS);
692 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
693 return true;
694
695 return false;
696 }
697
ath10k_pci_disable_and_clear_legacy_irq(struct ath10k * ar)698 static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
699 {
700 /* IMPORTANT: INTR_CLR register has to be set after
701 * INTR_ENABLE is set to 0, otherwise interrupt can not be
702 * really cleared. */
703 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
704 0);
705 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
706 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
707
708 /* IMPORTANT: this extra read transaction is required to
709 * flush the posted write buffer. */
710 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
711 PCIE_INTR_ENABLE_ADDRESS);
712 }
713
ath10k_pci_enable_legacy_irq(struct ath10k * ar)714 static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
715 {
716 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
717 PCIE_INTR_ENABLE_ADDRESS,
718 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
719
720 /* IMPORTANT: this extra read transaction is required to
721 * flush the posted write buffer. */
722 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
723 PCIE_INTR_ENABLE_ADDRESS);
724 }
725
ath10k_pci_get_irq_method(struct ath10k * ar)726 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
727 {
728 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
729
730 if (ar_pci->num_msi_intrs > 1)
731 return "msi-x";
732
733 if (ar_pci->num_msi_intrs == 1)
734 return "msi";
735
736 return "legacy";
737 }
738
__ath10k_pci_rx_post_buf(struct ath10k_pci_pipe * pipe)739 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
740 {
741 struct ath10k *ar = pipe->hif_ce_state;
742 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
743 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
744 struct sk_buff *skb;
745 dma_addr_t paddr;
746 int ret;
747
748 skb = dev_alloc_skb(pipe->buf_sz);
749 if (!skb)
750 return -ENOMEM;
751
752 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
753
754 paddr = dma_map_single(ar->dev, skb->data,
755 skb->len + skb_tailroom(skb),
756 DMA_FROM_DEVICE);
757 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
758 ath10k_warn(ar, "failed to dma map pci rx buf\n");
759 dev_kfree_skb_any(skb);
760 return -EIO;
761 }
762
763 ATH10K_SKB_RXCB(skb)->paddr = paddr;
764
765 spin_lock_bh(&ar_pci->ce_lock);
766 ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
767 spin_unlock_bh(&ar_pci->ce_lock);
768 if (ret) {
769 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
770 DMA_FROM_DEVICE);
771 dev_kfree_skb_any(skb);
772 return ret;
773 }
774
775 return 0;
776 }
777
ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe * pipe)778 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
779 {
780 struct ath10k *ar = pipe->hif_ce_state;
781 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
782 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
783 int ret, num;
784
785 if (pipe->buf_sz == 0)
786 return;
787
788 if (!ce_pipe->dest_ring)
789 return;
790
791 spin_lock_bh(&ar_pci->ce_lock);
792 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
793 spin_unlock_bh(&ar_pci->ce_lock);
794 while (num--) {
795 ret = __ath10k_pci_rx_post_buf(pipe);
796 if (ret) {
797 if (ret == -ENOSPC)
798 break;
799 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
800 mod_timer(&ar_pci->rx_post_retry, jiffies +
801 ATH10K_PCI_RX_POST_RETRY_MS);
802 break;
803 }
804 }
805 }
806
ath10k_pci_rx_post(struct ath10k * ar)807 static void ath10k_pci_rx_post(struct ath10k *ar)
808 {
809 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
810 int i;
811
812 for (i = 0; i < CE_COUNT; i++)
813 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
814 }
815
ath10k_pci_rx_replenish_retry(unsigned long ptr)816 static void ath10k_pci_rx_replenish_retry(unsigned long ptr)
817 {
818 struct ath10k *ar = (void *)ptr;
819
820 ath10k_pci_rx_post(ar);
821 }
822
ath10k_pci_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)823 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
824 {
825 u32 val = 0;
826
827 switch (ar->hw_rev) {
828 case ATH10K_HW_QCA988X:
829 case ATH10K_HW_QCA6174:
830 case ATH10K_HW_QCA9377:
831 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
832 CORE_CTRL_ADDRESS) &
833 0x7ff) << 21;
834 break;
835 case ATH10K_HW_QCA99X0:
836 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
837 break;
838 }
839
840 val |= 0x100000 | (addr & 0xfffff);
841 return val;
842 }
843
844 /*
845 * Diagnostic read/write access is provided for startup/config/debug usage.
846 * Caller must guarantee proper alignment, when applicable, and single user
847 * at any moment.
848 */
ath10k_pci_diag_read_mem(struct ath10k * ar,u32 address,void * data,int nbytes)849 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
850 int nbytes)
851 {
852 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
853 int ret = 0;
854 u32 buf;
855 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
856 unsigned int id;
857 unsigned int flags;
858 struct ath10k_ce_pipe *ce_diag;
859 /* Host buffer address in CE space */
860 u32 ce_data;
861 dma_addr_t ce_data_base = 0;
862 void *data_buf = NULL;
863 int i;
864
865 spin_lock_bh(&ar_pci->ce_lock);
866
867 ce_diag = ar_pci->ce_diag;
868
869 /*
870 * Allocate a temporary bounce buffer to hold caller's data
871 * to be DMA'ed from Target. This guarantees
872 * 1) 4-byte alignment
873 * 2) Buffer in DMA-able space
874 */
875 orig_nbytes = nbytes;
876 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
877 orig_nbytes,
878 &ce_data_base,
879 GFP_ATOMIC);
880
881 if (!data_buf) {
882 ret = -ENOMEM;
883 goto done;
884 }
885 memset(data_buf, 0, orig_nbytes);
886
887 remaining_bytes = orig_nbytes;
888 ce_data = ce_data_base;
889 while (remaining_bytes) {
890 nbytes = min_t(unsigned int, remaining_bytes,
891 DIAG_TRANSFER_LIMIT);
892
893 ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
894 if (ret != 0)
895 goto done;
896
897 /* Request CE to send from Target(!) address to Host buffer */
898 /*
899 * The address supplied by the caller is in the
900 * Target CPU virtual address space.
901 *
902 * In order to use this address with the diagnostic CE,
903 * convert it from Target CPU virtual address space
904 * to CE address space
905 */
906 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
907
908 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
909 0);
910 if (ret)
911 goto done;
912
913 i = 0;
914 while (ath10k_ce_completed_send_next_nolock(ce_diag,
915 NULL) != 0) {
916 mdelay(1);
917 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
918 ret = -EBUSY;
919 goto done;
920 }
921 }
922
923 i = 0;
924 while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
925 &completed_nbytes,
926 &id, &flags) != 0) {
927 mdelay(1);
928
929 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
930 ret = -EBUSY;
931 goto done;
932 }
933 }
934
935 if (nbytes != completed_nbytes) {
936 ret = -EIO;
937 goto done;
938 }
939
940 if (buf != ce_data) {
941 ret = -EIO;
942 goto done;
943 }
944
945 remaining_bytes -= nbytes;
946 address += nbytes;
947 ce_data += nbytes;
948 }
949
950 done:
951 if (ret == 0)
952 memcpy(data, data_buf, orig_nbytes);
953 else
954 ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
955 address, ret);
956
957 if (data_buf)
958 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
959 ce_data_base);
960
961 spin_unlock_bh(&ar_pci->ce_lock);
962
963 return ret;
964 }
965
ath10k_pci_diag_read32(struct ath10k * ar,u32 address,u32 * value)966 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
967 {
968 __le32 val = 0;
969 int ret;
970
971 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
972 *value = __le32_to_cpu(val);
973
974 return ret;
975 }
976
__ath10k_pci_diag_read_hi(struct ath10k * ar,void * dest,u32 src,u32 len)977 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
978 u32 src, u32 len)
979 {
980 u32 host_addr, addr;
981 int ret;
982
983 host_addr = host_interest_item_address(src);
984
985 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
986 if (ret != 0) {
987 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
988 src, ret);
989 return ret;
990 }
991
992 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
993 if (ret != 0) {
994 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
995 addr, len, ret);
996 return ret;
997 }
998
999 return 0;
1000 }
1001
1002 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \
1003 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1004
ath10k_pci_diag_write_mem(struct ath10k * ar,u32 address,const void * data,int nbytes)1005 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1006 const void *data, int nbytes)
1007 {
1008 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1009 int ret = 0;
1010 u32 buf;
1011 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1012 unsigned int id;
1013 unsigned int flags;
1014 struct ath10k_ce_pipe *ce_diag;
1015 void *data_buf = NULL;
1016 u32 ce_data; /* Host buffer address in CE space */
1017 dma_addr_t ce_data_base = 0;
1018 int i;
1019
1020 spin_lock_bh(&ar_pci->ce_lock);
1021
1022 ce_diag = ar_pci->ce_diag;
1023
1024 /*
1025 * Allocate a temporary bounce buffer to hold caller's data
1026 * to be DMA'ed to Target. This guarantees
1027 * 1) 4-byte alignment
1028 * 2) Buffer in DMA-able space
1029 */
1030 orig_nbytes = nbytes;
1031 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1032 orig_nbytes,
1033 &ce_data_base,
1034 GFP_ATOMIC);
1035 if (!data_buf) {
1036 ret = -ENOMEM;
1037 goto done;
1038 }
1039
1040 /* Copy caller's data to allocated DMA buf */
1041 memcpy(data_buf, data, orig_nbytes);
1042
1043 /*
1044 * The address supplied by the caller is in the
1045 * Target CPU virtual address space.
1046 *
1047 * In order to use this address with the diagnostic CE,
1048 * convert it from
1049 * Target CPU virtual address space
1050 * to
1051 * CE address space
1052 */
1053 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1054
1055 remaining_bytes = orig_nbytes;
1056 ce_data = ce_data_base;
1057 while (remaining_bytes) {
1058 /* FIXME: check cast */
1059 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1060
1061 /* Set up to receive directly into Target(!) address */
1062 ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, address);
1063 if (ret != 0)
1064 goto done;
1065
1066 /*
1067 * Request CE to send caller-supplied data that
1068 * was copied to bounce buffer to Target(!) address.
1069 */
1070 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1071 nbytes, 0, 0);
1072 if (ret != 0)
1073 goto done;
1074
1075 i = 0;
1076 while (ath10k_ce_completed_send_next_nolock(ce_diag,
1077 NULL) != 0) {
1078 mdelay(1);
1079
1080 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1081 ret = -EBUSY;
1082 goto done;
1083 }
1084 }
1085
1086 i = 0;
1087 while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
1088 &completed_nbytes,
1089 &id, &flags) != 0) {
1090 mdelay(1);
1091
1092 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1093 ret = -EBUSY;
1094 goto done;
1095 }
1096 }
1097
1098 if (nbytes != completed_nbytes) {
1099 ret = -EIO;
1100 goto done;
1101 }
1102
1103 if (buf != address) {
1104 ret = -EIO;
1105 goto done;
1106 }
1107
1108 remaining_bytes -= nbytes;
1109 address += nbytes;
1110 ce_data += nbytes;
1111 }
1112
1113 done:
1114 if (data_buf) {
1115 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1116 ce_data_base);
1117 }
1118
1119 if (ret != 0)
1120 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1121 address, ret);
1122
1123 spin_unlock_bh(&ar_pci->ce_lock);
1124
1125 return ret;
1126 }
1127
ath10k_pci_diag_write32(struct ath10k * ar,u32 address,u32 value)1128 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1129 {
1130 __le32 val = __cpu_to_le32(value);
1131
1132 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1133 }
1134
1135 /* Called by lower (CE) layer when a send to Target completes. */
ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe * ce_state)1136 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1137 {
1138 struct ath10k *ar = ce_state->ar;
1139 struct sk_buff_head list;
1140 struct sk_buff *skb;
1141
1142 __skb_queue_head_init(&list);
1143 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1144 /* no need to call tx completion for NULL pointers */
1145 if (skb == NULL)
1146 continue;
1147
1148 __skb_queue_tail(&list, skb);
1149 }
1150
1151 while ((skb = __skb_dequeue(&list)))
1152 ath10k_htc_tx_completion_handler(ar, skb);
1153 }
1154
ath10k_pci_process_rx_cb(struct ath10k_ce_pipe * ce_state,void (* callback)(struct ath10k * ar,struct sk_buff * skb))1155 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1156 void (*callback)(struct ath10k *ar,
1157 struct sk_buff *skb))
1158 {
1159 struct ath10k *ar = ce_state->ar;
1160 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1161 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1162 struct sk_buff *skb;
1163 struct sk_buff_head list;
1164 void *transfer_context;
1165 u32 ce_data;
1166 unsigned int nbytes, max_nbytes;
1167 unsigned int transfer_id;
1168 unsigned int flags;
1169
1170 __skb_queue_head_init(&list);
1171 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1172 &ce_data, &nbytes, &transfer_id,
1173 &flags) == 0) {
1174 skb = transfer_context;
1175 max_nbytes = skb->len + skb_tailroom(skb);
1176 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1177 max_nbytes, DMA_FROM_DEVICE);
1178
1179 if (unlikely(max_nbytes < nbytes)) {
1180 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1181 nbytes, max_nbytes);
1182 dev_kfree_skb_any(skb);
1183 continue;
1184 }
1185
1186 skb_put(skb, nbytes);
1187 __skb_queue_tail(&list, skb);
1188 }
1189
1190 while ((skb = __skb_dequeue(&list))) {
1191 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1192 ce_state->id, skb->len);
1193 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1194 skb->data, skb->len);
1195
1196 callback(ar, skb);
1197 }
1198
1199 ath10k_pci_rx_post_pipe(pipe_info);
1200 }
1201
1202 /* Called by lower (CE) layer when data is received from the Target. */
ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe * ce_state)1203 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1204 {
1205 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1206 }
1207
ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe * ce_state)1208 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1209 {
1210 /* CE4 polling needs to be done whenever CE pipe which transports
1211 * HTT Rx (target->host) is processed.
1212 */
1213 ath10k_ce_per_engine_service(ce_state->ar, 4);
1214
1215 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1216 }
1217
1218 /* Called by lower (CE) layer when a send to HTT Target completes. */
ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe * ce_state)1219 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1220 {
1221 struct ath10k *ar = ce_state->ar;
1222 struct sk_buff *skb;
1223
1224 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1225 /* no need to call tx completion for NULL pointers */
1226 if (!skb)
1227 continue;
1228
1229 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1230 skb->len, DMA_TO_DEVICE);
1231 ath10k_htt_hif_tx_complete(ar, skb);
1232 }
1233 }
1234
ath10k_pci_htt_rx_deliver(struct ath10k * ar,struct sk_buff * skb)1235 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1236 {
1237 skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1238 ath10k_htt_t2h_msg_handler(ar, skb);
1239 }
1240
1241 /* Called by lower (CE) layer when HTT data is received from the Target. */
ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe * ce_state)1242 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1243 {
1244 /* CE4 polling needs to be done whenever CE pipe which transports
1245 * HTT Rx (target->host) is processed.
1246 */
1247 ath10k_ce_per_engine_service(ce_state->ar, 4);
1248
1249 ath10k_pci_process_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1250 }
1251
ath10k_pci_hif_tx_sg(struct ath10k * ar,u8 pipe_id,struct ath10k_hif_sg_item * items,int n_items)1252 static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1253 struct ath10k_hif_sg_item *items, int n_items)
1254 {
1255 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1256 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1257 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1258 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1259 unsigned int nentries_mask;
1260 unsigned int sw_index;
1261 unsigned int write_index;
1262 int err, i = 0;
1263
1264 spin_lock_bh(&ar_pci->ce_lock);
1265
1266 nentries_mask = src_ring->nentries_mask;
1267 sw_index = src_ring->sw_index;
1268 write_index = src_ring->write_index;
1269
1270 if (unlikely(CE_RING_DELTA(nentries_mask,
1271 write_index, sw_index - 1) < n_items)) {
1272 err = -ENOBUFS;
1273 goto err;
1274 }
1275
1276 for (i = 0; i < n_items - 1; i++) {
1277 ath10k_dbg(ar, ATH10K_DBG_PCI,
1278 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1279 i, items[i].paddr, items[i].len, n_items);
1280 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1281 items[i].vaddr, items[i].len);
1282
1283 err = ath10k_ce_send_nolock(ce_pipe,
1284 items[i].transfer_context,
1285 items[i].paddr,
1286 items[i].len,
1287 items[i].transfer_id,
1288 CE_SEND_FLAG_GATHER);
1289 if (err)
1290 goto err;
1291 }
1292
1293 /* `i` is equal to `n_items -1` after for() */
1294
1295 ath10k_dbg(ar, ATH10K_DBG_PCI,
1296 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1297 i, items[i].paddr, items[i].len, n_items);
1298 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1299 items[i].vaddr, items[i].len);
1300
1301 err = ath10k_ce_send_nolock(ce_pipe,
1302 items[i].transfer_context,
1303 items[i].paddr,
1304 items[i].len,
1305 items[i].transfer_id,
1306 0);
1307 if (err)
1308 goto err;
1309
1310 spin_unlock_bh(&ar_pci->ce_lock);
1311 return 0;
1312
1313 err:
1314 for (; i > 0; i--)
1315 __ath10k_ce_send_revert(ce_pipe);
1316
1317 spin_unlock_bh(&ar_pci->ce_lock);
1318 return err;
1319 }
1320
ath10k_pci_hif_diag_read(struct ath10k * ar,u32 address,void * buf,size_t buf_len)1321 static int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1322 size_t buf_len)
1323 {
1324 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1325 }
1326
ath10k_pci_hif_get_free_queue_number(struct ath10k * ar,u8 pipe)1327 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1328 {
1329 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1330
1331 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1332
1333 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1334 }
1335
ath10k_pci_dump_registers(struct ath10k * ar,struct ath10k_fw_crash_data * crash_data)1336 static void ath10k_pci_dump_registers(struct ath10k *ar,
1337 struct ath10k_fw_crash_data *crash_data)
1338 {
1339 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1340 int i, ret;
1341
1342 lockdep_assert_held(&ar->data_lock);
1343
1344 ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0],
1345 hi_failure_state,
1346 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1347 if (ret) {
1348 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1349 return;
1350 }
1351
1352 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1353
1354 ath10k_err(ar, "firmware register dump:\n");
1355 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1356 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1357 i,
1358 __le32_to_cpu(reg_dump_values[i]),
1359 __le32_to_cpu(reg_dump_values[i + 1]),
1360 __le32_to_cpu(reg_dump_values[i + 2]),
1361 __le32_to_cpu(reg_dump_values[i + 3]));
1362
1363 if (!crash_data)
1364 return;
1365
1366 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1367 crash_data->registers[i] = reg_dump_values[i];
1368 }
1369
ath10k_pci_fw_crashed_dump(struct ath10k * ar)1370 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1371 {
1372 struct ath10k_fw_crash_data *crash_data;
1373 char uuid[50];
1374
1375 spin_lock_bh(&ar->data_lock);
1376
1377 ar->stats.fw_crash_counter++;
1378
1379 crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1380
1381 if (crash_data)
1382 scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1383 else
1384 scnprintf(uuid, sizeof(uuid), "n/a");
1385
1386 ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1387 ath10k_print_driver_info(ar);
1388 ath10k_pci_dump_registers(ar, crash_data);
1389
1390 spin_unlock_bh(&ar->data_lock);
1391
1392 queue_work(ar->workqueue, &ar->restart_work);
1393 }
1394
ath10k_pci_hif_send_complete_check(struct ath10k * ar,u8 pipe,int force)1395 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1396 int force)
1397 {
1398 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1399
1400 if (!force) {
1401 int resources;
1402 /*
1403 * Decide whether to actually poll for completions, or just
1404 * wait for a later chance.
1405 * If there seem to be plenty of resources left, then just wait
1406 * since checking involves reading a CE register, which is a
1407 * relatively expensive operation.
1408 */
1409 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1410
1411 /*
1412 * If at least 50% of the total resources are still available,
1413 * don't bother checking again yet.
1414 */
1415 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1416 return;
1417 }
1418 ath10k_ce_per_engine_service(ar, pipe);
1419 }
1420
ath10k_pci_kill_tasklet(struct ath10k * ar)1421 static void ath10k_pci_kill_tasklet(struct ath10k *ar)
1422 {
1423 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1424 int i;
1425
1426 tasklet_kill(&ar_pci->intr_tq);
1427 tasklet_kill(&ar_pci->msi_fw_err);
1428
1429 for (i = 0; i < CE_COUNT; i++)
1430 tasklet_kill(&ar_pci->pipe_info[i].intr);
1431
1432 del_timer_sync(&ar_pci->rx_post_retry);
1433 }
1434
ath10k_pci_hif_map_service_to_pipe(struct ath10k * ar,u16 service_id,u8 * ul_pipe,u8 * dl_pipe)1435 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1436 u8 *ul_pipe, u8 *dl_pipe)
1437 {
1438 const struct service_to_pipe *entry;
1439 bool ul_set = false, dl_set = false;
1440 int i;
1441
1442 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1443
1444 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1445 entry = &target_service_to_ce_map_wlan[i];
1446
1447 if (__le32_to_cpu(entry->service_id) != service_id)
1448 continue;
1449
1450 switch (__le32_to_cpu(entry->pipedir)) {
1451 case PIPEDIR_NONE:
1452 break;
1453 case PIPEDIR_IN:
1454 WARN_ON(dl_set);
1455 *dl_pipe = __le32_to_cpu(entry->pipenum);
1456 dl_set = true;
1457 break;
1458 case PIPEDIR_OUT:
1459 WARN_ON(ul_set);
1460 *ul_pipe = __le32_to_cpu(entry->pipenum);
1461 ul_set = true;
1462 break;
1463 case PIPEDIR_INOUT:
1464 WARN_ON(dl_set);
1465 WARN_ON(ul_set);
1466 *dl_pipe = __le32_to_cpu(entry->pipenum);
1467 *ul_pipe = __le32_to_cpu(entry->pipenum);
1468 dl_set = true;
1469 ul_set = true;
1470 break;
1471 }
1472 }
1473
1474 if (WARN_ON(!ul_set || !dl_set))
1475 return -ENOENT;
1476
1477 return 0;
1478 }
1479
ath10k_pci_hif_get_default_pipe(struct ath10k * ar,u8 * ul_pipe,u8 * dl_pipe)1480 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1481 u8 *ul_pipe, u8 *dl_pipe)
1482 {
1483 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1484
1485 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1486 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1487 ul_pipe, dl_pipe);
1488 }
1489
ath10k_pci_irq_msi_fw_mask(struct ath10k * ar)1490 static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1491 {
1492 u32 val;
1493
1494 switch (ar->hw_rev) {
1495 case ATH10K_HW_QCA988X:
1496 case ATH10K_HW_QCA6174:
1497 case ATH10K_HW_QCA9377:
1498 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1499 CORE_CTRL_ADDRESS);
1500 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1501 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1502 CORE_CTRL_ADDRESS, val);
1503 break;
1504 case ATH10K_HW_QCA99X0:
1505 /* TODO: Find appropriate register configuration for QCA99X0
1506 * to mask irq/MSI.
1507 */
1508 break;
1509 }
1510 }
1511
ath10k_pci_irq_msi_fw_unmask(struct ath10k * ar)1512 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1513 {
1514 u32 val;
1515
1516 switch (ar->hw_rev) {
1517 case ATH10K_HW_QCA988X:
1518 case ATH10K_HW_QCA6174:
1519 case ATH10K_HW_QCA9377:
1520 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1521 CORE_CTRL_ADDRESS);
1522 val |= CORE_CTRL_PCIE_REG_31_MASK;
1523 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1524 CORE_CTRL_ADDRESS, val);
1525 break;
1526 case ATH10K_HW_QCA99X0:
1527 /* TODO: Find appropriate register configuration for QCA99X0
1528 * to unmask irq/MSI.
1529 */
1530 break;
1531 }
1532 }
1533
ath10k_pci_irq_disable(struct ath10k * ar)1534 static void ath10k_pci_irq_disable(struct ath10k *ar)
1535 {
1536 ath10k_ce_disable_interrupts(ar);
1537 ath10k_pci_disable_and_clear_legacy_irq(ar);
1538 ath10k_pci_irq_msi_fw_mask(ar);
1539 }
1540
ath10k_pci_irq_sync(struct ath10k * ar)1541 static void ath10k_pci_irq_sync(struct ath10k *ar)
1542 {
1543 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1544 int i;
1545
1546 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1547 synchronize_irq(ar_pci->pdev->irq + i);
1548 }
1549
ath10k_pci_irq_enable(struct ath10k * ar)1550 static void ath10k_pci_irq_enable(struct ath10k *ar)
1551 {
1552 ath10k_ce_enable_interrupts(ar);
1553 ath10k_pci_enable_legacy_irq(ar);
1554 ath10k_pci_irq_msi_fw_unmask(ar);
1555 }
1556
ath10k_pci_hif_start(struct ath10k * ar)1557 static int ath10k_pci_hif_start(struct ath10k *ar)
1558 {
1559 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1560
1561 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1562
1563 ath10k_pci_irq_enable(ar);
1564 ath10k_pci_rx_post(ar);
1565
1566 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1567 ar_pci->link_ctl);
1568
1569 return 0;
1570 }
1571
ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe * pci_pipe)1572 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1573 {
1574 struct ath10k *ar;
1575 struct ath10k_ce_pipe *ce_pipe;
1576 struct ath10k_ce_ring *ce_ring;
1577 struct sk_buff *skb;
1578 int i;
1579
1580 ar = pci_pipe->hif_ce_state;
1581 ce_pipe = pci_pipe->ce_hdl;
1582 ce_ring = ce_pipe->dest_ring;
1583
1584 if (!ce_ring)
1585 return;
1586
1587 if (!pci_pipe->buf_sz)
1588 return;
1589
1590 for (i = 0; i < ce_ring->nentries; i++) {
1591 skb = ce_ring->per_transfer_context[i];
1592 if (!skb)
1593 continue;
1594
1595 ce_ring->per_transfer_context[i] = NULL;
1596
1597 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1598 skb->len + skb_tailroom(skb),
1599 DMA_FROM_DEVICE);
1600 dev_kfree_skb_any(skb);
1601 }
1602 }
1603
ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe * pci_pipe)1604 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1605 {
1606 struct ath10k *ar;
1607 struct ath10k_pci *ar_pci;
1608 struct ath10k_ce_pipe *ce_pipe;
1609 struct ath10k_ce_ring *ce_ring;
1610 struct sk_buff *skb;
1611 int i;
1612
1613 ar = pci_pipe->hif_ce_state;
1614 ar_pci = ath10k_pci_priv(ar);
1615 ce_pipe = pci_pipe->ce_hdl;
1616 ce_ring = ce_pipe->src_ring;
1617
1618 if (!ce_ring)
1619 return;
1620
1621 if (!pci_pipe->buf_sz)
1622 return;
1623
1624 for (i = 0; i < ce_ring->nentries; i++) {
1625 skb = ce_ring->per_transfer_context[i];
1626 if (!skb)
1627 continue;
1628
1629 ce_ring->per_transfer_context[i] = NULL;
1630
1631 ath10k_htc_tx_completion_handler(ar, skb);
1632 }
1633 }
1634
1635 /*
1636 * Cleanup residual buffers for device shutdown:
1637 * buffers that were enqueued for receive
1638 * buffers that were to be sent
1639 * Note: Buffers that had completed but which were
1640 * not yet processed are on a completion queue. They
1641 * are handled when the completion thread shuts down.
1642 */
ath10k_pci_buffer_cleanup(struct ath10k * ar)1643 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1644 {
1645 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1646 int pipe_num;
1647
1648 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1649 struct ath10k_pci_pipe *pipe_info;
1650
1651 pipe_info = &ar_pci->pipe_info[pipe_num];
1652 ath10k_pci_rx_pipe_cleanup(pipe_info);
1653 ath10k_pci_tx_pipe_cleanup(pipe_info);
1654 }
1655 }
1656
ath10k_pci_ce_deinit(struct ath10k * ar)1657 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1658 {
1659 int i;
1660
1661 for (i = 0; i < CE_COUNT; i++)
1662 ath10k_ce_deinit_pipe(ar, i);
1663 }
1664
ath10k_pci_flush(struct ath10k * ar)1665 static void ath10k_pci_flush(struct ath10k *ar)
1666 {
1667 ath10k_pci_kill_tasklet(ar);
1668 ath10k_pci_buffer_cleanup(ar);
1669 }
1670
ath10k_pci_hif_stop(struct ath10k * ar)1671 static void ath10k_pci_hif_stop(struct ath10k *ar)
1672 {
1673 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1674 unsigned long flags;
1675
1676 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1677
1678 /* Most likely the device has HTT Rx ring configured. The only way to
1679 * prevent the device from accessing (and possible corrupting) host
1680 * memory is to reset the chip now.
1681 *
1682 * There's also no known way of masking MSI interrupts on the device.
1683 * For ranged MSI the CE-related interrupts can be masked. However
1684 * regardless how many MSI interrupts are assigned the first one
1685 * is always used for firmware indications (crashes) and cannot be
1686 * masked. To prevent the device from asserting the interrupt reset it
1687 * before proceeding with cleanup.
1688 */
1689 ath10k_pci_safe_chip_reset(ar);
1690
1691 ath10k_pci_irq_disable(ar);
1692 ath10k_pci_irq_sync(ar);
1693 ath10k_pci_flush(ar);
1694
1695 spin_lock_irqsave(&ar_pci->ps_lock, flags);
1696 WARN_ON(ar_pci->ps_wake_refcount > 0);
1697 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1698 }
1699
ath10k_pci_hif_exchange_bmi_msg(struct ath10k * ar,void * req,u32 req_len,void * resp,u32 * resp_len)1700 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1701 void *req, u32 req_len,
1702 void *resp, u32 *resp_len)
1703 {
1704 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1705 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1706 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1707 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1708 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1709 dma_addr_t req_paddr = 0;
1710 dma_addr_t resp_paddr = 0;
1711 struct bmi_xfer xfer = {};
1712 void *treq, *tresp = NULL;
1713 int ret = 0;
1714
1715 might_sleep();
1716
1717 if (resp && !resp_len)
1718 return -EINVAL;
1719
1720 if (resp && resp_len && *resp_len == 0)
1721 return -EINVAL;
1722
1723 treq = kmemdup(req, req_len, GFP_KERNEL);
1724 if (!treq)
1725 return -ENOMEM;
1726
1727 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1728 ret = dma_mapping_error(ar->dev, req_paddr);
1729 if (ret) {
1730 ret = -EIO;
1731 goto err_dma;
1732 }
1733
1734 if (resp && resp_len) {
1735 tresp = kzalloc(*resp_len, GFP_KERNEL);
1736 if (!tresp) {
1737 ret = -ENOMEM;
1738 goto err_req;
1739 }
1740
1741 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1742 DMA_FROM_DEVICE);
1743 ret = dma_mapping_error(ar->dev, resp_paddr);
1744 if (ret) {
1745 ret = EIO;
1746 goto err_req;
1747 }
1748
1749 xfer.wait_for_resp = true;
1750 xfer.resp_len = 0;
1751
1752 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1753 }
1754
1755 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1756 if (ret)
1757 goto err_resp;
1758
1759 ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1760 if (ret) {
1761 u32 unused_buffer;
1762 unsigned int unused_nbytes;
1763 unsigned int unused_id;
1764
1765 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1766 &unused_nbytes, &unused_id);
1767 } else {
1768 /* non-zero means we did not time out */
1769 ret = 0;
1770 }
1771
1772 err_resp:
1773 if (resp) {
1774 u32 unused_buffer;
1775
1776 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1777 dma_unmap_single(ar->dev, resp_paddr,
1778 *resp_len, DMA_FROM_DEVICE);
1779 }
1780 err_req:
1781 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1782
1783 if (ret == 0 && resp_len) {
1784 *resp_len = min(*resp_len, xfer.resp_len);
1785 memcpy(resp, tresp, xfer.resp_len);
1786 }
1787 err_dma:
1788 kfree(treq);
1789 kfree(tresp);
1790
1791 return ret;
1792 }
1793
ath10k_pci_bmi_send_done(struct ath10k_ce_pipe * ce_state)1794 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1795 {
1796 struct bmi_xfer *xfer;
1797
1798 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1799 return;
1800
1801 xfer->tx_done = true;
1802 }
1803
ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe * ce_state)1804 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1805 {
1806 struct ath10k *ar = ce_state->ar;
1807 struct bmi_xfer *xfer;
1808 u32 ce_data;
1809 unsigned int nbytes;
1810 unsigned int transfer_id;
1811 unsigned int flags;
1812
1813 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1814 &nbytes, &transfer_id, &flags))
1815 return;
1816
1817 if (WARN_ON_ONCE(!xfer))
1818 return;
1819
1820 if (!xfer->wait_for_resp) {
1821 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1822 return;
1823 }
1824
1825 xfer->resp_len = nbytes;
1826 xfer->rx_done = true;
1827 }
1828
ath10k_pci_bmi_wait(struct ath10k_ce_pipe * tx_pipe,struct ath10k_ce_pipe * rx_pipe,struct bmi_xfer * xfer)1829 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1830 struct ath10k_ce_pipe *rx_pipe,
1831 struct bmi_xfer *xfer)
1832 {
1833 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1834
1835 while (time_before_eq(jiffies, timeout)) {
1836 ath10k_pci_bmi_send_done(tx_pipe);
1837 ath10k_pci_bmi_recv_data(rx_pipe);
1838
1839 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1840 return 0;
1841
1842 schedule();
1843 }
1844
1845 return -ETIMEDOUT;
1846 }
1847
1848 /*
1849 * Send an interrupt to the device to wake up the Target CPU
1850 * so it has an opportunity to notice any changed state.
1851 */
ath10k_pci_wake_target_cpu(struct ath10k * ar)1852 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1853 {
1854 u32 addr, val;
1855
1856 addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1857 val = ath10k_pci_read32(ar, addr);
1858 val |= CORE_CTRL_CPU_INTR_MASK;
1859 ath10k_pci_write32(ar, addr, val);
1860
1861 return 0;
1862 }
1863
ath10k_pci_get_num_banks(struct ath10k * ar)1864 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1865 {
1866 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1867
1868 switch (ar_pci->pdev->device) {
1869 case QCA988X_2_0_DEVICE_ID:
1870 case QCA99X0_2_0_DEVICE_ID:
1871 return 1;
1872 case QCA6164_2_1_DEVICE_ID:
1873 case QCA6174_2_1_DEVICE_ID:
1874 switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1875 case QCA6174_HW_1_0_CHIP_ID_REV:
1876 case QCA6174_HW_1_1_CHIP_ID_REV:
1877 case QCA6174_HW_2_1_CHIP_ID_REV:
1878 case QCA6174_HW_2_2_CHIP_ID_REV:
1879 return 3;
1880 case QCA6174_HW_1_3_CHIP_ID_REV:
1881 return 2;
1882 case QCA6174_HW_3_0_CHIP_ID_REV:
1883 case QCA6174_HW_3_1_CHIP_ID_REV:
1884 case QCA6174_HW_3_2_CHIP_ID_REV:
1885 return 9;
1886 }
1887 break;
1888 case QCA9377_1_0_DEVICE_ID:
1889 return 2;
1890 }
1891
1892 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1893 return 1;
1894 }
1895
ath10k_pci_init_config(struct ath10k * ar)1896 static int ath10k_pci_init_config(struct ath10k *ar)
1897 {
1898 u32 interconnect_targ_addr;
1899 u32 pcie_state_targ_addr = 0;
1900 u32 pipe_cfg_targ_addr = 0;
1901 u32 svc_to_pipe_map = 0;
1902 u32 pcie_config_flags = 0;
1903 u32 ealloc_value;
1904 u32 ealloc_targ_addr;
1905 u32 flag2_value;
1906 u32 flag2_targ_addr;
1907 int ret = 0;
1908
1909 /* Download to Target the CE Config and the service-to-CE map */
1910 interconnect_targ_addr =
1911 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1912
1913 /* Supply Target-side CE configuration */
1914 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
1915 &pcie_state_targ_addr);
1916 if (ret != 0) {
1917 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1918 return ret;
1919 }
1920
1921 if (pcie_state_targ_addr == 0) {
1922 ret = -EIO;
1923 ath10k_err(ar, "Invalid pcie state addr\n");
1924 return ret;
1925 }
1926
1927 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1928 offsetof(struct pcie_state,
1929 pipe_cfg_addr)),
1930 &pipe_cfg_targ_addr);
1931 if (ret != 0) {
1932 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1933 return ret;
1934 }
1935
1936 if (pipe_cfg_targ_addr == 0) {
1937 ret = -EIO;
1938 ath10k_err(ar, "Invalid pipe cfg addr\n");
1939 return ret;
1940 }
1941
1942 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1943 target_ce_config_wlan,
1944 sizeof(struct ce_pipe_config) *
1945 NUM_TARGET_CE_CONFIG_WLAN);
1946
1947 if (ret != 0) {
1948 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1949 return ret;
1950 }
1951
1952 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1953 offsetof(struct pcie_state,
1954 svc_to_pipe_map)),
1955 &svc_to_pipe_map);
1956 if (ret != 0) {
1957 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1958 return ret;
1959 }
1960
1961 if (svc_to_pipe_map == 0) {
1962 ret = -EIO;
1963 ath10k_err(ar, "Invalid svc_to_pipe map\n");
1964 return ret;
1965 }
1966
1967 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1968 target_service_to_ce_map_wlan,
1969 sizeof(target_service_to_ce_map_wlan));
1970 if (ret != 0) {
1971 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
1972 return ret;
1973 }
1974
1975 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1976 offsetof(struct pcie_state,
1977 config_flags)),
1978 &pcie_config_flags);
1979 if (ret != 0) {
1980 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
1981 return ret;
1982 }
1983
1984 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1985
1986 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
1987 offsetof(struct pcie_state,
1988 config_flags)),
1989 pcie_config_flags);
1990 if (ret != 0) {
1991 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
1992 return ret;
1993 }
1994
1995 /* configure early allocation */
1996 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1997
1998 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
1999 if (ret != 0) {
2000 ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
2001 return ret;
2002 }
2003
2004 /* first bank is switched to IRAM */
2005 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2006 HI_EARLY_ALLOC_MAGIC_MASK);
2007 ealloc_value |= ((ath10k_pci_get_num_banks(ar) <<
2008 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2009 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2010
2011 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2012 if (ret != 0) {
2013 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2014 return ret;
2015 }
2016
2017 /* Tell Target to proceed with initialization */
2018 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2019
2020 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2021 if (ret != 0) {
2022 ath10k_err(ar, "Failed to get option val: %d\n", ret);
2023 return ret;
2024 }
2025
2026 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2027
2028 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2029 if (ret != 0) {
2030 ath10k_err(ar, "Failed to set option val: %d\n", ret);
2031 return ret;
2032 }
2033
2034 return 0;
2035 }
2036
ath10k_pci_override_ce_config(struct ath10k * ar)2037 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2038 {
2039 struct ce_attr *attr;
2040 struct ce_pipe_config *config;
2041
2042 /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2043 * since it is currently used for other feature.
2044 */
2045
2046 /* Override Host's Copy Engine 5 configuration */
2047 attr = &host_ce_config_wlan[5];
2048 attr->src_sz_max = 0;
2049 attr->dest_nentries = 0;
2050
2051 /* Override Target firmware's Copy Engine configuration */
2052 config = &target_ce_config_wlan[5];
2053 config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2054 config->nbytes_max = __cpu_to_le32(2048);
2055
2056 /* Map from service/endpoint to Copy Engine */
2057 target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2058 }
2059
ath10k_pci_alloc_pipes(struct ath10k * ar)2060 static int ath10k_pci_alloc_pipes(struct ath10k *ar)
2061 {
2062 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2063 struct ath10k_pci_pipe *pipe;
2064 int i, ret;
2065
2066 for (i = 0; i < CE_COUNT; i++) {
2067 pipe = &ar_pci->pipe_info[i];
2068 pipe->ce_hdl = &ar_pci->ce_states[i];
2069 pipe->pipe_num = i;
2070 pipe->hif_ce_state = ar;
2071
2072 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2073 if (ret) {
2074 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2075 i, ret);
2076 return ret;
2077 }
2078
2079 /* Last CE is Diagnostic Window */
2080 if (i == CE_DIAG_PIPE) {
2081 ar_pci->ce_diag = pipe->ce_hdl;
2082 continue;
2083 }
2084
2085 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2086 }
2087
2088 return 0;
2089 }
2090
ath10k_pci_free_pipes(struct ath10k * ar)2091 static void ath10k_pci_free_pipes(struct ath10k *ar)
2092 {
2093 int i;
2094
2095 for (i = 0; i < CE_COUNT; i++)
2096 ath10k_ce_free_pipe(ar, i);
2097 }
2098
ath10k_pci_init_pipes(struct ath10k * ar)2099 static int ath10k_pci_init_pipes(struct ath10k *ar)
2100 {
2101 int i, ret;
2102
2103 for (i = 0; i < CE_COUNT; i++) {
2104 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2105 if (ret) {
2106 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2107 i, ret);
2108 return ret;
2109 }
2110 }
2111
2112 return 0;
2113 }
2114
ath10k_pci_has_fw_crashed(struct ath10k * ar)2115 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2116 {
2117 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2118 FW_IND_EVENT_PENDING;
2119 }
2120
ath10k_pci_fw_crashed_clear(struct ath10k * ar)2121 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2122 {
2123 u32 val;
2124
2125 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2126 val &= ~FW_IND_EVENT_PENDING;
2127 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2128 }
2129
2130 /* this function effectively clears target memory controller assert line */
ath10k_pci_warm_reset_si0(struct ath10k * ar)2131 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2132 {
2133 u32 val;
2134
2135 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2136 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2137 val | SOC_RESET_CONTROL_SI0_RST_MASK);
2138 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2139
2140 msleep(10);
2141
2142 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2143 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2144 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2145 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2146
2147 msleep(10);
2148 }
2149
ath10k_pci_warm_reset_cpu(struct ath10k * ar)2150 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2151 {
2152 u32 val;
2153
2154 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2155
2156 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2157 SOC_RESET_CONTROL_ADDRESS);
2158 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2159 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2160 }
2161
ath10k_pci_warm_reset_ce(struct ath10k * ar)2162 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2163 {
2164 u32 val;
2165
2166 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2167 SOC_RESET_CONTROL_ADDRESS);
2168
2169 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2170 val | SOC_RESET_CONTROL_CE_RST_MASK);
2171 msleep(10);
2172 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2173 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2174 }
2175
ath10k_pci_warm_reset_clear_lf(struct ath10k * ar)2176 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2177 {
2178 u32 val;
2179
2180 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2181 SOC_LF_TIMER_CONTROL0_ADDRESS);
2182 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2183 SOC_LF_TIMER_CONTROL0_ADDRESS,
2184 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2185 }
2186
ath10k_pci_warm_reset(struct ath10k * ar)2187 static int ath10k_pci_warm_reset(struct ath10k *ar)
2188 {
2189 int ret;
2190
2191 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2192
2193 spin_lock_bh(&ar->data_lock);
2194 ar->stats.fw_warm_reset_counter++;
2195 spin_unlock_bh(&ar->data_lock);
2196
2197 ath10k_pci_irq_disable(ar);
2198
2199 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2200 * were to access copy engine while host performs copy engine reset
2201 * then it is possible for the device to confuse pci-e controller to
2202 * the point of bringing host system to a complete stop (i.e. hang).
2203 */
2204 ath10k_pci_warm_reset_si0(ar);
2205 ath10k_pci_warm_reset_cpu(ar);
2206 ath10k_pci_init_pipes(ar);
2207 ath10k_pci_wait_for_target_init(ar);
2208
2209 ath10k_pci_warm_reset_clear_lf(ar);
2210 ath10k_pci_warm_reset_ce(ar);
2211 ath10k_pci_warm_reset_cpu(ar);
2212 ath10k_pci_init_pipes(ar);
2213
2214 ret = ath10k_pci_wait_for_target_init(ar);
2215 if (ret) {
2216 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2217 return ret;
2218 }
2219
2220 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2221
2222 return 0;
2223 }
2224
ath10k_pci_safe_chip_reset(struct ath10k * ar)2225 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2226 {
2227 if (QCA_REV_988X(ar) || QCA_REV_6174(ar)) {
2228 return ath10k_pci_warm_reset(ar);
2229 } else if (QCA_REV_99X0(ar)) {
2230 ath10k_pci_irq_disable(ar);
2231 return ath10k_pci_qca99x0_chip_reset(ar);
2232 } else {
2233 return -ENOTSUPP;
2234 }
2235 }
2236
ath10k_pci_qca988x_chip_reset(struct ath10k * ar)2237 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2238 {
2239 int i, ret;
2240 u32 val;
2241
2242 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2243
2244 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2245 * It is thus preferred to use warm reset which is safer but may not be
2246 * able to recover the device from all possible fail scenarios.
2247 *
2248 * Warm reset doesn't always work on first try so attempt it a few
2249 * times before giving up.
2250 */
2251 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2252 ret = ath10k_pci_warm_reset(ar);
2253 if (ret) {
2254 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2255 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2256 ret);
2257 continue;
2258 }
2259
2260 /* FIXME: Sometimes copy engine doesn't recover after warm
2261 * reset. In most cases this needs cold reset. In some of these
2262 * cases the device is in such a state that a cold reset may
2263 * lock up the host.
2264 *
2265 * Reading any host interest register via copy engine is
2266 * sufficient to verify if device is capable of booting
2267 * firmware blob.
2268 */
2269 ret = ath10k_pci_init_pipes(ar);
2270 if (ret) {
2271 ath10k_warn(ar, "failed to init copy engine: %d\n",
2272 ret);
2273 continue;
2274 }
2275
2276 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2277 &val);
2278 if (ret) {
2279 ath10k_warn(ar, "failed to poke copy engine: %d\n",
2280 ret);
2281 continue;
2282 }
2283
2284 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2285 return 0;
2286 }
2287
2288 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2289 ath10k_warn(ar, "refusing cold reset as requested\n");
2290 return -EPERM;
2291 }
2292
2293 ret = ath10k_pci_cold_reset(ar);
2294 if (ret) {
2295 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2296 return ret;
2297 }
2298
2299 ret = ath10k_pci_wait_for_target_init(ar);
2300 if (ret) {
2301 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2302 ret);
2303 return ret;
2304 }
2305
2306 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2307
2308 return 0;
2309 }
2310
ath10k_pci_qca6174_chip_reset(struct ath10k * ar)2311 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2312 {
2313 int ret;
2314
2315 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2316
2317 /* FIXME: QCA6174 requires cold + warm reset to work. */
2318
2319 ret = ath10k_pci_cold_reset(ar);
2320 if (ret) {
2321 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2322 return ret;
2323 }
2324
2325 ret = ath10k_pci_wait_for_target_init(ar);
2326 if (ret) {
2327 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2328 ret);
2329 return ret;
2330 }
2331
2332 ret = ath10k_pci_warm_reset(ar);
2333 if (ret) {
2334 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2335 return ret;
2336 }
2337
2338 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2339
2340 return 0;
2341 }
2342
ath10k_pci_qca99x0_chip_reset(struct ath10k * ar)2343 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2344 {
2345 int ret;
2346
2347 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2348
2349 ret = ath10k_pci_cold_reset(ar);
2350 if (ret) {
2351 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2352 return ret;
2353 }
2354
2355 ret = ath10k_pci_wait_for_target_init(ar);
2356 if (ret) {
2357 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2358 ret);
2359 return ret;
2360 }
2361
2362 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2363
2364 return 0;
2365 }
2366
ath10k_pci_chip_reset(struct ath10k * ar)2367 static int ath10k_pci_chip_reset(struct ath10k *ar)
2368 {
2369 if (QCA_REV_988X(ar))
2370 return ath10k_pci_qca988x_chip_reset(ar);
2371 else if (QCA_REV_6174(ar))
2372 return ath10k_pci_qca6174_chip_reset(ar);
2373 else if (QCA_REV_9377(ar))
2374 return ath10k_pci_qca6174_chip_reset(ar);
2375 else if (QCA_REV_99X0(ar))
2376 return ath10k_pci_qca99x0_chip_reset(ar);
2377 else
2378 return -ENOTSUPP;
2379 }
2380
ath10k_pci_hif_power_up(struct ath10k * ar)2381 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2382 {
2383 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2384 int ret;
2385
2386 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2387
2388 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2389 &ar_pci->link_ctl);
2390 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2391 ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2392
2393 /*
2394 * Bring the target up cleanly.
2395 *
2396 * The target may be in an undefined state with an AUX-powered Target
2397 * and a Host in WoW mode. If the Host crashes, loses power, or is
2398 * restarted (without unloading the driver) then the Target is left
2399 * (aux) powered and running. On a subsequent driver load, the Target
2400 * is in an unexpected state. We try to catch that here in order to
2401 * reset the Target and retry the probe.
2402 */
2403 ret = ath10k_pci_chip_reset(ar);
2404 if (ret) {
2405 if (ath10k_pci_has_fw_crashed(ar)) {
2406 ath10k_warn(ar, "firmware crashed during chip reset\n");
2407 ath10k_pci_fw_crashed_clear(ar);
2408 ath10k_pci_fw_crashed_dump(ar);
2409 }
2410
2411 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2412 goto err_sleep;
2413 }
2414
2415 ret = ath10k_pci_init_pipes(ar);
2416 if (ret) {
2417 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2418 goto err_sleep;
2419 }
2420
2421 ret = ath10k_pci_init_config(ar);
2422 if (ret) {
2423 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2424 goto err_ce;
2425 }
2426
2427 ret = ath10k_pci_wake_target_cpu(ar);
2428 if (ret) {
2429 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2430 goto err_ce;
2431 }
2432
2433 return 0;
2434
2435 err_ce:
2436 ath10k_pci_ce_deinit(ar);
2437
2438 err_sleep:
2439 return ret;
2440 }
2441
ath10k_pci_hif_power_down(struct ath10k * ar)2442 static void ath10k_pci_hif_power_down(struct ath10k *ar)
2443 {
2444 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2445
2446 /* Currently hif_power_up performs effectively a reset and hif_stop
2447 * resets the chip as well so there's no point in resetting here.
2448 */
2449 }
2450
2451 #ifdef CONFIG_PM
2452
ath10k_pci_hif_suspend(struct ath10k * ar)2453 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2454 {
2455 /* The grace timer can still be counting down and ar->ps_awake be true.
2456 * It is known that the device may be asleep after resuming regardless
2457 * of the SoC powersave state before suspending. Hence make sure the
2458 * device is asleep before proceeding.
2459 */
2460 ath10k_pci_sleep_sync(ar);
2461
2462 return 0;
2463 }
2464
ath10k_pci_hif_resume(struct ath10k * ar)2465 static int ath10k_pci_hif_resume(struct ath10k *ar)
2466 {
2467 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2468 struct pci_dev *pdev = ar_pci->pdev;
2469 u32 val;
2470 int ret = 0;
2471
2472 if (ar_pci->pci_ps == 0) {
2473 ret = ath10k_pci_force_wake(ar);
2474 if (ret) {
2475 ath10k_err(ar, "failed to wake up target: %d\n", ret);
2476 return ret;
2477 }
2478 }
2479
2480 /* Suspend/Resume resets the PCI configuration space, so we have to
2481 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2482 * from interfering with C3 CPU state. pci_restore_state won't help
2483 * here since it only restores the first 64 bytes pci config header.
2484 */
2485 pci_read_config_dword(pdev, 0x40, &val);
2486 if ((val & 0x0000ff00) != 0)
2487 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2488
2489 return ret;
2490 }
2491 #endif
2492
2493 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2494 .tx_sg = ath10k_pci_hif_tx_sg,
2495 .diag_read = ath10k_pci_hif_diag_read,
2496 .diag_write = ath10k_pci_diag_write_mem,
2497 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
2498 .start = ath10k_pci_hif_start,
2499 .stop = ath10k_pci_hif_stop,
2500 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
2501 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
2502 .send_complete_check = ath10k_pci_hif_send_complete_check,
2503 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
2504 .power_up = ath10k_pci_hif_power_up,
2505 .power_down = ath10k_pci_hif_power_down,
2506 .read32 = ath10k_pci_read32,
2507 .write32 = ath10k_pci_write32,
2508 #ifdef CONFIG_PM
2509 .suspend = ath10k_pci_hif_suspend,
2510 .resume = ath10k_pci_hif_resume,
2511 #endif
2512 };
2513
ath10k_pci_ce_tasklet(unsigned long ptr)2514 static void ath10k_pci_ce_tasklet(unsigned long ptr)
2515 {
2516 struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2517 struct ath10k_pci *ar_pci = pipe->ar_pci;
2518
2519 ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2520 }
2521
ath10k_msi_err_tasklet(unsigned long data)2522 static void ath10k_msi_err_tasklet(unsigned long data)
2523 {
2524 struct ath10k *ar = (struct ath10k *)data;
2525
2526 if (!ath10k_pci_has_fw_crashed(ar)) {
2527 ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2528 return;
2529 }
2530
2531 ath10k_pci_irq_disable(ar);
2532 ath10k_pci_fw_crashed_clear(ar);
2533 ath10k_pci_fw_crashed_dump(ar);
2534 }
2535
2536 /*
2537 * Handler for a per-engine interrupt on a PARTICULAR CE.
2538 * This is used in cases where each CE has a private MSI interrupt.
2539 */
ath10k_pci_per_engine_handler(int irq,void * arg)2540 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2541 {
2542 struct ath10k *ar = arg;
2543 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2544 int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2545
2546 if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2547 ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
2548 ce_id);
2549 return IRQ_HANDLED;
2550 }
2551
2552 /*
2553 * NOTE: We are able to derive ce_id from irq because we
2554 * use a one-to-one mapping for CE's 0..5.
2555 * CE's 6 & 7 do not use interrupts at all.
2556 *
2557 * This mapping must be kept in sync with the mapping
2558 * used by firmware.
2559 */
2560 tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2561 return IRQ_HANDLED;
2562 }
2563
ath10k_pci_msi_fw_handler(int irq,void * arg)2564 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2565 {
2566 struct ath10k *ar = arg;
2567 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2568
2569 tasklet_schedule(&ar_pci->msi_fw_err);
2570 return IRQ_HANDLED;
2571 }
2572
2573 /*
2574 * Top-level interrupt handler for all PCI interrupts from a Target.
2575 * When a block of MSI interrupts is allocated, this top-level handler
2576 * is not used; instead, we directly call the correct sub-handler.
2577 */
ath10k_pci_interrupt_handler(int irq,void * arg)2578 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2579 {
2580 struct ath10k *ar = arg;
2581 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2582 int ret;
2583
2584 if (ar_pci->pci_ps == 0) {
2585 ret = ath10k_pci_force_wake(ar);
2586 if (ret) {
2587 ath10k_warn(ar, "failed to wake device up on irq: %d\n",
2588 ret);
2589 return IRQ_NONE;
2590 }
2591 }
2592
2593 if (ar_pci->num_msi_intrs == 0) {
2594 if (!ath10k_pci_irq_pending(ar))
2595 return IRQ_NONE;
2596
2597 ath10k_pci_disable_and_clear_legacy_irq(ar);
2598 }
2599
2600 tasklet_schedule(&ar_pci->intr_tq);
2601
2602 return IRQ_HANDLED;
2603 }
2604
ath10k_pci_tasklet(unsigned long data)2605 static void ath10k_pci_tasklet(unsigned long data)
2606 {
2607 struct ath10k *ar = (struct ath10k *)data;
2608 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2609
2610 if (ath10k_pci_has_fw_crashed(ar)) {
2611 ath10k_pci_irq_disable(ar);
2612 ath10k_pci_fw_crashed_clear(ar);
2613 ath10k_pci_fw_crashed_dump(ar);
2614 return;
2615 }
2616
2617 ath10k_ce_per_engine_service_any(ar);
2618
2619 /* Re-enable legacy irq that was disabled in the irq handler */
2620 if (ar_pci->num_msi_intrs == 0)
2621 ath10k_pci_enable_legacy_irq(ar);
2622 }
2623
ath10k_pci_request_irq_msix(struct ath10k * ar)2624 static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2625 {
2626 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2627 int ret, i;
2628
2629 ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2630 ath10k_pci_msi_fw_handler,
2631 IRQF_SHARED, "ath10k_pci", ar);
2632 if (ret) {
2633 ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2634 ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2635 return ret;
2636 }
2637
2638 for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2639 ret = request_irq(ar_pci->pdev->irq + i,
2640 ath10k_pci_per_engine_handler,
2641 IRQF_SHARED, "ath10k_pci", ar);
2642 if (ret) {
2643 ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2644 ar_pci->pdev->irq + i, ret);
2645
2646 for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2647 free_irq(ar_pci->pdev->irq + i, ar);
2648
2649 free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2650 return ret;
2651 }
2652 }
2653
2654 return 0;
2655 }
2656
ath10k_pci_request_irq_msi(struct ath10k * ar)2657 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2658 {
2659 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2660 int ret;
2661
2662 ret = request_irq(ar_pci->pdev->irq,
2663 ath10k_pci_interrupt_handler,
2664 IRQF_SHARED, "ath10k_pci", ar);
2665 if (ret) {
2666 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2667 ar_pci->pdev->irq, ret);
2668 return ret;
2669 }
2670
2671 return 0;
2672 }
2673
ath10k_pci_request_irq_legacy(struct ath10k * ar)2674 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2675 {
2676 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2677 int ret;
2678
2679 ret = request_irq(ar_pci->pdev->irq,
2680 ath10k_pci_interrupt_handler,
2681 IRQF_SHARED, "ath10k_pci", ar);
2682 if (ret) {
2683 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2684 ar_pci->pdev->irq, ret);
2685 return ret;
2686 }
2687
2688 return 0;
2689 }
2690
ath10k_pci_request_irq(struct ath10k * ar)2691 static int ath10k_pci_request_irq(struct ath10k *ar)
2692 {
2693 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2694
2695 switch (ar_pci->num_msi_intrs) {
2696 case 0:
2697 return ath10k_pci_request_irq_legacy(ar);
2698 case 1:
2699 return ath10k_pci_request_irq_msi(ar);
2700 default:
2701 return ath10k_pci_request_irq_msix(ar);
2702 }
2703 }
2704
ath10k_pci_free_irq(struct ath10k * ar)2705 static void ath10k_pci_free_irq(struct ath10k *ar)
2706 {
2707 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2708 int i;
2709
2710 /* There's at least one interrupt irregardless whether its legacy INTR
2711 * or MSI or MSI-X */
2712 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2713 free_irq(ar_pci->pdev->irq + i, ar);
2714 }
2715
ath10k_pci_init_irq_tasklets(struct ath10k * ar)2716 static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2717 {
2718 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2719 int i;
2720
2721 tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2722 tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2723 (unsigned long)ar);
2724
2725 for (i = 0; i < CE_COUNT; i++) {
2726 ar_pci->pipe_info[i].ar_pci = ar_pci;
2727 tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2728 (unsigned long)&ar_pci->pipe_info[i]);
2729 }
2730 }
2731
ath10k_pci_init_irq(struct ath10k * ar)2732 static int ath10k_pci_init_irq(struct ath10k *ar)
2733 {
2734 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2735 int ret;
2736
2737 ath10k_pci_init_irq_tasklets(ar);
2738
2739 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2740 ath10k_info(ar, "limiting irq mode to: %d\n",
2741 ath10k_pci_irq_mode);
2742
2743 /* Try MSI-X */
2744 if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2745 ar_pci->num_msi_intrs = MSI_ASSIGN_CE_MAX + 1;
2746 ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2747 ar_pci->num_msi_intrs);
2748 if (ret > 0)
2749 return 0;
2750
2751 /* fall-through */
2752 }
2753
2754 /* Try MSI */
2755 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2756 ar_pci->num_msi_intrs = 1;
2757 ret = pci_enable_msi(ar_pci->pdev);
2758 if (ret == 0)
2759 return 0;
2760
2761 /* fall-through */
2762 }
2763
2764 /* Try legacy irq
2765 *
2766 * A potential race occurs here: The CORE_BASE write
2767 * depends on target correctly decoding AXI address but
2768 * host won't know when target writes BAR to CORE_CTRL.
2769 * This write might get lost if target has NOT written BAR.
2770 * For now, fix the race by repeating the write in below
2771 * synchronization checking. */
2772 ar_pci->num_msi_intrs = 0;
2773
2774 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2775 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2776
2777 return 0;
2778 }
2779
ath10k_pci_deinit_irq_legacy(struct ath10k * ar)2780 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2781 {
2782 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2783 0);
2784 }
2785
ath10k_pci_deinit_irq(struct ath10k * ar)2786 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2787 {
2788 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2789
2790 switch (ar_pci->num_msi_intrs) {
2791 case 0:
2792 ath10k_pci_deinit_irq_legacy(ar);
2793 break;
2794 default:
2795 pci_disable_msi(ar_pci->pdev);
2796 break;
2797 }
2798
2799 return 0;
2800 }
2801
ath10k_pci_wait_for_target_init(struct ath10k * ar)2802 static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2803 {
2804 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2805 unsigned long timeout;
2806 u32 val;
2807
2808 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2809
2810 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2811
2812 do {
2813 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2814
2815 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2816 val);
2817
2818 /* target should never return this */
2819 if (val == 0xffffffff)
2820 continue;
2821
2822 /* the device has crashed so don't bother trying anymore */
2823 if (val & FW_IND_EVENT_PENDING)
2824 break;
2825
2826 if (val & FW_IND_INITIALIZED)
2827 break;
2828
2829 if (ar_pci->num_msi_intrs == 0)
2830 /* Fix potential race by repeating CORE_BASE writes */
2831 ath10k_pci_enable_legacy_irq(ar);
2832
2833 mdelay(10);
2834 } while (time_before(jiffies, timeout));
2835
2836 ath10k_pci_disable_and_clear_legacy_irq(ar);
2837 ath10k_pci_irq_msi_fw_mask(ar);
2838
2839 if (val == 0xffffffff) {
2840 ath10k_err(ar, "failed to read device register, device is gone\n");
2841 return -EIO;
2842 }
2843
2844 if (val & FW_IND_EVENT_PENDING) {
2845 ath10k_warn(ar, "device has crashed during init\n");
2846 return -ECOMM;
2847 }
2848
2849 if (!(val & FW_IND_INITIALIZED)) {
2850 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2851 val);
2852 return -ETIMEDOUT;
2853 }
2854
2855 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2856 return 0;
2857 }
2858
ath10k_pci_cold_reset(struct ath10k * ar)2859 static int ath10k_pci_cold_reset(struct ath10k *ar)
2860 {
2861 u32 val;
2862
2863 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2864
2865 spin_lock_bh(&ar->data_lock);
2866
2867 ar->stats.fw_cold_reset_counter++;
2868
2869 spin_unlock_bh(&ar->data_lock);
2870
2871 /* Put Target, including PCIe, into RESET. */
2872 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2873 val |= 1;
2874 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2875
2876 /* After writing into SOC_GLOBAL_RESET to put device into
2877 * reset and pulling out of reset pcie may not be stable
2878 * for any immediate pcie register access and cause bus error,
2879 * add delay before any pcie access request to fix this issue.
2880 */
2881 msleep(20);
2882
2883 /* Pull Target, including PCIe, out of RESET. */
2884 val &= ~1;
2885 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2886
2887 msleep(20);
2888
2889 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2890
2891 return 0;
2892 }
2893
ath10k_pci_claim(struct ath10k * ar)2894 static int ath10k_pci_claim(struct ath10k *ar)
2895 {
2896 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2897 struct pci_dev *pdev = ar_pci->pdev;
2898 int ret;
2899
2900 pci_set_drvdata(pdev, ar);
2901
2902 ret = pci_enable_device(pdev);
2903 if (ret) {
2904 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2905 return ret;
2906 }
2907
2908 ret = pci_request_region(pdev, BAR_NUM, "ath");
2909 if (ret) {
2910 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2911 ret);
2912 goto err_device;
2913 }
2914
2915 /* Target expects 32 bit DMA. Enforce it. */
2916 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2917 if (ret) {
2918 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2919 goto err_region;
2920 }
2921
2922 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2923 if (ret) {
2924 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2925 ret);
2926 goto err_region;
2927 }
2928
2929 pci_set_master(pdev);
2930
2931 /* Arrange for access to Target SoC registers. */
2932 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
2933 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2934 if (!ar_pci->mem) {
2935 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2936 ret = -EIO;
2937 goto err_master;
2938 }
2939
2940 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2941 return 0;
2942
2943 err_master:
2944 pci_clear_master(pdev);
2945
2946 err_region:
2947 pci_release_region(pdev, BAR_NUM);
2948
2949 err_device:
2950 pci_disable_device(pdev);
2951
2952 return ret;
2953 }
2954
ath10k_pci_release(struct ath10k * ar)2955 static void ath10k_pci_release(struct ath10k *ar)
2956 {
2957 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2958 struct pci_dev *pdev = ar_pci->pdev;
2959
2960 pci_iounmap(pdev, ar_pci->mem);
2961 pci_release_region(pdev, BAR_NUM);
2962 pci_clear_master(pdev);
2963 pci_disable_device(pdev);
2964 }
2965
ath10k_pci_chip_is_supported(u32 dev_id,u32 chip_id)2966 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
2967 {
2968 const struct ath10k_pci_supp_chip *supp_chip;
2969 int i;
2970 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
2971
2972 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
2973 supp_chip = &ath10k_pci_supp_chips[i];
2974
2975 if (supp_chip->dev_id == dev_id &&
2976 supp_chip->rev_id == rev_id)
2977 return true;
2978 }
2979
2980 return false;
2981 }
2982
ath10k_pci_probe(struct pci_dev * pdev,const struct pci_device_id * pci_dev)2983 static int ath10k_pci_probe(struct pci_dev *pdev,
2984 const struct pci_device_id *pci_dev)
2985 {
2986 int ret = 0;
2987 struct ath10k *ar;
2988 struct ath10k_pci *ar_pci;
2989 enum ath10k_hw_rev hw_rev;
2990 u32 chip_id;
2991 bool pci_ps;
2992
2993 switch (pci_dev->device) {
2994 case QCA988X_2_0_DEVICE_ID:
2995 hw_rev = ATH10K_HW_QCA988X;
2996 pci_ps = false;
2997 break;
2998 case QCA6164_2_1_DEVICE_ID:
2999 case QCA6174_2_1_DEVICE_ID:
3000 hw_rev = ATH10K_HW_QCA6174;
3001 pci_ps = true;
3002 break;
3003 case QCA99X0_2_0_DEVICE_ID:
3004 hw_rev = ATH10K_HW_QCA99X0;
3005 pci_ps = false;
3006 break;
3007 case QCA9377_1_0_DEVICE_ID:
3008 hw_rev = ATH10K_HW_QCA9377;
3009 pci_ps = true;
3010 break;
3011 default:
3012 WARN_ON(1);
3013 return -ENOTSUPP;
3014 }
3015
3016 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3017 hw_rev, &ath10k_pci_hif_ops);
3018 if (!ar) {
3019 dev_err(&pdev->dev, "failed to allocate core\n");
3020 return -ENOMEM;
3021 }
3022
3023 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3024 pdev->vendor, pdev->device,
3025 pdev->subsystem_vendor, pdev->subsystem_device);
3026
3027 ar_pci = ath10k_pci_priv(ar);
3028 ar_pci->pdev = pdev;
3029 ar_pci->dev = &pdev->dev;
3030 ar_pci->ar = ar;
3031 ar->dev_id = pci_dev->device;
3032 ar_pci->pci_ps = pci_ps;
3033
3034 ar->id.vendor = pdev->vendor;
3035 ar->id.device = pdev->device;
3036 ar->id.subsystem_vendor = pdev->subsystem_vendor;
3037 ar->id.subsystem_device = pdev->subsystem_device;
3038
3039 spin_lock_init(&ar_pci->ce_lock);
3040 spin_lock_init(&ar_pci->ps_lock);
3041
3042 setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3043 (unsigned long)ar);
3044 setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3045 (unsigned long)ar);
3046
3047 ret = ath10k_pci_claim(ar);
3048 if (ret) {
3049 ath10k_err(ar, "failed to claim device: %d\n", ret);
3050 goto err_core_destroy;
3051 }
3052
3053 if (QCA_REV_6174(ar))
3054 ath10k_pci_override_ce_config(ar);
3055
3056 ret = ath10k_pci_alloc_pipes(ar);
3057 if (ret) {
3058 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3059 ret);
3060 goto err_sleep;
3061 }
3062
3063 ath10k_pci_ce_deinit(ar);
3064 ath10k_pci_irq_disable(ar);
3065
3066 if (ar_pci->pci_ps == 0) {
3067 ret = ath10k_pci_force_wake(ar);
3068 if (ret) {
3069 ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3070 goto err_free_pipes;
3071 }
3072 }
3073
3074 ret = ath10k_pci_init_irq(ar);
3075 if (ret) {
3076 ath10k_err(ar, "failed to init irqs: %d\n", ret);
3077 goto err_free_pipes;
3078 }
3079
3080 ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
3081 ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
3082 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3083
3084 ret = ath10k_pci_request_irq(ar);
3085 if (ret) {
3086 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3087 goto err_deinit_irq;
3088 }
3089
3090 ret = ath10k_pci_chip_reset(ar);
3091 if (ret) {
3092 ath10k_err(ar, "failed to reset chip: %d\n", ret);
3093 goto err_free_irq;
3094 }
3095
3096 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3097 if (chip_id == 0xffffffff) {
3098 ath10k_err(ar, "failed to get chip id\n");
3099 goto err_free_irq;
3100 }
3101
3102 if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3103 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3104 pdev->device, chip_id);
3105 goto err_free_irq;
3106 }
3107
3108 ret = ath10k_core_register(ar, chip_id);
3109 if (ret) {
3110 ath10k_err(ar, "failed to register driver core: %d\n", ret);
3111 goto err_free_irq;
3112 }
3113
3114 return 0;
3115
3116 err_free_irq:
3117 ath10k_pci_free_irq(ar);
3118 ath10k_pci_kill_tasklet(ar);
3119
3120 err_deinit_irq:
3121 ath10k_pci_deinit_irq(ar);
3122
3123 err_free_pipes:
3124 ath10k_pci_free_pipes(ar);
3125
3126 err_sleep:
3127 ath10k_pci_sleep_sync(ar);
3128 ath10k_pci_release(ar);
3129
3130 err_core_destroy:
3131 ath10k_core_destroy(ar);
3132
3133 return ret;
3134 }
3135
ath10k_pci_remove(struct pci_dev * pdev)3136 static void ath10k_pci_remove(struct pci_dev *pdev)
3137 {
3138 struct ath10k *ar = pci_get_drvdata(pdev);
3139 struct ath10k_pci *ar_pci;
3140
3141 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3142
3143 if (!ar)
3144 return;
3145
3146 ar_pci = ath10k_pci_priv(ar);
3147
3148 if (!ar_pci)
3149 return;
3150
3151 ath10k_core_unregister(ar);
3152 ath10k_pci_free_irq(ar);
3153 ath10k_pci_kill_tasklet(ar);
3154 ath10k_pci_deinit_irq(ar);
3155 ath10k_pci_ce_deinit(ar);
3156 ath10k_pci_free_pipes(ar);
3157 ath10k_pci_sleep_sync(ar);
3158 ath10k_pci_release(ar);
3159 ath10k_core_destroy(ar);
3160 }
3161
3162 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3163
3164 static struct pci_driver ath10k_pci_driver = {
3165 .name = "ath10k_pci",
3166 .id_table = ath10k_pci_id_table,
3167 .probe = ath10k_pci_probe,
3168 .remove = ath10k_pci_remove,
3169 };
3170
ath10k_pci_init(void)3171 static int __init ath10k_pci_init(void)
3172 {
3173 int ret;
3174
3175 ret = pci_register_driver(&ath10k_pci_driver);
3176 if (ret)
3177 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3178 ret);
3179
3180 return ret;
3181 }
3182 module_init(ath10k_pci_init);
3183
ath10k_pci_exit(void)3184 static void __exit ath10k_pci_exit(void)
3185 {
3186 pci_unregister_driver(&ath10k_pci_driver);
3187 }
3188
3189 module_exit(ath10k_pci_exit);
3190
3191 MODULE_AUTHOR("Qualcomm Atheros");
3192 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
3193 MODULE_LICENSE("Dual BSD/GPL");
3194
3195 /* QCA988x 2.0 firmware files */
3196 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
3197 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3198 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3199 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3200 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3201 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3202 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3203
3204 /* QCA6174 2.1 firmware files */
3205 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3206 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3207 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3208 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3209
3210 /* QCA6174 3.1 firmware files */
3211 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3212 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3213 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3214 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3215
3216 /* QCA9377 1.0 firmware files */
3217 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3218 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3219