1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure to hold primary network stats for which
98  * we want to use 64 bit storage.  Other network stats
99  * are stored in dev->stats of the ppp strucute.
100  */
101 struct ppp_link_stats {
102 	u64 rx_packets;
103 	u64 tx_packets;
104 	u64 rx_bytes;
105 	u64 tx_bytes;
106 };
107 
108 /*
109  * Data structure describing one ppp unit.
110  * A ppp unit corresponds to a ppp network interface device
111  * and represents a multilink bundle.
112  * It can have 0 or more ppp channels connected to it.
113  */
114 struct ppp {
115 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
116 	struct file	*owner;		/* file that owns this unit 48 */
117 	struct list_head channels;	/* list of attached channels 4c */
118 	int		n_channels;	/* how many channels are attached 54 */
119 	spinlock_t	rlock;		/* lock for receive side 58 */
120 	spinlock_t	wlock;		/* lock for transmit side 5c */
121 	int		mru;		/* max receive unit 60 */
122 	unsigned int	flags;		/* control bits 64 */
123 	unsigned int	xstate;		/* transmit state bits 68 */
124 	unsigned int	rstate;		/* receive state bits 6c */
125 	int		debug;		/* debug flags 70 */
126 	struct slcompress *vj;		/* state for VJ header compression */
127 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
128 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
129 	struct compressor *xcomp;	/* transmit packet compressor 8c */
130 	void		*xc_state;	/* its internal state 90 */
131 	struct compressor *rcomp;	/* receive decompressor 94 */
132 	void		*rc_state;	/* its internal state 98 */
133 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
134 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
135 	struct net_device *dev;		/* network interface device a4 */
136 	int		closing;	/* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 	int		nxchan;		/* next channel to send something on */
139 	u32		nxseq;		/* next sequence number to send */
140 	int		mrru;		/* MP: max reconst. receive unit */
141 	u32		nextseq;	/* MP: seq no of next packet */
142 	u32		minseq;		/* MP: min of most recent seqnos */
143 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
147 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
148 #endif /* CONFIG_PPP_FILTER */
149 	struct net	*ppp_net;	/* the net we belong to */
150 	struct ppp_link_stats stats64;	/* 64 bit network stats */
151 };
152 
153 /*
154  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156  * SC_MUST_COMP
157  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158  * Bits in xstate: SC_COMP_RUN
159  */
160 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163 
164 /*
165  * Private data structure for each channel.
166  * This includes the data structure used for multilink.
167  */
168 struct channel {
169 	struct ppp_file	file;		/* stuff for read/write/poll */
170 	struct list_head list;		/* link in all/new_channels list */
171 	struct ppp_channel *chan;	/* public channel data structure */
172 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
173 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
174 	struct ppp	*ppp;		/* ppp unit we're connected to */
175 	struct net	*chan_net;	/* the net channel belongs to */
176 	struct list_head clist;		/* link in list of channels per unit */
177 	rwlock_t	upl;		/* protects `ppp' */
178 #ifdef CONFIG_PPP_MULTILINK
179 	u8		avail;		/* flag used in multilink stuff */
180 	u8		had_frag;	/* >= 1 fragments have been sent */
181 	u32		lastseq;	/* MP: last sequence # received */
182 	int		speed;		/* speed of the corresponding ppp channel*/
183 #endif /* CONFIG_PPP_MULTILINK */
184 };
185 
186 /*
187  * SMP locking issues:
188  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189  * list and the ppp.n_channels field, you need to take both locks
190  * before you modify them.
191  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192  * channel.downl.
193  */
194 
195 static DEFINE_MUTEX(ppp_mutex);
196 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197 static atomic_t channel_count = ATOMIC_INIT(0);
198 
199 /* per-net private data for this module */
200 static int ppp_net_id __read_mostly;
201 struct ppp_net {
202 	/* units to ppp mapping */
203 	struct idr units_idr;
204 
205 	/*
206 	 * all_ppp_mutex protects the units_idr mapping.
207 	 * It also ensures that finding a ppp unit in the units_idr
208 	 * map and updating its file.refcnt field is atomic.
209 	 */
210 	struct mutex all_ppp_mutex;
211 
212 	/* channels */
213 	struct list_head all_channels;
214 	struct list_head new_channels;
215 	int last_channel_index;
216 
217 	/*
218 	 * all_channels_lock protects all_channels and
219 	 * last_channel_index, and the atomicity of find
220 	 * a channel and updating its file.refcnt field.
221 	 */
222 	spinlock_t all_channels_lock;
223 };
224 
225 /* Get the PPP protocol number from a skb */
226 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
227 
228 /* We limit the length of ppp->file.rq to this (arbitrary) value */
229 #define PPP_MAX_RQLEN	32
230 
231 /*
232  * Maximum number of multilink fragments queued up.
233  * This has to be large enough to cope with the maximum latency of
234  * the slowest channel relative to the others.  Strictly it should
235  * depend on the number of channels and their characteristics.
236  */
237 #define PPP_MP_MAX_QLEN	128
238 
239 /* Multilink header bits. */
240 #define B	0x80		/* this fragment begins a packet */
241 #define E	0x40		/* this fragment ends a packet */
242 
243 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
245 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
246 
247 /* Prototypes. */
248 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249 			struct file *file, unsigned int cmd, unsigned long arg);
250 static void ppp_xmit_process(struct ppp *ppp);
251 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252 static void ppp_push(struct ppp *ppp);
253 static void ppp_channel_push(struct channel *pch);
254 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255 			      struct channel *pch);
256 static void ppp_receive_error(struct ppp *ppp);
257 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259 					    struct sk_buff *skb);
260 #ifdef CONFIG_PPP_MULTILINK
261 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262 				struct channel *pch);
263 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266 #endif /* CONFIG_PPP_MULTILINK */
267 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269 static void ppp_ccp_closed(struct ppp *ppp);
270 static struct compressor *find_compressor(int type);
271 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272 static struct ppp *ppp_create_interface(struct net *net, int unit,
273 					struct file *file, int *retp);
274 static void init_ppp_file(struct ppp_file *pf, int kind);
275 static void ppp_destroy_interface(struct ppp *ppp);
276 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278 static int ppp_connect_channel(struct channel *pch, int unit);
279 static int ppp_disconnect_channel(struct channel *pch);
280 static void ppp_destroy_channel(struct channel *pch);
281 static int unit_get(struct idr *p, void *ptr);
282 static int unit_set(struct idr *p, void *ptr, int n);
283 static void unit_put(struct idr *p, int n);
284 static void *unit_find(struct idr *p, int n);
285 
286 static const struct net_device_ops ppp_netdev_ops;
287 
288 static struct class *ppp_class;
289 
290 /* per net-namespace data */
ppp_pernet(struct net * net)291 static inline struct ppp_net *ppp_pernet(struct net *net)
292 {
293 	BUG_ON(!net);
294 
295 	return net_generic(net, ppp_net_id);
296 }
297 
298 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
proto_to_npindex(int proto)299 static inline int proto_to_npindex(int proto)
300 {
301 	switch (proto) {
302 	case PPP_IP:
303 		return NP_IP;
304 	case PPP_IPV6:
305 		return NP_IPV6;
306 	case PPP_IPX:
307 		return NP_IPX;
308 	case PPP_AT:
309 		return NP_AT;
310 	case PPP_MPLS_UC:
311 		return NP_MPLS_UC;
312 	case PPP_MPLS_MC:
313 		return NP_MPLS_MC;
314 	}
315 	return -EINVAL;
316 }
317 
318 /* Translates an NP index into a PPP protocol number */
319 static const int npindex_to_proto[NUM_NP] = {
320 	PPP_IP,
321 	PPP_IPV6,
322 	PPP_IPX,
323 	PPP_AT,
324 	PPP_MPLS_UC,
325 	PPP_MPLS_MC,
326 };
327 
328 /* Translates an ethertype into an NP index */
ethertype_to_npindex(int ethertype)329 static inline int ethertype_to_npindex(int ethertype)
330 {
331 	switch (ethertype) {
332 	case ETH_P_IP:
333 		return NP_IP;
334 	case ETH_P_IPV6:
335 		return NP_IPV6;
336 	case ETH_P_IPX:
337 		return NP_IPX;
338 	case ETH_P_PPPTALK:
339 	case ETH_P_ATALK:
340 		return NP_AT;
341 	case ETH_P_MPLS_UC:
342 		return NP_MPLS_UC;
343 	case ETH_P_MPLS_MC:
344 		return NP_MPLS_MC;
345 	}
346 	return -1;
347 }
348 
349 /* Translates an NP index into an ethertype */
350 static const int npindex_to_ethertype[NUM_NP] = {
351 	ETH_P_IP,
352 	ETH_P_IPV6,
353 	ETH_P_IPX,
354 	ETH_P_PPPTALK,
355 	ETH_P_MPLS_UC,
356 	ETH_P_MPLS_MC,
357 };
358 
359 /*
360  * Locking shorthand.
361  */
362 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
363 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
364 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
365 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
366 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
367 				     ppp_recv_lock(ppp); } while (0)
368 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
369 				     ppp_xmit_unlock(ppp); } while (0)
370 
371 /*
372  * /dev/ppp device routines.
373  * The /dev/ppp device is used by pppd to control the ppp unit.
374  * It supports the read, write, ioctl and poll functions.
375  * Open instances of /dev/ppp can be in one of three states:
376  * unattached, attached to a ppp unit, or attached to a ppp channel.
377  */
ppp_open(struct inode * inode,struct file * file)378 static int ppp_open(struct inode *inode, struct file *file)
379 {
380 	/*
381 	 * This could (should?) be enforced by the permissions on /dev/ppp.
382 	 */
383 	if (!capable(CAP_NET_ADMIN))
384 		return -EPERM;
385 	return 0;
386 }
387 
ppp_release(struct inode * unused,struct file * file)388 static int ppp_release(struct inode *unused, struct file *file)
389 {
390 	struct ppp_file *pf = file->private_data;
391 	struct ppp *ppp;
392 
393 	if (pf) {
394 		file->private_data = NULL;
395 		if (pf->kind == INTERFACE) {
396 			ppp = PF_TO_PPP(pf);
397 			rtnl_lock();
398 			if (file == ppp->owner)
399 				unregister_netdevice(ppp->dev);
400 			rtnl_unlock();
401 		}
402 		if (atomic_dec_and_test(&pf->refcnt)) {
403 			switch (pf->kind) {
404 			case INTERFACE:
405 				ppp_destroy_interface(PF_TO_PPP(pf));
406 				break;
407 			case CHANNEL:
408 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
409 				break;
410 			}
411 		}
412 	}
413 	return 0;
414 }
415 
ppp_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)416 static ssize_t ppp_read(struct file *file, char __user *buf,
417 			size_t count, loff_t *ppos)
418 {
419 	struct ppp_file *pf = file->private_data;
420 	DECLARE_WAITQUEUE(wait, current);
421 	ssize_t ret;
422 	struct sk_buff *skb = NULL;
423 	struct iovec iov;
424 	struct iov_iter to;
425 
426 	ret = count;
427 
428 	if (!pf)
429 		return -ENXIO;
430 	add_wait_queue(&pf->rwait, &wait);
431 	for (;;) {
432 		set_current_state(TASK_INTERRUPTIBLE);
433 		skb = skb_dequeue(&pf->rq);
434 		if (skb)
435 			break;
436 		ret = 0;
437 		if (pf->dead)
438 			break;
439 		if (pf->kind == INTERFACE) {
440 			/*
441 			 * Return 0 (EOF) on an interface that has no
442 			 * channels connected, unless it is looping
443 			 * network traffic (demand mode).
444 			 */
445 			struct ppp *ppp = PF_TO_PPP(pf);
446 			if (ppp->n_channels == 0 &&
447 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
448 				break;
449 		}
450 		ret = -EAGAIN;
451 		if (file->f_flags & O_NONBLOCK)
452 			break;
453 		ret = -ERESTARTSYS;
454 		if (signal_pending(current))
455 			break;
456 		schedule();
457 	}
458 	set_current_state(TASK_RUNNING);
459 	remove_wait_queue(&pf->rwait, &wait);
460 
461 	if (!skb)
462 		goto out;
463 
464 	ret = -EOVERFLOW;
465 	if (skb->len > count)
466 		goto outf;
467 	ret = -EFAULT;
468 	iov.iov_base = buf;
469 	iov.iov_len = count;
470 	iov_iter_init(&to, READ, &iov, 1, count);
471 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
472 		goto outf;
473 	ret = skb->len;
474 
475  outf:
476 	kfree_skb(skb);
477  out:
478 	return ret;
479 }
480 
ppp_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)481 static ssize_t ppp_write(struct file *file, const char __user *buf,
482 			 size_t count, loff_t *ppos)
483 {
484 	struct ppp_file *pf = file->private_data;
485 	struct sk_buff *skb;
486 	ssize_t ret;
487 
488 	if (!pf)
489 		return -ENXIO;
490 	ret = -ENOMEM;
491 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
492 	if (!skb)
493 		goto out;
494 	skb_reserve(skb, pf->hdrlen);
495 	ret = -EFAULT;
496 	if (copy_from_user(skb_put(skb, count), buf, count)) {
497 		kfree_skb(skb);
498 		goto out;
499 	}
500 
501 	skb_queue_tail(&pf->xq, skb);
502 
503 	switch (pf->kind) {
504 	case INTERFACE:
505 		ppp_xmit_process(PF_TO_PPP(pf));
506 		break;
507 	case CHANNEL:
508 		ppp_channel_push(PF_TO_CHANNEL(pf));
509 		break;
510 	}
511 
512 	ret = count;
513 
514  out:
515 	return ret;
516 }
517 
518 /* No kernel lock - fine */
ppp_poll(struct file * file,poll_table * wait)519 static unsigned int ppp_poll(struct file *file, poll_table *wait)
520 {
521 	struct ppp_file *pf = file->private_data;
522 	unsigned int mask;
523 
524 	if (!pf)
525 		return 0;
526 	poll_wait(file, &pf->rwait, wait);
527 	mask = POLLOUT | POLLWRNORM;
528 	if (skb_peek(&pf->rq))
529 		mask |= POLLIN | POLLRDNORM;
530 	if (pf->dead)
531 		mask |= POLLHUP;
532 	else if (pf->kind == INTERFACE) {
533 		/* see comment in ppp_read */
534 		struct ppp *ppp = PF_TO_PPP(pf);
535 		if (ppp->n_channels == 0 &&
536 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
537 			mask |= POLLIN | POLLRDNORM;
538 	}
539 
540 	return mask;
541 }
542 
543 #ifdef CONFIG_PPP_FILTER
get_filter(void __user * arg,struct sock_filter ** p)544 static int get_filter(void __user *arg, struct sock_filter **p)
545 {
546 	struct sock_fprog uprog;
547 	struct sock_filter *code = NULL;
548 	int len;
549 
550 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
551 		return -EFAULT;
552 
553 	if (!uprog.len) {
554 		*p = NULL;
555 		return 0;
556 	}
557 
558 	len = uprog.len * sizeof(struct sock_filter);
559 	code = memdup_user(uprog.filter, len);
560 	if (IS_ERR(code))
561 		return PTR_ERR(code);
562 
563 	*p = code;
564 	return uprog.len;
565 }
566 #endif /* CONFIG_PPP_FILTER */
567 
ppp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)568 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
569 {
570 	struct ppp_file *pf;
571 	struct ppp *ppp;
572 	int err = -EFAULT, val, val2, i;
573 	struct ppp_idle idle;
574 	struct npioctl npi;
575 	int unit, cflags;
576 	struct slcompress *vj;
577 	void __user *argp = (void __user *)arg;
578 	int __user *p = argp;
579 
580 	mutex_lock(&ppp_mutex);
581 
582 	pf = file->private_data;
583 	if (!pf) {
584 		err = ppp_unattached_ioctl(current->nsproxy->net_ns,
585 					   pf, file, cmd, arg);
586 		goto out;
587 	}
588 
589 	if (cmd == PPPIOCDETACH) {
590 		/*
591 		 * We have to be careful here... if the file descriptor
592 		 * has been dup'd, we could have another process in the
593 		 * middle of a poll using the same file *, so we had
594 		 * better not free the interface data structures -
595 		 * instead we fail the ioctl.  Even in this case, we
596 		 * shut down the interface if we are the owner of it.
597 		 * Actually, we should get rid of PPPIOCDETACH, userland
598 		 * (i.e. pppd) could achieve the same effect by closing
599 		 * this fd and reopening /dev/ppp.
600 		 */
601 		err = -EINVAL;
602 		if (pf->kind == INTERFACE) {
603 			ppp = PF_TO_PPP(pf);
604 			rtnl_lock();
605 			if (file == ppp->owner)
606 				unregister_netdevice(ppp->dev);
607 			rtnl_unlock();
608 		}
609 		if (atomic_long_read(&file->f_count) < 2) {
610 			ppp_release(NULL, file);
611 			err = 0;
612 		} else
613 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
614 				atomic_long_read(&file->f_count));
615 		goto out;
616 	}
617 
618 	if (pf->kind == CHANNEL) {
619 		struct channel *pch;
620 		struct ppp_channel *chan;
621 
622 		pch = PF_TO_CHANNEL(pf);
623 
624 		switch (cmd) {
625 		case PPPIOCCONNECT:
626 			if (get_user(unit, p))
627 				break;
628 			err = ppp_connect_channel(pch, unit);
629 			break;
630 
631 		case PPPIOCDISCONN:
632 			err = ppp_disconnect_channel(pch);
633 			break;
634 
635 		default:
636 			down_read(&pch->chan_sem);
637 			chan = pch->chan;
638 			err = -ENOTTY;
639 			if (chan && chan->ops->ioctl)
640 				err = chan->ops->ioctl(chan, cmd, arg);
641 			up_read(&pch->chan_sem);
642 		}
643 		goto out;
644 	}
645 
646 	if (pf->kind != INTERFACE) {
647 		/* can't happen */
648 		pr_err("PPP: not interface or channel??\n");
649 		err = -EINVAL;
650 		goto out;
651 	}
652 
653 	ppp = PF_TO_PPP(pf);
654 	switch (cmd) {
655 	case PPPIOCSMRU:
656 		if (get_user(val, p))
657 			break;
658 		ppp->mru = val;
659 		err = 0;
660 		break;
661 
662 	case PPPIOCSFLAGS:
663 		if (get_user(val, p))
664 			break;
665 		ppp_lock(ppp);
666 		cflags = ppp->flags & ~val;
667 #ifdef CONFIG_PPP_MULTILINK
668 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
669 			ppp->nextseq = 0;
670 #endif
671 		ppp->flags = val & SC_FLAG_BITS;
672 		ppp_unlock(ppp);
673 		if (cflags & SC_CCP_OPEN)
674 			ppp_ccp_closed(ppp);
675 		err = 0;
676 		break;
677 
678 	case PPPIOCGFLAGS:
679 		val = ppp->flags | ppp->xstate | ppp->rstate;
680 		if (put_user(val, p))
681 			break;
682 		err = 0;
683 		break;
684 
685 	case PPPIOCSCOMPRESS:
686 		err = ppp_set_compress(ppp, arg);
687 		break;
688 
689 	case PPPIOCGUNIT:
690 		if (put_user(ppp->file.index, p))
691 			break;
692 		err = 0;
693 		break;
694 
695 	case PPPIOCSDEBUG:
696 		if (get_user(val, p))
697 			break;
698 		ppp->debug = val;
699 		err = 0;
700 		break;
701 
702 	case PPPIOCGDEBUG:
703 		if (put_user(ppp->debug, p))
704 			break;
705 		err = 0;
706 		break;
707 
708 	case PPPIOCGIDLE:
709 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
710 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
711 		if (copy_to_user(argp, &idle, sizeof(idle)))
712 			break;
713 		err = 0;
714 		break;
715 
716 	case PPPIOCSMAXCID:
717 		if (get_user(val, p))
718 			break;
719 		val2 = 15;
720 		if ((val >> 16) != 0) {
721 			val2 = val >> 16;
722 			val &= 0xffff;
723 		}
724 		vj = slhc_init(val2+1, val+1);
725 		if (IS_ERR(vj)) {
726 			err = PTR_ERR(vj);
727 			break;
728 		}
729 		ppp_lock(ppp);
730 		if (ppp->vj)
731 			slhc_free(ppp->vj);
732 		ppp->vj = vj;
733 		ppp_unlock(ppp);
734 		err = 0;
735 		break;
736 
737 	case PPPIOCGNPMODE:
738 	case PPPIOCSNPMODE:
739 		if (copy_from_user(&npi, argp, sizeof(npi)))
740 			break;
741 		err = proto_to_npindex(npi.protocol);
742 		if (err < 0)
743 			break;
744 		i = err;
745 		if (cmd == PPPIOCGNPMODE) {
746 			err = -EFAULT;
747 			npi.mode = ppp->npmode[i];
748 			if (copy_to_user(argp, &npi, sizeof(npi)))
749 				break;
750 		} else {
751 			ppp->npmode[i] = npi.mode;
752 			/* we may be able to transmit more packets now (??) */
753 			netif_wake_queue(ppp->dev);
754 		}
755 		err = 0;
756 		break;
757 
758 #ifdef CONFIG_PPP_FILTER
759 	case PPPIOCSPASS:
760 	{
761 		struct sock_filter *code;
762 
763 		err = get_filter(argp, &code);
764 		if (err >= 0) {
765 			struct bpf_prog *pass_filter = NULL;
766 			struct sock_fprog_kern fprog = {
767 				.len = err,
768 				.filter = code,
769 			};
770 
771 			err = 0;
772 			if (fprog.filter)
773 				err = bpf_prog_create(&pass_filter, &fprog);
774 			if (!err) {
775 				ppp_lock(ppp);
776 				if (ppp->pass_filter)
777 					bpf_prog_destroy(ppp->pass_filter);
778 				ppp->pass_filter = pass_filter;
779 				ppp_unlock(ppp);
780 			}
781 			kfree(code);
782 		}
783 		break;
784 	}
785 	case PPPIOCSACTIVE:
786 	{
787 		struct sock_filter *code;
788 
789 		err = get_filter(argp, &code);
790 		if (err >= 0) {
791 			struct bpf_prog *active_filter = NULL;
792 			struct sock_fprog_kern fprog = {
793 				.len = err,
794 				.filter = code,
795 			};
796 
797 			err = 0;
798 			if (fprog.filter)
799 				err = bpf_prog_create(&active_filter, &fprog);
800 			if (!err) {
801 				ppp_lock(ppp);
802 				if (ppp->active_filter)
803 					bpf_prog_destroy(ppp->active_filter);
804 				ppp->active_filter = active_filter;
805 				ppp_unlock(ppp);
806 			}
807 			kfree(code);
808 		}
809 		break;
810 	}
811 #endif /* CONFIG_PPP_FILTER */
812 
813 #ifdef CONFIG_PPP_MULTILINK
814 	case PPPIOCSMRRU:
815 		if (get_user(val, p))
816 			break;
817 		ppp_recv_lock(ppp);
818 		ppp->mrru = val;
819 		ppp_recv_unlock(ppp);
820 		err = 0;
821 		break;
822 #endif /* CONFIG_PPP_MULTILINK */
823 
824 	default:
825 		err = -ENOTTY;
826 	}
827 
828 out:
829 	mutex_unlock(&ppp_mutex);
830 
831 	return err;
832 }
833 
ppp_unattached_ioctl(struct net * net,struct ppp_file * pf,struct file * file,unsigned int cmd,unsigned long arg)834 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
835 			struct file *file, unsigned int cmd, unsigned long arg)
836 {
837 	int unit, err = -EFAULT;
838 	struct ppp *ppp;
839 	struct channel *chan;
840 	struct ppp_net *pn;
841 	int __user *p = (int __user *)arg;
842 
843 	switch (cmd) {
844 	case PPPIOCNEWUNIT:
845 		/* Create a new ppp unit */
846 		if (get_user(unit, p))
847 			break;
848 		ppp = ppp_create_interface(net, unit, file, &err);
849 		if (!ppp)
850 			break;
851 		file->private_data = &ppp->file;
852 		err = -EFAULT;
853 		if (put_user(ppp->file.index, p))
854 			break;
855 		err = 0;
856 		break;
857 
858 	case PPPIOCATTACH:
859 		/* Attach to an existing ppp unit */
860 		if (get_user(unit, p))
861 			break;
862 		err = -ENXIO;
863 		pn = ppp_pernet(net);
864 		mutex_lock(&pn->all_ppp_mutex);
865 		ppp = ppp_find_unit(pn, unit);
866 		if (ppp) {
867 			atomic_inc(&ppp->file.refcnt);
868 			file->private_data = &ppp->file;
869 			err = 0;
870 		}
871 		mutex_unlock(&pn->all_ppp_mutex);
872 		break;
873 
874 	case PPPIOCATTCHAN:
875 		if (get_user(unit, p))
876 			break;
877 		err = -ENXIO;
878 		pn = ppp_pernet(net);
879 		spin_lock_bh(&pn->all_channels_lock);
880 		chan = ppp_find_channel(pn, unit);
881 		if (chan) {
882 			atomic_inc(&chan->file.refcnt);
883 			file->private_data = &chan->file;
884 			err = 0;
885 		}
886 		spin_unlock_bh(&pn->all_channels_lock);
887 		break;
888 
889 	default:
890 		err = -ENOTTY;
891 	}
892 
893 	return err;
894 }
895 
896 static const struct file_operations ppp_device_fops = {
897 	.owner		= THIS_MODULE,
898 	.read		= ppp_read,
899 	.write		= ppp_write,
900 	.poll		= ppp_poll,
901 	.unlocked_ioctl	= ppp_ioctl,
902 	.open		= ppp_open,
903 	.release	= ppp_release,
904 	.llseek		= noop_llseek,
905 };
906 
ppp_init_net(struct net * net)907 static __net_init int ppp_init_net(struct net *net)
908 {
909 	struct ppp_net *pn = net_generic(net, ppp_net_id);
910 
911 	idr_init(&pn->units_idr);
912 	mutex_init(&pn->all_ppp_mutex);
913 
914 	INIT_LIST_HEAD(&pn->all_channels);
915 	INIT_LIST_HEAD(&pn->new_channels);
916 
917 	spin_lock_init(&pn->all_channels_lock);
918 
919 	return 0;
920 }
921 
ppp_exit_net(struct net * net)922 static __net_exit void ppp_exit_net(struct net *net)
923 {
924 	struct ppp_net *pn = net_generic(net, ppp_net_id);
925 	struct net_device *dev;
926 	struct net_device *aux;
927 	struct ppp *ppp;
928 	LIST_HEAD(list);
929 	int id;
930 
931 	rtnl_lock();
932 	for_each_netdev_safe(net, dev, aux) {
933 		if (dev->netdev_ops == &ppp_netdev_ops)
934 			unregister_netdevice_queue(dev, &list);
935 	}
936 
937 	idr_for_each_entry(&pn->units_idr, ppp, id)
938 		/* Skip devices already unregistered by previous loop */
939 		if (!net_eq(dev_net(ppp->dev), net))
940 			unregister_netdevice_queue(ppp->dev, &list);
941 
942 	unregister_netdevice_many(&list);
943 	rtnl_unlock();
944 
945 	idr_destroy(&pn->units_idr);
946 }
947 
948 static struct pernet_operations ppp_net_ops = {
949 	.init = ppp_init_net,
950 	.exit = ppp_exit_net,
951 	.id   = &ppp_net_id,
952 	.size = sizeof(struct ppp_net),
953 };
954 
955 #define PPP_MAJOR	108
956 
957 /* Called at boot time if ppp is compiled into the kernel,
958    or at module load time (from init_module) if compiled as a module. */
ppp_init(void)959 static int __init ppp_init(void)
960 {
961 	int err;
962 
963 	pr_info("PPP generic driver version " PPP_VERSION "\n");
964 
965 	err = register_pernet_device(&ppp_net_ops);
966 	if (err) {
967 		pr_err("failed to register PPP pernet device (%d)\n", err);
968 		goto out;
969 	}
970 
971 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
972 	if (err) {
973 		pr_err("failed to register PPP device (%d)\n", err);
974 		goto out_net;
975 	}
976 
977 	ppp_class = class_create(THIS_MODULE, "ppp");
978 	if (IS_ERR(ppp_class)) {
979 		err = PTR_ERR(ppp_class);
980 		goto out_chrdev;
981 	}
982 
983 	/* not a big deal if we fail here :-) */
984 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
985 
986 	return 0;
987 
988 out_chrdev:
989 	unregister_chrdev(PPP_MAJOR, "ppp");
990 out_net:
991 	unregister_pernet_device(&ppp_net_ops);
992 out:
993 	return err;
994 }
995 
996 /*
997  * Network interface unit routines.
998  */
999 static netdev_tx_t
ppp_start_xmit(struct sk_buff * skb,struct net_device * dev)1000 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
1001 {
1002 	struct ppp *ppp = netdev_priv(dev);
1003 	int npi, proto;
1004 	unsigned char *pp;
1005 
1006 	npi = ethertype_to_npindex(ntohs(skb->protocol));
1007 	if (npi < 0)
1008 		goto outf;
1009 
1010 	/* Drop, accept or reject the packet */
1011 	switch (ppp->npmode[npi]) {
1012 	case NPMODE_PASS:
1013 		break;
1014 	case NPMODE_QUEUE:
1015 		/* it would be nice to have a way to tell the network
1016 		   system to queue this one up for later. */
1017 		goto outf;
1018 	case NPMODE_DROP:
1019 	case NPMODE_ERROR:
1020 		goto outf;
1021 	}
1022 
1023 	/* Put the 2-byte PPP protocol number on the front,
1024 	   making sure there is room for the address and control fields. */
1025 	if (skb_cow_head(skb, PPP_HDRLEN))
1026 		goto outf;
1027 
1028 	pp = skb_push(skb, 2);
1029 	proto = npindex_to_proto[npi];
1030 	put_unaligned_be16(proto, pp);
1031 
1032 	skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1033 	skb_queue_tail(&ppp->file.xq, skb);
1034 	ppp_xmit_process(ppp);
1035 	return NETDEV_TX_OK;
1036 
1037  outf:
1038 	kfree_skb(skb);
1039 	++dev->stats.tx_dropped;
1040 	return NETDEV_TX_OK;
1041 }
1042 
1043 static int
ppp_net_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1044 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1045 {
1046 	struct ppp *ppp = netdev_priv(dev);
1047 	int err = -EFAULT;
1048 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1049 	struct ppp_stats stats;
1050 	struct ppp_comp_stats cstats;
1051 	char *vers;
1052 
1053 	switch (cmd) {
1054 	case SIOCGPPPSTATS:
1055 		ppp_get_stats(ppp, &stats);
1056 		if (copy_to_user(addr, &stats, sizeof(stats)))
1057 			break;
1058 		err = 0;
1059 		break;
1060 
1061 	case SIOCGPPPCSTATS:
1062 		memset(&cstats, 0, sizeof(cstats));
1063 		if (ppp->xc_state)
1064 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1065 		if (ppp->rc_state)
1066 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1067 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1068 			break;
1069 		err = 0;
1070 		break;
1071 
1072 	case SIOCGPPPVER:
1073 		vers = PPP_VERSION;
1074 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1075 			break;
1076 		err = 0;
1077 		break;
1078 
1079 	default:
1080 		err = -EINVAL;
1081 	}
1082 
1083 	return err;
1084 }
1085 
1086 static struct rtnl_link_stats64*
ppp_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats64)1087 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1088 {
1089 	struct ppp *ppp = netdev_priv(dev);
1090 
1091 	ppp_recv_lock(ppp);
1092 	stats64->rx_packets = ppp->stats64.rx_packets;
1093 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1094 	ppp_recv_unlock(ppp);
1095 
1096 	ppp_xmit_lock(ppp);
1097 	stats64->tx_packets = ppp->stats64.tx_packets;
1098 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1099 	ppp_xmit_unlock(ppp);
1100 
1101 	stats64->rx_errors        = dev->stats.rx_errors;
1102 	stats64->tx_errors        = dev->stats.tx_errors;
1103 	stats64->rx_dropped       = dev->stats.rx_dropped;
1104 	stats64->tx_dropped       = dev->stats.tx_dropped;
1105 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1106 
1107 	return stats64;
1108 }
1109 
1110 static struct lock_class_key ppp_tx_busylock;
ppp_dev_init(struct net_device * dev)1111 static int ppp_dev_init(struct net_device *dev)
1112 {
1113 	dev->qdisc_tx_busylock = &ppp_tx_busylock;
1114 	return 0;
1115 }
1116 
ppp_dev_uninit(struct net_device * dev)1117 static void ppp_dev_uninit(struct net_device *dev)
1118 {
1119 	struct ppp *ppp = netdev_priv(dev);
1120 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1121 
1122 	ppp_lock(ppp);
1123 	ppp->closing = 1;
1124 	ppp_unlock(ppp);
1125 
1126 	mutex_lock(&pn->all_ppp_mutex);
1127 	unit_put(&pn->units_idr, ppp->file.index);
1128 	mutex_unlock(&pn->all_ppp_mutex);
1129 
1130 	ppp->owner = NULL;
1131 
1132 	ppp->file.dead = 1;
1133 	wake_up_interruptible(&ppp->file.rwait);
1134 }
1135 
1136 static const struct net_device_ops ppp_netdev_ops = {
1137 	.ndo_init	 = ppp_dev_init,
1138 	.ndo_uninit      = ppp_dev_uninit,
1139 	.ndo_start_xmit  = ppp_start_xmit,
1140 	.ndo_do_ioctl    = ppp_net_ioctl,
1141 	.ndo_get_stats64 = ppp_get_stats64,
1142 };
1143 
ppp_setup(struct net_device * dev)1144 static void ppp_setup(struct net_device *dev)
1145 {
1146 	dev->netdev_ops = &ppp_netdev_ops;
1147 	dev->hard_header_len = PPP_HDRLEN;
1148 	dev->mtu = PPP_MRU;
1149 	dev->addr_len = 0;
1150 	dev->tx_queue_len = 3;
1151 	dev->type = ARPHRD_PPP;
1152 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1153 	netif_keep_dst(dev);
1154 }
1155 
1156 /*
1157  * Transmit-side routines.
1158  */
1159 
1160 /*
1161  * Called to do any work queued up on the transmit side
1162  * that can now be done.
1163  */
1164 static void
ppp_xmit_process(struct ppp * ppp)1165 ppp_xmit_process(struct ppp *ppp)
1166 {
1167 	struct sk_buff *skb;
1168 
1169 	ppp_xmit_lock(ppp);
1170 	if (!ppp->closing) {
1171 		ppp_push(ppp);
1172 		while (!ppp->xmit_pending &&
1173 		       (skb = skb_dequeue(&ppp->file.xq)))
1174 			ppp_send_frame(ppp, skb);
1175 		/* If there's no work left to do, tell the core net
1176 		   code that we can accept some more. */
1177 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1178 			netif_wake_queue(ppp->dev);
1179 		else
1180 			netif_stop_queue(ppp->dev);
1181 	}
1182 	ppp_xmit_unlock(ppp);
1183 }
1184 
1185 static inline struct sk_buff *
pad_compress_skb(struct ppp * ppp,struct sk_buff * skb)1186 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1187 {
1188 	struct sk_buff *new_skb;
1189 	int len;
1190 	int new_skb_size = ppp->dev->mtu +
1191 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1192 	int compressor_skb_size = ppp->dev->mtu +
1193 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1194 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1195 	if (!new_skb) {
1196 		if (net_ratelimit())
1197 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1198 		return NULL;
1199 	}
1200 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1201 		skb_reserve(new_skb,
1202 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1203 
1204 	/* compressor still expects A/C bytes in hdr */
1205 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1206 				   new_skb->data, skb->len + 2,
1207 				   compressor_skb_size);
1208 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1209 		consume_skb(skb);
1210 		skb = new_skb;
1211 		skb_put(skb, len);
1212 		skb_pull(skb, 2);	/* pull off A/C bytes */
1213 	} else if (len == 0) {
1214 		/* didn't compress, or CCP not up yet */
1215 		consume_skb(new_skb);
1216 		new_skb = skb;
1217 	} else {
1218 		/*
1219 		 * (len < 0)
1220 		 * MPPE requires that we do not send unencrypted
1221 		 * frames.  The compressor will return -1 if we
1222 		 * should drop the frame.  We cannot simply test
1223 		 * the compress_proto because MPPE and MPPC share
1224 		 * the same number.
1225 		 */
1226 		if (net_ratelimit())
1227 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1228 		kfree_skb(skb);
1229 		consume_skb(new_skb);
1230 		new_skb = NULL;
1231 	}
1232 	return new_skb;
1233 }
1234 
1235 /*
1236  * Compress and send a frame.
1237  * The caller should have locked the xmit path,
1238  * and xmit_pending should be 0.
1239  */
1240 static void
ppp_send_frame(struct ppp * ppp,struct sk_buff * skb)1241 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1242 {
1243 	int proto = PPP_PROTO(skb);
1244 	struct sk_buff *new_skb;
1245 	int len;
1246 	unsigned char *cp;
1247 
1248 	if (proto < 0x8000) {
1249 #ifdef CONFIG_PPP_FILTER
1250 		/* check if we should pass this packet */
1251 		/* the filter instructions are constructed assuming
1252 		   a four-byte PPP header on each packet */
1253 		*skb_push(skb, 2) = 1;
1254 		if (ppp->pass_filter &&
1255 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1256 			if (ppp->debug & 1)
1257 				netdev_printk(KERN_DEBUG, ppp->dev,
1258 					      "PPP: outbound frame "
1259 					      "not passed\n");
1260 			kfree_skb(skb);
1261 			return;
1262 		}
1263 		/* if this packet passes the active filter, record the time */
1264 		if (!(ppp->active_filter &&
1265 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1266 			ppp->last_xmit = jiffies;
1267 		skb_pull(skb, 2);
1268 #else
1269 		/* for data packets, record the time */
1270 		ppp->last_xmit = jiffies;
1271 #endif /* CONFIG_PPP_FILTER */
1272 	}
1273 
1274 	++ppp->stats64.tx_packets;
1275 	ppp->stats64.tx_bytes += skb->len - 2;
1276 
1277 	switch (proto) {
1278 	case PPP_IP:
1279 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1280 			break;
1281 		/* try to do VJ TCP header compression */
1282 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1283 				    GFP_ATOMIC);
1284 		if (!new_skb) {
1285 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1286 			goto drop;
1287 		}
1288 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1289 		cp = skb->data + 2;
1290 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1291 				    new_skb->data + 2, &cp,
1292 				    !(ppp->flags & SC_NO_TCP_CCID));
1293 		if (cp == skb->data + 2) {
1294 			/* didn't compress */
1295 			consume_skb(new_skb);
1296 		} else {
1297 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1298 				proto = PPP_VJC_COMP;
1299 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1300 			} else {
1301 				proto = PPP_VJC_UNCOMP;
1302 				cp[0] = skb->data[2];
1303 			}
1304 			consume_skb(skb);
1305 			skb = new_skb;
1306 			cp = skb_put(skb, len + 2);
1307 			cp[0] = 0;
1308 			cp[1] = proto;
1309 		}
1310 		break;
1311 
1312 	case PPP_CCP:
1313 		/* peek at outbound CCP frames */
1314 		ppp_ccp_peek(ppp, skb, 0);
1315 		break;
1316 	}
1317 
1318 	/* try to do packet compression */
1319 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1320 	    proto != PPP_LCP && proto != PPP_CCP) {
1321 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1322 			if (net_ratelimit())
1323 				netdev_err(ppp->dev,
1324 					   "ppp: compression required but "
1325 					   "down - pkt dropped.\n");
1326 			goto drop;
1327 		}
1328 		skb = pad_compress_skb(ppp, skb);
1329 		if (!skb)
1330 			goto drop;
1331 	}
1332 
1333 	/*
1334 	 * If we are waiting for traffic (demand dialling),
1335 	 * queue it up for pppd to receive.
1336 	 */
1337 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1338 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1339 			goto drop;
1340 		skb_queue_tail(&ppp->file.rq, skb);
1341 		wake_up_interruptible(&ppp->file.rwait);
1342 		return;
1343 	}
1344 
1345 	ppp->xmit_pending = skb;
1346 	ppp_push(ppp);
1347 	return;
1348 
1349  drop:
1350 	kfree_skb(skb);
1351 	++ppp->dev->stats.tx_errors;
1352 }
1353 
1354 /*
1355  * Try to send the frame in xmit_pending.
1356  * The caller should have the xmit path locked.
1357  */
1358 static void
ppp_push(struct ppp * ppp)1359 ppp_push(struct ppp *ppp)
1360 {
1361 	struct list_head *list;
1362 	struct channel *pch;
1363 	struct sk_buff *skb = ppp->xmit_pending;
1364 
1365 	if (!skb)
1366 		return;
1367 
1368 	list = &ppp->channels;
1369 	if (list_empty(list)) {
1370 		/* nowhere to send the packet, just drop it */
1371 		ppp->xmit_pending = NULL;
1372 		kfree_skb(skb);
1373 		return;
1374 	}
1375 
1376 	if ((ppp->flags & SC_MULTILINK) == 0) {
1377 		/* not doing multilink: send it down the first channel */
1378 		list = list->next;
1379 		pch = list_entry(list, struct channel, clist);
1380 
1381 		spin_lock_bh(&pch->downl);
1382 		if (pch->chan) {
1383 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1384 				ppp->xmit_pending = NULL;
1385 		} else {
1386 			/* channel got unregistered */
1387 			kfree_skb(skb);
1388 			ppp->xmit_pending = NULL;
1389 		}
1390 		spin_unlock_bh(&pch->downl);
1391 		return;
1392 	}
1393 
1394 #ifdef CONFIG_PPP_MULTILINK
1395 	/* Multilink: fragment the packet over as many links
1396 	   as can take the packet at the moment. */
1397 	if (!ppp_mp_explode(ppp, skb))
1398 		return;
1399 #endif /* CONFIG_PPP_MULTILINK */
1400 
1401 	ppp->xmit_pending = NULL;
1402 	kfree_skb(skb);
1403 }
1404 
1405 #ifdef CONFIG_PPP_MULTILINK
1406 static bool mp_protocol_compress __read_mostly = true;
1407 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1408 MODULE_PARM_DESC(mp_protocol_compress,
1409 		 "compress protocol id in multilink fragments");
1410 
1411 /*
1412  * Divide a packet to be transmitted into fragments and
1413  * send them out the individual links.
1414  */
ppp_mp_explode(struct ppp * ppp,struct sk_buff * skb)1415 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1416 {
1417 	int len, totlen;
1418 	int i, bits, hdrlen, mtu;
1419 	int flen;
1420 	int navail, nfree, nzero;
1421 	int nbigger;
1422 	int totspeed;
1423 	int totfree;
1424 	unsigned char *p, *q;
1425 	struct list_head *list;
1426 	struct channel *pch;
1427 	struct sk_buff *frag;
1428 	struct ppp_channel *chan;
1429 
1430 	totspeed = 0; /*total bitrate of the bundle*/
1431 	nfree = 0; /* # channels which have no packet already queued */
1432 	navail = 0; /* total # of usable channels (not deregistered) */
1433 	nzero = 0; /* number of channels with zero speed associated*/
1434 	totfree = 0; /*total # of channels available and
1435 				  *having no queued packets before
1436 				  *starting the fragmentation*/
1437 
1438 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1439 	i = 0;
1440 	list_for_each_entry(pch, &ppp->channels, clist) {
1441 		if (pch->chan) {
1442 			pch->avail = 1;
1443 			navail++;
1444 			pch->speed = pch->chan->speed;
1445 		} else {
1446 			pch->avail = 0;
1447 		}
1448 		if (pch->avail) {
1449 			if (skb_queue_empty(&pch->file.xq) ||
1450 				!pch->had_frag) {
1451 					if (pch->speed == 0)
1452 						nzero++;
1453 					else
1454 						totspeed += pch->speed;
1455 
1456 					pch->avail = 2;
1457 					++nfree;
1458 					++totfree;
1459 				}
1460 			if (!pch->had_frag && i < ppp->nxchan)
1461 				ppp->nxchan = i;
1462 		}
1463 		++i;
1464 	}
1465 	/*
1466 	 * Don't start sending this packet unless at least half of
1467 	 * the channels are free.  This gives much better TCP
1468 	 * performance if we have a lot of channels.
1469 	 */
1470 	if (nfree == 0 || nfree < navail / 2)
1471 		return 0; /* can't take now, leave it in xmit_pending */
1472 
1473 	/* Do protocol field compression */
1474 	p = skb->data;
1475 	len = skb->len;
1476 	if (*p == 0 && mp_protocol_compress) {
1477 		++p;
1478 		--len;
1479 	}
1480 
1481 	totlen = len;
1482 	nbigger = len % nfree;
1483 
1484 	/* skip to the channel after the one we last used
1485 	   and start at that one */
1486 	list = &ppp->channels;
1487 	for (i = 0; i < ppp->nxchan; ++i) {
1488 		list = list->next;
1489 		if (list == &ppp->channels) {
1490 			i = 0;
1491 			break;
1492 		}
1493 	}
1494 
1495 	/* create a fragment for each channel */
1496 	bits = B;
1497 	while (len > 0) {
1498 		list = list->next;
1499 		if (list == &ppp->channels) {
1500 			i = 0;
1501 			continue;
1502 		}
1503 		pch = list_entry(list, struct channel, clist);
1504 		++i;
1505 		if (!pch->avail)
1506 			continue;
1507 
1508 		/*
1509 		 * Skip this channel if it has a fragment pending already and
1510 		 * we haven't given a fragment to all of the free channels.
1511 		 */
1512 		if (pch->avail == 1) {
1513 			if (nfree > 0)
1514 				continue;
1515 		} else {
1516 			pch->avail = 1;
1517 		}
1518 
1519 		/* check the channel's mtu and whether it is still attached. */
1520 		spin_lock_bh(&pch->downl);
1521 		if (pch->chan == NULL) {
1522 			/* can't use this channel, it's being deregistered */
1523 			if (pch->speed == 0)
1524 				nzero--;
1525 			else
1526 				totspeed -= pch->speed;
1527 
1528 			spin_unlock_bh(&pch->downl);
1529 			pch->avail = 0;
1530 			totlen = len;
1531 			totfree--;
1532 			nfree--;
1533 			if (--navail == 0)
1534 				break;
1535 			continue;
1536 		}
1537 
1538 		/*
1539 		*if the channel speed is not set divide
1540 		*the packet evenly among the free channels;
1541 		*otherwise divide it according to the speed
1542 		*of the channel we are going to transmit on
1543 		*/
1544 		flen = len;
1545 		if (nfree > 0) {
1546 			if (pch->speed == 0) {
1547 				flen = len/nfree;
1548 				if (nbigger > 0) {
1549 					flen++;
1550 					nbigger--;
1551 				}
1552 			} else {
1553 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1554 					((totspeed*totfree)/pch->speed)) - hdrlen;
1555 				if (nbigger > 0) {
1556 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1557 					nbigger -= ((totfree - nzero)*pch->speed)/
1558 							totspeed;
1559 				}
1560 			}
1561 			nfree--;
1562 		}
1563 
1564 		/*
1565 		 *check if we are on the last channel or
1566 		 *we exceded the length of the data to
1567 		 *fragment
1568 		 */
1569 		if ((nfree <= 0) || (flen > len))
1570 			flen = len;
1571 		/*
1572 		 *it is not worth to tx on slow channels:
1573 		 *in that case from the resulting flen according to the
1574 		 *above formula will be equal or less than zero.
1575 		 *Skip the channel in this case
1576 		 */
1577 		if (flen <= 0) {
1578 			pch->avail = 2;
1579 			spin_unlock_bh(&pch->downl);
1580 			continue;
1581 		}
1582 
1583 		/*
1584 		 * hdrlen includes the 2-byte PPP protocol field, but the
1585 		 * MTU counts only the payload excluding the protocol field.
1586 		 * (RFC1661 Section 2)
1587 		 */
1588 		mtu = pch->chan->mtu - (hdrlen - 2);
1589 		if (mtu < 4)
1590 			mtu = 4;
1591 		if (flen > mtu)
1592 			flen = mtu;
1593 		if (flen == len)
1594 			bits |= E;
1595 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1596 		if (!frag)
1597 			goto noskb;
1598 		q = skb_put(frag, flen + hdrlen);
1599 
1600 		/* make the MP header */
1601 		put_unaligned_be16(PPP_MP, q);
1602 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1603 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1604 			q[3] = ppp->nxseq;
1605 		} else {
1606 			q[2] = bits;
1607 			q[3] = ppp->nxseq >> 16;
1608 			q[4] = ppp->nxseq >> 8;
1609 			q[5] = ppp->nxseq;
1610 		}
1611 
1612 		memcpy(q + hdrlen, p, flen);
1613 
1614 		/* try to send it down the channel */
1615 		chan = pch->chan;
1616 		if (!skb_queue_empty(&pch->file.xq) ||
1617 			!chan->ops->start_xmit(chan, frag))
1618 			skb_queue_tail(&pch->file.xq, frag);
1619 		pch->had_frag = 1;
1620 		p += flen;
1621 		len -= flen;
1622 		++ppp->nxseq;
1623 		bits = 0;
1624 		spin_unlock_bh(&pch->downl);
1625 	}
1626 	ppp->nxchan = i;
1627 
1628 	return 1;
1629 
1630  noskb:
1631 	spin_unlock_bh(&pch->downl);
1632 	if (ppp->debug & 1)
1633 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1634 	++ppp->dev->stats.tx_errors;
1635 	++ppp->nxseq;
1636 	return 1;	/* abandon the frame */
1637 }
1638 #endif /* CONFIG_PPP_MULTILINK */
1639 
1640 /*
1641  * Try to send data out on a channel.
1642  */
1643 static void
ppp_channel_push(struct channel * pch)1644 ppp_channel_push(struct channel *pch)
1645 {
1646 	struct sk_buff *skb;
1647 	struct ppp *ppp;
1648 
1649 	spin_lock_bh(&pch->downl);
1650 	if (pch->chan) {
1651 		while (!skb_queue_empty(&pch->file.xq)) {
1652 			skb = skb_dequeue(&pch->file.xq);
1653 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1654 				/* put the packet back and try again later */
1655 				skb_queue_head(&pch->file.xq, skb);
1656 				break;
1657 			}
1658 		}
1659 	} else {
1660 		/* channel got deregistered */
1661 		skb_queue_purge(&pch->file.xq);
1662 	}
1663 	spin_unlock_bh(&pch->downl);
1664 	/* see if there is anything from the attached unit to be sent */
1665 	if (skb_queue_empty(&pch->file.xq)) {
1666 		read_lock_bh(&pch->upl);
1667 		ppp = pch->ppp;
1668 		if (ppp)
1669 			ppp_xmit_process(ppp);
1670 		read_unlock_bh(&pch->upl);
1671 	}
1672 }
1673 
1674 /*
1675  * Receive-side routines.
1676  */
1677 
1678 struct ppp_mp_skb_parm {
1679 	u32		sequence;
1680 	u8		BEbits;
1681 };
1682 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1683 
1684 static inline void
ppp_do_recv(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1685 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1686 {
1687 	ppp_recv_lock(ppp);
1688 	if (!ppp->closing)
1689 		ppp_receive_frame(ppp, skb, pch);
1690 	else
1691 		kfree_skb(skb);
1692 	ppp_recv_unlock(ppp);
1693 }
1694 
1695 void
ppp_input(struct ppp_channel * chan,struct sk_buff * skb)1696 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1697 {
1698 	struct channel *pch = chan->ppp;
1699 	int proto;
1700 
1701 	if (!pch) {
1702 		kfree_skb(skb);
1703 		return;
1704 	}
1705 
1706 	read_lock_bh(&pch->upl);
1707 	if (!pskb_may_pull(skb, 2)) {
1708 		kfree_skb(skb);
1709 		if (pch->ppp) {
1710 			++pch->ppp->dev->stats.rx_length_errors;
1711 			ppp_receive_error(pch->ppp);
1712 		}
1713 		goto done;
1714 	}
1715 
1716 	proto = PPP_PROTO(skb);
1717 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1718 		/* put it on the channel queue */
1719 		skb_queue_tail(&pch->file.rq, skb);
1720 		/* drop old frames if queue too long */
1721 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1722 		       (skb = skb_dequeue(&pch->file.rq)))
1723 			kfree_skb(skb);
1724 		wake_up_interruptible(&pch->file.rwait);
1725 	} else {
1726 		ppp_do_recv(pch->ppp, skb, pch);
1727 	}
1728 
1729 done:
1730 	read_unlock_bh(&pch->upl);
1731 }
1732 
1733 /* Put a 0-length skb in the receive queue as an error indication */
1734 void
ppp_input_error(struct ppp_channel * chan,int code)1735 ppp_input_error(struct ppp_channel *chan, int code)
1736 {
1737 	struct channel *pch = chan->ppp;
1738 	struct sk_buff *skb;
1739 
1740 	if (!pch)
1741 		return;
1742 
1743 	read_lock_bh(&pch->upl);
1744 	if (pch->ppp) {
1745 		skb = alloc_skb(0, GFP_ATOMIC);
1746 		if (skb) {
1747 			skb->len = 0;		/* probably unnecessary */
1748 			skb->cb[0] = code;
1749 			ppp_do_recv(pch->ppp, skb, pch);
1750 		}
1751 	}
1752 	read_unlock_bh(&pch->upl);
1753 }
1754 
1755 /*
1756  * We come in here to process a received frame.
1757  * The receive side of the ppp unit is locked.
1758  */
1759 static void
ppp_receive_frame(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1760 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1761 {
1762 	/* note: a 0-length skb is used as an error indication */
1763 	if (skb->len > 0) {
1764 		skb_checksum_complete_unset(skb);
1765 #ifdef CONFIG_PPP_MULTILINK
1766 		/* XXX do channel-level decompression here */
1767 		if (PPP_PROTO(skb) == PPP_MP)
1768 			ppp_receive_mp_frame(ppp, skb, pch);
1769 		else
1770 #endif /* CONFIG_PPP_MULTILINK */
1771 			ppp_receive_nonmp_frame(ppp, skb);
1772 	} else {
1773 		kfree_skb(skb);
1774 		ppp_receive_error(ppp);
1775 	}
1776 }
1777 
1778 static void
ppp_receive_error(struct ppp * ppp)1779 ppp_receive_error(struct ppp *ppp)
1780 {
1781 	++ppp->dev->stats.rx_errors;
1782 	if (ppp->vj)
1783 		slhc_toss(ppp->vj);
1784 }
1785 
1786 static void
ppp_receive_nonmp_frame(struct ppp * ppp,struct sk_buff * skb)1787 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1788 {
1789 	struct sk_buff *ns;
1790 	int proto, len, npi;
1791 
1792 	/*
1793 	 * Decompress the frame, if compressed.
1794 	 * Note that some decompressors need to see uncompressed frames
1795 	 * that come in as well as compressed frames.
1796 	 */
1797 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1798 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1799 		skb = ppp_decompress_frame(ppp, skb);
1800 
1801 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1802 		goto err;
1803 
1804 	proto = PPP_PROTO(skb);
1805 	switch (proto) {
1806 	case PPP_VJC_COMP:
1807 		/* decompress VJ compressed packets */
1808 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1809 			goto err;
1810 
1811 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1812 			/* copy to a new sk_buff with more tailroom */
1813 			ns = dev_alloc_skb(skb->len + 128);
1814 			if (!ns) {
1815 				netdev_err(ppp->dev, "PPP: no memory "
1816 					   "(VJ decomp)\n");
1817 				goto err;
1818 			}
1819 			skb_reserve(ns, 2);
1820 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1821 			consume_skb(skb);
1822 			skb = ns;
1823 		}
1824 		else
1825 			skb->ip_summed = CHECKSUM_NONE;
1826 
1827 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1828 		if (len <= 0) {
1829 			netdev_printk(KERN_DEBUG, ppp->dev,
1830 				      "PPP: VJ decompression error\n");
1831 			goto err;
1832 		}
1833 		len += 2;
1834 		if (len > skb->len)
1835 			skb_put(skb, len - skb->len);
1836 		else if (len < skb->len)
1837 			skb_trim(skb, len);
1838 		proto = PPP_IP;
1839 		break;
1840 
1841 	case PPP_VJC_UNCOMP:
1842 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1843 			goto err;
1844 
1845 		/* Until we fix the decompressor need to make sure
1846 		 * data portion is linear.
1847 		 */
1848 		if (!pskb_may_pull(skb, skb->len))
1849 			goto err;
1850 
1851 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1852 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1853 			goto err;
1854 		}
1855 		proto = PPP_IP;
1856 		break;
1857 
1858 	case PPP_CCP:
1859 		ppp_ccp_peek(ppp, skb, 1);
1860 		break;
1861 	}
1862 
1863 	++ppp->stats64.rx_packets;
1864 	ppp->stats64.rx_bytes += skb->len - 2;
1865 
1866 	npi = proto_to_npindex(proto);
1867 	if (npi < 0) {
1868 		/* control or unknown frame - pass it to pppd */
1869 		skb_queue_tail(&ppp->file.rq, skb);
1870 		/* limit queue length by dropping old frames */
1871 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1872 		       (skb = skb_dequeue(&ppp->file.rq)))
1873 			kfree_skb(skb);
1874 		/* wake up any process polling or blocking on read */
1875 		wake_up_interruptible(&ppp->file.rwait);
1876 
1877 	} else {
1878 		/* network protocol frame - give it to the kernel */
1879 
1880 #ifdef CONFIG_PPP_FILTER
1881 		/* check if the packet passes the pass and active filters */
1882 		/* the filter instructions are constructed assuming
1883 		   a four-byte PPP header on each packet */
1884 		if (ppp->pass_filter || ppp->active_filter) {
1885 			if (skb_unclone(skb, GFP_ATOMIC))
1886 				goto err;
1887 
1888 			*skb_push(skb, 2) = 0;
1889 			if (ppp->pass_filter &&
1890 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1891 				if (ppp->debug & 1)
1892 					netdev_printk(KERN_DEBUG, ppp->dev,
1893 						      "PPP: inbound frame "
1894 						      "not passed\n");
1895 				kfree_skb(skb);
1896 				return;
1897 			}
1898 			if (!(ppp->active_filter &&
1899 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1900 				ppp->last_recv = jiffies;
1901 			__skb_pull(skb, 2);
1902 		} else
1903 #endif /* CONFIG_PPP_FILTER */
1904 			ppp->last_recv = jiffies;
1905 
1906 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1907 		    ppp->npmode[npi] != NPMODE_PASS) {
1908 			kfree_skb(skb);
1909 		} else {
1910 			/* chop off protocol */
1911 			skb_pull_rcsum(skb, 2);
1912 			skb->dev = ppp->dev;
1913 			skb->protocol = htons(npindex_to_ethertype[npi]);
1914 			skb_reset_mac_header(skb);
1915 			skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
1916 						      dev_net(ppp->dev)));
1917 			netif_rx(skb);
1918 		}
1919 	}
1920 	return;
1921 
1922  err:
1923 	kfree_skb(skb);
1924 	ppp_receive_error(ppp);
1925 }
1926 
1927 static struct sk_buff *
ppp_decompress_frame(struct ppp * ppp,struct sk_buff * skb)1928 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1929 {
1930 	int proto = PPP_PROTO(skb);
1931 	struct sk_buff *ns;
1932 	int len;
1933 
1934 	/* Until we fix all the decompressor's need to make sure
1935 	 * data portion is linear.
1936 	 */
1937 	if (!pskb_may_pull(skb, skb->len))
1938 		goto err;
1939 
1940 	if (proto == PPP_COMP) {
1941 		int obuff_size;
1942 
1943 		switch(ppp->rcomp->compress_proto) {
1944 		case CI_MPPE:
1945 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1946 			break;
1947 		default:
1948 			obuff_size = ppp->mru + PPP_HDRLEN;
1949 			break;
1950 		}
1951 
1952 		ns = dev_alloc_skb(obuff_size);
1953 		if (!ns) {
1954 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1955 				   "no memory\n");
1956 			goto err;
1957 		}
1958 		/* the decompressor still expects the A/C bytes in the hdr */
1959 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1960 				skb->len + 2, ns->data, obuff_size);
1961 		if (len < 0) {
1962 			/* Pass the compressed frame to pppd as an
1963 			   error indication. */
1964 			if (len == DECOMP_FATALERROR)
1965 				ppp->rstate |= SC_DC_FERROR;
1966 			kfree_skb(ns);
1967 			goto err;
1968 		}
1969 
1970 		consume_skb(skb);
1971 		skb = ns;
1972 		skb_put(skb, len);
1973 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1974 
1975 	} else {
1976 		/* Uncompressed frame - pass to decompressor so it
1977 		   can update its dictionary if necessary. */
1978 		if (ppp->rcomp->incomp)
1979 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1980 					   skb->len + 2);
1981 	}
1982 
1983 	return skb;
1984 
1985  err:
1986 	ppp->rstate |= SC_DC_ERROR;
1987 	ppp_receive_error(ppp);
1988 	return skb;
1989 }
1990 
1991 #ifdef CONFIG_PPP_MULTILINK
1992 /*
1993  * Receive a multilink frame.
1994  * We put it on the reconstruction queue and then pull off
1995  * as many completed frames as we can.
1996  */
1997 static void
ppp_receive_mp_frame(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1998 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1999 {
2000 	u32 mask, seq;
2001 	struct channel *ch;
2002 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2003 
2004 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2005 		goto err;		/* no good, throw it away */
2006 
2007 	/* Decode sequence number and begin/end bits */
2008 	if (ppp->flags & SC_MP_SHORTSEQ) {
2009 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2010 		mask = 0xfff;
2011 	} else {
2012 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2013 		mask = 0xffffff;
2014 	}
2015 	PPP_MP_CB(skb)->BEbits = skb->data[2];
2016 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
2017 
2018 	/*
2019 	 * Do protocol ID decompression on the first fragment of each packet.
2020 	 */
2021 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2022 		*skb_push(skb, 1) = 0;
2023 
2024 	/*
2025 	 * Expand sequence number to 32 bits, making it as close
2026 	 * as possible to ppp->minseq.
2027 	 */
2028 	seq |= ppp->minseq & ~mask;
2029 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2030 		seq += mask + 1;
2031 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2032 		seq -= mask + 1;	/* should never happen */
2033 	PPP_MP_CB(skb)->sequence = seq;
2034 	pch->lastseq = seq;
2035 
2036 	/*
2037 	 * If this packet comes before the next one we were expecting,
2038 	 * drop it.
2039 	 */
2040 	if (seq_before(seq, ppp->nextseq)) {
2041 		kfree_skb(skb);
2042 		++ppp->dev->stats.rx_dropped;
2043 		ppp_receive_error(ppp);
2044 		return;
2045 	}
2046 
2047 	/*
2048 	 * Reevaluate minseq, the minimum over all channels of the
2049 	 * last sequence number received on each channel.  Because of
2050 	 * the increasing sequence number rule, we know that any fragment
2051 	 * before `minseq' which hasn't arrived is never going to arrive.
2052 	 * The list of channels can't change because we have the receive
2053 	 * side of the ppp unit locked.
2054 	 */
2055 	list_for_each_entry(ch, &ppp->channels, clist) {
2056 		if (seq_before(ch->lastseq, seq))
2057 			seq = ch->lastseq;
2058 	}
2059 	if (seq_before(ppp->minseq, seq))
2060 		ppp->minseq = seq;
2061 
2062 	/* Put the fragment on the reconstruction queue */
2063 	ppp_mp_insert(ppp, skb);
2064 
2065 	/* If the queue is getting long, don't wait any longer for packets
2066 	   before the start of the queue. */
2067 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2068 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2069 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2070 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2071 	}
2072 
2073 	/* Pull completed packets off the queue and receive them. */
2074 	while ((skb = ppp_mp_reconstruct(ppp))) {
2075 		if (pskb_may_pull(skb, 2))
2076 			ppp_receive_nonmp_frame(ppp, skb);
2077 		else {
2078 			++ppp->dev->stats.rx_length_errors;
2079 			kfree_skb(skb);
2080 			ppp_receive_error(ppp);
2081 		}
2082 	}
2083 
2084 	return;
2085 
2086  err:
2087 	kfree_skb(skb);
2088 	ppp_receive_error(ppp);
2089 }
2090 
2091 /*
2092  * Insert a fragment on the MP reconstruction queue.
2093  * The queue is ordered by increasing sequence number.
2094  */
2095 static void
ppp_mp_insert(struct ppp * ppp,struct sk_buff * skb)2096 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2097 {
2098 	struct sk_buff *p;
2099 	struct sk_buff_head *list = &ppp->mrq;
2100 	u32 seq = PPP_MP_CB(skb)->sequence;
2101 
2102 	/* N.B. we don't need to lock the list lock because we have the
2103 	   ppp unit receive-side lock. */
2104 	skb_queue_walk(list, p) {
2105 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2106 			break;
2107 	}
2108 	__skb_queue_before(list, p, skb);
2109 }
2110 
2111 /*
2112  * Reconstruct a packet from the MP fragment queue.
2113  * We go through increasing sequence numbers until we find a
2114  * complete packet, or we get to the sequence number for a fragment
2115  * which hasn't arrived but might still do so.
2116  */
2117 static struct sk_buff *
ppp_mp_reconstruct(struct ppp * ppp)2118 ppp_mp_reconstruct(struct ppp *ppp)
2119 {
2120 	u32 seq = ppp->nextseq;
2121 	u32 minseq = ppp->minseq;
2122 	struct sk_buff_head *list = &ppp->mrq;
2123 	struct sk_buff *p, *tmp;
2124 	struct sk_buff *head, *tail;
2125 	struct sk_buff *skb = NULL;
2126 	int lost = 0, len = 0;
2127 
2128 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2129 		return NULL;
2130 	head = list->next;
2131 	tail = NULL;
2132 	skb_queue_walk_safe(list, p, tmp) {
2133 	again:
2134 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2135 			/* this can't happen, anyway ignore the skb */
2136 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2137 				   "seq %u < %u\n",
2138 				   PPP_MP_CB(p)->sequence, seq);
2139 			__skb_unlink(p, list);
2140 			kfree_skb(p);
2141 			continue;
2142 		}
2143 		if (PPP_MP_CB(p)->sequence != seq) {
2144 			u32 oldseq;
2145 			/* Fragment `seq' is missing.  If it is after
2146 			   minseq, it might arrive later, so stop here. */
2147 			if (seq_after(seq, minseq))
2148 				break;
2149 			/* Fragment `seq' is lost, keep going. */
2150 			lost = 1;
2151 			oldseq = seq;
2152 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2153 				minseq + 1: PPP_MP_CB(p)->sequence;
2154 
2155 			if (ppp->debug & 1)
2156 				netdev_printk(KERN_DEBUG, ppp->dev,
2157 					      "lost frag %u..%u\n",
2158 					      oldseq, seq-1);
2159 
2160 			goto again;
2161 		}
2162 
2163 		/*
2164 		 * At this point we know that all the fragments from
2165 		 * ppp->nextseq to seq are either present or lost.
2166 		 * Also, there are no complete packets in the queue
2167 		 * that have no missing fragments and end before this
2168 		 * fragment.
2169 		 */
2170 
2171 		/* B bit set indicates this fragment starts a packet */
2172 		if (PPP_MP_CB(p)->BEbits & B) {
2173 			head = p;
2174 			lost = 0;
2175 			len = 0;
2176 		}
2177 
2178 		len += p->len;
2179 
2180 		/* Got a complete packet yet? */
2181 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2182 		    (PPP_MP_CB(head)->BEbits & B)) {
2183 			if (len > ppp->mrru + 2) {
2184 				++ppp->dev->stats.rx_length_errors;
2185 				netdev_printk(KERN_DEBUG, ppp->dev,
2186 					      "PPP: reconstructed packet"
2187 					      " is too long (%d)\n", len);
2188 			} else {
2189 				tail = p;
2190 				break;
2191 			}
2192 			ppp->nextseq = seq + 1;
2193 		}
2194 
2195 		/*
2196 		 * If this is the ending fragment of a packet,
2197 		 * and we haven't found a complete valid packet yet,
2198 		 * we can discard up to and including this fragment.
2199 		 */
2200 		if (PPP_MP_CB(p)->BEbits & E) {
2201 			struct sk_buff *tmp2;
2202 
2203 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2204 				if (ppp->debug & 1)
2205 					netdev_printk(KERN_DEBUG, ppp->dev,
2206 						      "discarding frag %u\n",
2207 						      PPP_MP_CB(p)->sequence);
2208 				__skb_unlink(p, list);
2209 				kfree_skb(p);
2210 			}
2211 			head = skb_peek(list);
2212 			if (!head)
2213 				break;
2214 		}
2215 		++seq;
2216 	}
2217 
2218 	/* If we have a complete packet, copy it all into one skb. */
2219 	if (tail != NULL) {
2220 		/* If we have discarded any fragments,
2221 		   signal a receive error. */
2222 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2223 			skb_queue_walk_safe(list, p, tmp) {
2224 				if (p == head)
2225 					break;
2226 				if (ppp->debug & 1)
2227 					netdev_printk(KERN_DEBUG, ppp->dev,
2228 						      "discarding frag %u\n",
2229 						      PPP_MP_CB(p)->sequence);
2230 				__skb_unlink(p, list);
2231 				kfree_skb(p);
2232 			}
2233 
2234 			if (ppp->debug & 1)
2235 				netdev_printk(KERN_DEBUG, ppp->dev,
2236 					      "  missed pkts %u..%u\n",
2237 					      ppp->nextseq,
2238 					      PPP_MP_CB(head)->sequence-1);
2239 			++ppp->dev->stats.rx_dropped;
2240 			ppp_receive_error(ppp);
2241 		}
2242 
2243 		skb = head;
2244 		if (head != tail) {
2245 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2246 			p = skb_queue_next(list, head);
2247 			__skb_unlink(skb, list);
2248 			skb_queue_walk_from_safe(list, p, tmp) {
2249 				__skb_unlink(p, list);
2250 				*fragpp = p;
2251 				p->next = NULL;
2252 				fragpp = &p->next;
2253 
2254 				skb->len += p->len;
2255 				skb->data_len += p->len;
2256 				skb->truesize += p->truesize;
2257 
2258 				if (p == tail)
2259 					break;
2260 			}
2261 		} else {
2262 			__skb_unlink(skb, list);
2263 		}
2264 
2265 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2266 	}
2267 
2268 	return skb;
2269 }
2270 #endif /* CONFIG_PPP_MULTILINK */
2271 
2272 /*
2273  * Channel interface.
2274  */
2275 
2276 /* Create a new, unattached ppp channel. */
ppp_register_channel(struct ppp_channel * chan)2277 int ppp_register_channel(struct ppp_channel *chan)
2278 {
2279 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2280 }
2281 
2282 /* Create a new, unattached ppp channel for specified net. */
ppp_register_net_channel(struct net * net,struct ppp_channel * chan)2283 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2284 {
2285 	struct channel *pch;
2286 	struct ppp_net *pn;
2287 
2288 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2289 	if (!pch)
2290 		return -ENOMEM;
2291 
2292 	pn = ppp_pernet(net);
2293 
2294 	pch->ppp = NULL;
2295 	pch->chan = chan;
2296 	pch->chan_net = get_net(net);
2297 	chan->ppp = pch;
2298 	init_ppp_file(&pch->file, CHANNEL);
2299 	pch->file.hdrlen = chan->hdrlen;
2300 #ifdef CONFIG_PPP_MULTILINK
2301 	pch->lastseq = -1;
2302 #endif /* CONFIG_PPP_MULTILINK */
2303 	init_rwsem(&pch->chan_sem);
2304 	spin_lock_init(&pch->downl);
2305 	rwlock_init(&pch->upl);
2306 
2307 	spin_lock_bh(&pn->all_channels_lock);
2308 	pch->file.index = ++pn->last_channel_index;
2309 	list_add(&pch->list, &pn->new_channels);
2310 	atomic_inc(&channel_count);
2311 	spin_unlock_bh(&pn->all_channels_lock);
2312 
2313 	return 0;
2314 }
2315 
2316 /*
2317  * Return the index of a channel.
2318  */
ppp_channel_index(struct ppp_channel * chan)2319 int ppp_channel_index(struct ppp_channel *chan)
2320 {
2321 	struct channel *pch = chan->ppp;
2322 
2323 	if (pch)
2324 		return pch->file.index;
2325 	return -1;
2326 }
2327 
2328 /*
2329  * Return the PPP unit number to which a channel is connected.
2330  */
ppp_unit_number(struct ppp_channel * chan)2331 int ppp_unit_number(struct ppp_channel *chan)
2332 {
2333 	struct channel *pch = chan->ppp;
2334 	int unit = -1;
2335 
2336 	if (pch) {
2337 		read_lock_bh(&pch->upl);
2338 		if (pch->ppp)
2339 			unit = pch->ppp->file.index;
2340 		read_unlock_bh(&pch->upl);
2341 	}
2342 	return unit;
2343 }
2344 
2345 /*
2346  * Return the PPP device interface name of a channel.
2347  */
ppp_dev_name(struct ppp_channel * chan)2348 char *ppp_dev_name(struct ppp_channel *chan)
2349 {
2350 	struct channel *pch = chan->ppp;
2351 	char *name = NULL;
2352 
2353 	if (pch) {
2354 		read_lock_bh(&pch->upl);
2355 		if (pch->ppp && pch->ppp->dev)
2356 			name = pch->ppp->dev->name;
2357 		read_unlock_bh(&pch->upl);
2358 	}
2359 	return name;
2360 }
2361 
2362 
2363 /*
2364  * Disconnect a channel from the generic layer.
2365  * This must be called in process context.
2366  */
2367 void
ppp_unregister_channel(struct ppp_channel * chan)2368 ppp_unregister_channel(struct ppp_channel *chan)
2369 {
2370 	struct channel *pch = chan->ppp;
2371 	struct ppp_net *pn;
2372 
2373 	if (!pch)
2374 		return;		/* should never happen */
2375 
2376 	chan->ppp = NULL;
2377 
2378 	/*
2379 	 * This ensures that we have returned from any calls into the
2380 	 * the channel's start_xmit or ioctl routine before we proceed.
2381 	 */
2382 	down_write(&pch->chan_sem);
2383 	spin_lock_bh(&pch->downl);
2384 	pch->chan = NULL;
2385 	spin_unlock_bh(&pch->downl);
2386 	up_write(&pch->chan_sem);
2387 	ppp_disconnect_channel(pch);
2388 
2389 	pn = ppp_pernet(pch->chan_net);
2390 	spin_lock_bh(&pn->all_channels_lock);
2391 	list_del(&pch->list);
2392 	spin_unlock_bh(&pn->all_channels_lock);
2393 	put_net(pch->chan_net);
2394 	pch->chan_net = NULL;
2395 
2396 	pch->file.dead = 1;
2397 	wake_up_interruptible(&pch->file.rwait);
2398 	if (atomic_dec_and_test(&pch->file.refcnt))
2399 		ppp_destroy_channel(pch);
2400 }
2401 
2402 /*
2403  * Callback from a channel when it can accept more to transmit.
2404  * This should be called at BH/softirq level, not interrupt level.
2405  */
2406 void
ppp_output_wakeup(struct ppp_channel * chan)2407 ppp_output_wakeup(struct ppp_channel *chan)
2408 {
2409 	struct channel *pch = chan->ppp;
2410 
2411 	if (!pch)
2412 		return;
2413 	ppp_channel_push(pch);
2414 }
2415 
2416 /*
2417  * Compression control.
2418  */
2419 
2420 /* Process the PPPIOCSCOMPRESS ioctl. */
2421 static int
ppp_set_compress(struct ppp * ppp,unsigned long arg)2422 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2423 {
2424 	int err;
2425 	struct compressor *cp, *ocomp;
2426 	struct ppp_option_data data;
2427 	void *state, *ostate;
2428 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2429 
2430 	err = -EFAULT;
2431 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2432 	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2433 	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2434 		goto out;
2435 	err = -EINVAL;
2436 	if (data.length > CCP_MAX_OPTION_LENGTH ||
2437 	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2438 		goto out;
2439 
2440 	cp = try_then_request_module(
2441 		find_compressor(ccp_option[0]),
2442 		"ppp-compress-%d", ccp_option[0]);
2443 	if (!cp)
2444 		goto out;
2445 
2446 	err = -ENOBUFS;
2447 	if (data.transmit) {
2448 		state = cp->comp_alloc(ccp_option, data.length);
2449 		if (state) {
2450 			ppp_xmit_lock(ppp);
2451 			ppp->xstate &= ~SC_COMP_RUN;
2452 			ocomp = ppp->xcomp;
2453 			ostate = ppp->xc_state;
2454 			ppp->xcomp = cp;
2455 			ppp->xc_state = state;
2456 			ppp_xmit_unlock(ppp);
2457 			if (ostate) {
2458 				ocomp->comp_free(ostate);
2459 				module_put(ocomp->owner);
2460 			}
2461 			err = 0;
2462 		} else
2463 			module_put(cp->owner);
2464 
2465 	} else {
2466 		state = cp->decomp_alloc(ccp_option, data.length);
2467 		if (state) {
2468 			ppp_recv_lock(ppp);
2469 			ppp->rstate &= ~SC_DECOMP_RUN;
2470 			ocomp = ppp->rcomp;
2471 			ostate = ppp->rc_state;
2472 			ppp->rcomp = cp;
2473 			ppp->rc_state = state;
2474 			ppp_recv_unlock(ppp);
2475 			if (ostate) {
2476 				ocomp->decomp_free(ostate);
2477 				module_put(ocomp->owner);
2478 			}
2479 			err = 0;
2480 		} else
2481 			module_put(cp->owner);
2482 	}
2483 
2484  out:
2485 	return err;
2486 }
2487 
2488 /*
2489  * Look at a CCP packet and update our state accordingly.
2490  * We assume the caller has the xmit or recv path locked.
2491  */
2492 static void
ppp_ccp_peek(struct ppp * ppp,struct sk_buff * skb,int inbound)2493 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2494 {
2495 	unsigned char *dp;
2496 	int len;
2497 
2498 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2499 		return;	/* no header */
2500 	dp = skb->data + 2;
2501 
2502 	switch (CCP_CODE(dp)) {
2503 	case CCP_CONFREQ:
2504 
2505 		/* A ConfReq starts negotiation of compression
2506 		 * in one direction of transmission,
2507 		 * and hence brings it down...but which way?
2508 		 *
2509 		 * Remember:
2510 		 * A ConfReq indicates what the sender would like to receive
2511 		 */
2512 		if(inbound)
2513 			/* He is proposing what I should send */
2514 			ppp->xstate &= ~SC_COMP_RUN;
2515 		else
2516 			/* I am proposing to what he should send */
2517 			ppp->rstate &= ~SC_DECOMP_RUN;
2518 
2519 		break;
2520 
2521 	case CCP_TERMREQ:
2522 	case CCP_TERMACK:
2523 		/*
2524 		 * CCP is going down, both directions of transmission
2525 		 */
2526 		ppp->rstate &= ~SC_DECOMP_RUN;
2527 		ppp->xstate &= ~SC_COMP_RUN;
2528 		break;
2529 
2530 	case CCP_CONFACK:
2531 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2532 			break;
2533 		len = CCP_LENGTH(dp);
2534 		if (!pskb_may_pull(skb, len + 2))
2535 			return;		/* too short */
2536 		dp += CCP_HDRLEN;
2537 		len -= CCP_HDRLEN;
2538 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2539 			break;
2540 		if (inbound) {
2541 			/* we will start receiving compressed packets */
2542 			if (!ppp->rc_state)
2543 				break;
2544 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2545 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2546 				ppp->rstate |= SC_DECOMP_RUN;
2547 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2548 			}
2549 		} else {
2550 			/* we will soon start sending compressed packets */
2551 			if (!ppp->xc_state)
2552 				break;
2553 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2554 					ppp->file.index, 0, ppp->debug))
2555 				ppp->xstate |= SC_COMP_RUN;
2556 		}
2557 		break;
2558 
2559 	case CCP_RESETACK:
2560 		/* reset the [de]compressor */
2561 		if ((ppp->flags & SC_CCP_UP) == 0)
2562 			break;
2563 		if (inbound) {
2564 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2565 				ppp->rcomp->decomp_reset(ppp->rc_state);
2566 				ppp->rstate &= ~SC_DC_ERROR;
2567 			}
2568 		} else {
2569 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2570 				ppp->xcomp->comp_reset(ppp->xc_state);
2571 		}
2572 		break;
2573 	}
2574 }
2575 
2576 /* Free up compression resources. */
2577 static void
ppp_ccp_closed(struct ppp * ppp)2578 ppp_ccp_closed(struct ppp *ppp)
2579 {
2580 	void *xstate, *rstate;
2581 	struct compressor *xcomp, *rcomp;
2582 
2583 	ppp_lock(ppp);
2584 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2585 	ppp->xstate = 0;
2586 	xcomp = ppp->xcomp;
2587 	xstate = ppp->xc_state;
2588 	ppp->xc_state = NULL;
2589 	ppp->rstate = 0;
2590 	rcomp = ppp->rcomp;
2591 	rstate = ppp->rc_state;
2592 	ppp->rc_state = NULL;
2593 	ppp_unlock(ppp);
2594 
2595 	if (xstate) {
2596 		xcomp->comp_free(xstate);
2597 		module_put(xcomp->owner);
2598 	}
2599 	if (rstate) {
2600 		rcomp->decomp_free(rstate);
2601 		module_put(rcomp->owner);
2602 	}
2603 }
2604 
2605 /* List of compressors. */
2606 static LIST_HEAD(compressor_list);
2607 static DEFINE_SPINLOCK(compressor_list_lock);
2608 
2609 struct compressor_entry {
2610 	struct list_head list;
2611 	struct compressor *comp;
2612 };
2613 
2614 static struct compressor_entry *
find_comp_entry(int proto)2615 find_comp_entry(int proto)
2616 {
2617 	struct compressor_entry *ce;
2618 
2619 	list_for_each_entry(ce, &compressor_list, list) {
2620 		if (ce->comp->compress_proto == proto)
2621 			return ce;
2622 	}
2623 	return NULL;
2624 }
2625 
2626 /* Register a compressor */
2627 int
ppp_register_compressor(struct compressor * cp)2628 ppp_register_compressor(struct compressor *cp)
2629 {
2630 	struct compressor_entry *ce;
2631 	int ret;
2632 	spin_lock(&compressor_list_lock);
2633 	ret = -EEXIST;
2634 	if (find_comp_entry(cp->compress_proto))
2635 		goto out;
2636 	ret = -ENOMEM;
2637 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2638 	if (!ce)
2639 		goto out;
2640 	ret = 0;
2641 	ce->comp = cp;
2642 	list_add(&ce->list, &compressor_list);
2643  out:
2644 	spin_unlock(&compressor_list_lock);
2645 	return ret;
2646 }
2647 
2648 /* Unregister a compressor */
2649 void
ppp_unregister_compressor(struct compressor * cp)2650 ppp_unregister_compressor(struct compressor *cp)
2651 {
2652 	struct compressor_entry *ce;
2653 
2654 	spin_lock(&compressor_list_lock);
2655 	ce = find_comp_entry(cp->compress_proto);
2656 	if (ce && ce->comp == cp) {
2657 		list_del(&ce->list);
2658 		kfree(ce);
2659 	}
2660 	spin_unlock(&compressor_list_lock);
2661 }
2662 
2663 /* Find a compressor. */
2664 static struct compressor *
find_compressor(int type)2665 find_compressor(int type)
2666 {
2667 	struct compressor_entry *ce;
2668 	struct compressor *cp = NULL;
2669 
2670 	spin_lock(&compressor_list_lock);
2671 	ce = find_comp_entry(type);
2672 	if (ce) {
2673 		cp = ce->comp;
2674 		if (!try_module_get(cp->owner))
2675 			cp = NULL;
2676 	}
2677 	spin_unlock(&compressor_list_lock);
2678 	return cp;
2679 }
2680 
2681 /*
2682  * Miscelleneous stuff.
2683  */
2684 
2685 static void
ppp_get_stats(struct ppp * ppp,struct ppp_stats * st)2686 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2687 {
2688 	struct slcompress *vj = ppp->vj;
2689 
2690 	memset(st, 0, sizeof(*st));
2691 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2692 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2693 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2694 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2695 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2696 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2697 	if (!vj)
2698 		return;
2699 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2700 	st->vj.vjs_compressed = vj->sls_o_compressed;
2701 	st->vj.vjs_searches = vj->sls_o_searches;
2702 	st->vj.vjs_misses = vj->sls_o_misses;
2703 	st->vj.vjs_errorin = vj->sls_i_error;
2704 	st->vj.vjs_tossed = vj->sls_i_tossed;
2705 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2706 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2707 }
2708 
2709 /*
2710  * Stuff for handling the lists of ppp units and channels
2711  * and for initialization.
2712  */
2713 
2714 /*
2715  * Create a new ppp interface unit.  Fails if it can't allocate memory
2716  * or if there is already a unit with the requested number.
2717  * unit == -1 means allocate a new number.
2718  */
ppp_create_interface(struct net * net,int unit,struct file * file,int * retp)2719 static struct ppp *ppp_create_interface(struct net *net, int unit,
2720 					struct file *file, int *retp)
2721 {
2722 	struct ppp *ppp;
2723 	struct ppp_net *pn;
2724 	struct net_device *dev = NULL;
2725 	int ret = -ENOMEM;
2726 	int i;
2727 
2728 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_UNKNOWN,
2729 			   ppp_setup);
2730 	if (!dev)
2731 		goto out1;
2732 
2733 	pn = ppp_pernet(net);
2734 
2735 	ppp = netdev_priv(dev);
2736 	ppp->dev = dev;
2737 	ppp->mru = PPP_MRU;
2738 	init_ppp_file(&ppp->file, INTERFACE);
2739 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2740 	ppp->owner = file;
2741 	for (i = 0; i < NUM_NP; ++i)
2742 		ppp->npmode[i] = NPMODE_PASS;
2743 	INIT_LIST_HEAD(&ppp->channels);
2744 	spin_lock_init(&ppp->rlock);
2745 	spin_lock_init(&ppp->wlock);
2746 #ifdef CONFIG_PPP_MULTILINK
2747 	ppp->minseq = -1;
2748 	skb_queue_head_init(&ppp->mrq);
2749 #endif /* CONFIG_PPP_MULTILINK */
2750 #ifdef CONFIG_PPP_FILTER
2751 	ppp->pass_filter = NULL;
2752 	ppp->active_filter = NULL;
2753 #endif /* CONFIG_PPP_FILTER */
2754 
2755 	/*
2756 	 * drum roll: don't forget to set
2757 	 * the net device is belong to
2758 	 */
2759 	dev_net_set(dev, net);
2760 
2761 	rtnl_lock();
2762 	mutex_lock(&pn->all_ppp_mutex);
2763 
2764 	if (unit < 0) {
2765 		unit = unit_get(&pn->units_idr, ppp);
2766 		if (unit < 0) {
2767 			ret = unit;
2768 			goto out2;
2769 		}
2770 	} else {
2771 		ret = -EEXIST;
2772 		if (unit_find(&pn->units_idr, unit))
2773 			goto out2; /* unit already exists */
2774 		/*
2775 		 * if caller need a specified unit number
2776 		 * lets try to satisfy him, otherwise --
2777 		 * he should better ask us for new unit number
2778 		 *
2779 		 * NOTE: yes I know that returning EEXIST it's not
2780 		 * fair but at least pppd will ask us to allocate
2781 		 * new unit in this case so user is happy :)
2782 		 */
2783 		unit = unit_set(&pn->units_idr, ppp, unit);
2784 		if (unit < 0)
2785 			goto out2;
2786 	}
2787 
2788 	/* Initialize the new ppp unit */
2789 	ppp->file.index = unit;
2790 	sprintf(dev->name, "ppp%d", unit);
2791 
2792 	ret = register_netdevice(dev);
2793 	if (ret != 0) {
2794 		unit_put(&pn->units_idr, unit);
2795 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2796 			   dev->name, ret);
2797 		goto out2;
2798 	}
2799 
2800 	ppp->ppp_net = net;
2801 
2802 	atomic_inc(&ppp_unit_count);
2803 	mutex_unlock(&pn->all_ppp_mutex);
2804 	rtnl_unlock();
2805 
2806 	*retp = 0;
2807 	return ppp;
2808 
2809 out2:
2810 	mutex_unlock(&pn->all_ppp_mutex);
2811 	rtnl_unlock();
2812 	free_netdev(dev);
2813 out1:
2814 	*retp = ret;
2815 	return NULL;
2816 }
2817 
2818 /*
2819  * Initialize a ppp_file structure.
2820  */
2821 static void
init_ppp_file(struct ppp_file * pf,int kind)2822 init_ppp_file(struct ppp_file *pf, int kind)
2823 {
2824 	pf->kind = kind;
2825 	skb_queue_head_init(&pf->xq);
2826 	skb_queue_head_init(&pf->rq);
2827 	atomic_set(&pf->refcnt, 1);
2828 	init_waitqueue_head(&pf->rwait);
2829 }
2830 
2831 /*
2832  * Free the memory used by a ppp unit.  This is only called once
2833  * there are no channels connected to the unit and no file structs
2834  * that reference the unit.
2835  */
ppp_destroy_interface(struct ppp * ppp)2836 static void ppp_destroy_interface(struct ppp *ppp)
2837 {
2838 	atomic_dec(&ppp_unit_count);
2839 
2840 	if (!ppp->file.dead || ppp->n_channels) {
2841 		/* "can't happen" */
2842 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2843 			   "but dead=%d n_channels=%d !\n",
2844 			   ppp, ppp->file.dead, ppp->n_channels);
2845 		return;
2846 	}
2847 
2848 	ppp_ccp_closed(ppp);
2849 	if (ppp->vj) {
2850 		slhc_free(ppp->vj);
2851 		ppp->vj = NULL;
2852 	}
2853 	skb_queue_purge(&ppp->file.xq);
2854 	skb_queue_purge(&ppp->file.rq);
2855 #ifdef CONFIG_PPP_MULTILINK
2856 	skb_queue_purge(&ppp->mrq);
2857 #endif /* CONFIG_PPP_MULTILINK */
2858 #ifdef CONFIG_PPP_FILTER
2859 	if (ppp->pass_filter) {
2860 		bpf_prog_destroy(ppp->pass_filter);
2861 		ppp->pass_filter = NULL;
2862 	}
2863 
2864 	if (ppp->active_filter) {
2865 		bpf_prog_destroy(ppp->active_filter);
2866 		ppp->active_filter = NULL;
2867 	}
2868 #endif /* CONFIG_PPP_FILTER */
2869 
2870 	kfree_skb(ppp->xmit_pending);
2871 
2872 	free_netdev(ppp->dev);
2873 }
2874 
2875 /*
2876  * Locate an existing ppp unit.
2877  * The caller should have locked the all_ppp_mutex.
2878  */
2879 static struct ppp *
ppp_find_unit(struct ppp_net * pn,int unit)2880 ppp_find_unit(struct ppp_net *pn, int unit)
2881 {
2882 	return unit_find(&pn->units_idr, unit);
2883 }
2884 
2885 /*
2886  * Locate an existing ppp channel.
2887  * The caller should have locked the all_channels_lock.
2888  * First we look in the new_channels list, then in the
2889  * all_channels list.  If found in the new_channels list,
2890  * we move it to the all_channels list.  This is for speed
2891  * when we have a lot of channels in use.
2892  */
2893 static struct channel *
ppp_find_channel(struct ppp_net * pn,int unit)2894 ppp_find_channel(struct ppp_net *pn, int unit)
2895 {
2896 	struct channel *pch;
2897 
2898 	list_for_each_entry(pch, &pn->new_channels, list) {
2899 		if (pch->file.index == unit) {
2900 			list_move(&pch->list, &pn->all_channels);
2901 			return pch;
2902 		}
2903 	}
2904 
2905 	list_for_each_entry(pch, &pn->all_channels, list) {
2906 		if (pch->file.index == unit)
2907 			return pch;
2908 	}
2909 
2910 	return NULL;
2911 }
2912 
2913 /*
2914  * Connect a PPP channel to a PPP interface unit.
2915  */
2916 static int
ppp_connect_channel(struct channel * pch,int unit)2917 ppp_connect_channel(struct channel *pch, int unit)
2918 {
2919 	struct ppp *ppp;
2920 	struct ppp_net *pn;
2921 	int ret = -ENXIO;
2922 	int hdrlen;
2923 
2924 	pn = ppp_pernet(pch->chan_net);
2925 
2926 	mutex_lock(&pn->all_ppp_mutex);
2927 	ppp = ppp_find_unit(pn, unit);
2928 	if (!ppp)
2929 		goto out;
2930 	write_lock_bh(&pch->upl);
2931 	ret = -EINVAL;
2932 	if (pch->ppp)
2933 		goto outl;
2934 
2935 	ppp_lock(ppp);
2936 	if (pch->file.hdrlen > ppp->file.hdrlen)
2937 		ppp->file.hdrlen = pch->file.hdrlen;
2938 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2939 	if (hdrlen > ppp->dev->hard_header_len)
2940 		ppp->dev->hard_header_len = hdrlen;
2941 	list_add_tail(&pch->clist, &ppp->channels);
2942 	++ppp->n_channels;
2943 	pch->ppp = ppp;
2944 	atomic_inc(&ppp->file.refcnt);
2945 	ppp_unlock(ppp);
2946 	ret = 0;
2947 
2948  outl:
2949 	write_unlock_bh(&pch->upl);
2950  out:
2951 	mutex_unlock(&pn->all_ppp_mutex);
2952 	return ret;
2953 }
2954 
2955 /*
2956  * Disconnect a channel from its ppp unit.
2957  */
2958 static int
ppp_disconnect_channel(struct channel * pch)2959 ppp_disconnect_channel(struct channel *pch)
2960 {
2961 	struct ppp *ppp;
2962 	int err = -EINVAL;
2963 
2964 	write_lock_bh(&pch->upl);
2965 	ppp = pch->ppp;
2966 	pch->ppp = NULL;
2967 	write_unlock_bh(&pch->upl);
2968 	if (ppp) {
2969 		/* remove it from the ppp unit's list */
2970 		ppp_lock(ppp);
2971 		list_del(&pch->clist);
2972 		if (--ppp->n_channels == 0)
2973 			wake_up_interruptible(&ppp->file.rwait);
2974 		ppp_unlock(ppp);
2975 		if (atomic_dec_and_test(&ppp->file.refcnt))
2976 			ppp_destroy_interface(ppp);
2977 		err = 0;
2978 	}
2979 	return err;
2980 }
2981 
2982 /*
2983  * Free up the resources used by a ppp channel.
2984  */
ppp_destroy_channel(struct channel * pch)2985 static void ppp_destroy_channel(struct channel *pch)
2986 {
2987 	atomic_dec(&channel_count);
2988 
2989 	if (!pch->file.dead) {
2990 		/* "can't happen" */
2991 		pr_err("ppp: destroying undead channel %p !\n", pch);
2992 		return;
2993 	}
2994 	skb_queue_purge(&pch->file.xq);
2995 	skb_queue_purge(&pch->file.rq);
2996 	kfree(pch);
2997 }
2998 
ppp_cleanup(void)2999 static void __exit ppp_cleanup(void)
3000 {
3001 	/* should never happen */
3002 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
3003 		pr_err("PPP: removing module but units remain!\n");
3004 	unregister_chrdev(PPP_MAJOR, "ppp");
3005 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3006 	class_destroy(ppp_class);
3007 	unregister_pernet_device(&ppp_net_ops);
3008 }
3009 
3010 /*
3011  * Units handling. Caller must protect concurrent access
3012  * by holding all_ppp_mutex
3013  */
3014 
3015 /* associate pointer with specified number */
unit_set(struct idr * p,void * ptr,int n)3016 static int unit_set(struct idr *p, void *ptr, int n)
3017 {
3018 	int unit;
3019 
3020 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3021 	if (unit == -ENOSPC)
3022 		unit = -EINVAL;
3023 	return unit;
3024 }
3025 
3026 /* get new free unit number and associate pointer with it */
unit_get(struct idr * p,void * ptr)3027 static int unit_get(struct idr *p, void *ptr)
3028 {
3029 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3030 }
3031 
3032 /* put unit number back to a pool */
unit_put(struct idr * p,int n)3033 static void unit_put(struct idr *p, int n)
3034 {
3035 	idr_remove(p, n);
3036 }
3037 
3038 /* get pointer associated with the number */
unit_find(struct idr * p,int n)3039 static void *unit_find(struct idr *p, int n)
3040 {
3041 	return idr_find(p, n);
3042 }
3043 
3044 /* Module/initialization stuff */
3045 
3046 module_init(ppp_init);
3047 module_exit(ppp_cleanup);
3048 
3049 EXPORT_SYMBOL(ppp_register_net_channel);
3050 EXPORT_SYMBOL(ppp_register_channel);
3051 EXPORT_SYMBOL(ppp_unregister_channel);
3052 EXPORT_SYMBOL(ppp_channel_index);
3053 EXPORT_SYMBOL(ppp_unit_number);
3054 EXPORT_SYMBOL(ppp_dev_name);
3055 EXPORT_SYMBOL(ppp_input);
3056 EXPORT_SYMBOL(ppp_input_error);
3057 EXPORT_SYMBOL(ppp_output_wakeup);
3058 EXPORT_SYMBOL(ppp_register_compressor);
3059 EXPORT_SYMBOL(ppp_unregister_compressor);
3060 MODULE_LICENSE("GPL");
3061 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3062 MODULE_ALIAS("devname:ppp");
3063