1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include <linux/delay.h>
11#include <linux/moduleparam.h>
12#include <linux/atomic.h>
13#include "net_driver.h"
14#include "nic.h"
15#include "io.h"
16#include "farch_regs.h"
17#include "mcdi_pcol.h"
18#include "phy.h"
19
20/**************************************************************************
21 *
22 * Management-Controller-to-Driver Interface
23 *
24 **************************************************************************
25 */
26
27#define MCDI_RPC_TIMEOUT       (10 * HZ)
28
29/* A reboot/assertion causes the MCDI status word to be set after the
30 * command word is set or a REBOOT event is sent. If we notice a reboot
31 * via these mechanisms then wait 250ms for the status word to be set.
32 */
33#define MCDI_STATUS_DELAY_US		100
34#define MCDI_STATUS_DELAY_COUNT		2500
35#define MCDI_STATUS_SLEEP_MS						\
36	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
37
38#define SEQ_MASK							\
39	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
40
41struct efx_mcdi_async_param {
42	struct list_head list;
43	unsigned int cmd;
44	size_t inlen;
45	size_t outlen;
46	bool quiet;
47	efx_mcdi_async_completer *complete;
48	unsigned long cookie;
49	/* followed by request/response buffer */
50};
51
52static void efx_mcdi_timeout_async(unsigned long context);
53static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
54			       bool *was_attached_out);
55static bool efx_mcdi_poll_once(struct efx_nic *efx);
56static void efx_mcdi_abandon(struct efx_nic *efx);
57
58#ifdef CONFIG_SFC_MCDI_LOGGING
59static bool mcdi_logging_default;
60module_param(mcdi_logging_default, bool, 0644);
61MODULE_PARM_DESC(mcdi_logging_default,
62		 "Enable MCDI logging on newly-probed functions");
63#endif
64
65int efx_mcdi_init(struct efx_nic *efx)
66{
67	struct efx_mcdi_iface *mcdi;
68	bool already_attached;
69	int rc = -ENOMEM;
70
71	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
72	if (!efx->mcdi)
73		goto fail;
74
75	mcdi = efx_mcdi(efx);
76	mcdi->efx = efx;
77#ifdef CONFIG_SFC_MCDI_LOGGING
78	/* consuming code assumes buffer is page-sized */
79	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
80	if (!mcdi->logging_buffer)
81		goto fail1;
82	mcdi->logging_enabled = mcdi_logging_default;
83#endif
84	init_waitqueue_head(&mcdi->wq);
85	spin_lock_init(&mcdi->iface_lock);
86	mcdi->state = MCDI_STATE_QUIESCENT;
87	mcdi->mode = MCDI_MODE_POLL;
88	spin_lock_init(&mcdi->async_lock);
89	INIT_LIST_HEAD(&mcdi->async_list);
90	setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
91		    (unsigned long)mcdi);
92
93	(void) efx_mcdi_poll_reboot(efx);
94	mcdi->new_epoch = true;
95
96	/* Recover from a failed assertion before probing */
97	rc = efx_mcdi_handle_assertion(efx);
98	if (rc)
99		goto fail2;
100
101	/* Let the MC (and BMC, if this is a LOM) know that the driver
102	 * is loaded. We should do this before we reset the NIC.
103	 */
104	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
105	if (rc) {
106		netif_err(efx, probe, efx->net_dev,
107			  "Unable to register driver with MCPU\n");
108		goto fail2;
109	}
110	if (already_attached)
111		/* Not a fatal error */
112		netif_err(efx, probe, efx->net_dev,
113			  "Host already registered with MCPU\n");
114
115	if (efx->mcdi->fn_flags &
116	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
117		efx->primary = efx;
118
119	return 0;
120fail2:
121#ifdef CONFIG_SFC_MCDI_LOGGING
122	free_page((unsigned long)mcdi->logging_buffer);
123fail1:
124#endif
125	kfree(efx->mcdi);
126	efx->mcdi = NULL;
127fail:
128	return rc;
129}
130
131void efx_mcdi_fini(struct efx_nic *efx)
132{
133	if (!efx->mcdi)
134		return;
135
136	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
137
138	/* Relinquish the device (back to the BMC, if this is a LOM) */
139	efx_mcdi_drv_attach(efx, false, NULL);
140
141#ifdef CONFIG_SFC_MCDI_LOGGING
142	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
143#endif
144
145	kfree(efx->mcdi);
146}
147
148static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
149				  const efx_dword_t *inbuf, size_t inlen)
150{
151	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
152#ifdef CONFIG_SFC_MCDI_LOGGING
153	char *buf = mcdi->logging_buffer; /* page-sized */
154#endif
155	efx_dword_t hdr[2];
156	size_t hdr_len;
157	u32 xflags, seqno;
158
159	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
160
161	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
162	spin_lock_bh(&mcdi->iface_lock);
163	++mcdi->seqno;
164	spin_unlock_bh(&mcdi->iface_lock);
165
166	seqno = mcdi->seqno & SEQ_MASK;
167	xflags = 0;
168	if (mcdi->mode == MCDI_MODE_EVENTS)
169		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
170
171	if (efx->type->mcdi_max_ver == 1) {
172		/* MCDI v1 */
173		EFX_POPULATE_DWORD_7(hdr[0],
174				     MCDI_HEADER_RESPONSE, 0,
175				     MCDI_HEADER_RESYNC, 1,
176				     MCDI_HEADER_CODE, cmd,
177				     MCDI_HEADER_DATALEN, inlen,
178				     MCDI_HEADER_SEQ, seqno,
179				     MCDI_HEADER_XFLAGS, xflags,
180				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
181		hdr_len = 4;
182	} else {
183		/* MCDI v2 */
184		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
185		EFX_POPULATE_DWORD_7(hdr[0],
186				     MCDI_HEADER_RESPONSE, 0,
187				     MCDI_HEADER_RESYNC, 1,
188				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
189				     MCDI_HEADER_DATALEN, 0,
190				     MCDI_HEADER_SEQ, seqno,
191				     MCDI_HEADER_XFLAGS, xflags,
192				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
193		EFX_POPULATE_DWORD_2(hdr[1],
194				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
195				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
196		hdr_len = 8;
197	}
198
199#ifdef CONFIG_SFC_MCDI_LOGGING
200	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
201		int bytes = 0;
202		int i;
203		/* Lengths should always be a whole number of dwords, so scream
204		 * if they're not.
205		 */
206		WARN_ON_ONCE(hdr_len % 4);
207		WARN_ON_ONCE(inlen % 4);
208
209		/* We own the logging buffer, as only one MCDI can be in
210		 * progress on a NIC at any one time.  So no need for locking.
211		 */
212		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
213			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
214					  " %08x", le32_to_cpu(hdr[i].u32[0]));
215
216		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
217			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
218					  " %08x", le32_to_cpu(inbuf[i].u32[0]));
219
220		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
221	}
222#endif
223
224	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
225
226	mcdi->new_epoch = false;
227}
228
229static int efx_mcdi_errno(unsigned int mcdi_err)
230{
231	switch (mcdi_err) {
232	case 0:
233		return 0;
234#define TRANSLATE_ERROR(name)					\
235	case MC_CMD_ERR_ ## name:				\
236		return -name;
237	TRANSLATE_ERROR(EPERM);
238	TRANSLATE_ERROR(ENOENT);
239	TRANSLATE_ERROR(EINTR);
240	TRANSLATE_ERROR(EAGAIN);
241	TRANSLATE_ERROR(EACCES);
242	TRANSLATE_ERROR(EBUSY);
243	TRANSLATE_ERROR(EINVAL);
244	TRANSLATE_ERROR(EDEADLK);
245	TRANSLATE_ERROR(ENOSYS);
246	TRANSLATE_ERROR(ETIME);
247	TRANSLATE_ERROR(EALREADY);
248	TRANSLATE_ERROR(ENOSPC);
249#undef TRANSLATE_ERROR
250	case MC_CMD_ERR_ENOTSUP:
251		return -EOPNOTSUPP;
252	case MC_CMD_ERR_ALLOC_FAIL:
253		return -ENOBUFS;
254	case MC_CMD_ERR_MAC_EXIST:
255		return -EADDRINUSE;
256	default:
257		return -EPROTO;
258	}
259}
260
261static void efx_mcdi_read_response_header(struct efx_nic *efx)
262{
263	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
264	unsigned int respseq, respcmd, error;
265#ifdef CONFIG_SFC_MCDI_LOGGING
266	char *buf = mcdi->logging_buffer; /* page-sized */
267#endif
268	efx_dword_t hdr;
269
270	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
271	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
272	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
273	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
274
275	if (respcmd != MC_CMD_V2_EXTN) {
276		mcdi->resp_hdr_len = 4;
277		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
278	} else {
279		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
280		mcdi->resp_hdr_len = 8;
281		mcdi->resp_data_len =
282			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
283	}
284
285#ifdef CONFIG_SFC_MCDI_LOGGING
286	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
287		size_t hdr_len, data_len;
288		int bytes = 0;
289		int i;
290
291		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
292		hdr_len = mcdi->resp_hdr_len / 4;
293		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
294		 * to dword size, and the MCDI buffer is always dword size
295		 */
296		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
297
298		/* We own the logging buffer, as only one MCDI can be in
299		 * progress on a NIC at any one time.  So no need for locking.
300		 */
301		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
302			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
303			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
304					  " %08x", le32_to_cpu(hdr.u32[0]));
305		}
306
307		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
308			efx->type->mcdi_read_response(efx, &hdr,
309					mcdi->resp_hdr_len + (i * 4), 4);
310			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
311					  " %08x", le32_to_cpu(hdr.u32[0]));
312		}
313
314		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
315	}
316#endif
317
318	if (error && mcdi->resp_data_len == 0) {
319		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
320		mcdi->resprc = -EIO;
321	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
322		netif_err(efx, hw, efx->net_dev,
323			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
324			  respseq, mcdi->seqno);
325		mcdi->resprc = -EIO;
326	} else if (error) {
327		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
328		mcdi->resprc =
329			efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
330	} else {
331		mcdi->resprc = 0;
332	}
333}
334
335static bool efx_mcdi_poll_once(struct efx_nic *efx)
336{
337	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
338
339	rmb();
340	if (!efx->type->mcdi_poll_response(efx))
341		return false;
342
343	spin_lock_bh(&mcdi->iface_lock);
344	efx_mcdi_read_response_header(efx);
345	spin_unlock_bh(&mcdi->iface_lock);
346
347	return true;
348}
349
350static int efx_mcdi_poll(struct efx_nic *efx)
351{
352	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
353	unsigned long time, finish;
354	unsigned int spins;
355	int rc;
356
357	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
358	rc = efx_mcdi_poll_reboot(efx);
359	if (rc) {
360		spin_lock_bh(&mcdi->iface_lock);
361		mcdi->resprc = rc;
362		mcdi->resp_hdr_len = 0;
363		mcdi->resp_data_len = 0;
364		spin_unlock_bh(&mcdi->iface_lock);
365		return 0;
366	}
367
368	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
369	 * because generally mcdi responses are fast. After that, back off
370	 * and poll once a jiffy (approximately)
371	 */
372	spins = TICK_USEC;
373	finish = jiffies + MCDI_RPC_TIMEOUT;
374
375	while (1) {
376		if (spins != 0) {
377			--spins;
378			udelay(1);
379		} else {
380			schedule_timeout_uninterruptible(1);
381		}
382
383		time = jiffies;
384
385		if (efx_mcdi_poll_once(efx))
386			break;
387
388		if (time_after(time, finish))
389			return -ETIMEDOUT;
390	}
391
392	/* Return rc=0 like wait_event_timeout() */
393	return 0;
394}
395
396/* Test and clear MC-rebooted flag for this port/function; reset
397 * software state as necessary.
398 */
399int efx_mcdi_poll_reboot(struct efx_nic *efx)
400{
401	if (!efx->mcdi)
402		return 0;
403
404	return efx->type->mcdi_poll_reboot(efx);
405}
406
407static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
408{
409	return cmpxchg(&mcdi->state,
410		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
411		MCDI_STATE_QUIESCENT;
412}
413
414static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
415{
416	/* Wait until the interface becomes QUIESCENT and we win the race
417	 * to mark it RUNNING_SYNC.
418	 */
419	wait_event(mcdi->wq,
420		   cmpxchg(&mcdi->state,
421			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
422		   MCDI_STATE_QUIESCENT);
423}
424
425static int efx_mcdi_await_completion(struct efx_nic *efx)
426{
427	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
428
429	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
430			       MCDI_RPC_TIMEOUT) == 0)
431		return -ETIMEDOUT;
432
433	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
434	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
435	 * completed the request first, then we'll just end up completing the
436	 * request again, which is safe.
437	 *
438	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
439	 * wait_event_timeout() implicitly provides.
440	 */
441	if (mcdi->mode == MCDI_MODE_POLL)
442		return efx_mcdi_poll(efx);
443
444	return 0;
445}
446
447/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
448 * requester.  Return whether this was done.  Does not take any locks.
449 */
450static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
451{
452	if (cmpxchg(&mcdi->state,
453		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
454	    MCDI_STATE_RUNNING_SYNC) {
455		wake_up(&mcdi->wq);
456		return true;
457	}
458
459	return false;
460}
461
462static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
463{
464	if (mcdi->mode == MCDI_MODE_EVENTS) {
465		struct efx_mcdi_async_param *async;
466		struct efx_nic *efx = mcdi->efx;
467
468		/* Process the asynchronous request queue */
469		spin_lock_bh(&mcdi->async_lock);
470		async = list_first_entry_or_null(
471			&mcdi->async_list, struct efx_mcdi_async_param, list);
472		if (async) {
473			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
474			efx_mcdi_send_request(efx, async->cmd,
475					      (const efx_dword_t *)(async + 1),
476					      async->inlen);
477			mod_timer(&mcdi->async_timer,
478				  jiffies + MCDI_RPC_TIMEOUT);
479		}
480		spin_unlock_bh(&mcdi->async_lock);
481
482		if (async)
483			return;
484	}
485
486	mcdi->state = MCDI_STATE_QUIESCENT;
487	wake_up(&mcdi->wq);
488}
489
490/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
491 * asynchronous completion function, and release the interface.
492 * Return whether this was done.  Must be called in bh-disabled
493 * context.  Will take iface_lock and async_lock.
494 */
495static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
496{
497	struct efx_nic *efx = mcdi->efx;
498	struct efx_mcdi_async_param *async;
499	size_t hdr_len, data_len, err_len;
500	efx_dword_t *outbuf;
501	MCDI_DECLARE_BUF_ERR(errbuf);
502	int rc;
503
504	if (cmpxchg(&mcdi->state,
505		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
506	    MCDI_STATE_RUNNING_ASYNC)
507		return false;
508
509	spin_lock(&mcdi->iface_lock);
510	if (timeout) {
511		/* Ensure that if the completion event arrives later,
512		 * the seqno check in efx_mcdi_ev_cpl() will fail
513		 */
514		++mcdi->seqno;
515		++mcdi->credits;
516		rc = -ETIMEDOUT;
517		hdr_len = 0;
518		data_len = 0;
519	} else {
520		rc = mcdi->resprc;
521		hdr_len = mcdi->resp_hdr_len;
522		data_len = mcdi->resp_data_len;
523	}
524	spin_unlock(&mcdi->iface_lock);
525
526	/* Stop the timer.  In case the timer function is running, we
527	 * must wait for it to return so that there is no possibility
528	 * of it aborting the next request.
529	 */
530	if (!timeout)
531		del_timer_sync(&mcdi->async_timer);
532
533	spin_lock(&mcdi->async_lock);
534	async = list_first_entry(&mcdi->async_list,
535				 struct efx_mcdi_async_param, list);
536	list_del(&async->list);
537	spin_unlock(&mcdi->async_lock);
538
539	outbuf = (efx_dword_t *)(async + 1);
540	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
541				      min(async->outlen, data_len));
542	if (!timeout && rc && !async->quiet) {
543		err_len = min(sizeof(errbuf), data_len);
544		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
545					      sizeof(errbuf));
546		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
547				       err_len, rc);
548	}
549	async->complete(efx, async->cookie, rc, outbuf, data_len);
550	kfree(async);
551
552	efx_mcdi_release(mcdi);
553
554	return true;
555}
556
557static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
558			    unsigned int datalen, unsigned int mcdi_err)
559{
560	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
561	bool wake = false;
562
563	spin_lock(&mcdi->iface_lock);
564
565	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
566		if (mcdi->credits)
567			/* The request has been cancelled */
568			--mcdi->credits;
569		else
570			netif_err(efx, hw, efx->net_dev,
571				  "MC response mismatch tx seq 0x%x rx "
572				  "seq 0x%x\n", seqno, mcdi->seqno);
573	} else {
574		if (efx->type->mcdi_max_ver >= 2) {
575			/* MCDI v2 responses don't fit in an event */
576			efx_mcdi_read_response_header(efx);
577		} else {
578			mcdi->resprc = efx_mcdi_errno(mcdi_err);
579			mcdi->resp_hdr_len = 4;
580			mcdi->resp_data_len = datalen;
581		}
582
583		wake = true;
584	}
585
586	spin_unlock(&mcdi->iface_lock);
587
588	if (wake) {
589		if (!efx_mcdi_complete_async(mcdi, false))
590			(void) efx_mcdi_complete_sync(mcdi);
591
592		/* If the interface isn't RUNNING_ASYNC or
593		 * RUNNING_SYNC then we've received a duplicate
594		 * completion after we've already transitioned back to
595		 * QUIESCENT. [A subsequent invocation would increment
596		 * seqno, so would have failed the seqno check].
597		 */
598	}
599}
600
601static void efx_mcdi_timeout_async(unsigned long context)
602{
603	struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
604
605	efx_mcdi_complete_async(mcdi, true);
606}
607
608static int
609efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
610{
611	if (efx->type->mcdi_max_ver < 0 ||
612	     (efx->type->mcdi_max_ver < 2 &&
613	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
614		return -EINVAL;
615
616	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
617	    (efx->type->mcdi_max_ver < 2 &&
618	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
619		return -EMSGSIZE;
620
621	return 0;
622}
623
624static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
625				efx_dword_t *outbuf, size_t outlen,
626				size_t *outlen_actual, bool quiet)
627{
628	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
629	MCDI_DECLARE_BUF_ERR(errbuf);
630	int rc;
631
632	if (mcdi->mode == MCDI_MODE_POLL)
633		rc = efx_mcdi_poll(efx);
634	else
635		rc = efx_mcdi_await_completion(efx);
636
637	if (rc != 0) {
638		netif_err(efx, hw, efx->net_dev,
639			  "MC command 0x%x inlen %d mode %d timed out\n",
640			  cmd, (int)inlen, mcdi->mode);
641
642		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
643			netif_err(efx, hw, efx->net_dev,
644				  "MCDI request was completed without an event\n");
645			rc = 0;
646		}
647
648		efx_mcdi_abandon(efx);
649
650		/* Close the race with efx_mcdi_ev_cpl() executing just too late
651		 * and completing a request we've just cancelled, by ensuring
652		 * that the seqno check therein fails.
653		 */
654		spin_lock_bh(&mcdi->iface_lock);
655		++mcdi->seqno;
656		++mcdi->credits;
657		spin_unlock_bh(&mcdi->iface_lock);
658	}
659
660	if (rc != 0) {
661		if (outlen_actual)
662			*outlen_actual = 0;
663	} else {
664		size_t hdr_len, data_len, err_len;
665
666		/* At the very least we need a memory barrier here to ensure
667		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
668		 * a spurious efx_mcdi_ev_cpl() running concurrently by
669		 * acquiring the iface_lock. */
670		spin_lock_bh(&mcdi->iface_lock);
671		rc = mcdi->resprc;
672		hdr_len = mcdi->resp_hdr_len;
673		data_len = mcdi->resp_data_len;
674		err_len = min(sizeof(errbuf), data_len);
675		spin_unlock_bh(&mcdi->iface_lock);
676
677		BUG_ON(rc > 0);
678
679		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
680					      min(outlen, data_len));
681		if (outlen_actual)
682			*outlen_actual = data_len;
683
684		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
685
686		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
687			/* Don't reset if MC_CMD_REBOOT returns EIO */
688		} else if (rc == -EIO || rc == -EINTR) {
689			netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
690				  -rc);
691			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
692		} else if (rc && !quiet) {
693			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
694					       rc);
695		}
696
697		if (rc == -EIO || rc == -EINTR) {
698			msleep(MCDI_STATUS_SLEEP_MS);
699			efx_mcdi_poll_reboot(efx);
700			mcdi->new_epoch = true;
701		}
702	}
703
704	efx_mcdi_release(mcdi);
705	return rc;
706}
707
708static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
709			 const efx_dword_t *inbuf, size_t inlen,
710			 efx_dword_t *outbuf, size_t outlen,
711			 size_t *outlen_actual, bool quiet)
712{
713	int rc;
714
715	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
716	if (rc) {
717		if (outlen_actual)
718			*outlen_actual = 0;
719		return rc;
720	}
721	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
722				    outlen_actual, quiet);
723}
724
725int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
726		 const efx_dword_t *inbuf, size_t inlen,
727		 efx_dword_t *outbuf, size_t outlen,
728		 size_t *outlen_actual)
729{
730	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
731			     outlen_actual, false);
732}
733
734/* Normally, on receiving an error code in the MCDI response,
735 * efx_mcdi_rpc will log an error message containing (among other
736 * things) the raw error code, by means of efx_mcdi_display_error.
737 * This _quiet version suppresses that; if the caller wishes to log
738 * the error conditionally on the return code, it should call this
739 * function and is then responsible for calling efx_mcdi_display_error
740 * as needed.
741 */
742int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
743		       const efx_dword_t *inbuf, size_t inlen,
744		       efx_dword_t *outbuf, size_t outlen,
745		       size_t *outlen_actual)
746{
747	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
748			     outlen_actual, true);
749}
750
751int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
752		       const efx_dword_t *inbuf, size_t inlen)
753{
754	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
755	int rc;
756
757	rc = efx_mcdi_check_supported(efx, cmd, inlen);
758	if (rc)
759		return rc;
760
761	if (efx->mc_bist_for_other_fn)
762		return -ENETDOWN;
763
764	if (mcdi->mode == MCDI_MODE_FAIL)
765		return -ENETDOWN;
766
767	efx_mcdi_acquire_sync(mcdi);
768	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
769	return 0;
770}
771
772static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
773			       const efx_dword_t *inbuf, size_t inlen,
774			       size_t outlen,
775			       efx_mcdi_async_completer *complete,
776			       unsigned long cookie, bool quiet)
777{
778	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
779	struct efx_mcdi_async_param *async;
780	int rc;
781
782	rc = efx_mcdi_check_supported(efx, cmd, inlen);
783	if (rc)
784		return rc;
785
786	if (efx->mc_bist_for_other_fn)
787		return -ENETDOWN;
788
789	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
790			GFP_ATOMIC);
791	if (!async)
792		return -ENOMEM;
793
794	async->cmd = cmd;
795	async->inlen = inlen;
796	async->outlen = outlen;
797	async->quiet = quiet;
798	async->complete = complete;
799	async->cookie = cookie;
800	memcpy(async + 1, inbuf, inlen);
801
802	spin_lock_bh(&mcdi->async_lock);
803
804	if (mcdi->mode == MCDI_MODE_EVENTS) {
805		list_add_tail(&async->list, &mcdi->async_list);
806
807		/* If this is at the front of the queue, try to start it
808		 * immediately
809		 */
810		if (mcdi->async_list.next == &async->list &&
811		    efx_mcdi_acquire_async(mcdi)) {
812			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
813			mod_timer(&mcdi->async_timer,
814				  jiffies + MCDI_RPC_TIMEOUT);
815		}
816	} else {
817		kfree(async);
818		rc = -ENETDOWN;
819	}
820
821	spin_unlock_bh(&mcdi->async_lock);
822
823	return rc;
824}
825
826/**
827 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
828 * @efx: NIC through which to issue the command
829 * @cmd: Command type number
830 * @inbuf: Command parameters
831 * @inlen: Length of command parameters, in bytes
832 * @outlen: Length to allocate for response buffer, in bytes
833 * @complete: Function to be called on completion or cancellation.
834 * @cookie: Arbitrary value to be passed to @complete.
835 *
836 * This function does not sleep and therefore may be called in atomic
837 * context.  It will fail if event queues are disabled or if MCDI
838 * event completions have been disabled due to an error.
839 *
840 * If it succeeds, the @complete function will be called exactly once
841 * in atomic context, when one of the following occurs:
842 * (a) the completion event is received (in NAPI context)
843 * (b) event queues are disabled (in the process that disables them)
844 * (c) the request times-out (in timer context)
845 */
846int
847efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
848		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
849		   efx_mcdi_async_completer *complete, unsigned long cookie)
850{
851	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
852				   cookie, false);
853}
854
855int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
856			     const efx_dword_t *inbuf, size_t inlen,
857			     size_t outlen, efx_mcdi_async_completer *complete,
858			     unsigned long cookie)
859{
860	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
861				   cookie, true);
862}
863
864int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
865			efx_dword_t *outbuf, size_t outlen,
866			size_t *outlen_actual)
867{
868	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
869				    outlen_actual, false);
870}
871
872int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
873			      efx_dword_t *outbuf, size_t outlen,
874			      size_t *outlen_actual)
875{
876	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
877				    outlen_actual, true);
878}
879
880void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
881			    size_t inlen, efx_dword_t *outbuf,
882			    size_t outlen, int rc)
883{
884	int code = 0, err_arg = 0;
885
886	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
887		code = MCDI_DWORD(outbuf, ERR_CODE);
888	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
889		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
890	netif_err(efx, hw, efx->net_dev,
891		  "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
892		  cmd, (int)inlen, rc, code, err_arg);
893}
894
895/* Switch to polled MCDI completions.  This can be called in various
896 * error conditions with various locks held, so it must be lockless.
897 * Caller is responsible for flushing asynchronous requests later.
898 */
899void efx_mcdi_mode_poll(struct efx_nic *efx)
900{
901	struct efx_mcdi_iface *mcdi;
902
903	if (!efx->mcdi)
904		return;
905
906	mcdi = efx_mcdi(efx);
907	/* If already in polling mode, nothing to do.
908	 * If in fail-fast state, don't switch to polled completion.
909	 * FLR recovery will do that later.
910	 */
911	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
912		return;
913
914	/* We can switch from event completion to polled completion, because
915	 * mcdi requests are always completed in shared memory. We do this by
916	 * switching the mode to POLL'd then completing the request.
917	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
918	 *
919	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
920	 * which efx_mcdi_complete_sync() provides for us.
921	 */
922	mcdi->mode = MCDI_MODE_POLL;
923
924	efx_mcdi_complete_sync(mcdi);
925}
926
927/* Flush any running or queued asynchronous requests, after event processing
928 * is stopped
929 */
930void efx_mcdi_flush_async(struct efx_nic *efx)
931{
932	struct efx_mcdi_async_param *async, *next;
933	struct efx_mcdi_iface *mcdi;
934
935	if (!efx->mcdi)
936		return;
937
938	mcdi = efx_mcdi(efx);
939
940	/* We must be in poll or fail mode so no more requests can be queued */
941	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
942
943	del_timer_sync(&mcdi->async_timer);
944
945	/* If a request is still running, make sure we give the MC
946	 * time to complete it so that the response won't overwrite our
947	 * next request.
948	 */
949	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
950		efx_mcdi_poll(efx);
951		mcdi->state = MCDI_STATE_QUIESCENT;
952	}
953
954	/* Nothing else will access the async list now, so it is safe
955	 * to walk it without holding async_lock.  If we hold it while
956	 * calling a completer then lockdep may warn that we have
957	 * acquired locks in the wrong order.
958	 */
959	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
960		async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
961		list_del(&async->list);
962		kfree(async);
963	}
964}
965
966void efx_mcdi_mode_event(struct efx_nic *efx)
967{
968	struct efx_mcdi_iface *mcdi;
969
970	if (!efx->mcdi)
971		return;
972
973	mcdi = efx_mcdi(efx);
974	/* If already in event completion mode, nothing to do.
975	 * If in fail-fast state, don't switch to event completion.  FLR
976	 * recovery will do that later.
977	 */
978	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
979		return;
980
981	/* We can't switch from polled to event completion in the middle of a
982	 * request, because the completion method is specified in the request.
983	 * So acquire the interface to serialise the requestors. We don't need
984	 * to acquire the iface_lock to change the mode here, but we do need a
985	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
986	 * efx_mcdi_acquire() provides.
987	 */
988	efx_mcdi_acquire_sync(mcdi);
989	mcdi->mode = MCDI_MODE_EVENTS;
990	efx_mcdi_release(mcdi);
991}
992
993static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
994{
995	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
996
997	/* If there is an outstanding MCDI request, it has been terminated
998	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
999	 * in polled mode, then do nothing because the MC reboot handler will
1000	 * set the header correctly. However, if the mcdi interface is waiting
1001	 * for a CMDDONE event it won't receive it [and since all MCDI events
1002	 * are sent to the same queue, we can't be racing with
1003	 * efx_mcdi_ev_cpl()]
1004	 *
1005	 * If there is an outstanding asynchronous request, we can't
1006	 * complete it now (efx_mcdi_complete() would deadlock).  The
1007	 * reset process will take care of this.
1008	 *
1009	 * There's a race here with efx_mcdi_send_request(), because
1010	 * we might receive a REBOOT event *before* the request has
1011	 * been copied out. In polled mode (during startup) this is
1012	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1013	 * event mode, this condition is just an edge-case of
1014	 * receiving a REBOOT event after posting the MCDI
1015	 * request. Did the mc reboot before or after the copyout? The
1016	 * best we can do always is just return failure.
1017	 */
1018	spin_lock(&mcdi->iface_lock);
1019	if (efx_mcdi_complete_sync(mcdi)) {
1020		if (mcdi->mode == MCDI_MODE_EVENTS) {
1021			mcdi->resprc = rc;
1022			mcdi->resp_hdr_len = 0;
1023			mcdi->resp_data_len = 0;
1024			++mcdi->credits;
1025		}
1026	} else {
1027		int count;
1028
1029		/* Consume the status word since efx_mcdi_rpc_finish() won't */
1030		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1031			rc = efx_mcdi_poll_reboot(efx);
1032			if (rc)
1033				break;
1034			udelay(MCDI_STATUS_DELAY_US);
1035		}
1036
1037		/* On EF10, a CODE_MC_REBOOT event can be received without the
1038		 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1039		 * If zero was returned from the final call to
1040		 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1041		 * MC has definitely rebooted so prepare for the reset.
1042		 */
1043		if (!rc && efx->type->mcdi_reboot_detected)
1044			efx->type->mcdi_reboot_detected(efx);
1045
1046		mcdi->new_epoch = true;
1047
1048		/* Nobody was waiting for an MCDI request, so trigger a reset */
1049		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1050	}
1051
1052	spin_unlock(&mcdi->iface_lock);
1053}
1054
1055/* The MC is going down in to BIST mode. set the BIST flag to block
1056 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1057 * (which doesn't actually execute a reset, it waits for the controlling
1058 * function to reset it).
1059 */
1060static void efx_mcdi_ev_bist(struct efx_nic *efx)
1061{
1062	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1063
1064	spin_lock(&mcdi->iface_lock);
1065	efx->mc_bist_for_other_fn = true;
1066	if (efx_mcdi_complete_sync(mcdi)) {
1067		if (mcdi->mode == MCDI_MODE_EVENTS) {
1068			mcdi->resprc = -EIO;
1069			mcdi->resp_hdr_len = 0;
1070			mcdi->resp_data_len = 0;
1071			++mcdi->credits;
1072		}
1073	}
1074	mcdi->new_epoch = true;
1075	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1076	spin_unlock(&mcdi->iface_lock);
1077}
1078
1079/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1080 * to recover.
1081 */
1082static void efx_mcdi_abandon(struct efx_nic *efx)
1083{
1084	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1085
1086	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1087		return; /* it had already been done */
1088	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1089	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1090}
1091
1092/* Called from  falcon_process_eventq for MCDI events */
1093void efx_mcdi_process_event(struct efx_channel *channel,
1094			    efx_qword_t *event)
1095{
1096	struct efx_nic *efx = channel->efx;
1097	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1098	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1099
1100	switch (code) {
1101	case MCDI_EVENT_CODE_BADSSERT:
1102		netif_err(efx, hw, efx->net_dev,
1103			  "MC watchdog or assertion failure at 0x%x\n", data);
1104		efx_mcdi_ev_death(efx, -EINTR);
1105		break;
1106
1107	case MCDI_EVENT_CODE_PMNOTICE:
1108		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1109		break;
1110
1111	case MCDI_EVENT_CODE_CMDDONE:
1112		efx_mcdi_ev_cpl(efx,
1113				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1114				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1115				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1116		break;
1117
1118	case MCDI_EVENT_CODE_LINKCHANGE:
1119		efx_mcdi_process_link_change(efx, event);
1120		break;
1121	case MCDI_EVENT_CODE_SENSOREVT:
1122		efx_mcdi_sensor_event(efx, event);
1123		break;
1124	case MCDI_EVENT_CODE_SCHEDERR:
1125		netif_dbg(efx, hw, efx->net_dev,
1126			  "MC Scheduler alert (0x%x)\n", data);
1127		break;
1128	case MCDI_EVENT_CODE_REBOOT:
1129	case MCDI_EVENT_CODE_MC_REBOOT:
1130		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1131		efx_mcdi_ev_death(efx, -EIO);
1132		break;
1133	case MCDI_EVENT_CODE_MC_BIST:
1134		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1135		efx_mcdi_ev_bist(efx);
1136		break;
1137	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1138		/* MAC stats are gather lazily.  We can ignore this. */
1139		break;
1140	case MCDI_EVENT_CODE_FLR:
1141		if (efx->type->sriov_flr)
1142			efx->type->sriov_flr(efx,
1143					     MCDI_EVENT_FIELD(*event, FLR_VF));
1144		break;
1145	case MCDI_EVENT_CODE_PTP_RX:
1146	case MCDI_EVENT_CODE_PTP_FAULT:
1147	case MCDI_EVENT_CODE_PTP_PPS:
1148		efx_ptp_event(efx, event);
1149		break;
1150	case MCDI_EVENT_CODE_PTP_TIME:
1151		efx_time_sync_event(channel, event);
1152		break;
1153	case MCDI_EVENT_CODE_TX_FLUSH:
1154	case MCDI_EVENT_CODE_RX_FLUSH:
1155		/* Two flush events will be sent: one to the same event
1156		 * queue as completions, and one to event queue 0.
1157		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1158		 * flag will be set, and we should ignore the event
1159		 * because we want to wait for all completions.
1160		 */
1161		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1162			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1163		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1164			efx_ef10_handle_drain_event(efx);
1165		break;
1166	case MCDI_EVENT_CODE_TX_ERR:
1167	case MCDI_EVENT_CODE_RX_ERR:
1168		netif_err(efx, hw, efx->net_dev,
1169			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1170			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1171			  EFX_QWORD_VAL(*event));
1172		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1173		break;
1174	default:
1175		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1176			  code);
1177	}
1178}
1179
1180/**************************************************************************
1181 *
1182 * Specific request functions
1183 *
1184 **************************************************************************
1185 */
1186
1187void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1188{
1189	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1190	size_t outlength;
1191	const __le16 *ver_words;
1192	size_t offset;
1193	int rc;
1194
1195	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1196	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1197			  outbuf, sizeof(outbuf), &outlength);
1198	if (rc)
1199		goto fail;
1200	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1201		rc = -EIO;
1202		goto fail;
1203	}
1204
1205	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1206	offset = snprintf(buf, len, "%u.%u.%u.%u",
1207			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1208			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1209
1210	/* EF10 may have multiple datapath firmware variants within a
1211	 * single version.  Report which variants are running.
1212	 */
1213	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1214		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1215
1216		offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1217				   nic_data->rx_dpcpu_fw_id,
1218				   nic_data->tx_dpcpu_fw_id);
1219
1220		/* It's theoretically possible for the string to exceed 31
1221		 * characters, though in practice the first three version
1222		 * components are short enough that this doesn't happen.
1223		 */
1224		if (WARN_ON(offset >= len))
1225			buf[0] = 0;
1226	}
1227
1228	return;
1229
1230fail:
1231	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1232	buf[0] = 0;
1233}
1234
1235static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1236			       bool *was_attached)
1237{
1238	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1239	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1240	size_t outlen;
1241	int rc;
1242
1243	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1244		       driver_operating ? 1 : 0);
1245	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1246	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1247
1248	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1249				outbuf, sizeof(outbuf), &outlen);
1250	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1251	 * specified will fail with EPERM, and we have to tell the MC we don't
1252	 * care what firmware we get.
1253	 */
1254	if (rc == -EPERM) {
1255		netif_dbg(efx, probe, efx->net_dev,
1256			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1257		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1258			       MC_CMD_FW_DONT_CARE);
1259		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1260					sizeof(inbuf), outbuf, sizeof(outbuf),
1261					&outlen);
1262	}
1263	if (rc) {
1264		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1265				       outbuf, outlen, rc);
1266		goto fail;
1267	}
1268	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1269		rc = -EIO;
1270		goto fail;
1271	}
1272
1273	if (driver_operating) {
1274		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1275			efx->mcdi->fn_flags =
1276				MCDI_DWORD(outbuf,
1277					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1278		} else {
1279			/* Synthesise flags for Siena */
1280			efx->mcdi->fn_flags =
1281				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1282				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1283				(efx_port_num(efx) == 0) <<
1284				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1285		}
1286	}
1287
1288	/* We currently assume we have control of the external link
1289	 * and are completely trusted by firmware.  Abort probing
1290	 * if that's not true for this function.
1291	 */
1292
1293	if (was_attached != NULL)
1294		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1295	return 0;
1296
1297fail:
1298	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1299	return rc;
1300}
1301
1302int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1303			   u16 *fw_subtype_list, u32 *capabilities)
1304{
1305	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1306	size_t outlen, i;
1307	int port_num = efx_port_num(efx);
1308	int rc;
1309
1310	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1311	/* we need __aligned(2) for ether_addr_copy */
1312	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1313	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1314
1315	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1316			  outbuf, sizeof(outbuf), &outlen);
1317	if (rc)
1318		goto fail;
1319
1320	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1321		rc = -EIO;
1322		goto fail;
1323	}
1324
1325	if (mac_address)
1326		ether_addr_copy(mac_address,
1327				port_num ?
1328				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1329				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1330	if (fw_subtype_list) {
1331		for (i = 0;
1332		     i < MCDI_VAR_ARRAY_LEN(outlen,
1333					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1334		     i++)
1335			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1336				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1337		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1338			fw_subtype_list[i] = 0;
1339	}
1340	if (capabilities) {
1341		if (port_num)
1342			*capabilities = MCDI_DWORD(outbuf,
1343					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1344		else
1345			*capabilities = MCDI_DWORD(outbuf,
1346					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1347	}
1348
1349	return 0;
1350
1351fail:
1352	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1353		  __func__, rc, (int)outlen);
1354
1355	return rc;
1356}
1357
1358int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1359{
1360	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1361	u32 dest = 0;
1362	int rc;
1363
1364	if (uart)
1365		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1366	if (evq)
1367		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1368
1369	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1370	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1371
1372	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1373
1374	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1375			  NULL, 0, NULL);
1376	return rc;
1377}
1378
1379int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1380{
1381	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1382	size_t outlen;
1383	int rc;
1384
1385	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1386
1387	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1388			  outbuf, sizeof(outbuf), &outlen);
1389	if (rc)
1390		goto fail;
1391	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1392		rc = -EIO;
1393		goto fail;
1394	}
1395
1396	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1397	return 0;
1398
1399fail:
1400	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1401		  __func__, rc);
1402	return rc;
1403}
1404
1405int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1406			size_t *size_out, size_t *erase_size_out,
1407			bool *protected_out)
1408{
1409	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1410	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1411	size_t outlen;
1412	int rc;
1413
1414	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1415
1416	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1417			  outbuf, sizeof(outbuf), &outlen);
1418	if (rc)
1419		goto fail;
1420	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1421		rc = -EIO;
1422		goto fail;
1423	}
1424
1425	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1426	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1427	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1428				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1429	return 0;
1430
1431fail:
1432	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1433	return rc;
1434}
1435
1436static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1437{
1438	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1439	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1440	int rc;
1441
1442	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1443
1444	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1445			  outbuf, sizeof(outbuf), NULL);
1446	if (rc)
1447		return rc;
1448
1449	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1450	case MC_CMD_NVRAM_TEST_PASS:
1451	case MC_CMD_NVRAM_TEST_NOTSUPP:
1452		return 0;
1453	default:
1454		return -EIO;
1455	}
1456}
1457
1458int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1459{
1460	u32 nvram_types;
1461	unsigned int type;
1462	int rc;
1463
1464	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1465	if (rc)
1466		goto fail1;
1467
1468	type = 0;
1469	while (nvram_types != 0) {
1470		if (nvram_types & 1) {
1471			rc = efx_mcdi_nvram_test(efx, type);
1472			if (rc)
1473				goto fail2;
1474		}
1475		type++;
1476		nvram_types >>= 1;
1477	}
1478
1479	return 0;
1480
1481fail2:
1482	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1483		  __func__, type);
1484fail1:
1485	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1486	return rc;
1487}
1488
1489/* Returns 1 if an assertion was read, 0 if no assertion had fired,
1490 * negative on error.
1491 */
1492static int efx_mcdi_read_assertion(struct efx_nic *efx)
1493{
1494	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1495	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1496	unsigned int flags, index;
1497	const char *reason;
1498	size_t outlen;
1499	int retry;
1500	int rc;
1501
1502	/* Attempt to read any stored assertion state before we reboot
1503	 * the mcfw out of the assertion handler. Retry twice, once
1504	 * because a boot-time assertion might cause this command to fail
1505	 * with EINTR. And once again because GET_ASSERTS can race with
1506	 * MC_CMD_REBOOT running on the other port. */
1507	retry = 2;
1508	do {
1509		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1510		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1511					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1512					outbuf, sizeof(outbuf), &outlen);
1513		if (rc == -EPERM)
1514			return 0;
1515	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1516
1517	if (rc) {
1518		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1519				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1520				       outlen, rc);
1521		return rc;
1522	}
1523	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1524		return -EIO;
1525
1526	/* Print out any recorded assertion state */
1527	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1528	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1529		return 0;
1530
1531	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1532		? "system-level assertion"
1533		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1534		? "thread-level assertion"
1535		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1536		? "watchdog reset"
1537		: "unknown assertion";
1538	netif_err(efx, hw, efx->net_dev,
1539		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1540		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1541		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1542
1543	/* Print out the registers */
1544	for (index = 0;
1545	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1546	     index++)
1547		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1548			  1 + index,
1549			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1550					   index));
1551
1552	return 1;
1553}
1554
1555static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1556{
1557	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1558	int rc;
1559
1560	/* If the MC is running debug firmware, it might now be
1561	 * waiting for a debugger to attach, but we just want it to
1562	 * reboot.  We set a flag that makes the command a no-op if it
1563	 * has already done so.
1564	 * The MCDI will thus return either 0 or -EIO.
1565	 */
1566	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1567	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1568		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1569	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1570				NULL, 0, NULL);
1571	if (rc == -EIO)
1572		rc = 0;
1573	if (rc)
1574		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1575				       NULL, 0, rc);
1576	return rc;
1577}
1578
1579int efx_mcdi_handle_assertion(struct efx_nic *efx)
1580{
1581	int rc;
1582
1583	rc = efx_mcdi_read_assertion(efx);
1584	if (rc <= 0)
1585		return rc;
1586
1587	return efx_mcdi_exit_assertion(efx);
1588}
1589
1590void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1591{
1592	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1593	int rc;
1594
1595	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1596	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1597	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1598
1599	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1600
1601	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1602
1603	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1604			  NULL, 0, NULL);
1605}
1606
1607static int efx_mcdi_reset_func(struct efx_nic *efx)
1608{
1609	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1610	int rc;
1611
1612	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1613	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1614			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1615	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1616			  NULL, 0, NULL);
1617	return rc;
1618}
1619
1620static int efx_mcdi_reset_mc(struct efx_nic *efx)
1621{
1622	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1623	int rc;
1624
1625	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1626	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1627	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1628			  NULL, 0, NULL);
1629	/* White is black, and up is down */
1630	if (rc == -EIO)
1631		return 0;
1632	if (rc == 0)
1633		rc = -EIO;
1634	return rc;
1635}
1636
1637enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1638{
1639	return RESET_TYPE_RECOVER_OR_ALL;
1640}
1641
1642int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1643{
1644	int rc;
1645
1646	/* If MCDI is down, we can't handle_assertion */
1647	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1648		rc = pci_reset_function(efx->pci_dev);
1649		if (rc)
1650			return rc;
1651		/* Re-enable polled MCDI completion */
1652		if (efx->mcdi) {
1653			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1654			mcdi->mode = MCDI_MODE_POLL;
1655		}
1656		return 0;
1657	}
1658
1659	/* Recover from a failed assertion pre-reset */
1660	rc = efx_mcdi_handle_assertion(efx);
1661	if (rc)
1662		return rc;
1663
1664	if (method == RESET_TYPE_DATAPATH)
1665		return 0;
1666	else if (method == RESET_TYPE_WORLD)
1667		return efx_mcdi_reset_mc(efx);
1668	else
1669		return efx_mcdi_reset_func(efx);
1670}
1671
1672static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1673				   const u8 *mac, int *id_out)
1674{
1675	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1676	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1677	size_t outlen;
1678	int rc;
1679
1680	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1681	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1682		       MC_CMD_FILTER_MODE_SIMPLE);
1683	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1684
1685	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1686			  outbuf, sizeof(outbuf), &outlen);
1687	if (rc)
1688		goto fail;
1689
1690	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1691		rc = -EIO;
1692		goto fail;
1693	}
1694
1695	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1696
1697	return 0;
1698
1699fail:
1700	*id_out = -1;
1701	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1702	return rc;
1703
1704}
1705
1706
1707int
1708efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1709{
1710	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1711}
1712
1713
1714int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1715{
1716	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1717	size_t outlen;
1718	int rc;
1719
1720	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1721			  outbuf, sizeof(outbuf), &outlen);
1722	if (rc)
1723		goto fail;
1724
1725	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1726		rc = -EIO;
1727		goto fail;
1728	}
1729
1730	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1731
1732	return 0;
1733
1734fail:
1735	*id_out = -1;
1736	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1737	return rc;
1738}
1739
1740
1741int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1742{
1743	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1744	int rc;
1745
1746	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1747
1748	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1749			  NULL, 0, NULL);
1750	return rc;
1751}
1752
1753int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1754{
1755	struct efx_channel *channel;
1756	struct efx_rx_queue *rx_queue;
1757	MCDI_DECLARE_BUF(inbuf,
1758			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1759	int rc, count;
1760
1761	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1762		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1763
1764	count = 0;
1765	efx_for_each_channel(channel, efx) {
1766		efx_for_each_channel_rx_queue(rx_queue, channel) {
1767			if (rx_queue->flush_pending) {
1768				rx_queue->flush_pending = false;
1769				atomic_dec(&efx->rxq_flush_pending);
1770				MCDI_SET_ARRAY_DWORD(
1771					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1772					count, efx_rx_queue_index(rx_queue));
1773				count++;
1774			}
1775		}
1776	}
1777
1778	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1779			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1780	WARN_ON(rc < 0);
1781
1782	return rc;
1783}
1784
1785int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1786{
1787	int rc;
1788
1789	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1790	return rc;
1791}
1792
1793int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
1794			    unsigned int *flags)
1795{
1796	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
1797	MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
1798	size_t outlen;
1799	int rc;
1800
1801	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
1802	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
1803	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
1804	rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
1805			  outbuf, sizeof(outbuf), &outlen);
1806	if (rc)
1807		return rc;
1808
1809	if (!flags)
1810		return 0;
1811
1812	if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
1813		*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
1814	else
1815		*flags = 0;
1816
1817	return 0;
1818}
1819
1820int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
1821			     unsigned int *enabled_out)
1822{
1823	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
1824	size_t outlen;
1825	int rc;
1826
1827	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
1828			  outbuf, sizeof(outbuf), &outlen);
1829	if (rc)
1830		goto fail;
1831
1832	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
1833		rc = -EIO;
1834		goto fail;
1835	}
1836
1837	if (impl_out)
1838		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
1839
1840	if (enabled_out)
1841		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
1842
1843	return 0;
1844
1845fail:
1846	/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
1847	 * terrifying.  The call site will have to deal with it though.
1848	 */
1849	netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR,
1850		     efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1851	return rc;
1852}
1853
1854#ifdef CONFIG_SFC_MTD
1855
1856#define EFX_MCDI_NVRAM_LEN_MAX 128
1857
1858static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
1859{
1860	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
1861	int rc;
1862
1863	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
1864
1865	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
1866
1867	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
1868			  NULL, 0, NULL);
1869	return rc;
1870}
1871
1872static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
1873			       loff_t offset, u8 *buffer, size_t length)
1874{
1875	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
1876	MCDI_DECLARE_BUF(outbuf,
1877			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1878	size_t outlen;
1879	int rc;
1880
1881	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
1882	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
1883	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
1884
1885	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
1886			  outbuf, sizeof(outbuf), &outlen);
1887	if (rc)
1888		return rc;
1889
1890	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
1891	return 0;
1892}
1893
1894static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
1895				loff_t offset, const u8 *buffer, size_t length)
1896{
1897	MCDI_DECLARE_BUF(inbuf,
1898			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1899	int rc;
1900
1901	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
1902	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
1903	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
1904	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
1905
1906	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
1907
1908	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
1909			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
1910			  NULL, 0, NULL);
1911	return rc;
1912}
1913
1914static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
1915				loff_t offset, size_t length)
1916{
1917	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
1918	int rc;
1919
1920	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
1921	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
1922	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
1923
1924	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
1925
1926	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
1927			  NULL, 0, NULL);
1928	return rc;
1929}
1930
1931static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
1932{
1933	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
1934	int rc;
1935
1936	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
1937
1938	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
1939
1940	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
1941			  NULL, 0, NULL);
1942	return rc;
1943}
1944
1945int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
1946		      size_t len, size_t *retlen, u8 *buffer)
1947{
1948	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1949	struct efx_nic *efx = mtd->priv;
1950	loff_t offset = start;
1951	loff_t end = min_t(loff_t, start + len, mtd->size);
1952	size_t chunk;
1953	int rc = 0;
1954
1955	while (offset < end) {
1956		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1957		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
1958					 buffer, chunk);
1959		if (rc)
1960			goto out;
1961		offset += chunk;
1962		buffer += chunk;
1963	}
1964out:
1965	*retlen = offset - start;
1966	return rc;
1967}
1968
1969int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
1970{
1971	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1972	struct efx_nic *efx = mtd->priv;
1973	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
1974	loff_t end = min_t(loff_t, start + len, mtd->size);
1975	size_t chunk = part->common.mtd.erasesize;
1976	int rc = 0;
1977
1978	if (!part->updating) {
1979		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1980		if (rc)
1981			goto out;
1982		part->updating = true;
1983	}
1984
1985	/* The MCDI interface can in fact do multiple erase blocks at once;
1986	 * but erasing may be slow, so we make multiple calls here to avoid
1987	 * tripping the MCDI RPC timeout. */
1988	while (offset < end) {
1989		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
1990					  chunk);
1991		if (rc)
1992			goto out;
1993		offset += chunk;
1994	}
1995out:
1996	return rc;
1997}
1998
1999int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2000		       size_t len, size_t *retlen, const u8 *buffer)
2001{
2002	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2003	struct efx_nic *efx = mtd->priv;
2004	loff_t offset = start;
2005	loff_t end = min_t(loff_t, start + len, mtd->size);
2006	size_t chunk;
2007	int rc = 0;
2008
2009	if (!part->updating) {
2010		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2011		if (rc)
2012			goto out;
2013		part->updating = true;
2014	}
2015
2016	while (offset < end) {
2017		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2018		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2019					  buffer, chunk);
2020		if (rc)
2021			goto out;
2022		offset += chunk;
2023		buffer += chunk;
2024	}
2025out:
2026	*retlen = offset - start;
2027	return rc;
2028}
2029
2030int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2031{
2032	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2033	struct efx_nic *efx = mtd->priv;
2034	int rc = 0;
2035
2036	if (part->updating) {
2037		part->updating = false;
2038		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2039	}
2040
2041	return rc;
2042}
2043
2044void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2045{
2046	struct efx_mcdi_mtd_partition *mcdi_part =
2047		container_of(part, struct efx_mcdi_mtd_partition, common);
2048	struct efx_nic *efx = part->mtd.priv;
2049
2050	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2051		 efx->name, part->type_name, mcdi_part->fw_subtype);
2052}
2053
2054#endif /* CONFIG_SFC_MTD */
2055