1/*
2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12/*
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels between driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
25 *
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
30 * RXD Fifo.
31 *
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
41 *
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 *    NAPI - interrupt-driven mixed with polling
50 *    interrupt-driven only
51 *
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
55
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
62 *
63 */
64
65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
67#include "tehuti.h"
68
69static const struct pci_device_id bdx_pci_tbl[] = {
70	{ PCI_VDEVICE(TEHUTI, 0x3009), },
71	{ PCI_VDEVICE(TEHUTI, 0x3010), },
72	{ PCI_VDEVICE(TEHUTI, 0x3014), },
73	{ 0 }
74};
75
76MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
77
78/* Definitions needed by ISR or NAPI functions */
79static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
80static void bdx_tx_cleanup(struct bdx_priv *priv);
81static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
82
83/* Definitions needed by FW loading */
84static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
85
86/* Definitions needed by hw_start */
87static int bdx_tx_init(struct bdx_priv *priv);
88static int bdx_rx_init(struct bdx_priv *priv);
89
90/* Definitions needed by bdx_close */
91static void bdx_rx_free(struct bdx_priv *priv);
92static void bdx_tx_free(struct bdx_priv *priv);
93
94/* Definitions needed by bdx_probe */
95static void bdx_set_ethtool_ops(struct net_device *netdev);
96
97/*************************************************************************
98 *    Print Info                                                         *
99 *************************************************************************/
100
101static void print_hw_id(struct pci_dev *pdev)
102{
103	struct pci_nic *nic = pci_get_drvdata(pdev);
104	u16 pci_link_status = 0;
105	u16 pci_ctrl = 0;
106
107	pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
108	pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
109
110	pr_info("%s%s\n", BDX_NIC_NAME,
111		nic->port_num == 1 ? "" : ", 2-Port");
112	pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
113		readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
114		readl(nic->regs + FPGA_SEED),
115		GET_LINK_STATUS_LANES(pci_link_status),
116		GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
117}
118
119static void print_fw_id(struct pci_nic *nic)
120{
121	pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
122}
123
124static void print_eth_id(struct net_device *ndev)
125{
126	netdev_info(ndev, "%s, Port %c\n",
127		    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
128
129}
130
131/*************************************************************************
132 *    Code                                                               *
133 *************************************************************************/
134
135#define bdx_enable_interrupts(priv)	\
136	do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
137#define bdx_disable_interrupts(priv)	\
138	do { WRITE_REG(priv, regIMR, 0); } while (0)
139
140/**
141 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
142 * @priv: NIC private structure
143 * @f: fifo to initialize
144 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
145 * @reg_XXX: offsets of registers relative to base address
146 *
147 * 1K extra space is allocated at the end of the fifo to simplify
148 * processing of descriptors that wraps around fifo's end
149 *
150 * Returns 0 on success, negative value on failure
151 *
152 */
153static int
154bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
155	      u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
156{
157	u16 memsz = FIFO_SIZE * (1 << fsz_type);
158
159	memset(f, 0, sizeof(struct fifo));
160	/* pci_alloc_consistent gives us 4k-aligned memory */
161	f->va = pci_alloc_consistent(priv->pdev,
162				     memsz + FIFO_EXTRA_SPACE, &f->da);
163	if (!f->va) {
164		pr_err("pci_alloc_consistent failed\n");
165		RET(-ENOMEM);
166	}
167	f->reg_CFG0 = reg_CFG0;
168	f->reg_CFG1 = reg_CFG1;
169	f->reg_RPTR = reg_RPTR;
170	f->reg_WPTR = reg_WPTR;
171	f->rptr = 0;
172	f->wptr = 0;
173	f->memsz = memsz;
174	f->size_mask = memsz - 1;
175	WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
176	WRITE_REG(priv, reg_CFG1, H32_64(f->da));
177
178	RET(0);
179}
180
181/**
182 * bdx_fifo_free - free all resources used by fifo
183 * @priv: NIC private structure
184 * @f: fifo to release
185 */
186static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
187{
188	ENTER;
189	if (f->va) {
190		pci_free_consistent(priv->pdev,
191				    f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
192		f->va = NULL;
193	}
194	RET();
195}
196
197/**
198 * bdx_link_changed - notifies OS about hw link state.
199 * @priv: hw adapter structure
200 */
201static void bdx_link_changed(struct bdx_priv *priv)
202{
203	u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
204
205	if (!link) {
206		if (netif_carrier_ok(priv->ndev)) {
207			netif_stop_queue(priv->ndev);
208			netif_carrier_off(priv->ndev);
209			netdev_err(priv->ndev, "Link Down\n");
210		}
211	} else {
212		if (!netif_carrier_ok(priv->ndev)) {
213			netif_wake_queue(priv->ndev);
214			netif_carrier_on(priv->ndev);
215			netdev_err(priv->ndev, "Link Up\n");
216		}
217	}
218}
219
220static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
221{
222	if (isr & IR_RX_FREE_0) {
223		bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
224		DBG("RX_FREE_0\n");
225	}
226
227	if (isr & IR_LNKCHG0)
228		bdx_link_changed(priv);
229
230	if (isr & IR_PCIE_LINK)
231		netdev_err(priv->ndev, "PCI-E Link Fault\n");
232
233	if (isr & IR_PCIE_TOUT)
234		netdev_err(priv->ndev, "PCI-E Time Out\n");
235
236}
237
238/**
239 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
240 * @irq: interrupt number
241 * @dev: network device
242 *
243 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
244 *
245 * It reads ISR register to know interrupt reasons, and proceed them one by one.
246 * Reasons of interest are:
247 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
248 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
249 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
250 */
251
252static irqreturn_t bdx_isr_napi(int irq, void *dev)
253{
254	struct net_device *ndev = dev;
255	struct bdx_priv *priv = netdev_priv(ndev);
256	u32 isr;
257
258	ENTER;
259	isr = (READ_REG(priv, regISR) & IR_RUN);
260	if (unlikely(!isr)) {
261		bdx_enable_interrupts(priv);
262		return IRQ_NONE;	/* Not our interrupt */
263	}
264
265	if (isr & IR_EXTRA)
266		bdx_isr_extra(priv, isr);
267
268	if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
269		if (likely(napi_schedule_prep(&priv->napi))) {
270			__napi_schedule(&priv->napi);
271			RET(IRQ_HANDLED);
272		} else {
273			/* NOTE: we get here if intr has slipped into window
274			 * between these lines in bdx_poll:
275			 *    bdx_enable_interrupts(priv);
276			 *    return 0;
277			 * currently intrs are disabled (since we read ISR),
278			 * and we have failed to register next poll.
279			 * so we read the regs to trigger chip
280			 * and allow further interupts. */
281			READ_REG(priv, regTXF_WPTR_0);
282			READ_REG(priv, regRXD_WPTR_0);
283		}
284	}
285
286	bdx_enable_interrupts(priv);
287	RET(IRQ_HANDLED);
288}
289
290static int bdx_poll(struct napi_struct *napi, int budget)
291{
292	struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
293	int work_done;
294
295	ENTER;
296	bdx_tx_cleanup(priv);
297	work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
298	if ((work_done < budget) ||
299	    (priv->napi_stop++ >= 30)) {
300		DBG("rx poll is done. backing to isr-driven\n");
301
302		/* from time to time we exit to let NAPI layer release
303		 * device lock and allow waiting tasks (eg rmmod) to advance) */
304		priv->napi_stop = 0;
305
306		napi_complete(napi);
307		bdx_enable_interrupts(priv);
308	}
309	return work_done;
310}
311
312/**
313 * bdx_fw_load - loads firmware to NIC
314 * @priv: NIC private structure
315 *
316 * Firmware is loaded via TXD fifo, so it must be initialized first.
317 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
318 * can have few of them). So all drivers use semaphore register to choose one
319 * that will actually load FW to NIC.
320 */
321
322static int bdx_fw_load(struct bdx_priv *priv)
323{
324	const struct firmware *fw = NULL;
325	int master, i;
326	int rc;
327
328	ENTER;
329	master = READ_REG(priv, regINIT_SEMAPHORE);
330	if (!READ_REG(priv, regINIT_STATUS) && master) {
331		rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
332		if (rc)
333			goto out;
334		bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
335		mdelay(100);
336	}
337	for (i = 0; i < 200; i++) {
338		if (READ_REG(priv, regINIT_STATUS)) {
339			rc = 0;
340			goto out;
341		}
342		mdelay(2);
343	}
344	rc = -EIO;
345out:
346	if (master)
347		WRITE_REG(priv, regINIT_SEMAPHORE, 1);
348
349	release_firmware(fw);
350
351	if (rc) {
352		netdev_err(priv->ndev, "firmware loading failed\n");
353		if (rc == -EIO)
354			DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
355			    READ_REG(priv, regVPC),
356			    READ_REG(priv, regVIC),
357			    READ_REG(priv, regINIT_STATUS), i);
358		RET(rc);
359	} else {
360		DBG("%s: firmware loading success\n", priv->ndev->name);
361		RET(0);
362	}
363}
364
365static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
366{
367	u32 val;
368
369	ENTER;
370	DBG("mac0=%x mac1=%x mac2=%x\n",
371	    READ_REG(priv, regUNC_MAC0_A),
372	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
373
374	val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
375	WRITE_REG(priv, regUNC_MAC2_A, val);
376	val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
377	WRITE_REG(priv, regUNC_MAC1_A, val);
378	val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
379	WRITE_REG(priv, regUNC_MAC0_A, val);
380
381	DBG("mac0=%x mac1=%x mac2=%x\n",
382	    READ_REG(priv, regUNC_MAC0_A),
383	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
384	RET();
385}
386
387/**
388 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
389 * @priv: NIC private structure
390 */
391static int bdx_hw_start(struct bdx_priv *priv)
392{
393	int rc = -EIO;
394	struct net_device *ndev = priv->ndev;
395
396	ENTER;
397	bdx_link_changed(priv);
398
399	/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
400	WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
401	WRITE_REG(priv, regPAUSE_QUANT, 0x96);
402	WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
403	WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
404	WRITE_REG(priv, regRX_FULLNESS, 0);
405	WRITE_REG(priv, regTX_FULLNESS, 0);
406	WRITE_REG(priv, regCTRLST,
407		  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
408
409	WRITE_REG(priv, regVGLB, 0);
410	WRITE_REG(priv, regMAX_FRAME_A,
411		  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
412
413	DBG("RDINTCM=%08x\n", priv->rdintcm);	/*NOTE: test script uses this */
414	WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
415	WRITE_REG(priv, regRDINTCM2, 0);	/*cpu_to_le32(rcm.val)); */
416
417	DBG("TDINTCM=%08x\n", priv->tdintcm);	/*NOTE: test script uses this */
418	WRITE_REG(priv, regTDINTCM0, priv->tdintcm);	/* old val = 0x300064 */
419
420	/* Enable timer interrupt once in 2 secs. */
421	/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
422	bdx_restore_mac(priv->ndev, priv);
423
424	WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
425		  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
426
427#define BDX_IRQ_TYPE	((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
428
429	rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
430			 ndev->name, ndev);
431	if (rc)
432		goto err_irq;
433	bdx_enable_interrupts(priv);
434
435	RET(0);
436
437err_irq:
438	RET(rc);
439}
440
441static void bdx_hw_stop(struct bdx_priv *priv)
442{
443	ENTER;
444	bdx_disable_interrupts(priv);
445	free_irq(priv->pdev->irq, priv->ndev);
446
447	netif_carrier_off(priv->ndev);
448	netif_stop_queue(priv->ndev);
449
450	RET();
451}
452
453static int bdx_hw_reset_direct(void __iomem *regs)
454{
455	u32 val, i;
456	ENTER;
457
458	/* reset sequences: read, write 1, read, write 0 */
459	val = readl(regs + regCLKPLL);
460	writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
461	udelay(50);
462	val = readl(regs + regCLKPLL);
463	writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
464
465	/* check that the PLLs are locked and reset ended */
466	for (i = 0; i < 70; i++, mdelay(10))
467		if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
468			/* do any PCI-E read transaction */
469			readl(regs + regRXD_CFG0_0);
470			return 0;
471		}
472	pr_err("HW reset failed\n");
473	return 1;		/* failure */
474}
475
476static int bdx_hw_reset(struct bdx_priv *priv)
477{
478	u32 val, i;
479	ENTER;
480
481	if (priv->port == 0) {
482		/* reset sequences: read, write 1, read, write 0 */
483		val = READ_REG(priv, regCLKPLL);
484		WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
485		udelay(50);
486		val = READ_REG(priv, regCLKPLL);
487		WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
488	}
489	/* check that the PLLs are locked and reset ended */
490	for (i = 0; i < 70; i++, mdelay(10))
491		if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
492			/* do any PCI-E read transaction */
493			READ_REG(priv, regRXD_CFG0_0);
494			return 0;
495		}
496	pr_err("HW reset failed\n");
497	return 1;		/* failure */
498}
499
500static int bdx_sw_reset(struct bdx_priv *priv)
501{
502	int i;
503
504	ENTER;
505	/* 1. load MAC (obsolete) */
506	/* 2. disable Rx (and Tx) */
507	WRITE_REG(priv, regGMAC_RXF_A, 0);
508	mdelay(100);
509	/* 3. disable port */
510	WRITE_REG(priv, regDIS_PORT, 1);
511	/* 4. disable queue */
512	WRITE_REG(priv, regDIS_QU, 1);
513	/* 5. wait until hw is disabled */
514	for (i = 0; i < 50; i++) {
515		if (READ_REG(priv, regRST_PORT) & 1)
516			break;
517		mdelay(10);
518	}
519	if (i == 50)
520		netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
521
522	/* 6. disable intrs */
523	WRITE_REG(priv, regRDINTCM0, 0);
524	WRITE_REG(priv, regTDINTCM0, 0);
525	WRITE_REG(priv, regIMR, 0);
526	READ_REG(priv, regISR);
527
528	/* 7. reset queue */
529	WRITE_REG(priv, regRST_QU, 1);
530	/* 8. reset port */
531	WRITE_REG(priv, regRST_PORT, 1);
532	/* 9. zero all read and write pointers */
533	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
534		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
535	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
536		WRITE_REG(priv, i, 0);
537	/* 10. unseet port disable */
538	WRITE_REG(priv, regDIS_PORT, 0);
539	/* 11. unset queue disable */
540	WRITE_REG(priv, regDIS_QU, 0);
541	/* 12. unset queue reset */
542	WRITE_REG(priv, regRST_QU, 0);
543	/* 13. unset port reset */
544	WRITE_REG(priv, regRST_PORT, 0);
545	/* 14. enable Rx */
546	/* skiped. will be done later */
547	/* 15. save MAC (obsolete) */
548	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
549		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
550
551	RET(0);
552}
553
554/* bdx_reset - performs right type of reset depending on hw type */
555static int bdx_reset(struct bdx_priv *priv)
556{
557	ENTER;
558	RET((priv->pdev->device == 0x3009)
559	    ? bdx_hw_reset(priv)
560	    : bdx_sw_reset(priv));
561}
562
563/**
564 * bdx_close - Disables a network interface
565 * @netdev: network interface device structure
566 *
567 * Returns 0, this is not allowed to fail
568 *
569 * The close entry point is called when an interface is de-activated
570 * by the OS.  The hardware is still under the drivers control, but
571 * needs to be disabled.  A global MAC reset is issued to stop the
572 * hardware, and all transmit and receive resources are freed.
573 **/
574static int bdx_close(struct net_device *ndev)
575{
576	struct bdx_priv *priv = NULL;
577
578	ENTER;
579	priv = netdev_priv(ndev);
580
581	napi_disable(&priv->napi);
582
583	bdx_reset(priv);
584	bdx_hw_stop(priv);
585	bdx_rx_free(priv);
586	bdx_tx_free(priv);
587	RET(0);
588}
589
590/**
591 * bdx_open - Called when a network interface is made active
592 * @netdev: network interface device structure
593 *
594 * Returns 0 on success, negative value on failure
595 *
596 * The open entry point is called when a network interface is made
597 * active by the system (IFF_UP).  At this point all resources needed
598 * for transmit and receive operations are allocated, the interrupt
599 * handler is registered with the OS, the watchdog timer is started,
600 * and the stack is notified that the interface is ready.
601 **/
602static int bdx_open(struct net_device *ndev)
603{
604	struct bdx_priv *priv;
605	int rc;
606
607	ENTER;
608	priv = netdev_priv(ndev);
609	bdx_reset(priv);
610	if (netif_running(ndev))
611		netif_stop_queue(priv->ndev);
612
613	if ((rc = bdx_tx_init(priv)) ||
614	    (rc = bdx_rx_init(priv)) ||
615	    (rc = bdx_fw_load(priv)))
616		goto err;
617
618	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
619
620	rc = bdx_hw_start(priv);
621	if (rc)
622		goto err;
623
624	napi_enable(&priv->napi);
625
626	print_fw_id(priv->nic);
627
628	RET(0);
629
630err:
631	bdx_close(ndev);
632	RET(rc);
633}
634
635static int bdx_range_check(struct bdx_priv *priv, u32 offset)
636{
637	return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
638		-EINVAL : 0;
639}
640
641static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
642{
643	struct bdx_priv *priv = netdev_priv(ndev);
644	u32 data[3];
645	int error;
646
647	ENTER;
648
649	DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
650	if (cmd != SIOCDEVPRIVATE) {
651		error = copy_from_user(data, ifr->ifr_data, sizeof(data));
652		if (error) {
653			pr_err("can't copy from user\n");
654			RET(-EFAULT);
655		}
656		DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
657	}
658
659	if (!capable(CAP_SYS_RAWIO))
660		return -EPERM;
661
662	switch (data[0]) {
663
664	case BDX_OP_READ:
665		error = bdx_range_check(priv, data[1]);
666		if (error < 0)
667			return error;
668		data[2] = READ_REG(priv, data[1]);
669		DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
670		    data[2]);
671		error = copy_to_user(ifr->ifr_data, data, sizeof(data));
672		if (error)
673			RET(-EFAULT);
674		break;
675
676	case BDX_OP_WRITE:
677		error = bdx_range_check(priv, data[1]);
678		if (error < 0)
679			return error;
680		WRITE_REG(priv, data[1], data[2]);
681		DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
682		break;
683
684	default:
685		RET(-EOPNOTSUPP);
686	}
687	return 0;
688}
689
690static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
691{
692	ENTER;
693	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
694		RET(bdx_ioctl_priv(ndev, ifr, cmd));
695	else
696		RET(-EOPNOTSUPP);
697}
698
699/**
700 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
701 * @ndev: network device
702 * @vid:  VLAN vid
703 * @op:   add or kill operation
704 *
705 * Passes VLAN filter table to hardware
706 */
707static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
708{
709	struct bdx_priv *priv = netdev_priv(ndev);
710	u32 reg, bit, val;
711
712	ENTER;
713	DBG2("vid=%d value=%d\n", (int)vid, enable);
714	if (unlikely(vid >= 4096)) {
715		pr_err("invalid VID: %u (> 4096)\n", vid);
716		RET();
717	}
718	reg = regVLAN_0 + (vid / 32) * 4;
719	bit = 1 << vid % 32;
720	val = READ_REG(priv, reg);
721	DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
722	if (enable)
723		val |= bit;
724	else
725		val &= ~bit;
726	DBG2("new val %x\n", val);
727	WRITE_REG(priv, reg, val);
728	RET();
729}
730
731/**
732 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
733 * @ndev: network device
734 * @vid:  VLAN vid to add
735 */
736static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
737{
738	__bdx_vlan_rx_vid(ndev, vid, 1);
739	return 0;
740}
741
742/**
743 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
744 * @ndev: network device
745 * @vid:  VLAN vid to kill
746 */
747static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
748{
749	__bdx_vlan_rx_vid(ndev, vid, 0);
750	return 0;
751}
752
753/**
754 * bdx_change_mtu - Change the Maximum Transfer Unit
755 * @netdev: network interface device structure
756 * @new_mtu: new value for maximum frame size
757 *
758 * Returns 0 on success, negative on failure
759 */
760static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
761{
762	ENTER;
763
764	if (new_mtu == ndev->mtu)
765		RET(0);
766
767	/* enforce minimum frame size */
768	if (new_mtu < ETH_ZLEN) {
769		netdev_err(ndev, "mtu %d is less then minimal %d\n",
770			   new_mtu, ETH_ZLEN);
771		RET(-EINVAL);
772	}
773
774	ndev->mtu = new_mtu;
775	if (netif_running(ndev)) {
776		bdx_close(ndev);
777		bdx_open(ndev);
778	}
779	RET(0);
780}
781
782static void bdx_setmulti(struct net_device *ndev)
783{
784	struct bdx_priv *priv = netdev_priv(ndev);
785
786	u32 rxf_val =
787	    GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
788	int i;
789
790	ENTER;
791	/* IMF - imperfect (hash) rx multicat filter */
792	/* PMF - perfect rx multicat filter */
793
794	/* FIXME: RXE(OFF) */
795	if (ndev->flags & IFF_PROMISC) {
796		rxf_val |= GMAC_RX_FILTER_PRM;
797	} else if (ndev->flags & IFF_ALLMULTI) {
798		/* set IMF to accept all multicast frmaes */
799		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
800			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
801	} else if (!netdev_mc_empty(ndev)) {
802		u8 hash;
803		struct netdev_hw_addr *ha;
804		u32 reg, val;
805
806		/* set IMF to deny all multicast frames */
807		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
808			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
809		/* set PMF to deny all multicast frames */
810		for (i = 0; i < MAC_MCST_NUM; i++) {
811			WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
812			WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
813		}
814
815		/* use PMF to accept first MAC_MCST_NUM (15) addresses */
816		/* TBD: sort addresses and write them in ascending order
817		 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
818		 * multicast frames throu IMF */
819		/* accept the rest of addresses throu IMF */
820		netdev_for_each_mc_addr(ha, ndev) {
821			hash = 0;
822			for (i = 0; i < ETH_ALEN; i++)
823				hash ^= ha->addr[i];
824			reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
825			val = READ_REG(priv, reg);
826			val |= (1 << (hash % 32));
827			WRITE_REG(priv, reg, val);
828		}
829
830	} else {
831		DBG("only own mac %d\n", netdev_mc_count(ndev));
832		rxf_val |= GMAC_RX_FILTER_AB;
833	}
834	WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
835	/* enable RX */
836	/* FIXME: RXE(ON) */
837	RET();
838}
839
840static int bdx_set_mac(struct net_device *ndev, void *p)
841{
842	struct bdx_priv *priv = netdev_priv(ndev);
843	struct sockaddr *addr = p;
844
845	ENTER;
846	/*
847	   if (netif_running(dev))
848	   return -EBUSY
849	 */
850	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
851	bdx_restore_mac(ndev, priv);
852	RET(0);
853}
854
855static int bdx_read_mac(struct bdx_priv *priv)
856{
857	u16 macAddress[3], i;
858	ENTER;
859
860	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
861	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
862	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
863	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
864	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
865	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
866	for (i = 0; i < 3; i++) {
867		priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
868		priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
869	}
870	RET(0);
871}
872
873static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
874{
875	u64 val;
876
877	val = READ_REG(priv, reg);
878	val |= ((u64) READ_REG(priv, reg + 8)) << 32;
879	return val;
880}
881
882/*Do the statistics-update work*/
883static void bdx_update_stats(struct bdx_priv *priv)
884{
885	struct bdx_stats *stats = &priv->hw_stats;
886	u64 *stats_vector = (u64 *) stats;
887	int i;
888	int addr;
889
890	/*Fill HW structure */
891	addr = 0x7200;
892	/*First 12 statistics - 0x7200 - 0x72B0 */
893	for (i = 0; i < 12; i++) {
894		stats_vector[i] = bdx_read_l2stat(priv, addr);
895		addr += 0x10;
896	}
897	BDX_ASSERT(addr != 0x72C0);
898	/* 0x72C0-0x72E0 RSRV */
899	addr = 0x72F0;
900	for (; i < 16; i++) {
901		stats_vector[i] = bdx_read_l2stat(priv, addr);
902		addr += 0x10;
903	}
904	BDX_ASSERT(addr != 0x7330);
905	/* 0x7330-0x7360 RSRV */
906	addr = 0x7370;
907	for (; i < 19; i++) {
908		stats_vector[i] = bdx_read_l2stat(priv, addr);
909		addr += 0x10;
910	}
911	BDX_ASSERT(addr != 0x73A0);
912	/* 0x73A0-0x73B0 RSRV */
913	addr = 0x73C0;
914	for (; i < 23; i++) {
915		stats_vector[i] = bdx_read_l2stat(priv, addr);
916		addr += 0x10;
917	}
918	BDX_ASSERT(addr != 0x7400);
919	BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
920}
921
922static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
923		       u16 rxd_vlan);
924static void print_rxfd(struct rxf_desc *rxfd);
925
926/*************************************************************************
927 *     Rx DB                                                             *
928 *************************************************************************/
929
930static void bdx_rxdb_destroy(struct rxdb *db)
931{
932	vfree(db);
933}
934
935static struct rxdb *bdx_rxdb_create(int nelem)
936{
937	struct rxdb *db;
938	int i;
939
940	db = vmalloc(sizeof(struct rxdb)
941		     + (nelem * sizeof(int))
942		     + (nelem * sizeof(struct rx_map)));
943	if (likely(db != NULL)) {
944		db->stack = (int *)(db + 1);
945		db->elems = (void *)(db->stack + nelem);
946		db->nelem = nelem;
947		db->top = nelem;
948		for (i = 0; i < nelem; i++)
949			db->stack[i] = nelem - i - 1;	/* to make first allocs
950							   close to db struct*/
951	}
952
953	return db;
954}
955
956static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
957{
958	BDX_ASSERT(db->top <= 0);
959	return db->stack[--(db->top)];
960}
961
962static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
963{
964	BDX_ASSERT((n < 0) || (n >= db->nelem));
965	return db->elems + n;
966}
967
968static inline int bdx_rxdb_available(struct rxdb *db)
969{
970	return db->top;
971}
972
973static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
974{
975	BDX_ASSERT((n >= db->nelem) || (n < 0));
976	db->stack[(db->top)++] = n;
977}
978
979/*************************************************************************
980 *     Rx Init                                                           *
981 *************************************************************************/
982
983/**
984 * bdx_rx_init - initialize RX all related HW and SW resources
985 * @priv: NIC private structure
986 *
987 * Returns 0 on success, negative value on failure
988 *
989 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
990 * skb for rx. It assumes that Rx is desabled in HW
991 * funcs are grouped for better cache usage
992 *
993 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
994 * filled and packets will be dropped by nic without getting into host or
995 * cousing interrupt. Anyway, in that condition, host has no chance to process
996 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
997 */
998
999/* TBD: ensure proper packet size */
1000
1001static int bdx_rx_init(struct bdx_priv *priv)
1002{
1003	ENTER;
1004
1005	if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
1006			  regRXD_CFG0_0, regRXD_CFG1_0,
1007			  regRXD_RPTR_0, regRXD_WPTR_0))
1008		goto err_mem;
1009	if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1010			  regRXF_CFG0_0, regRXF_CFG1_0,
1011			  regRXF_RPTR_0, regRXF_WPTR_0))
1012		goto err_mem;
1013	priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1014				     sizeof(struct rxf_desc));
1015	if (!priv->rxdb)
1016		goto err_mem;
1017
1018	priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1019	return 0;
1020
1021err_mem:
1022	netdev_err(priv->ndev, "Rx init failed\n");
1023	return -ENOMEM;
1024}
1025
1026/**
1027 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1028 * @priv: NIC private structure
1029 * @f: RXF fifo
1030 */
1031static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1032{
1033	struct rx_map *dm;
1034	struct rxdb *db = priv->rxdb;
1035	u16 i;
1036
1037	ENTER;
1038	DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1039	    db->nelem - bdx_rxdb_available(db));
1040	while (bdx_rxdb_available(db) > 0) {
1041		i = bdx_rxdb_alloc_elem(db);
1042		dm = bdx_rxdb_addr_elem(db, i);
1043		dm->dma = 0;
1044	}
1045	for (i = 0; i < db->nelem; i++) {
1046		dm = bdx_rxdb_addr_elem(db, i);
1047		if (dm->dma) {
1048			pci_unmap_single(priv->pdev,
1049					 dm->dma, f->m.pktsz,
1050					 PCI_DMA_FROMDEVICE);
1051			dev_kfree_skb(dm->skb);
1052		}
1053	}
1054}
1055
1056/**
1057 * bdx_rx_free - release all Rx resources
1058 * @priv: NIC private structure
1059 *
1060 * It assumes that Rx is desabled in HW
1061 */
1062static void bdx_rx_free(struct bdx_priv *priv)
1063{
1064	ENTER;
1065	if (priv->rxdb) {
1066		bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1067		bdx_rxdb_destroy(priv->rxdb);
1068		priv->rxdb = NULL;
1069	}
1070	bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1071	bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1072
1073	RET();
1074}
1075
1076/*************************************************************************
1077 *     Rx Engine                                                         *
1078 *************************************************************************/
1079
1080/**
1081 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1082 * @priv: nic's private structure
1083 * @f: RXF fifo that needs skbs
1084 *
1085 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1086 * skb's virtual and physical addresses are stored in skb db.
1087 * To calculate free space, func uses cached values of RPTR and WPTR
1088 * When needed, it also updates RPTR and WPTR.
1089 */
1090
1091/* TBD: do not update WPTR if no desc were written */
1092
1093static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1094{
1095	struct sk_buff *skb;
1096	struct rxf_desc *rxfd;
1097	struct rx_map *dm;
1098	int dno, delta, idx;
1099	struct rxdb *db = priv->rxdb;
1100
1101	ENTER;
1102	dno = bdx_rxdb_available(db) - 1;
1103	while (dno > 0) {
1104		skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1105		if (!skb)
1106			break;
1107
1108		skb_reserve(skb, NET_IP_ALIGN);
1109
1110		idx = bdx_rxdb_alloc_elem(db);
1111		dm = bdx_rxdb_addr_elem(db, idx);
1112		dm->dma = pci_map_single(priv->pdev,
1113					 skb->data, f->m.pktsz,
1114					 PCI_DMA_FROMDEVICE);
1115		dm->skb = skb;
1116		rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1117		rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1118		rxfd->va_lo = idx;
1119		rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1120		rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1121		rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1122		print_rxfd(rxfd);
1123
1124		f->m.wptr += sizeof(struct rxf_desc);
1125		delta = f->m.wptr - f->m.memsz;
1126		if (unlikely(delta >= 0)) {
1127			f->m.wptr = delta;
1128			if (delta > 0) {
1129				memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1130				DBG("wrapped descriptor\n");
1131			}
1132		}
1133		dno--;
1134	}
1135	/*TBD: to do - delayed rxf wptr like in txd */
1136	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1137	RET();
1138}
1139
1140static inline void
1141NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1142	     struct sk_buff *skb)
1143{
1144	ENTER;
1145	DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1146	if (GET_RXD_VTAG(rxd_val1)) {
1147		DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1148		    priv->ndev->name,
1149		    GET_RXD_VLAN_ID(rxd_vlan),
1150		    GET_RXD_VTAG(rxd_val1));
1151		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1152	}
1153	netif_receive_skb(skb);
1154}
1155
1156static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1157{
1158	struct rxf_desc *rxfd;
1159	struct rx_map *dm;
1160	struct rxf_fifo *f;
1161	struct rxdb *db;
1162	struct sk_buff *skb;
1163	int delta;
1164
1165	ENTER;
1166	DBG("priv=%p rxdd=%p\n", priv, rxdd);
1167	f = &priv->rxf_fifo0;
1168	db = priv->rxdb;
1169	DBG("db=%p f=%p\n", db, f);
1170	dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1171	DBG("dm=%p\n", dm);
1172	skb = dm->skb;
1173	rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1174	rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1175	rxfd->va_lo = rxdd->va_lo;
1176	rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1177	rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1178	rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1179	print_rxfd(rxfd);
1180
1181	f->m.wptr += sizeof(struct rxf_desc);
1182	delta = f->m.wptr - f->m.memsz;
1183	if (unlikely(delta >= 0)) {
1184		f->m.wptr = delta;
1185		if (delta > 0) {
1186			memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1187			DBG("wrapped descriptor\n");
1188		}
1189	}
1190	RET();
1191}
1192
1193/**
1194 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1195 * NOTE: a special treatment is given to non-continuous descriptors
1196 * that start near the end, wraps around and continue at the beginning. a second
1197 * part is copied right after the first, and then descriptor is interpreted as
1198 * normal. fifo has an extra space to allow such operations
1199 * @priv: nic's private structure
1200 * @f: RXF fifo that needs skbs
1201 * @budget: maximum number of packets to receive
1202 */
1203
1204/* TBD: replace memcpy func call by explicite inline asm */
1205
1206static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1207{
1208	struct net_device *ndev = priv->ndev;
1209	struct sk_buff *skb, *skb2;
1210	struct rxd_desc *rxdd;
1211	struct rx_map *dm;
1212	struct rxf_fifo *rxf_fifo;
1213	int tmp_len, size;
1214	int done = 0;
1215	int max_done = BDX_MAX_RX_DONE;
1216	struct rxdb *db = NULL;
1217	/* Unmarshalled descriptor - copy of descriptor in host order */
1218	u32 rxd_val1;
1219	u16 len;
1220	u16 rxd_vlan;
1221
1222	ENTER;
1223	max_done = budget;
1224
1225	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1226
1227	size = f->m.wptr - f->m.rptr;
1228	if (size < 0)
1229		size = f->m.memsz + size;	/* size is negative :-) */
1230
1231	while (size > 0) {
1232
1233		rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1234		rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1235
1236		len = CPU_CHIP_SWAP16(rxdd->len);
1237
1238		rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1239
1240		print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1241
1242		tmp_len = GET_RXD_BC(rxd_val1) << 3;
1243		BDX_ASSERT(tmp_len <= 0);
1244		size -= tmp_len;
1245		if (size < 0)	/* test for partially arrived descriptor */
1246			break;
1247
1248		f->m.rptr += tmp_len;
1249
1250		tmp_len = f->m.rptr - f->m.memsz;
1251		if (unlikely(tmp_len >= 0)) {
1252			f->m.rptr = tmp_len;
1253			if (tmp_len > 0) {
1254				DBG("wrapped desc rptr=%d tmp_len=%d\n",
1255				    f->m.rptr, tmp_len);
1256				memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1257			}
1258		}
1259
1260		if (unlikely(GET_RXD_ERR(rxd_val1))) {
1261			DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1262			ndev->stats.rx_errors++;
1263			bdx_recycle_skb(priv, rxdd);
1264			continue;
1265		}
1266
1267		rxf_fifo = &priv->rxf_fifo0;
1268		db = priv->rxdb;
1269		dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1270		skb = dm->skb;
1271
1272		if (len < BDX_COPYBREAK &&
1273		    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1274			skb_reserve(skb2, NET_IP_ALIGN);
1275			/*skb_put(skb2, len); */
1276			pci_dma_sync_single_for_cpu(priv->pdev,
1277						    dm->dma, rxf_fifo->m.pktsz,
1278						    PCI_DMA_FROMDEVICE);
1279			memcpy(skb2->data, skb->data, len);
1280			bdx_recycle_skb(priv, rxdd);
1281			skb = skb2;
1282		} else {
1283			pci_unmap_single(priv->pdev,
1284					 dm->dma, rxf_fifo->m.pktsz,
1285					 PCI_DMA_FROMDEVICE);
1286			bdx_rxdb_free_elem(db, rxdd->va_lo);
1287		}
1288
1289		ndev->stats.rx_bytes += len;
1290
1291		skb_put(skb, len);
1292		skb->protocol = eth_type_trans(skb, ndev);
1293
1294		/* Non-IP packets aren't checksum-offloaded */
1295		if (GET_RXD_PKT_ID(rxd_val1) == 0)
1296			skb_checksum_none_assert(skb);
1297		else
1298			skb->ip_summed = CHECKSUM_UNNECESSARY;
1299
1300		NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1301
1302		if (++done >= max_done)
1303			break;
1304	}
1305
1306	ndev->stats.rx_packets += done;
1307
1308	/* FIXME: do smth to minimize pci accesses    */
1309	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1310
1311	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1312
1313	RET(done);
1314}
1315
1316/*************************************************************************
1317 * Debug / Temprorary Code                                               *
1318 *************************************************************************/
1319static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1320		       u16 rxd_vlan)
1321{
1322	DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1323	    GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1324	    GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1325	    GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1326	    GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1327	    GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1328	    rxdd->va_hi);
1329}
1330
1331static void print_rxfd(struct rxf_desc *rxfd)
1332{
1333	DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1334	    "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1335	    rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1336}
1337
1338/*
1339 * TX HW/SW interaction overview
1340 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1341 * There are 2 types of TX communication channels between driver and NIC.
1342 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1343 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1344 *
1345 * Currently NIC supports TSO, checksuming and gather DMA
1346 * UFO and IP fragmentation is on the way
1347 *
1348 * RX SW Data Structures
1349 * ~~~~~~~~~~~~~~~~~~~~~
1350 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1351 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1352 * acknowledges sent by TXF descriptors.
1353 * Implemented as cyclic buffer.
1354 * fifo - keeps info about fifo's size and location, relevant HW registers,
1355 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1356 * Implemented as simple struct.
1357 *
1358 * TX SW Execution Flow
1359 * ~~~~~~~~~~~~~~~~~~~~
1360 * OS calls driver's hard_xmit method with packet to sent.
1361 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1362 * by updating TXD WPTR.
1363 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1364 * To prevent TXD fifo overflow without reading HW registers every time,
1365 * SW deploys "tx level" technique.
1366 * Upon strart up, tx level is initialized to TXD fifo length.
1367 * For every sent packet, SW gets its TXD descriptor sizei
1368 * (from precalculated array) and substructs it from tx level.
1369 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1370 * original TXD descriptor from txdb and adds it to tx level.
1371 * When Tx level drops under some predefined treshhold, the driver
1372 * stops the TX queue. When TX level rises above that level,
1373 * the tx queue is enabled again.
1374 *
1375 * This technique avoids eccessive reading of RPTR and WPTR registers.
1376 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1377 */
1378
1379/*************************************************************************
1380 *     Tx DB                                                             *
1381 *************************************************************************/
1382static inline int bdx_tx_db_size(struct txdb *db)
1383{
1384	int taken = db->wptr - db->rptr;
1385	if (taken < 0)
1386		taken = db->size + 1 + taken;	/* (size + 1) equals memsz */
1387
1388	return db->size - taken;
1389}
1390
1391/**
1392 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1393 * @db: tx data base
1394 * @pptr: read or write pointer
1395 */
1396static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1397{
1398	BDX_ASSERT(db == NULL || pptr == NULL);	/* sanity */
1399
1400	BDX_ASSERT(*pptr != db->rptr &&	/* expect either read */
1401		   *pptr != db->wptr);	/* or write pointer */
1402
1403	BDX_ASSERT(*pptr < db->start ||	/* pointer has to be */
1404		   *pptr >= db->end);	/* in range */
1405
1406	++*pptr;
1407	if (unlikely(*pptr == db->end))
1408		*pptr = db->start;
1409}
1410
1411/**
1412 * bdx_tx_db_inc_rptr - increment read pointer
1413 * @db: tx data base
1414 */
1415static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1416{
1417	BDX_ASSERT(db->rptr == db->wptr);	/* can't read from empty db */
1418	__bdx_tx_db_ptr_next(db, &db->rptr);
1419}
1420
1421/**
1422 * bdx_tx_db_inc_wptr - increment write pointer
1423 * @db: tx data base
1424 */
1425static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1426{
1427	__bdx_tx_db_ptr_next(db, &db->wptr);
1428	BDX_ASSERT(db->rptr == db->wptr);	/* we can not get empty db as
1429						   a result of write */
1430}
1431
1432/**
1433 * bdx_tx_db_init - creates and initializes tx db
1434 * @d: tx data base
1435 * @sz_type: size of tx fifo
1436 *
1437 * Returns 0 on success, error code otherwise
1438 */
1439static int bdx_tx_db_init(struct txdb *d, int sz_type)
1440{
1441	int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1442
1443	d->start = vmalloc(memsz);
1444	if (!d->start)
1445		return -ENOMEM;
1446
1447	/*
1448	 * In order to differentiate between db is empty and db is full
1449	 * states at least one element should always be empty in order to
1450	 * avoid rptr == wptr which means db is empty
1451	 */
1452	d->size = memsz / sizeof(struct tx_map) - 1;
1453	d->end = d->start + d->size + 1;	/* just after last element */
1454
1455	/* all dbs are created equally empty */
1456	d->rptr = d->start;
1457	d->wptr = d->start;
1458
1459	return 0;
1460}
1461
1462/**
1463 * bdx_tx_db_close - closes tx db and frees all memory
1464 * @d: tx data base
1465 */
1466static void bdx_tx_db_close(struct txdb *d)
1467{
1468	BDX_ASSERT(d == NULL);
1469
1470	vfree(d->start);
1471	d->start = NULL;
1472}
1473
1474/*************************************************************************
1475 *     Tx Engine                                                         *
1476 *************************************************************************/
1477
1478/* sizes of tx desc (including padding if needed) as function
1479 * of skb's frag number */
1480static struct {
1481	u16 bytes;
1482	u16 qwords;		/* qword = 64 bit */
1483} txd_sizes[MAX_SKB_FRAGS + 1];
1484
1485/**
1486 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1487 * @priv: NIC private structure
1488 * @skb: socket buffer to map
1489 * @txdd: TX descriptor to use
1490 *
1491 * It makes dma mappings for skb's data blocks and writes them to PBL of
1492 * new tx descriptor. It also stores them in the tx db, so they could be
1493 * unmaped after data was sent. It is reponsibility of a caller to make
1494 * sure that there is enough space in the tx db. Last element holds pointer
1495 * to skb itself and marked with zero length
1496 */
1497static inline void
1498bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1499	       struct txd_desc *txdd)
1500{
1501	struct txdb *db = &priv->txdb;
1502	struct pbl *pbl = &txdd->pbl[0];
1503	int nr_frags = skb_shinfo(skb)->nr_frags;
1504	int i;
1505
1506	db->wptr->len = skb_headlen(skb);
1507	db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1508					    db->wptr->len, PCI_DMA_TODEVICE);
1509	pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1510	pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1511	pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1512	DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1513	DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1514	DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1515	bdx_tx_db_inc_wptr(db);
1516
1517	for (i = 0; i < nr_frags; i++) {
1518		const struct skb_frag_struct *frag;
1519
1520		frag = &skb_shinfo(skb)->frags[i];
1521		db->wptr->len = skb_frag_size(frag);
1522		db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1523						      0, skb_frag_size(frag),
1524						      DMA_TO_DEVICE);
1525
1526		pbl++;
1527		pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1528		pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1529		pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1530		bdx_tx_db_inc_wptr(db);
1531	}
1532
1533	/* add skb clean up info. */
1534	db->wptr->len = -txd_sizes[nr_frags].bytes;
1535	db->wptr->addr.skb = skb;
1536	bdx_tx_db_inc_wptr(db);
1537}
1538
1539/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1540 * number of frags is used as index to fetch correct descriptors size,
1541 * instead of calculating it each time */
1542static void __init init_txd_sizes(void)
1543{
1544	int i, lwords;
1545
1546	/* 7 - is number of lwords in txd with one phys buffer
1547	 * 3 - is number of lwords used for every additional phys buffer */
1548	for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1549		lwords = 7 + (i * 3);
1550		if (lwords & 1)
1551			lwords++;	/* pad it with 1 lword */
1552		txd_sizes[i].qwords = lwords >> 1;
1553		txd_sizes[i].bytes = lwords << 2;
1554	}
1555}
1556
1557/* bdx_tx_init - initialize all Tx related stuff.
1558 * Namely, TXD and TXF fifos, database etc */
1559static int bdx_tx_init(struct bdx_priv *priv)
1560{
1561	if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1562			  regTXD_CFG0_0,
1563			  regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1564		goto err_mem;
1565	if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1566			  regTXF_CFG0_0,
1567			  regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1568		goto err_mem;
1569
1570	/* The TX db has to keep mappings for all packets sent (on TxD)
1571	 * and not yet reclaimed (on TxF) */
1572	if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1573		goto err_mem;
1574
1575	priv->tx_level = BDX_MAX_TX_LEVEL;
1576#ifdef BDX_DELAY_WPTR
1577	priv->tx_update_mark = priv->tx_level - 1024;
1578#endif
1579	return 0;
1580
1581err_mem:
1582	netdev_err(priv->ndev, "Tx init failed\n");
1583	return -ENOMEM;
1584}
1585
1586/**
1587 * bdx_tx_space - calculates available space in TX fifo
1588 * @priv: NIC private structure
1589 *
1590 * Returns available space in TX fifo in bytes
1591 */
1592static inline int bdx_tx_space(struct bdx_priv *priv)
1593{
1594	struct txd_fifo *f = &priv->txd_fifo0;
1595	int fsize;
1596
1597	f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1598	fsize = f->m.rptr - f->m.wptr;
1599	if (fsize <= 0)
1600		fsize = f->m.memsz + fsize;
1601	return fsize;
1602}
1603
1604/**
1605 * bdx_tx_transmit - send packet to NIC
1606 * @skb: packet to send
1607 * @ndev: network device assigned to NIC
1608 * Return codes:
1609 * o NETDEV_TX_OK everything ok.
1610 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1611 *   Usually a bug, means queue start/stop flow control is broken in
1612 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1613 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1614 */
1615static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1616				   struct net_device *ndev)
1617{
1618	struct bdx_priv *priv = netdev_priv(ndev);
1619	struct txd_fifo *f = &priv->txd_fifo0;
1620	int txd_checksum = 7;	/* full checksum */
1621	int txd_lgsnd = 0;
1622	int txd_vlan_id = 0;
1623	int txd_vtag = 0;
1624	int txd_mss = 0;
1625
1626	int nr_frags = skb_shinfo(skb)->nr_frags;
1627	struct txd_desc *txdd;
1628	int len;
1629	unsigned long flags;
1630
1631	ENTER;
1632	local_irq_save(flags);
1633	if (!spin_trylock(&priv->tx_lock)) {
1634		local_irq_restore(flags);
1635		DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1636		    BDX_DRV_NAME, ndev->name);
1637		return NETDEV_TX_LOCKED;
1638	}
1639
1640	/* build tx descriptor */
1641	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* started with valid wptr */
1642	txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1643	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1644		txd_checksum = 0;
1645
1646	if (skb_shinfo(skb)->gso_size) {
1647		txd_mss = skb_shinfo(skb)->gso_size;
1648		txd_lgsnd = 1;
1649		DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1650		    txd_mss);
1651	}
1652
1653	if (skb_vlan_tag_present(skb)) {
1654		/*Cut VLAN ID to 12 bits */
1655		txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1656		txd_vtag = 1;
1657	}
1658
1659	txdd->length = CPU_CHIP_SWAP16(skb->len);
1660	txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1661	txdd->txd_val1 =
1662	    CPU_CHIP_SWAP32(TXD_W1_VAL
1663			    (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1664			     txd_lgsnd, txd_vlan_id));
1665	DBG("=== TxD desc =====================\n");
1666	DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1667	DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1668
1669	bdx_tx_map_skb(priv, skb, txdd);
1670
1671	/* increment TXD write pointer. In case of
1672	   fifo wrapping copy reminder of the descriptor
1673	   to the beginning */
1674	f->m.wptr += txd_sizes[nr_frags].bytes;
1675	len = f->m.wptr - f->m.memsz;
1676	if (unlikely(len >= 0)) {
1677		f->m.wptr = len;
1678		if (len > 0) {
1679			BDX_ASSERT(len > f->m.memsz);
1680			memcpy(f->m.va, f->m.va + f->m.memsz, len);
1681		}
1682	}
1683	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* finished with valid wptr */
1684
1685	priv->tx_level -= txd_sizes[nr_frags].bytes;
1686	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1687#ifdef BDX_DELAY_WPTR
1688	if (priv->tx_level > priv->tx_update_mark) {
1689		/* Force memory writes to complete before letting h/w
1690		   know there are new descriptors to fetch.
1691		   (might be needed on platforms like IA64)
1692		   wmb(); */
1693		WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1694	} else {
1695		if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1696			priv->tx_noupd = 0;
1697			WRITE_REG(priv, f->m.reg_WPTR,
1698				  f->m.wptr & TXF_WPTR_WR_PTR);
1699		}
1700	}
1701#else
1702	/* Force memory writes to complete before letting h/w
1703	   know there are new descriptors to fetch.
1704	   (might be needed on platforms like IA64)
1705	   wmb(); */
1706	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1707
1708#endif
1709#ifdef BDX_LLTX
1710	ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1711#endif
1712	ndev->stats.tx_packets++;
1713	ndev->stats.tx_bytes += skb->len;
1714
1715	if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1716		DBG("%s: %s: TX Q STOP level %d\n",
1717		    BDX_DRV_NAME, ndev->name, priv->tx_level);
1718		netif_stop_queue(ndev);
1719	}
1720
1721	spin_unlock_irqrestore(&priv->tx_lock, flags);
1722	return NETDEV_TX_OK;
1723}
1724
1725/**
1726 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1727 * @priv: bdx adapter
1728 *
1729 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1730 * that those packets were sent
1731 */
1732static void bdx_tx_cleanup(struct bdx_priv *priv)
1733{
1734	struct txf_fifo *f = &priv->txf_fifo0;
1735	struct txdb *db = &priv->txdb;
1736	int tx_level = 0;
1737
1738	ENTER;
1739	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1740	BDX_ASSERT(f->m.rptr >= f->m.memsz);	/* started with valid rptr */
1741
1742	while (f->m.wptr != f->m.rptr) {
1743		f->m.rptr += BDX_TXF_DESC_SZ;
1744		f->m.rptr &= f->m.size_mask;
1745
1746		/* unmap all the fragments */
1747		/* first has to come tx_maps containing dma */
1748		BDX_ASSERT(db->rptr->len == 0);
1749		do {
1750			BDX_ASSERT(db->rptr->addr.dma == 0);
1751			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1752				       db->rptr->len, PCI_DMA_TODEVICE);
1753			bdx_tx_db_inc_rptr(db);
1754		} while (db->rptr->len > 0);
1755		tx_level -= db->rptr->len;	/* '-' koz len is negative */
1756
1757		/* now should come skb pointer - free it */
1758		dev_kfree_skb_irq(db->rptr->addr.skb);
1759		bdx_tx_db_inc_rptr(db);
1760	}
1761
1762	/* let h/w know which TXF descriptors were cleaned */
1763	BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1764	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1765
1766	/* We reclaimed resources, so in case the Q is stopped by xmit callback,
1767	 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1768	spin_lock(&priv->tx_lock);
1769	priv->tx_level += tx_level;
1770	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1771#ifdef BDX_DELAY_WPTR
1772	if (priv->tx_noupd) {
1773		priv->tx_noupd = 0;
1774		WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1775			  priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1776	}
1777#endif
1778
1779	if (unlikely(netif_queue_stopped(priv->ndev) &&
1780		     netif_carrier_ok(priv->ndev) &&
1781		     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1782		DBG("%s: %s: TX Q WAKE level %d\n",
1783		    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1784		netif_wake_queue(priv->ndev);
1785	}
1786	spin_unlock(&priv->tx_lock);
1787}
1788
1789/**
1790 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1791 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1792 */
1793static void bdx_tx_free_skbs(struct bdx_priv *priv)
1794{
1795	struct txdb *db = &priv->txdb;
1796
1797	ENTER;
1798	while (db->rptr != db->wptr) {
1799		if (likely(db->rptr->len))
1800			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1801				       db->rptr->len, PCI_DMA_TODEVICE);
1802		else
1803			dev_kfree_skb(db->rptr->addr.skb);
1804		bdx_tx_db_inc_rptr(db);
1805	}
1806	RET();
1807}
1808
1809/* bdx_tx_free - frees all Tx resources */
1810static void bdx_tx_free(struct bdx_priv *priv)
1811{
1812	ENTER;
1813	bdx_tx_free_skbs(priv);
1814	bdx_fifo_free(priv, &priv->txd_fifo0.m);
1815	bdx_fifo_free(priv, &priv->txf_fifo0.m);
1816	bdx_tx_db_close(&priv->txdb);
1817}
1818
1819/**
1820 * bdx_tx_push_desc - push descriptor to TxD fifo
1821 * @priv: NIC private structure
1822 * @data: desc's data
1823 * @size: desc's size
1824 *
1825 * Pushes desc to TxD fifo and overlaps it if needed.
1826 * NOTE: this func does not check for available space. this is responsibility
1827 *    of the caller. Neither does it check that data size is smaller than
1828 *    fifo size.
1829 */
1830static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1831{
1832	struct txd_fifo *f = &priv->txd_fifo0;
1833	int i = f->m.memsz - f->m.wptr;
1834
1835	if (size == 0)
1836		return;
1837
1838	if (i > size) {
1839		memcpy(f->m.va + f->m.wptr, data, size);
1840		f->m.wptr += size;
1841	} else {
1842		memcpy(f->m.va + f->m.wptr, data, i);
1843		f->m.wptr = size - i;
1844		memcpy(f->m.va, data + i, f->m.wptr);
1845	}
1846	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1847}
1848
1849/**
1850 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1851 * @priv: NIC private structure
1852 * @data: desc's data
1853 * @size: desc's size
1854 *
1855 * NOTE: this func does check for available space and, if necessary, waits for
1856 *   NIC to read existing data before writing new one.
1857 */
1858static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1859{
1860	int timer = 0;
1861	ENTER;
1862
1863	while (size > 0) {
1864		/* we substruct 8 because when fifo is full rptr == wptr
1865		   which also means that fifo is empty, we can understand
1866		   the difference, but could hw do the same ??? :) */
1867		int avail = bdx_tx_space(priv) - 8;
1868		if (avail <= 0) {
1869			if (timer++ > 300) {	/* prevent endless loop */
1870				DBG("timeout while writing desc to TxD fifo\n");
1871				break;
1872			}
1873			udelay(50);	/* give hw a chance to clean fifo */
1874			continue;
1875		}
1876		avail = min(avail, size);
1877		DBG("about to push  %d bytes starting %p size %d\n", avail,
1878		    data, size);
1879		bdx_tx_push_desc(priv, data, avail);
1880		size -= avail;
1881		data += avail;
1882	}
1883	RET();
1884}
1885
1886static const struct net_device_ops bdx_netdev_ops = {
1887	.ndo_open		= bdx_open,
1888	.ndo_stop		= bdx_close,
1889	.ndo_start_xmit		= bdx_tx_transmit,
1890	.ndo_validate_addr	= eth_validate_addr,
1891	.ndo_do_ioctl		= bdx_ioctl,
1892	.ndo_set_rx_mode	= bdx_setmulti,
1893	.ndo_change_mtu		= bdx_change_mtu,
1894	.ndo_set_mac_address	= bdx_set_mac,
1895	.ndo_vlan_rx_add_vid	= bdx_vlan_rx_add_vid,
1896	.ndo_vlan_rx_kill_vid	= bdx_vlan_rx_kill_vid,
1897};
1898
1899/**
1900 * bdx_probe - Device Initialization Routine
1901 * @pdev: PCI device information struct
1902 * @ent: entry in bdx_pci_tbl
1903 *
1904 * Returns 0 on success, negative on failure
1905 *
1906 * bdx_probe initializes an adapter identified by a pci_dev structure.
1907 * The OS initialization, configuring of the adapter private structure,
1908 * and a hardware reset occur.
1909 *
1910 * functions and their order used as explained in
1911 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1912 *
1913 */
1914
1915/* TBD: netif_msg should be checked and implemented. I disable it for now */
1916static int
1917bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1918{
1919	struct net_device *ndev;
1920	struct bdx_priv *priv;
1921	int err, pci_using_dac, port;
1922	unsigned long pciaddr;
1923	u32 regionSize;
1924	struct pci_nic *nic;
1925
1926	ENTER;
1927
1928	nic = vmalloc(sizeof(*nic));
1929	if (!nic)
1930		RET(-ENOMEM);
1931
1932    /************** pci *****************/
1933	err = pci_enable_device(pdev);
1934	if (err)			/* it triggers interrupt, dunno why. */
1935		goto err_pci;		/* it's not a problem though */
1936
1937	if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1938	    !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1939		pci_using_dac = 1;
1940	} else {
1941		if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1942		    (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1943			pr_err("No usable DMA configuration, aborting\n");
1944			goto err_dma;
1945		}
1946		pci_using_dac = 0;
1947	}
1948
1949	err = pci_request_regions(pdev, BDX_DRV_NAME);
1950	if (err)
1951		goto err_dma;
1952
1953	pci_set_master(pdev);
1954
1955	pciaddr = pci_resource_start(pdev, 0);
1956	if (!pciaddr) {
1957		err = -EIO;
1958		pr_err("no MMIO resource\n");
1959		goto err_out_res;
1960	}
1961	regionSize = pci_resource_len(pdev, 0);
1962	if (regionSize < BDX_REGS_SIZE) {
1963		err = -EIO;
1964		pr_err("MMIO resource (%x) too small\n", regionSize);
1965		goto err_out_res;
1966	}
1967
1968	nic->regs = ioremap(pciaddr, regionSize);
1969	if (!nic->regs) {
1970		err = -EIO;
1971		pr_err("ioremap failed\n");
1972		goto err_out_res;
1973	}
1974
1975	if (pdev->irq < 2) {
1976		err = -EIO;
1977		pr_err("invalid irq (%d)\n", pdev->irq);
1978		goto err_out_iomap;
1979	}
1980	pci_set_drvdata(pdev, nic);
1981
1982	if (pdev->device == 0x3014)
1983		nic->port_num = 2;
1984	else
1985		nic->port_num = 1;
1986
1987	print_hw_id(pdev);
1988
1989	bdx_hw_reset_direct(nic->regs);
1990
1991	nic->irq_type = IRQ_INTX;
1992#ifdef BDX_MSI
1993	if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1994		err = pci_enable_msi(pdev);
1995		if (err)
1996			pr_err("Can't eneble msi. error is %d\n", err);
1997		else
1998			nic->irq_type = IRQ_MSI;
1999	} else
2000		DBG("HW does not support MSI\n");
2001#endif
2002
2003    /************** netdev **************/
2004	for (port = 0; port < nic->port_num; port++) {
2005		ndev = alloc_etherdev(sizeof(struct bdx_priv));
2006		if (!ndev) {
2007			err = -ENOMEM;
2008			goto err_out_iomap;
2009		}
2010
2011		ndev->netdev_ops = &bdx_netdev_ops;
2012		ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
2013
2014		bdx_set_ethtool_ops(ndev);	/* ethtool interface */
2015
2016		/* these fields are used for info purposes only
2017		 * so we can have them same for all ports of the board */
2018		ndev->if_port = port;
2019		ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2020		    | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2021		    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
2022		    ;
2023		ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2024			NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
2025
2026		if (pci_using_dac)
2027			ndev->features |= NETIF_F_HIGHDMA;
2028
2029	/************** priv ****************/
2030		priv = nic->priv[port] = netdev_priv(ndev);
2031
2032		priv->pBdxRegs = nic->regs + port * 0x8000;
2033		priv->port = port;
2034		priv->pdev = pdev;
2035		priv->ndev = ndev;
2036		priv->nic = nic;
2037		priv->msg_enable = BDX_DEF_MSG_ENABLE;
2038
2039		netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2040
2041		if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2042			DBG("HW statistics not supported\n");
2043			priv->stats_flag = 0;
2044		} else {
2045			priv->stats_flag = 1;
2046		}
2047
2048		/* Initialize fifo sizes. */
2049		priv->txd_size = 2;
2050		priv->txf_size = 2;
2051		priv->rxd_size = 2;
2052		priv->rxf_size = 3;
2053
2054		/* Initialize the initial coalescing registers. */
2055		priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2056		priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2057
2058		/* ndev->xmit_lock spinlock is not used.
2059		 * Private priv->tx_lock is used for synchronization
2060		 * between transmit and TX irq cleanup.  In addition
2061		 * set multicast list callback has to use priv->tx_lock.
2062		 */
2063#ifdef BDX_LLTX
2064		ndev->features |= NETIF_F_LLTX;
2065#endif
2066		spin_lock_init(&priv->tx_lock);
2067
2068		/*bdx_hw_reset(priv); */
2069		if (bdx_read_mac(priv)) {
2070			pr_err("load MAC address failed\n");
2071			goto err_out_iomap;
2072		}
2073		SET_NETDEV_DEV(ndev, &pdev->dev);
2074		err = register_netdev(ndev);
2075		if (err) {
2076			pr_err("register_netdev failed\n");
2077			goto err_out_free;
2078		}
2079		netif_carrier_off(ndev);
2080		netif_stop_queue(ndev);
2081
2082		print_eth_id(ndev);
2083	}
2084	RET(0);
2085
2086err_out_free:
2087	free_netdev(ndev);
2088err_out_iomap:
2089	iounmap(nic->regs);
2090err_out_res:
2091	pci_release_regions(pdev);
2092err_dma:
2093	pci_disable_device(pdev);
2094err_pci:
2095	vfree(nic);
2096
2097	RET(err);
2098}
2099
2100/****************** Ethtool interface *********************/
2101/* get strings for statistics counters */
2102static const char
2103 bdx_stat_names[][ETH_GSTRING_LEN] = {
2104	"InUCast",		/* 0x7200 */
2105	"InMCast",		/* 0x7210 */
2106	"InBCast",		/* 0x7220 */
2107	"InPkts",		/* 0x7230 */
2108	"InErrors",		/* 0x7240 */
2109	"InDropped",		/* 0x7250 */
2110	"FrameTooLong",		/* 0x7260 */
2111	"FrameSequenceErrors",	/* 0x7270 */
2112	"InVLAN",		/* 0x7280 */
2113	"InDroppedDFE",		/* 0x7290 */
2114	"InDroppedIntFull",	/* 0x72A0 */
2115	"InFrameAlignErrors",	/* 0x72B0 */
2116
2117	/* 0x72C0-0x72E0 RSRV */
2118
2119	"OutUCast",		/* 0x72F0 */
2120	"OutMCast",		/* 0x7300 */
2121	"OutBCast",		/* 0x7310 */
2122	"OutPkts",		/* 0x7320 */
2123
2124	/* 0x7330-0x7360 RSRV */
2125
2126	"OutVLAN",		/* 0x7370 */
2127	"InUCastOctects",	/* 0x7380 */
2128	"OutUCastOctects",	/* 0x7390 */
2129
2130	/* 0x73A0-0x73B0 RSRV */
2131
2132	"InBCastOctects",	/* 0x73C0 */
2133	"OutBCastOctects",	/* 0x73D0 */
2134	"InOctects",		/* 0x73E0 */
2135	"OutOctects",		/* 0x73F0 */
2136};
2137
2138/*
2139 * bdx_get_settings - get device-specific settings
2140 * @netdev
2141 * @ecmd
2142 */
2143static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2144{
2145	u32 rdintcm;
2146	u32 tdintcm;
2147	struct bdx_priv *priv = netdev_priv(netdev);
2148
2149	rdintcm = priv->rdintcm;
2150	tdintcm = priv->tdintcm;
2151
2152	ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
2153	ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
2154	ethtool_cmd_speed_set(ecmd, SPEED_10000);
2155	ecmd->duplex = DUPLEX_FULL;
2156	ecmd->port = PORT_FIBRE;
2157	ecmd->transceiver = XCVR_EXTERNAL;	/* what does it mean? */
2158	ecmd->autoneg = AUTONEG_DISABLE;
2159
2160	/* PCK_TH measures in multiples of FIFO bytes
2161	   We translate to packets */
2162	ecmd->maxtxpkt =
2163	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2164	ecmd->maxrxpkt =
2165	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2166
2167	return 0;
2168}
2169
2170/*
2171 * bdx_get_drvinfo - report driver information
2172 * @netdev
2173 * @drvinfo
2174 */
2175static void
2176bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2177{
2178	struct bdx_priv *priv = netdev_priv(netdev);
2179
2180	strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2181	strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2182	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2183	strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2184		sizeof(drvinfo->bus_info));
2185}
2186
2187/*
2188 * bdx_get_coalesce - get interrupt coalescing parameters
2189 * @netdev
2190 * @ecoal
2191 */
2192static int
2193bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2194{
2195	u32 rdintcm;
2196	u32 tdintcm;
2197	struct bdx_priv *priv = netdev_priv(netdev);
2198
2199	rdintcm = priv->rdintcm;
2200	tdintcm = priv->tdintcm;
2201
2202	/* PCK_TH measures in multiples of FIFO bytes
2203	   We translate to packets */
2204	ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2205	ecoal->rx_max_coalesced_frames =
2206	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2207
2208	ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2209	ecoal->tx_max_coalesced_frames =
2210	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2211
2212	/* adaptive parameters ignored */
2213	return 0;
2214}
2215
2216/*
2217 * bdx_set_coalesce - set interrupt coalescing parameters
2218 * @netdev
2219 * @ecoal
2220 */
2221static int
2222bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2223{
2224	u32 rdintcm;
2225	u32 tdintcm;
2226	struct bdx_priv *priv = netdev_priv(netdev);
2227	int rx_coal;
2228	int tx_coal;
2229	int rx_max_coal;
2230	int tx_max_coal;
2231
2232	/* Check for valid input */
2233	rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2234	tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2235	rx_max_coal = ecoal->rx_max_coalesced_frames;
2236	tx_max_coal = ecoal->tx_max_coalesced_frames;
2237
2238	/* Translate from packets to multiples of FIFO bytes */
2239	rx_max_coal =
2240	    (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2241	     / PCK_TH_MULT);
2242	tx_max_coal =
2243	    (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2244	     / PCK_TH_MULT);
2245
2246	if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2247	    (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2248		return -EINVAL;
2249
2250	rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2251			      GET_RXF_TH(priv->rdintcm), rx_max_coal);
2252	tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2253			      tx_max_coal);
2254
2255	priv->rdintcm = rdintcm;
2256	priv->tdintcm = tdintcm;
2257
2258	WRITE_REG(priv, regRDINTCM0, rdintcm);
2259	WRITE_REG(priv, regTDINTCM0, tdintcm);
2260
2261	return 0;
2262}
2263
2264/* Convert RX fifo size to number of pending packets */
2265static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2266{
2267	return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2268}
2269
2270/* Convert TX fifo size to number of pending packets */
2271static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2272{
2273	return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2274}
2275
2276/*
2277 * bdx_get_ringparam - report ring sizes
2278 * @netdev
2279 * @ring
2280 */
2281static void
2282bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2283{
2284	struct bdx_priv *priv = netdev_priv(netdev);
2285
2286	/*max_pending - the maximum-sized FIFO we allow */
2287	ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2288	ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2289	ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2290	ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2291}
2292
2293/*
2294 * bdx_set_ringparam - set ring sizes
2295 * @netdev
2296 * @ring
2297 */
2298static int
2299bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2300{
2301	struct bdx_priv *priv = netdev_priv(netdev);
2302	int rx_size = 0;
2303	int tx_size = 0;
2304
2305	for (; rx_size < 4; rx_size++) {
2306		if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2307			break;
2308	}
2309	if (rx_size == 4)
2310		rx_size = 3;
2311
2312	for (; tx_size < 4; tx_size++) {
2313		if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2314			break;
2315	}
2316	if (tx_size == 4)
2317		tx_size = 3;
2318
2319	/*Is there anything to do? */
2320	if ((rx_size == priv->rxf_size) &&
2321	    (tx_size == priv->txd_size))
2322		return 0;
2323
2324	priv->rxf_size = rx_size;
2325	if (rx_size > 1)
2326		priv->rxd_size = rx_size - 1;
2327	else
2328		priv->rxd_size = rx_size;
2329
2330	priv->txf_size = priv->txd_size = tx_size;
2331
2332	if (netif_running(netdev)) {
2333		bdx_close(netdev);
2334		bdx_open(netdev);
2335	}
2336	return 0;
2337}
2338
2339/*
2340 * bdx_get_strings - return a set of strings that describe the requested objects
2341 * @netdev
2342 * @data
2343 */
2344static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2345{
2346	switch (stringset) {
2347	case ETH_SS_STATS:
2348		memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2349		break;
2350	}
2351}
2352
2353/*
2354 * bdx_get_sset_count - return number of statistics or tests
2355 * @netdev
2356 */
2357static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2358{
2359	struct bdx_priv *priv = netdev_priv(netdev);
2360
2361	switch (stringset) {
2362	case ETH_SS_STATS:
2363		BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2364			   != sizeof(struct bdx_stats) / sizeof(u64));
2365		return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)	: 0;
2366	}
2367
2368	return -EINVAL;
2369}
2370
2371/*
2372 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2373 * @netdev
2374 * @stats
2375 * @data
2376 */
2377static void bdx_get_ethtool_stats(struct net_device *netdev,
2378				  struct ethtool_stats *stats, u64 *data)
2379{
2380	struct bdx_priv *priv = netdev_priv(netdev);
2381
2382	if (priv->stats_flag) {
2383
2384		/* Update stats from HW */
2385		bdx_update_stats(priv);
2386
2387		/* Copy data to user buffer */
2388		memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2389	}
2390}
2391
2392/*
2393 * bdx_set_ethtool_ops - ethtool interface implementation
2394 * @netdev
2395 */
2396static void bdx_set_ethtool_ops(struct net_device *netdev)
2397{
2398	static const struct ethtool_ops bdx_ethtool_ops = {
2399		.get_settings = bdx_get_settings,
2400		.get_drvinfo = bdx_get_drvinfo,
2401		.get_link = ethtool_op_get_link,
2402		.get_coalesce = bdx_get_coalesce,
2403		.set_coalesce = bdx_set_coalesce,
2404		.get_ringparam = bdx_get_ringparam,
2405		.set_ringparam = bdx_set_ringparam,
2406		.get_strings = bdx_get_strings,
2407		.get_sset_count = bdx_get_sset_count,
2408		.get_ethtool_stats = bdx_get_ethtool_stats,
2409	};
2410
2411	netdev->ethtool_ops = &bdx_ethtool_ops;
2412}
2413
2414/**
2415 * bdx_remove - Device Removal Routine
2416 * @pdev: PCI device information struct
2417 *
2418 * bdx_remove is called by the PCI subsystem to alert the driver
2419 * that it should release a PCI device.  The could be caused by a
2420 * Hot-Plug event, or because the driver is going to be removed from
2421 * memory.
2422 **/
2423static void bdx_remove(struct pci_dev *pdev)
2424{
2425	struct pci_nic *nic = pci_get_drvdata(pdev);
2426	struct net_device *ndev;
2427	int port;
2428
2429	for (port = 0; port < nic->port_num; port++) {
2430		ndev = nic->priv[port]->ndev;
2431		unregister_netdev(ndev);
2432		free_netdev(ndev);
2433	}
2434
2435	/*bdx_hw_reset_direct(nic->regs); */
2436#ifdef BDX_MSI
2437	if (nic->irq_type == IRQ_MSI)
2438		pci_disable_msi(pdev);
2439#endif
2440
2441	iounmap(nic->regs);
2442	pci_release_regions(pdev);
2443	pci_disable_device(pdev);
2444	vfree(nic);
2445
2446	RET();
2447}
2448
2449static struct pci_driver bdx_pci_driver = {
2450	.name = BDX_DRV_NAME,
2451	.id_table = bdx_pci_tbl,
2452	.probe = bdx_probe,
2453	.remove = bdx_remove,
2454};
2455
2456/*
2457 * print_driver_id - print parameters of the driver build
2458 */
2459static void __init print_driver_id(void)
2460{
2461	pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2462	pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2463}
2464
2465static int __init bdx_module_init(void)
2466{
2467	ENTER;
2468	init_txd_sizes();
2469	print_driver_id();
2470	RET(pci_register_driver(&bdx_pci_driver));
2471}
2472
2473module_init(bdx_module_init);
2474
2475static void __exit bdx_module_exit(void)
2476{
2477	ENTER;
2478	pci_unregister_driver(&bdx_pci_driver);
2479	RET();
2480}
2481
2482module_exit(bdx_module_exit);
2483
2484MODULE_LICENSE("GPL");
2485MODULE_AUTHOR(DRIVER_AUTHOR);
2486MODULE_DESCRIPTION(BDX_DRV_DESC);
2487MODULE_FIRMWARE("tehuti/bdx.bin");
2488