1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/phy.h>
52 #include <linux/fec.h>
53 #include <linux/of.h>
54 #include <linux/of_device.h>
55 #include <linux/of_gpio.h>
56 #include <linux/of_mdio.h>
57 #include <linux/of_net.h>
58 #include <linux/regulator/consumer.h>
59 #include <linux/if_vlan.h>
60 #include <linux/pinctrl/consumer.h>
61 #include <linux/prefetch.h>
62 
63 #include <asm/cacheflush.h>
64 
65 #include "fec.h"
66 
67 static void set_multicast_list(struct net_device *ndev);
68 static void fec_enet_itr_coal_init(struct net_device *ndev);
69 
70 #define DRIVER_NAME	"fec"
71 
72 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
73 
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE	(1 << 5)
76 #define FEC_ENET_RSEM_V	0x84
77 #define FEC_ENET_RSFL_V	16
78 #define FEC_ENET_RAEM_V	0x8
79 #define FEC_ENET_RAFL_V	0x8
80 #define FEC_ENET_OPD_V	0xFFF0
81 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
82 
83 static struct platform_device_id fec_devtype[] = {
84 	{
85 		/* keep it for coldfire */
86 		.name = DRIVER_NAME,
87 		.driver_data = 0,
88 	}, {
89 		.name = "imx25-fec",
90 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
91 	}, {
92 		.name = "imx27-fec",
93 		.driver_data = FEC_QUIRK_HAS_RACC,
94 	}, {
95 		.name = "imx28-fec",
96 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
97 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
98 	}, {
99 		.name = "imx6q-fec",
100 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
101 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
102 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
103 				FEC_QUIRK_HAS_RACC,
104 	}, {
105 		.name = "mvf600-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
107 	}, {
108 		.name = "imx6sx-fec",
109 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
112 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
113 				FEC_QUIRK_HAS_RACC,
114 	}, {
115 		/* sentinel */
116 	}
117 };
118 MODULE_DEVICE_TABLE(platform, fec_devtype);
119 
120 enum imx_fec_type {
121 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
122 	IMX27_FEC,	/* runs on i.mx27/35/51 */
123 	IMX28_FEC,
124 	IMX6Q_FEC,
125 	MVF600_FEC,
126 	IMX6SX_FEC,
127 };
128 
129 static const struct of_device_id fec_dt_ids[] = {
130 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
131 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
132 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
133 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
134 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
135 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
136 	{ /* sentinel */ }
137 };
138 MODULE_DEVICE_TABLE(of, fec_dt_ids);
139 
140 static unsigned char macaddr[ETH_ALEN];
141 module_param_array(macaddr, byte, NULL, 0);
142 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
143 
144 #if defined(CONFIG_M5272)
145 /*
146  * Some hardware gets it MAC address out of local flash memory.
147  * if this is non-zero then assume it is the address to get MAC from.
148  */
149 #if defined(CONFIG_NETtel)
150 #define	FEC_FLASHMAC	0xf0006006
151 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
152 #define	FEC_FLASHMAC	0xf0006000
153 #elif defined(CONFIG_CANCam)
154 #define	FEC_FLASHMAC	0xf0020000
155 #elif defined (CONFIG_M5272C3)
156 #define	FEC_FLASHMAC	(0xffe04000 + 4)
157 #elif defined(CONFIG_MOD5272)
158 #define FEC_FLASHMAC	0xffc0406b
159 #else
160 #define	FEC_FLASHMAC	0
161 #endif
162 #endif /* CONFIG_M5272 */
163 
164 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
165  */
166 #define PKT_MAXBUF_SIZE		1522
167 #define PKT_MINBUF_SIZE		64
168 #define PKT_MAXBLR_SIZE		1536
169 
170 /* FEC receive acceleration */
171 #define FEC_RACC_IPDIS		(1 << 1)
172 #define FEC_RACC_PRODIS		(1 << 2)
173 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
174 
175 /*
176  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
177  * size bits. Other FEC hardware does not, so we need to take that into
178  * account when setting it.
179  */
180 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
181     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
182 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
183 #else
184 #define	OPT_FRAME_SIZE	0
185 #endif
186 
187 /* FEC MII MMFR bits definition */
188 #define FEC_MMFR_ST		(1 << 30)
189 #define FEC_MMFR_OP_READ	(2 << 28)
190 #define FEC_MMFR_OP_WRITE	(1 << 28)
191 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
192 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
193 #define FEC_MMFR_TA		(2 << 16)
194 #define FEC_MMFR_DATA(v)	(v & 0xffff)
195 /* FEC ECR bits definition */
196 #define FEC_ECR_MAGICEN		(1 << 2)
197 #define FEC_ECR_SLEEP		(1 << 3)
198 
199 #define FEC_MII_TIMEOUT		30000 /* us */
200 
201 /* Transmitter timeout */
202 #define TX_TIMEOUT (2 * HZ)
203 
204 #define FEC_PAUSE_FLAG_AUTONEG	0x1
205 #define FEC_PAUSE_FLAG_ENABLE	0x2
206 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
207 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
208 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
209 
210 #define COPYBREAK_DEFAULT	256
211 
212 #define TSO_HEADER_SIZE		128
213 /* Max number of allowed TCP segments for software TSO */
214 #define FEC_MAX_TSO_SEGS	100
215 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
216 
217 #define IS_TSO_HEADER(txq, addr) \
218 	((addr >= txq->tso_hdrs_dma) && \
219 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
220 
221 static int mii_cnt;
222 
223 static inline
fec_enet_get_nextdesc(struct bufdesc * bdp,struct fec_enet_private * fep,int queue_id)224 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
225 				      struct fec_enet_private *fep,
226 				      int queue_id)
227 {
228 	struct bufdesc *new_bd = bdp + 1;
229 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
230 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
231 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
232 	struct bufdesc_ex *ex_base;
233 	struct bufdesc *base;
234 	int ring_size;
235 
236 	if (bdp >= txq->tx_bd_base) {
237 		base = txq->tx_bd_base;
238 		ring_size = txq->tx_ring_size;
239 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
240 	} else {
241 		base = rxq->rx_bd_base;
242 		ring_size = rxq->rx_ring_size;
243 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
244 	}
245 
246 	if (fep->bufdesc_ex)
247 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
248 			ex_base : ex_new_bd);
249 	else
250 		return (new_bd >= (base + ring_size)) ?
251 			base : new_bd;
252 }
253 
254 static inline
fec_enet_get_prevdesc(struct bufdesc * bdp,struct fec_enet_private * fep,int queue_id)255 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
256 				      struct fec_enet_private *fep,
257 				      int queue_id)
258 {
259 	struct bufdesc *new_bd = bdp - 1;
260 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
261 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
262 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
263 	struct bufdesc_ex *ex_base;
264 	struct bufdesc *base;
265 	int ring_size;
266 
267 	if (bdp >= txq->tx_bd_base) {
268 		base = txq->tx_bd_base;
269 		ring_size = txq->tx_ring_size;
270 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
271 	} else {
272 		base = rxq->rx_bd_base;
273 		ring_size = rxq->rx_ring_size;
274 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
275 	}
276 
277 	if (fep->bufdesc_ex)
278 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
279 			(ex_new_bd + ring_size) : ex_new_bd);
280 	else
281 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
282 }
283 
fec_enet_get_bd_index(struct bufdesc * base,struct bufdesc * bdp,struct fec_enet_private * fep)284 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
285 				struct fec_enet_private *fep)
286 {
287 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
288 }
289 
fec_enet_get_free_txdesc_num(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq)290 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
291 					struct fec_enet_priv_tx_q *txq)
292 {
293 	int entries;
294 
295 	entries = ((const char *)txq->dirty_tx -
296 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
297 
298 	return entries > 0 ? entries : entries + txq->tx_ring_size;
299 }
300 
swap_buffer(void * bufaddr,int len)301 static void swap_buffer(void *bufaddr, int len)
302 {
303 	int i;
304 	unsigned int *buf = bufaddr;
305 
306 	for (i = 0; i < len; i += 4, buf++)
307 		swab32s(buf);
308 }
309 
swap_buffer2(void * dst_buf,void * src_buf,int len)310 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
311 {
312 	int i;
313 	unsigned int *src = src_buf;
314 	unsigned int *dst = dst_buf;
315 
316 	for (i = 0; i < len; i += 4, src++, dst++)
317 		*dst = swab32p(src);
318 }
319 
fec_dump(struct net_device * ndev)320 static void fec_dump(struct net_device *ndev)
321 {
322 	struct fec_enet_private *fep = netdev_priv(ndev);
323 	struct bufdesc *bdp;
324 	struct fec_enet_priv_tx_q *txq;
325 	int index = 0;
326 
327 	netdev_info(ndev, "TX ring dump\n");
328 	pr_info("Nr     SC     addr       len  SKB\n");
329 
330 	txq = fep->tx_queue[0];
331 	bdp = txq->tx_bd_base;
332 
333 	do {
334 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
335 			index,
336 			bdp == txq->cur_tx ? 'S' : ' ',
337 			bdp == txq->dirty_tx ? 'H' : ' ',
338 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
339 			txq->tx_skbuff[index]);
340 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
341 		index++;
342 	} while (bdp != txq->tx_bd_base);
343 }
344 
is_ipv4_pkt(struct sk_buff * skb)345 static inline bool is_ipv4_pkt(struct sk_buff *skb)
346 {
347 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
348 }
349 
350 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)351 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
352 {
353 	/* Only run for packets requiring a checksum. */
354 	if (skb->ip_summed != CHECKSUM_PARTIAL)
355 		return 0;
356 
357 	if (unlikely(skb_cow_head(skb, 0)))
358 		return -1;
359 
360 	if (is_ipv4_pkt(skb))
361 		ip_hdr(skb)->check = 0;
362 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
363 
364 	return 0;
365 }
366 
367 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)368 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
369 			     struct sk_buff *skb,
370 			     struct net_device *ndev)
371 {
372 	struct fec_enet_private *fep = netdev_priv(ndev);
373 	struct bufdesc *bdp = txq->cur_tx;
374 	struct bufdesc_ex *ebdp;
375 	int nr_frags = skb_shinfo(skb)->nr_frags;
376 	unsigned short queue = skb_get_queue_mapping(skb);
377 	int frag, frag_len;
378 	unsigned short status;
379 	unsigned int estatus = 0;
380 	skb_frag_t *this_frag;
381 	unsigned int index;
382 	void *bufaddr;
383 	dma_addr_t addr;
384 	int i;
385 
386 	for (frag = 0; frag < nr_frags; frag++) {
387 		this_frag = &skb_shinfo(skb)->frags[frag];
388 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
389 		ebdp = (struct bufdesc_ex *)bdp;
390 
391 		status = bdp->cbd_sc;
392 		status &= ~BD_ENET_TX_STATS;
393 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
394 		frag_len = skb_shinfo(skb)->frags[frag].size;
395 
396 		/* Handle the last BD specially */
397 		if (frag == nr_frags - 1) {
398 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
399 			if (fep->bufdesc_ex) {
400 				estatus |= BD_ENET_TX_INT;
401 				if (unlikely(skb_shinfo(skb)->tx_flags &
402 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
403 					estatus |= BD_ENET_TX_TS;
404 			}
405 		}
406 
407 		if (fep->bufdesc_ex) {
408 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
409 				estatus |= FEC_TX_BD_FTYPE(queue);
410 			if (skb->ip_summed == CHECKSUM_PARTIAL)
411 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
412 			ebdp->cbd_bdu = 0;
413 			ebdp->cbd_esc = estatus;
414 		}
415 
416 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
417 
418 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
419 		if (((unsigned long) bufaddr) & fep->tx_align ||
420 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
421 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
422 			bufaddr = txq->tx_bounce[index];
423 
424 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
425 				swap_buffer(bufaddr, frag_len);
426 		}
427 
428 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
429 				      DMA_TO_DEVICE);
430 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
431 			dev_kfree_skb_any(skb);
432 			if (net_ratelimit())
433 				netdev_err(ndev, "Tx DMA memory map failed\n");
434 			goto dma_mapping_error;
435 		}
436 
437 		bdp->cbd_bufaddr = addr;
438 		bdp->cbd_datlen = frag_len;
439 		bdp->cbd_sc = status;
440 	}
441 
442 	return bdp;
443 dma_mapping_error:
444 	bdp = txq->cur_tx;
445 	for (i = 0; i < frag; i++) {
446 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
447 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
448 				bdp->cbd_datlen, DMA_TO_DEVICE);
449 	}
450 	return ERR_PTR(-ENOMEM);
451 }
452 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)453 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
454 				   struct sk_buff *skb, struct net_device *ndev)
455 {
456 	struct fec_enet_private *fep = netdev_priv(ndev);
457 	int nr_frags = skb_shinfo(skb)->nr_frags;
458 	struct bufdesc *bdp, *last_bdp;
459 	void *bufaddr;
460 	dma_addr_t addr;
461 	unsigned short status;
462 	unsigned short buflen;
463 	unsigned short queue;
464 	unsigned int estatus = 0;
465 	unsigned int index;
466 	int entries_free;
467 
468 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
469 	if (entries_free < MAX_SKB_FRAGS + 1) {
470 		dev_kfree_skb_any(skb);
471 		if (net_ratelimit())
472 			netdev_err(ndev, "NOT enough BD for SG!\n");
473 		return NETDEV_TX_OK;
474 	}
475 
476 	/* Protocol checksum off-load for TCP and UDP. */
477 	if (fec_enet_clear_csum(skb, ndev)) {
478 		dev_kfree_skb_any(skb);
479 		return NETDEV_TX_OK;
480 	}
481 
482 	/* Fill in a Tx ring entry */
483 	bdp = txq->cur_tx;
484 	last_bdp = bdp;
485 	status = bdp->cbd_sc;
486 	status &= ~BD_ENET_TX_STATS;
487 
488 	/* Set buffer length and buffer pointer */
489 	bufaddr = skb->data;
490 	buflen = skb_headlen(skb);
491 
492 	queue = skb_get_queue_mapping(skb);
493 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
494 	if (((unsigned long) bufaddr) & fep->tx_align ||
495 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
496 		memcpy(txq->tx_bounce[index], skb->data, buflen);
497 		bufaddr = txq->tx_bounce[index];
498 
499 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
500 			swap_buffer(bufaddr, buflen);
501 	}
502 
503 	/* Push the data cache so the CPM does not get stale memory data. */
504 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
505 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
506 		dev_kfree_skb_any(skb);
507 		if (net_ratelimit())
508 			netdev_err(ndev, "Tx DMA memory map failed\n");
509 		return NETDEV_TX_OK;
510 	}
511 
512 	if (nr_frags) {
513 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
514 		if (IS_ERR(last_bdp))
515 			return NETDEV_TX_OK;
516 	} else {
517 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
518 		if (fep->bufdesc_ex) {
519 			estatus = BD_ENET_TX_INT;
520 			if (unlikely(skb_shinfo(skb)->tx_flags &
521 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
522 				estatus |= BD_ENET_TX_TS;
523 		}
524 	}
525 
526 	if (fep->bufdesc_ex) {
527 
528 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
529 
530 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
531 			fep->hwts_tx_en))
532 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
533 
534 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
535 			estatus |= FEC_TX_BD_FTYPE(queue);
536 
537 		if (skb->ip_summed == CHECKSUM_PARTIAL)
538 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
539 
540 		ebdp->cbd_bdu = 0;
541 		ebdp->cbd_esc = estatus;
542 	}
543 
544 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
545 	/* Save skb pointer */
546 	txq->tx_skbuff[index] = skb;
547 
548 	bdp->cbd_datlen = buflen;
549 	bdp->cbd_bufaddr = addr;
550 
551 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
552 	 * it's the last BD of the frame, and to put the CRC on the end.
553 	 */
554 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
555 	bdp->cbd_sc = status;
556 
557 	/* If this was the last BD in the ring, start at the beginning again. */
558 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
559 
560 	skb_tx_timestamp(skb);
561 
562 	/* Make sure the update to bdp and tx_skbuff are performed before
563 	 * cur_tx.
564 	 */
565 	wmb();
566 	txq->cur_tx = bdp;
567 
568 	/* Trigger transmission start */
569 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
570 
571 	return 0;
572 }
573 
574 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)575 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
576 			  struct net_device *ndev,
577 			  struct bufdesc *bdp, int index, char *data,
578 			  int size, bool last_tcp, bool is_last)
579 {
580 	struct fec_enet_private *fep = netdev_priv(ndev);
581 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
582 	unsigned short queue = skb_get_queue_mapping(skb);
583 	unsigned short status;
584 	unsigned int estatus = 0;
585 	dma_addr_t addr;
586 
587 	status = bdp->cbd_sc;
588 	status &= ~BD_ENET_TX_STATS;
589 
590 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
591 
592 	if (((unsigned long) data) & fep->tx_align ||
593 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
594 		memcpy(txq->tx_bounce[index], data, size);
595 		data = txq->tx_bounce[index];
596 
597 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
598 			swap_buffer(data, size);
599 	}
600 
601 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
602 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
603 		dev_kfree_skb_any(skb);
604 		if (net_ratelimit())
605 			netdev_err(ndev, "Tx DMA memory map failed\n");
606 		return NETDEV_TX_BUSY;
607 	}
608 
609 	bdp->cbd_datlen = size;
610 	bdp->cbd_bufaddr = addr;
611 
612 	if (fep->bufdesc_ex) {
613 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
614 			estatus |= FEC_TX_BD_FTYPE(queue);
615 		if (skb->ip_summed == CHECKSUM_PARTIAL)
616 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
617 		ebdp->cbd_bdu = 0;
618 		ebdp->cbd_esc = estatus;
619 	}
620 
621 	/* Handle the last BD specially */
622 	if (last_tcp)
623 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
624 	if (is_last) {
625 		status |= BD_ENET_TX_INTR;
626 		if (fep->bufdesc_ex)
627 			ebdp->cbd_esc |= BD_ENET_TX_INT;
628 	}
629 
630 	bdp->cbd_sc = status;
631 
632 	return 0;
633 }
634 
635 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)636 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
637 			 struct sk_buff *skb, struct net_device *ndev,
638 			 struct bufdesc *bdp, int index)
639 {
640 	struct fec_enet_private *fep = netdev_priv(ndev);
641 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
642 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
643 	unsigned short queue = skb_get_queue_mapping(skb);
644 	void *bufaddr;
645 	unsigned long dmabuf;
646 	unsigned short status;
647 	unsigned int estatus = 0;
648 
649 	status = bdp->cbd_sc;
650 	status &= ~BD_ENET_TX_STATS;
651 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
652 
653 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
654 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
655 	if (((unsigned long)bufaddr) & fep->tx_align ||
656 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
657 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
658 		bufaddr = txq->tx_bounce[index];
659 
660 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
661 			swap_buffer(bufaddr, hdr_len);
662 
663 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
664 					hdr_len, DMA_TO_DEVICE);
665 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
666 			dev_kfree_skb_any(skb);
667 			if (net_ratelimit())
668 				netdev_err(ndev, "Tx DMA memory map failed\n");
669 			return NETDEV_TX_BUSY;
670 		}
671 	}
672 
673 	bdp->cbd_bufaddr = dmabuf;
674 	bdp->cbd_datlen = hdr_len;
675 
676 	if (fep->bufdesc_ex) {
677 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
678 			estatus |= FEC_TX_BD_FTYPE(queue);
679 		if (skb->ip_summed == CHECKSUM_PARTIAL)
680 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
681 		ebdp->cbd_bdu = 0;
682 		ebdp->cbd_esc = estatus;
683 	}
684 
685 	bdp->cbd_sc = status;
686 
687 	return 0;
688 }
689 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)690 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
691 				   struct sk_buff *skb,
692 				   struct net_device *ndev)
693 {
694 	struct fec_enet_private *fep = netdev_priv(ndev);
695 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
696 	int total_len, data_left;
697 	struct bufdesc *bdp = txq->cur_tx;
698 	unsigned short queue = skb_get_queue_mapping(skb);
699 	struct tso_t tso;
700 	unsigned int index = 0;
701 	int ret;
702 
703 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
704 		dev_kfree_skb_any(skb);
705 		if (net_ratelimit())
706 			netdev_err(ndev, "NOT enough BD for TSO!\n");
707 		return NETDEV_TX_OK;
708 	}
709 
710 	/* Protocol checksum off-load for TCP and UDP. */
711 	if (fec_enet_clear_csum(skb, ndev)) {
712 		dev_kfree_skb_any(skb);
713 		return NETDEV_TX_OK;
714 	}
715 
716 	/* Initialize the TSO handler, and prepare the first payload */
717 	tso_start(skb, &tso);
718 
719 	total_len = skb->len - hdr_len;
720 	while (total_len > 0) {
721 		char *hdr;
722 
723 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
724 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
725 		total_len -= data_left;
726 
727 		/* prepare packet headers: MAC + IP + TCP */
728 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
729 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
730 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
731 		if (ret)
732 			goto err_release;
733 
734 		while (data_left > 0) {
735 			int size;
736 
737 			size = min_t(int, tso.size, data_left);
738 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
739 			index = fec_enet_get_bd_index(txq->tx_bd_base,
740 						      bdp, fep);
741 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
742 							bdp, index,
743 							tso.data, size,
744 							size == data_left,
745 							total_len == 0);
746 			if (ret)
747 				goto err_release;
748 
749 			data_left -= size;
750 			tso_build_data(skb, &tso, size);
751 		}
752 
753 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
754 	}
755 
756 	/* Save skb pointer */
757 	txq->tx_skbuff[index] = skb;
758 
759 	skb_tx_timestamp(skb);
760 	txq->cur_tx = bdp;
761 
762 	/* Trigger transmission start */
763 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
764 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
765 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
766 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
767 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
768 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
769 
770 	return 0;
771 
772 err_release:
773 	/* TODO: Release all used data descriptors for TSO */
774 	return ret;
775 }
776 
777 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)778 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
779 {
780 	struct fec_enet_private *fep = netdev_priv(ndev);
781 	int entries_free;
782 	unsigned short queue;
783 	struct fec_enet_priv_tx_q *txq;
784 	struct netdev_queue *nq;
785 	int ret;
786 
787 	queue = skb_get_queue_mapping(skb);
788 	txq = fep->tx_queue[queue];
789 	nq = netdev_get_tx_queue(ndev, queue);
790 
791 	if (skb_is_gso(skb))
792 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
793 	else
794 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
795 	if (ret)
796 		return ret;
797 
798 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
799 	if (entries_free <= txq->tx_stop_threshold)
800 		netif_tx_stop_queue(nq);
801 
802 	return NETDEV_TX_OK;
803 }
804 
805 /* Init RX & TX buffer descriptors
806  */
fec_enet_bd_init(struct net_device * dev)807 static void fec_enet_bd_init(struct net_device *dev)
808 {
809 	struct fec_enet_private *fep = netdev_priv(dev);
810 	struct fec_enet_priv_tx_q *txq;
811 	struct fec_enet_priv_rx_q *rxq;
812 	struct bufdesc *bdp;
813 	unsigned int i;
814 	unsigned int q;
815 
816 	for (q = 0; q < fep->num_rx_queues; q++) {
817 		/* Initialize the receive buffer descriptors. */
818 		rxq = fep->rx_queue[q];
819 		bdp = rxq->rx_bd_base;
820 
821 		for (i = 0; i < rxq->rx_ring_size; i++) {
822 
823 			/* Initialize the BD for every fragment in the page. */
824 			if (bdp->cbd_bufaddr)
825 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
826 			else
827 				bdp->cbd_sc = 0;
828 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
829 		}
830 
831 		/* Set the last buffer to wrap */
832 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
833 		bdp->cbd_sc |= BD_SC_WRAP;
834 
835 		rxq->cur_rx = rxq->rx_bd_base;
836 	}
837 
838 	for (q = 0; q < fep->num_tx_queues; q++) {
839 		/* ...and the same for transmit */
840 		txq = fep->tx_queue[q];
841 		bdp = txq->tx_bd_base;
842 		txq->cur_tx = bdp;
843 
844 		for (i = 0; i < txq->tx_ring_size; i++) {
845 			/* Initialize the BD for every fragment in the page. */
846 			bdp->cbd_sc = 0;
847 			if (txq->tx_skbuff[i]) {
848 				dev_kfree_skb_any(txq->tx_skbuff[i]);
849 				txq->tx_skbuff[i] = NULL;
850 			}
851 			bdp->cbd_bufaddr = 0;
852 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
853 		}
854 
855 		/* Set the last buffer to wrap */
856 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
857 		bdp->cbd_sc |= BD_SC_WRAP;
858 		txq->dirty_tx = bdp;
859 	}
860 }
861 
fec_enet_active_rxring(struct net_device * ndev)862 static void fec_enet_active_rxring(struct net_device *ndev)
863 {
864 	struct fec_enet_private *fep = netdev_priv(ndev);
865 	int i;
866 
867 	for (i = 0; i < fep->num_rx_queues; i++)
868 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
869 }
870 
fec_enet_enable_ring(struct net_device * ndev)871 static void fec_enet_enable_ring(struct net_device *ndev)
872 {
873 	struct fec_enet_private *fep = netdev_priv(ndev);
874 	struct fec_enet_priv_tx_q *txq;
875 	struct fec_enet_priv_rx_q *rxq;
876 	int i;
877 
878 	for (i = 0; i < fep->num_rx_queues; i++) {
879 		rxq = fep->rx_queue[i];
880 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
881 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
882 
883 		/* enable DMA1/2 */
884 		if (i)
885 			writel(RCMR_MATCHEN | RCMR_CMP(i),
886 			       fep->hwp + FEC_RCMR(i));
887 	}
888 
889 	for (i = 0; i < fep->num_tx_queues; i++) {
890 		txq = fep->tx_queue[i];
891 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
892 
893 		/* enable DMA1/2 */
894 		if (i)
895 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
896 			       fep->hwp + FEC_DMA_CFG(i));
897 	}
898 }
899 
fec_enet_reset_skb(struct net_device * ndev)900 static void fec_enet_reset_skb(struct net_device *ndev)
901 {
902 	struct fec_enet_private *fep = netdev_priv(ndev);
903 	struct fec_enet_priv_tx_q *txq;
904 	int i, j;
905 
906 	for (i = 0; i < fep->num_tx_queues; i++) {
907 		txq = fep->tx_queue[i];
908 
909 		for (j = 0; j < txq->tx_ring_size; j++) {
910 			if (txq->tx_skbuff[j]) {
911 				dev_kfree_skb_any(txq->tx_skbuff[j]);
912 				txq->tx_skbuff[j] = NULL;
913 			}
914 		}
915 	}
916 }
917 
918 /*
919  * This function is called to start or restart the FEC during a link
920  * change, transmit timeout, or to reconfigure the FEC.  The network
921  * packet processing for this device must be stopped before this call.
922  */
923 static void
fec_restart(struct net_device * ndev)924 fec_restart(struct net_device *ndev)
925 {
926 	struct fec_enet_private *fep = netdev_priv(ndev);
927 	u32 val;
928 	u32 temp_mac[2];
929 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
930 	u32 ecntl = 0x2; /* ETHEREN */
931 
932 	/* Whack a reset.  We should wait for this.
933 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
934 	 * instead of reset MAC itself.
935 	 */
936 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
937 		writel(0, fep->hwp + FEC_ECNTRL);
938 	} else {
939 		writel(1, fep->hwp + FEC_ECNTRL);
940 		udelay(10);
941 	}
942 
943 	/*
944 	 * enet-mac reset will reset mac address registers too,
945 	 * so need to reconfigure it.
946 	 */
947 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
948 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
949 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
950 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
951 	}
952 
953 	/* Clear any outstanding interrupt. */
954 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
955 
956 	fec_enet_bd_init(ndev);
957 
958 	fec_enet_enable_ring(ndev);
959 
960 	/* Reset tx SKB buffers. */
961 	fec_enet_reset_skb(ndev);
962 
963 	/* Enable MII mode */
964 	if (fep->full_duplex == DUPLEX_FULL) {
965 		/* FD enable */
966 		writel(0x04, fep->hwp + FEC_X_CNTRL);
967 	} else {
968 		/* No Rcv on Xmit */
969 		rcntl |= 0x02;
970 		writel(0x0, fep->hwp + FEC_X_CNTRL);
971 	}
972 
973 	/* Set MII speed */
974 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
975 
976 #if !defined(CONFIG_M5272)
977 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
978 		/* set RX checksum */
979 		val = readl(fep->hwp + FEC_RACC);
980 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
981 			val |= FEC_RACC_OPTIONS;
982 		else
983 			val &= ~FEC_RACC_OPTIONS;
984 		writel(val, fep->hwp + FEC_RACC);
985 	}
986 #endif
987 
988 	/*
989 	 * The phy interface and speed need to get configured
990 	 * differently on enet-mac.
991 	 */
992 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
993 		/* Enable flow control and length check */
994 		rcntl |= 0x40000000 | 0x00000020;
995 
996 		/* RGMII, RMII or MII */
997 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
998 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
999 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1000 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1001 			rcntl |= (1 << 6);
1002 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1003 			rcntl |= (1 << 8);
1004 		else
1005 			rcntl &= ~(1 << 8);
1006 
1007 		/* 1G, 100M or 10M */
1008 		if (fep->phy_dev) {
1009 			if (fep->phy_dev->speed == SPEED_1000)
1010 				ecntl |= (1 << 5);
1011 			else if (fep->phy_dev->speed == SPEED_100)
1012 				rcntl &= ~(1 << 9);
1013 			else
1014 				rcntl |= (1 << 9);
1015 		}
1016 	} else {
1017 #ifdef FEC_MIIGSK_ENR
1018 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1019 			u32 cfgr;
1020 			/* disable the gasket and wait */
1021 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1022 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1023 				udelay(1);
1024 
1025 			/*
1026 			 * configure the gasket:
1027 			 *   RMII, 50 MHz, no loopback, no echo
1028 			 *   MII, 25 MHz, no loopback, no echo
1029 			 */
1030 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1031 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1032 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1033 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1034 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1035 
1036 			/* re-enable the gasket */
1037 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1038 		}
1039 #endif
1040 	}
1041 
1042 #if !defined(CONFIG_M5272)
1043 	/* enable pause frame*/
1044 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1045 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1046 	     fep->phy_dev && fep->phy_dev->pause)) {
1047 		rcntl |= FEC_ENET_FCE;
1048 
1049 		/* set FIFO threshold parameter to reduce overrun */
1050 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1051 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1052 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1053 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1054 
1055 		/* OPD */
1056 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1057 	} else {
1058 		rcntl &= ~FEC_ENET_FCE;
1059 	}
1060 #endif /* !defined(CONFIG_M5272) */
1061 
1062 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1063 
1064 	/* Setup multicast filter. */
1065 	set_multicast_list(ndev);
1066 #ifndef CONFIG_M5272
1067 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1068 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1069 #endif
1070 
1071 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1072 		/* enable ENET endian swap */
1073 		ecntl |= (1 << 8);
1074 		/* enable ENET store and forward mode */
1075 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1076 	}
1077 
1078 	if (fep->bufdesc_ex)
1079 		ecntl |= (1 << 4);
1080 
1081 #ifndef CONFIG_M5272
1082 	/* Enable the MIB statistic event counters */
1083 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1084 #endif
1085 
1086 	/* And last, enable the transmit and receive processing */
1087 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1088 	fec_enet_active_rxring(ndev);
1089 
1090 	if (fep->bufdesc_ex)
1091 		fec_ptp_start_cyclecounter(ndev);
1092 
1093 	/* Enable interrupts we wish to service */
1094 	if (fep->link)
1095 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1096 	else
1097 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1098 
1099 	/* Init the interrupt coalescing */
1100 	fec_enet_itr_coal_init(ndev);
1101 
1102 }
1103 
1104 static void
fec_stop(struct net_device * ndev)1105 fec_stop(struct net_device *ndev)
1106 {
1107 	struct fec_enet_private *fep = netdev_priv(ndev);
1108 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1109 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1110 	u32 val;
1111 
1112 	/* We cannot expect a graceful transmit stop without link !!! */
1113 	if (fep->link) {
1114 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1115 		udelay(10);
1116 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1117 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1118 	}
1119 
1120 	/* Whack a reset.  We should wait for this.
1121 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1122 	 * instead of reset MAC itself.
1123 	 */
1124 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1125 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1126 			writel(0, fep->hwp + FEC_ECNTRL);
1127 		} else {
1128 			writel(1, fep->hwp + FEC_ECNTRL);
1129 			udelay(10);
1130 		}
1131 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1132 	} else {
1133 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1134 		val = readl(fep->hwp + FEC_ECNTRL);
1135 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1136 		writel(val, fep->hwp + FEC_ECNTRL);
1137 
1138 		if (pdata && pdata->sleep_mode_enable)
1139 			pdata->sleep_mode_enable(true);
1140 	}
1141 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1142 
1143 	/* We have to keep ENET enabled to have MII interrupt stay working */
1144 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1145 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1146 		writel(2, fep->hwp + FEC_ECNTRL);
1147 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1148 	}
1149 }
1150 
1151 
1152 static void
fec_timeout(struct net_device * ndev)1153 fec_timeout(struct net_device *ndev)
1154 {
1155 	struct fec_enet_private *fep = netdev_priv(ndev);
1156 
1157 	fec_dump(ndev);
1158 
1159 	ndev->stats.tx_errors++;
1160 
1161 	schedule_work(&fep->tx_timeout_work);
1162 }
1163 
fec_enet_timeout_work(struct work_struct * work)1164 static void fec_enet_timeout_work(struct work_struct *work)
1165 {
1166 	struct fec_enet_private *fep =
1167 		container_of(work, struct fec_enet_private, tx_timeout_work);
1168 	struct net_device *ndev = fep->netdev;
1169 
1170 	rtnl_lock();
1171 	if (netif_device_present(ndev) || netif_running(ndev)) {
1172 		napi_disable(&fep->napi);
1173 		netif_tx_lock_bh(ndev);
1174 		fec_restart(ndev);
1175 		netif_wake_queue(ndev);
1176 		netif_tx_unlock_bh(ndev);
1177 		napi_enable(&fep->napi);
1178 	}
1179 	rtnl_unlock();
1180 }
1181 
1182 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1183 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1184 	struct skb_shared_hwtstamps *hwtstamps)
1185 {
1186 	unsigned long flags;
1187 	u64 ns;
1188 
1189 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1190 	ns = timecounter_cyc2time(&fep->tc, ts);
1191 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1192 
1193 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1194 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1195 }
1196 
1197 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id)1198 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1199 {
1200 	struct	fec_enet_private *fep;
1201 	struct bufdesc *bdp;
1202 	unsigned short status;
1203 	struct	sk_buff	*skb;
1204 	struct fec_enet_priv_tx_q *txq;
1205 	struct netdev_queue *nq;
1206 	int	index = 0;
1207 	int	entries_free;
1208 
1209 	fep = netdev_priv(ndev);
1210 
1211 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1212 
1213 	txq = fep->tx_queue[queue_id];
1214 	/* get next bdp of dirty_tx */
1215 	nq = netdev_get_tx_queue(ndev, queue_id);
1216 	bdp = txq->dirty_tx;
1217 
1218 	/* get next bdp of dirty_tx */
1219 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1220 
1221 	while (bdp != READ_ONCE(txq->cur_tx)) {
1222 		/* Order the load of cur_tx and cbd_sc */
1223 		rmb();
1224 		status = READ_ONCE(bdp->cbd_sc);
1225 		if (status & BD_ENET_TX_READY)
1226 			break;
1227 
1228 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1229 
1230 		skb = txq->tx_skbuff[index];
1231 		txq->tx_skbuff[index] = NULL;
1232 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1233 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1234 					bdp->cbd_datlen, DMA_TO_DEVICE);
1235 		bdp->cbd_bufaddr = 0;
1236 		if (!skb) {
1237 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1238 			continue;
1239 		}
1240 
1241 		/* Check for errors. */
1242 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1243 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1244 				   BD_ENET_TX_CSL)) {
1245 			ndev->stats.tx_errors++;
1246 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1247 				ndev->stats.tx_heartbeat_errors++;
1248 			if (status & BD_ENET_TX_LC)  /* Late collision */
1249 				ndev->stats.tx_window_errors++;
1250 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1251 				ndev->stats.tx_aborted_errors++;
1252 			if (status & BD_ENET_TX_UN)  /* Underrun */
1253 				ndev->stats.tx_fifo_errors++;
1254 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1255 				ndev->stats.tx_carrier_errors++;
1256 		} else {
1257 			ndev->stats.tx_packets++;
1258 			ndev->stats.tx_bytes += skb->len;
1259 		}
1260 
1261 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1262 			fep->bufdesc_ex) {
1263 			struct skb_shared_hwtstamps shhwtstamps;
1264 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1265 
1266 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1267 			skb_tstamp_tx(skb, &shhwtstamps);
1268 		}
1269 
1270 		/* Deferred means some collisions occurred during transmit,
1271 		 * but we eventually sent the packet OK.
1272 		 */
1273 		if (status & BD_ENET_TX_DEF)
1274 			ndev->stats.collisions++;
1275 
1276 		/* Free the sk buffer associated with this last transmit */
1277 		dev_kfree_skb_any(skb);
1278 
1279 		/* Make sure the update to bdp and tx_skbuff are performed
1280 		 * before dirty_tx
1281 		 */
1282 		wmb();
1283 		txq->dirty_tx = bdp;
1284 
1285 		/* Update pointer to next buffer descriptor to be transmitted */
1286 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1287 
1288 		/* Since we have freed up a buffer, the ring is no longer full
1289 		 */
1290 		if (netif_queue_stopped(ndev)) {
1291 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1292 			if (entries_free >= txq->tx_wake_threshold)
1293 				netif_tx_wake_queue(nq);
1294 		}
1295 	}
1296 
1297 	/* ERR006538: Keep the transmitter going */
1298 	if (bdp != txq->cur_tx &&
1299 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1300 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1301 }
1302 
1303 static void
fec_enet_tx(struct net_device * ndev)1304 fec_enet_tx(struct net_device *ndev)
1305 {
1306 	struct fec_enet_private *fep = netdev_priv(ndev);
1307 	u16 queue_id;
1308 	/* First process class A queue, then Class B and Best Effort queue */
1309 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1310 		clear_bit(queue_id, &fep->work_tx);
1311 		fec_enet_tx_queue(ndev, queue_id);
1312 	}
1313 	return;
1314 }
1315 
1316 static int
fec_enet_new_rxbdp(struct net_device * ndev,struct bufdesc * bdp,struct sk_buff * skb)1317 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1318 {
1319 	struct  fec_enet_private *fep = netdev_priv(ndev);
1320 	int off;
1321 
1322 	off = ((unsigned long)skb->data) & fep->rx_align;
1323 	if (off)
1324 		skb_reserve(skb, fep->rx_align + 1 - off);
1325 
1326 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1327 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1328 					  DMA_FROM_DEVICE);
1329 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1330 		if (net_ratelimit())
1331 			netdev_err(ndev, "Rx DMA memory map failed\n");
1332 		return -ENOMEM;
1333 	}
1334 
1335 	return 0;
1336 }
1337 
fec_enet_copybreak(struct net_device * ndev,struct sk_buff ** skb,struct bufdesc * bdp,u32 length,bool swap)1338 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1339 			       struct bufdesc *bdp, u32 length, bool swap)
1340 {
1341 	struct  fec_enet_private *fep = netdev_priv(ndev);
1342 	struct sk_buff *new_skb;
1343 
1344 	if (length > fep->rx_copybreak)
1345 		return false;
1346 
1347 	new_skb = netdev_alloc_skb(ndev, length);
1348 	if (!new_skb)
1349 		return false;
1350 
1351 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1352 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1353 				DMA_FROM_DEVICE);
1354 	if (!swap)
1355 		memcpy(new_skb->data, (*skb)->data, length);
1356 	else
1357 		swap_buffer2(new_skb->data, (*skb)->data, length);
1358 	*skb = new_skb;
1359 
1360 	return true;
1361 }
1362 
1363 /* During a receive, the cur_rx points to the current incoming buffer.
1364  * When we update through the ring, if the next incoming buffer has
1365  * not been given to the system, we just set the empty indicator,
1366  * effectively tossing the packet.
1367  */
1368 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1369 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1370 {
1371 	struct fec_enet_private *fep = netdev_priv(ndev);
1372 	struct fec_enet_priv_rx_q *rxq;
1373 	struct bufdesc *bdp;
1374 	unsigned short status;
1375 	struct  sk_buff *skb_new = NULL;
1376 	struct  sk_buff *skb;
1377 	ushort	pkt_len;
1378 	__u8 *data;
1379 	int	pkt_received = 0;
1380 	struct	bufdesc_ex *ebdp = NULL;
1381 	bool	vlan_packet_rcvd = false;
1382 	u16	vlan_tag;
1383 	int	index = 0;
1384 	bool	is_copybreak;
1385 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1386 
1387 #ifdef CONFIG_M532x
1388 	flush_cache_all();
1389 #endif
1390 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1391 	rxq = fep->rx_queue[queue_id];
1392 
1393 	/* First, grab all of the stats for the incoming packet.
1394 	 * These get messed up if we get called due to a busy condition.
1395 	 */
1396 	bdp = rxq->cur_rx;
1397 
1398 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1399 
1400 		if (pkt_received >= budget)
1401 			break;
1402 		pkt_received++;
1403 
1404 		/* Since we have allocated space to hold a complete frame,
1405 		 * the last indicator should be set.
1406 		 */
1407 		if ((status & BD_ENET_RX_LAST) == 0)
1408 			netdev_err(ndev, "rcv is not +last\n");
1409 
1410 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1411 
1412 		/* Check for errors. */
1413 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1414 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1415 			ndev->stats.rx_errors++;
1416 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1417 				/* Frame too long or too short. */
1418 				ndev->stats.rx_length_errors++;
1419 			}
1420 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1421 				ndev->stats.rx_frame_errors++;
1422 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1423 				ndev->stats.rx_crc_errors++;
1424 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1425 				ndev->stats.rx_fifo_errors++;
1426 		}
1427 
1428 		/* Report late collisions as a frame error.
1429 		 * On this error, the BD is closed, but we don't know what we
1430 		 * have in the buffer.  So, just drop this frame on the floor.
1431 		 */
1432 		if (status & BD_ENET_RX_CL) {
1433 			ndev->stats.rx_errors++;
1434 			ndev->stats.rx_frame_errors++;
1435 			goto rx_processing_done;
1436 		}
1437 
1438 		/* Process the incoming frame. */
1439 		ndev->stats.rx_packets++;
1440 		pkt_len = bdp->cbd_datlen;
1441 		ndev->stats.rx_bytes += pkt_len;
1442 
1443 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1444 		skb = rxq->rx_skbuff[index];
1445 
1446 		/* The packet length includes FCS, but we don't want to
1447 		 * include that when passing upstream as it messes up
1448 		 * bridging applications.
1449 		 */
1450 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1451 						  need_swap);
1452 		if (!is_copybreak) {
1453 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1454 			if (unlikely(!skb_new)) {
1455 				ndev->stats.rx_dropped++;
1456 				goto rx_processing_done;
1457 			}
1458 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1459 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1460 					 DMA_FROM_DEVICE);
1461 		}
1462 
1463 		prefetch(skb->data - NET_IP_ALIGN);
1464 		skb_put(skb, pkt_len - 4);
1465 		data = skb->data;
1466 		if (!is_copybreak && need_swap)
1467 			swap_buffer(data, pkt_len);
1468 
1469 		/* Extract the enhanced buffer descriptor */
1470 		ebdp = NULL;
1471 		if (fep->bufdesc_ex)
1472 			ebdp = (struct bufdesc_ex *)bdp;
1473 
1474 		/* If this is a VLAN packet remove the VLAN Tag */
1475 		vlan_packet_rcvd = false;
1476 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1477 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1478 			/* Push and remove the vlan tag */
1479 			struct vlan_hdr *vlan_header =
1480 					(struct vlan_hdr *) (data + ETH_HLEN);
1481 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1482 
1483 			vlan_packet_rcvd = true;
1484 
1485 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1486 			skb_pull(skb, VLAN_HLEN);
1487 		}
1488 
1489 		skb->protocol = eth_type_trans(skb, ndev);
1490 
1491 		/* Get receive timestamp from the skb */
1492 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1493 			fec_enet_hwtstamp(fep, ebdp->ts,
1494 					  skb_hwtstamps(skb));
1495 
1496 		if (fep->bufdesc_ex &&
1497 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1498 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1499 				/* don't check it */
1500 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1501 			} else {
1502 				skb_checksum_none_assert(skb);
1503 			}
1504 		}
1505 
1506 		/* Handle received VLAN packets */
1507 		if (vlan_packet_rcvd)
1508 			__vlan_hwaccel_put_tag(skb,
1509 					       htons(ETH_P_8021Q),
1510 					       vlan_tag);
1511 
1512 		napi_gro_receive(&fep->napi, skb);
1513 
1514 		if (is_copybreak) {
1515 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1516 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1517 						   DMA_FROM_DEVICE);
1518 		} else {
1519 			rxq->rx_skbuff[index] = skb_new;
1520 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1521 		}
1522 
1523 rx_processing_done:
1524 		/* Clear the status flags for this buffer */
1525 		status &= ~BD_ENET_RX_STATS;
1526 
1527 		/* Mark the buffer empty */
1528 		status |= BD_ENET_RX_EMPTY;
1529 		bdp->cbd_sc = status;
1530 
1531 		if (fep->bufdesc_ex) {
1532 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1533 
1534 			ebdp->cbd_esc = BD_ENET_RX_INT;
1535 			ebdp->cbd_prot = 0;
1536 			ebdp->cbd_bdu = 0;
1537 		}
1538 
1539 		/* Update BD pointer to next entry */
1540 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1541 
1542 		/* Doing this here will keep the FEC running while we process
1543 		 * incoming frames.  On a heavily loaded network, we should be
1544 		 * able to keep up at the expense of system resources.
1545 		 */
1546 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1547 	}
1548 	rxq->cur_rx = bdp;
1549 	return pkt_received;
1550 }
1551 
1552 static int
fec_enet_rx(struct net_device * ndev,int budget)1553 fec_enet_rx(struct net_device *ndev, int budget)
1554 {
1555 	int     pkt_received = 0;
1556 	u16	queue_id;
1557 	struct fec_enet_private *fep = netdev_priv(ndev);
1558 
1559 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1560 		int ret;
1561 
1562 		ret = fec_enet_rx_queue(ndev,
1563 					budget - pkt_received, queue_id);
1564 
1565 		if (ret < budget - pkt_received)
1566 			clear_bit(queue_id, &fep->work_rx);
1567 
1568 		pkt_received += ret;
1569 	}
1570 	return pkt_received;
1571 }
1572 
1573 static bool
fec_enet_collect_events(struct fec_enet_private * fep,uint int_events)1574 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1575 {
1576 	if (int_events == 0)
1577 		return false;
1578 
1579 	if (int_events & FEC_ENET_RXF)
1580 		fep->work_rx |= (1 << 2);
1581 	if (int_events & FEC_ENET_RXF_1)
1582 		fep->work_rx |= (1 << 0);
1583 	if (int_events & FEC_ENET_RXF_2)
1584 		fep->work_rx |= (1 << 1);
1585 
1586 	if (int_events & FEC_ENET_TXF)
1587 		fep->work_tx |= (1 << 2);
1588 	if (int_events & FEC_ENET_TXF_1)
1589 		fep->work_tx |= (1 << 0);
1590 	if (int_events & FEC_ENET_TXF_2)
1591 		fep->work_tx |= (1 << 1);
1592 
1593 	return true;
1594 }
1595 
1596 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1597 fec_enet_interrupt(int irq, void *dev_id)
1598 {
1599 	struct net_device *ndev = dev_id;
1600 	struct fec_enet_private *fep = netdev_priv(ndev);
1601 	uint int_events;
1602 	irqreturn_t ret = IRQ_NONE;
1603 
1604 	int_events = readl(fep->hwp + FEC_IEVENT);
1605 	writel(int_events, fep->hwp + FEC_IEVENT);
1606 	fec_enet_collect_events(fep, int_events);
1607 
1608 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1609 		ret = IRQ_HANDLED;
1610 
1611 		if (napi_schedule_prep(&fep->napi)) {
1612 			/* Disable the NAPI interrupts */
1613 			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1614 			__napi_schedule(&fep->napi);
1615 		}
1616 	}
1617 
1618 	if (int_events & FEC_ENET_MII) {
1619 		ret = IRQ_HANDLED;
1620 		complete(&fep->mdio_done);
1621 	}
1622 
1623 	if (fep->ptp_clock)
1624 		fec_ptp_check_pps_event(fep);
1625 
1626 	return ret;
1627 }
1628 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1629 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1630 {
1631 	struct net_device *ndev = napi->dev;
1632 	struct fec_enet_private *fep = netdev_priv(ndev);
1633 	int pkts;
1634 
1635 	pkts = fec_enet_rx(ndev, budget);
1636 
1637 	fec_enet_tx(ndev);
1638 
1639 	if (pkts < budget) {
1640 		napi_complete(napi);
1641 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1642 	}
1643 	return pkts;
1644 }
1645 
1646 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1647 static void fec_get_mac(struct net_device *ndev)
1648 {
1649 	struct fec_enet_private *fep = netdev_priv(ndev);
1650 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1651 	unsigned char *iap, tmpaddr[ETH_ALEN];
1652 
1653 	/*
1654 	 * try to get mac address in following order:
1655 	 *
1656 	 * 1) module parameter via kernel command line in form
1657 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1658 	 */
1659 	iap = macaddr;
1660 
1661 	/*
1662 	 * 2) from device tree data
1663 	 */
1664 	if (!is_valid_ether_addr(iap)) {
1665 		struct device_node *np = fep->pdev->dev.of_node;
1666 		if (np) {
1667 			const char *mac = of_get_mac_address(np);
1668 			if (mac)
1669 				iap = (unsigned char *) mac;
1670 		}
1671 	}
1672 
1673 	/*
1674 	 * 3) from flash or fuse (via platform data)
1675 	 */
1676 	if (!is_valid_ether_addr(iap)) {
1677 #ifdef CONFIG_M5272
1678 		if (FEC_FLASHMAC)
1679 			iap = (unsigned char *)FEC_FLASHMAC;
1680 #else
1681 		if (pdata)
1682 			iap = (unsigned char *)&pdata->mac;
1683 #endif
1684 	}
1685 
1686 	/*
1687 	 * 4) FEC mac registers set by bootloader
1688 	 */
1689 	if (!is_valid_ether_addr(iap)) {
1690 		*((__be32 *) &tmpaddr[0]) =
1691 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1692 		*((__be16 *) &tmpaddr[4]) =
1693 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1694 		iap = &tmpaddr[0];
1695 	}
1696 
1697 	/*
1698 	 * 5) random mac address
1699 	 */
1700 	if (!is_valid_ether_addr(iap)) {
1701 		/* Report it and use a random ethernet address instead */
1702 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1703 		eth_hw_addr_random(ndev);
1704 		netdev_info(ndev, "Using random MAC address: %pM\n",
1705 			    ndev->dev_addr);
1706 		return;
1707 	}
1708 
1709 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1710 
1711 	/* Adjust MAC if using macaddr */
1712 	if (iap == macaddr)
1713 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1714 }
1715 
1716 /* ------------------------------------------------------------------------- */
1717 
1718 /*
1719  * Phy section
1720  */
fec_enet_adjust_link(struct net_device * ndev)1721 static void fec_enet_adjust_link(struct net_device *ndev)
1722 {
1723 	struct fec_enet_private *fep = netdev_priv(ndev);
1724 	struct phy_device *phy_dev = fep->phy_dev;
1725 	int status_change = 0;
1726 
1727 	/* Prevent a state halted on mii error */
1728 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1729 		phy_dev->state = PHY_RESUMING;
1730 		return;
1731 	}
1732 
1733 	/*
1734 	 * If the netdev is down, or is going down, we're not interested
1735 	 * in link state events, so just mark our idea of the link as down
1736 	 * and ignore the event.
1737 	 */
1738 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1739 		fep->link = 0;
1740 	} else if (phy_dev->link) {
1741 		if (!fep->link) {
1742 			fep->link = phy_dev->link;
1743 			status_change = 1;
1744 		}
1745 
1746 		if (fep->full_duplex != phy_dev->duplex) {
1747 			fep->full_duplex = phy_dev->duplex;
1748 			status_change = 1;
1749 		}
1750 
1751 		if (phy_dev->speed != fep->speed) {
1752 			fep->speed = phy_dev->speed;
1753 			status_change = 1;
1754 		}
1755 
1756 		/* if any of the above changed restart the FEC */
1757 		if (status_change) {
1758 			napi_disable(&fep->napi);
1759 			netif_tx_lock_bh(ndev);
1760 			fec_restart(ndev);
1761 			netif_wake_queue(ndev);
1762 			netif_tx_unlock_bh(ndev);
1763 			napi_enable(&fep->napi);
1764 		}
1765 	} else {
1766 		if (fep->link) {
1767 			napi_disable(&fep->napi);
1768 			netif_tx_lock_bh(ndev);
1769 			fec_stop(ndev);
1770 			netif_tx_unlock_bh(ndev);
1771 			napi_enable(&fep->napi);
1772 			fep->link = phy_dev->link;
1773 			status_change = 1;
1774 		}
1775 	}
1776 
1777 	if (status_change)
1778 		phy_print_status(phy_dev);
1779 }
1780 
fec_enet_mdio_read(struct mii_bus * bus,int mii_id,int regnum)1781 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1782 {
1783 	struct fec_enet_private *fep = bus->priv;
1784 	struct device *dev = &fep->pdev->dev;
1785 	unsigned long time_left;
1786 	int ret = 0;
1787 
1788 	ret = pm_runtime_get_sync(dev);
1789 	if (ret < 0)
1790 		return ret;
1791 
1792 	fep->mii_timeout = 0;
1793 	reinit_completion(&fep->mdio_done);
1794 
1795 	/* start a read op */
1796 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1797 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1798 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1799 
1800 	/* wait for end of transfer */
1801 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1802 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1803 	if (time_left == 0) {
1804 		fep->mii_timeout = 1;
1805 		netdev_err(fep->netdev, "MDIO read timeout\n");
1806 		ret = -ETIMEDOUT;
1807 		goto out;
1808 	}
1809 
1810 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1811 
1812 out:
1813 	pm_runtime_mark_last_busy(dev);
1814 	pm_runtime_put_autosuspend(dev);
1815 
1816 	return ret;
1817 }
1818 
fec_enet_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)1819 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1820 			   u16 value)
1821 {
1822 	struct fec_enet_private *fep = bus->priv;
1823 	struct device *dev = &fep->pdev->dev;
1824 	unsigned long time_left;
1825 	int ret;
1826 
1827 	ret = pm_runtime_get_sync(dev);
1828 	if (ret < 0)
1829 		return ret;
1830 	else
1831 		ret = 0;
1832 
1833 	fep->mii_timeout = 0;
1834 	reinit_completion(&fep->mdio_done);
1835 
1836 	/* start a write op */
1837 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1838 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1839 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1840 		fep->hwp + FEC_MII_DATA);
1841 
1842 	/* wait for end of transfer */
1843 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1844 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1845 	if (time_left == 0) {
1846 		fep->mii_timeout = 1;
1847 		netdev_err(fep->netdev, "MDIO write timeout\n");
1848 		ret  = -ETIMEDOUT;
1849 	}
1850 
1851 	pm_runtime_mark_last_busy(dev);
1852 	pm_runtime_put_autosuspend(dev);
1853 
1854 	return ret;
1855 }
1856 
fec_enet_clk_enable(struct net_device * ndev,bool enable)1857 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1858 {
1859 	struct fec_enet_private *fep = netdev_priv(ndev);
1860 	int ret;
1861 
1862 	if (enable) {
1863 		ret = clk_prepare_enable(fep->clk_ahb);
1864 		if (ret)
1865 			return ret;
1866 		if (fep->clk_enet_out) {
1867 			ret = clk_prepare_enable(fep->clk_enet_out);
1868 			if (ret)
1869 				goto failed_clk_enet_out;
1870 		}
1871 		if (fep->clk_ptp) {
1872 			mutex_lock(&fep->ptp_clk_mutex);
1873 			ret = clk_prepare_enable(fep->clk_ptp);
1874 			if (ret) {
1875 				mutex_unlock(&fep->ptp_clk_mutex);
1876 				goto failed_clk_ptp;
1877 			} else {
1878 				fep->ptp_clk_on = true;
1879 			}
1880 			mutex_unlock(&fep->ptp_clk_mutex);
1881 		}
1882 		if (fep->clk_ref) {
1883 			ret = clk_prepare_enable(fep->clk_ref);
1884 			if (ret)
1885 				goto failed_clk_ref;
1886 		}
1887 	} else {
1888 		clk_disable_unprepare(fep->clk_ahb);
1889 		if (fep->clk_enet_out)
1890 			clk_disable_unprepare(fep->clk_enet_out);
1891 		if (fep->clk_ptp) {
1892 			mutex_lock(&fep->ptp_clk_mutex);
1893 			clk_disable_unprepare(fep->clk_ptp);
1894 			fep->ptp_clk_on = false;
1895 			mutex_unlock(&fep->ptp_clk_mutex);
1896 		}
1897 		if (fep->clk_ref)
1898 			clk_disable_unprepare(fep->clk_ref);
1899 	}
1900 
1901 	return 0;
1902 
1903 failed_clk_ref:
1904 	if (fep->clk_ref)
1905 		clk_disable_unprepare(fep->clk_ref);
1906 failed_clk_ptp:
1907 	if (fep->clk_enet_out)
1908 		clk_disable_unprepare(fep->clk_enet_out);
1909 failed_clk_enet_out:
1910 		clk_disable_unprepare(fep->clk_ahb);
1911 
1912 	return ret;
1913 }
1914 
fec_enet_mii_probe(struct net_device * ndev)1915 static int fec_enet_mii_probe(struct net_device *ndev)
1916 {
1917 	struct fec_enet_private *fep = netdev_priv(ndev);
1918 	struct phy_device *phy_dev = NULL;
1919 	char mdio_bus_id[MII_BUS_ID_SIZE];
1920 	char phy_name[MII_BUS_ID_SIZE + 3];
1921 	int phy_id;
1922 	int dev_id = fep->dev_id;
1923 
1924 	fep->phy_dev = NULL;
1925 
1926 	if (fep->phy_node) {
1927 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1928 					 &fec_enet_adjust_link, 0,
1929 					 fep->phy_interface);
1930 		if (!phy_dev)
1931 			return -ENODEV;
1932 	} else {
1933 		/* check for attached phy */
1934 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1935 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1936 				continue;
1937 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1938 				continue;
1939 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1940 				continue;
1941 			if (dev_id--)
1942 				continue;
1943 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1944 			break;
1945 		}
1946 
1947 		if (phy_id >= PHY_MAX_ADDR) {
1948 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1949 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1950 			phy_id = 0;
1951 		}
1952 
1953 		snprintf(phy_name, sizeof(phy_name),
1954 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1955 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1956 				      fep->phy_interface);
1957 	}
1958 
1959 	if (IS_ERR(phy_dev)) {
1960 		netdev_err(ndev, "could not attach to PHY\n");
1961 		return PTR_ERR(phy_dev);
1962 	}
1963 
1964 	/* mask with MAC supported features */
1965 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1966 		phy_dev->supported &= PHY_GBIT_FEATURES;
1967 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1968 #if !defined(CONFIG_M5272)
1969 		phy_dev->supported |= SUPPORTED_Pause;
1970 #endif
1971 	}
1972 	else
1973 		phy_dev->supported &= PHY_BASIC_FEATURES;
1974 
1975 	phy_dev->advertising = phy_dev->supported;
1976 
1977 	fep->phy_dev = phy_dev;
1978 	fep->link = 0;
1979 	fep->full_duplex = 0;
1980 
1981 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1982 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1983 		    fep->phy_dev->irq);
1984 
1985 	return 0;
1986 }
1987 
fec_enet_mii_init(struct platform_device * pdev)1988 static int fec_enet_mii_init(struct platform_device *pdev)
1989 {
1990 	static struct mii_bus *fec0_mii_bus;
1991 	struct net_device *ndev = platform_get_drvdata(pdev);
1992 	struct fec_enet_private *fep = netdev_priv(ndev);
1993 	struct device_node *node;
1994 	int err = -ENXIO, i;
1995 	u32 mii_speed, holdtime;
1996 
1997 	/*
1998 	 * The i.MX28 dual fec interfaces are not equal.
1999 	 * Here are the differences:
2000 	 *
2001 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2002 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2003 	 *  - external phys can only be configured by fec0
2004 	 *
2005 	 * That is to say fec1 can not work independently. It only works
2006 	 * when fec0 is working. The reason behind this design is that the
2007 	 * second interface is added primarily for Switch mode.
2008 	 *
2009 	 * Because of the last point above, both phys are attached on fec0
2010 	 * mdio interface in board design, and need to be configured by
2011 	 * fec0 mii_bus.
2012 	 */
2013 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2014 		/* fec1 uses fec0 mii_bus */
2015 		if (mii_cnt && fec0_mii_bus) {
2016 			fep->mii_bus = fec0_mii_bus;
2017 			mii_cnt++;
2018 			return 0;
2019 		}
2020 		return -ENOENT;
2021 	}
2022 
2023 	fep->mii_timeout = 0;
2024 
2025 	/*
2026 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2027 	 *
2028 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2029 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2030 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2031 	 * document.
2032 	 */
2033 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2034 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2035 		mii_speed--;
2036 	if (mii_speed > 63) {
2037 		dev_err(&pdev->dev,
2038 			"fec clock (%lu) to fast to get right mii speed\n",
2039 			clk_get_rate(fep->clk_ipg));
2040 		err = -EINVAL;
2041 		goto err_out;
2042 	}
2043 
2044 	/*
2045 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2046 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2047 	 * versions are RAZ there, so just ignore the difference and write the
2048 	 * register always.
2049 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2050 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2051 	 * output.
2052 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2053 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2054 	 * holdtime cannot result in a value greater than 3.
2055 	 */
2056 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2057 
2058 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2059 
2060 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2061 
2062 	fep->mii_bus = mdiobus_alloc();
2063 	if (fep->mii_bus == NULL) {
2064 		err = -ENOMEM;
2065 		goto err_out;
2066 	}
2067 
2068 	fep->mii_bus->name = "fec_enet_mii_bus";
2069 	fep->mii_bus->read = fec_enet_mdio_read;
2070 	fep->mii_bus->write = fec_enet_mdio_write;
2071 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2072 		pdev->name, fep->dev_id + 1);
2073 	fep->mii_bus->priv = fep;
2074 	fep->mii_bus->parent = &pdev->dev;
2075 
2076 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2077 	if (!fep->mii_bus->irq) {
2078 		err = -ENOMEM;
2079 		goto err_out_free_mdiobus;
2080 	}
2081 
2082 	for (i = 0; i < PHY_MAX_ADDR; i++)
2083 		fep->mii_bus->irq[i] = PHY_POLL;
2084 
2085 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2086 	if (node) {
2087 		err = of_mdiobus_register(fep->mii_bus, node);
2088 		of_node_put(node);
2089 	} else {
2090 		err = mdiobus_register(fep->mii_bus);
2091 	}
2092 
2093 	if (err)
2094 		goto err_out_free_mdio_irq;
2095 
2096 	mii_cnt++;
2097 
2098 	/* save fec0 mii_bus */
2099 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2100 		fec0_mii_bus = fep->mii_bus;
2101 
2102 	return 0;
2103 
2104 err_out_free_mdio_irq:
2105 	kfree(fep->mii_bus->irq);
2106 err_out_free_mdiobus:
2107 	mdiobus_free(fep->mii_bus);
2108 err_out:
2109 	return err;
2110 }
2111 
fec_enet_mii_remove(struct fec_enet_private * fep)2112 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2113 {
2114 	if (--mii_cnt == 0) {
2115 		mdiobus_unregister(fep->mii_bus);
2116 		kfree(fep->mii_bus->irq);
2117 		mdiobus_free(fep->mii_bus);
2118 	}
2119 }
2120 
fec_enet_get_settings(struct net_device * ndev,struct ethtool_cmd * cmd)2121 static int fec_enet_get_settings(struct net_device *ndev,
2122 				  struct ethtool_cmd *cmd)
2123 {
2124 	struct fec_enet_private *fep = netdev_priv(ndev);
2125 	struct phy_device *phydev = fep->phy_dev;
2126 
2127 	if (!phydev)
2128 		return -ENODEV;
2129 
2130 	return phy_ethtool_gset(phydev, cmd);
2131 }
2132 
fec_enet_set_settings(struct net_device * ndev,struct ethtool_cmd * cmd)2133 static int fec_enet_set_settings(struct net_device *ndev,
2134 				 struct ethtool_cmd *cmd)
2135 {
2136 	struct fec_enet_private *fep = netdev_priv(ndev);
2137 	struct phy_device *phydev = fep->phy_dev;
2138 
2139 	if (!phydev)
2140 		return -ENODEV;
2141 
2142 	return phy_ethtool_sset(phydev, cmd);
2143 }
2144 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2145 static void fec_enet_get_drvinfo(struct net_device *ndev,
2146 				 struct ethtool_drvinfo *info)
2147 {
2148 	struct fec_enet_private *fep = netdev_priv(ndev);
2149 
2150 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2151 		sizeof(info->driver));
2152 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2153 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2154 }
2155 
fec_enet_get_regs_len(struct net_device * ndev)2156 static int fec_enet_get_regs_len(struct net_device *ndev)
2157 {
2158 	struct fec_enet_private *fep = netdev_priv(ndev);
2159 	struct resource *r;
2160 	int s = 0;
2161 
2162 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2163 	if (r)
2164 		s = resource_size(r);
2165 
2166 	return s;
2167 }
2168 
2169 /* List of registers that can be safety be read to dump them with ethtool */
2170 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2171 	defined(CONFIG_M520x) || defined(CONFIG_M532x) ||		\
2172 	defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
2173 static u32 fec_enet_register_offset[] = {
2174 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2175 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2176 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2177 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2178 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2179 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2180 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2181 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2182 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2183 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2184 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2185 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2186 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2187 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2188 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2189 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2190 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2191 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2192 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2193 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2194 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2195 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2196 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2197 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2198 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2199 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2200 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2201 };
2202 #else
2203 static u32 fec_enet_register_offset[] = {
2204 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2205 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2206 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2207 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2208 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2209 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2210 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2211 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2212 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2213 };
2214 #endif
2215 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2216 static void fec_enet_get_regs(struct net_device *ndev,
2217 			      struct ethtool_regs *regs, void *regbuf)
2218 {
2219 	struct fec_enet_private *fep = netdev_priv(ndev);
2220 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2221 	u32 *buf = (u32 *)regbuf;
2222 	u32 i, off;
2223 
2224 	memset(buf, 0, regs->len);
2225 
2226 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2227 		off = fec_enet_register_offset[i] / 4;
2228 		buf[off] = readl(&theregs[off]);
2229 	}
2230 }
2231 
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2232 static int fec_enet_get_ts_info(struct net_device *ndev,
2233 				struct ethtool_ts_info *info)
2234 {
2235 	struct fec_enet_private *fep = netdev_priv(ndev);
2236 
2237 	if (fep->bufdesc_ex) {
2238 
2239 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2240 					SOF_TIMESTAMPING_RX_SOFTWARE |
2241 					SOF_TIMESTAMPING_SOFTWARE |
2242 					SOF_TIMESTAMPING_TX_HARDWARE |
2243 					SOF_TIMESTAMPING_RX_HARDWARE |
2244 					SOF_TIMESTAMPING_RAW_HARDWARE;
2245 		if (fep->ptp_clock)
2246 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2247 		else
2248 			info->phc_index = -1;
2249 
2250 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2251 				 (1 << HWTSTAMP_TX_ON);
2252 
2253 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2254 				   (1 << HWTSTAMP_FILTER_ALL);
2255 		return 0;
2256 	} else {
2257 		return ethtool_op_get_ts_info(ndev, info);
2258 	}
2259 }
2260 
2261 #if !defined(CONFIG_M5272)
2262 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2263 static void fec_enet_get_pauseparam(struct net_device *ndev,
2264 				    struct ethtool_pauseparam *pause)
2265 {
2266 	struct fec_enet_private *fep = netdev_priv(ndev);
2267 
2268 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2269 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2270 	pause->rx_pause = pause->tx_pause;
2271 }
2272 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2273 static int fec_enet_set_pauseparam(struct net_device *ndev,
2274 				   struct ethtool_pauseparam *pause)
2275 {
2276 	struct fec_enet_private *fep = netdev_priv(ndev);
2277 
2278 	if (!fep->phy_dev)
2279 		return -ENODEV;
2280 
2281 	if (pause->tx_pause != pause->rx_pause) {
2282 		netdev_info(ndev,
2283 			"hardware only support enable/disable both tx and rx");
2284 		return -EINVAL;
2285 	}
2286 
2287 	fep->pause_flag = 0;
2288 
2289 	/* tx pause must be same as rx pause */
2290 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2291 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2292 
2293 	if (pause->rx_pause || pause->autoneg) {
2294 		fep->phy_dev->supported |= ADVERTISED_Pause;
2295 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2296 	} else {
2297 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2298 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2299 	}
2300 
2301 	if (pause->autoneg) {
2302 		if (netif_running(ndev))
2303 			fec_stop(ndev);
2304 		phy_start_aneg(fep->phy_dev);
2305 	}
2306 	if (netif_running(ndev)) {
2307 		napi_disable(&fep->napi);
2308 		netif_tx_lock_bh(ndev);
2309 		fec_restart(ndev);
2310 		netif_wake_queue(ndev);
2311 		netif_tx_unlock_bh(ndev);
2312 		napi_enable(&fep->napi);
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static const struct fec_stat {
2319 	char name[ETH_GSTRING_LEN];
2320 	u16 offset;
2321 } fec_stats[] = {
2322 	/* RMON TX */
2323 	{ "tx_dropped", RMON_T_DROP },
2324 	{ "tx_packets", RMON_T_PACKETS },
2325 	{ "tx_broadcast", RMON_T_BC_PKT },
2326 	{ "tx_multicast", RMON_T_MC_PKT },
2327 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2328 	{ "tx_undersize", RMON_T_UNDERSIZE },
2329 	{ "tx_oversize", RMON_T_OVERSIZE },
2330 	{ "tx_fragment", RMON_T_FRAG },
2331 	{ "tx_jabber", RMON_T_JAB },
2332 	{ "tx_collision", RMON_T_COL },
2333 	{ "tx_64byte", RMON_T_P64 },
2334 	{ "tx_65to127byte", RMON_T_P65TO127 },
2335 	{ "tx_128to255byte", RMON_T_P128TO255 },
2336 	{ "tx_256to511byte", RMON_T_P256TO511 },
2337 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2338 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2339 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2340 	{ "tx_octets", RMON_T_OCTETS },
2341 
2342 	/* IEEE TX */
2343 	{ "IEEE_tx_drop", IEEE_T_DROP },
2344 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2345 	{ "IEEE_tx_1col", IEEE_T_1COL },
2346 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2347 	{ "IEEE_tx_def", IEEE_T_DEF },
2348 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2349 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2350 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2351 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2352 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2353 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2354 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2355 
2356 	/* RMON RX */
2357 	{ "rx_packets", RMON_R_PACKETS },
2358 	{ "rx_broadcast", RMON_R_BC_PKT },
2359 	{ "rx_multicast", RMON_R_MC_PKT },
2360 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2361 	{ "rx_undersize", RMON_R_UNDERSIZE },
2362 	{ "rx_oversize", RMON_R_OVERSIZE },
2363 	{ "rx_fragment", RMON_R_FRAG },
2364 	{ "rx_jabber", RMON_R_JAB },
2365 	{ "rx_64byte", RMON_R_P64 },
2366 	{ "rx_65to127byte", RMON_R_P65TO127 },
2367 	{ "rx_128to255byte", RMON_R_P128TO255 },
2368 	{ "rx_256to511byte", RMON_R_P256TO511 },
2369 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2370 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2371 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2372 	{ "rx_octets", RMON_R_OCTETS },
2373 
2374 	/* IEEE RX */
2375 	{ "IEEE_rx_drop", IEEE_R_DROP },
2376 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2377 	{ "IEEE_rx_crc", IEEE_R_CRC },
2378 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2379 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2380 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2381 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2382 };
2383 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2384 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2385 	struct ethtool_stats *stats, u64 *data)
2386 {
2387 	struct fec_enet_private *fep = netdev_priv(dev);
2388 	int i;
2389 
2390 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2391 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2392 }
2393 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2394 static void fec_enet_get_strings(struct net_device *netdev,
2395 	u32 stringset, u8 *data)
2396 {
2397 	int i;
2398 	switch (stringset) {
2399 	case ETH_SS_STATS:
2400 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2401 			memcpy(data + i * ETH_GSTRING_LEN,
2402 				fec_stats[i].name, ETH_GSTRING_LEN);
2403 		break;
2404 	}
2405 }
2406 
fec_enet_get_sset_count(struct net_device * dev,int sset)2407 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2408 {
2409 	switch (sset) {
2410 	case ETH_SS_STATS:
2411 		return ARRAY_SIZE(fec_stats);
2412 	default:
2413 		return -EOPNOTSUPP;
2414 	}
2415 }
2416 #endif /* !defined(CONFIG_M5272) */
2417 
fec_enet_nway_reset(struct net_device * dev)2418 static int fec_enet_nway_reset(struct net_device *dev)
2419 {
2420 	struct fec_enet_private *fep = netdev_priv(dev);
2421 	struct phy_device *phydev = fep->phy_dev;
2422 
2423 	if (!phydev)
2424 		return -ENODEV;
2425 
2426 	return genphy_restart_aneg(phydev);
2427 }
2428 
2429 /* ITR clock source is enet system clock (clk_ahb).
2430  * TCTT unit is cycle_ns * 64 cycle
2431  * So, the ICTT value = X us / (cycle_ns * 64)
2432  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)2433 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2434 {
2435 	struct fec_enet_private *fep = netdev_priv(ndev);
2436 
2437 	return us * (fep->itr_clk_rate / 64000) / 1000;
2438 }
2439 
2440 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)2441 static void fec_enet_itr_coal_set(struct net_device *ndev)
2442 {
2443 	struct fec_enet_private *fep = netdev_priv(ndev);
2444 	int rx_itr, tx_itr;
2445 
2446 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2447 		return;
2448 
2449 	/* Must be greater than zero to avoid unpredictable behavior */
2450 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2451 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2452 		return;
2453 
2454 	/* Select enet system clock as Interrupt Coalescing
2455 	 * timer Clock Source
2456 	 */
2457 	rx_itr = FEC_ITR_CLK_SEL;
2458 	tx_itr = FEC_ITR_CLK_SEL;
2459 
2460 	/* set ICFT and ICTT */
2461 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2462 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2463 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2464 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2465 
2466 	rx_itr |= FEC_ITR_EN;
2467 	tx_itr |= FEC_ITR_EN;
2468 
2469 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2470 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2471 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2472 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2473 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2474 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2475 }
2476 
2477 static int
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec)2478 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2479 {
2480 	struct fec_enet_private *fep = netdev_priv(ndev);
2481 
2482 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2483 		return -EOPNOTSUPP;
2484 
2485 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2486 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2487 
2488 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2489 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2490 
2491 	return 0;
2492 }
2493 
2494 static int
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec)2495 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2496 {
2497 	struct fec_enet_private *fep = netdev_priv(ndev);
2498 	unsigned int cycle;
2499 
2500 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2501 		return -EOPNOTSUPP;
2502 
2503 	if (ec->rx_max_coalesced_frames > 255) {
2504 		pr_err("Rx coalesced frames exceed hardware limiation");
2505 		return -EINVAL;
2506 	}
2507 
2508 	if (ec->tx_max_coalesced_frames > 255) {
2509 		pr_err("Tx coalesced frame exceed hardware limiation");
2510 		return -EINVAL;
2511 	}
2512 
2513 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2514 	if (cycle > 0xFFFF) {
2515 		pr_err("Rx coalesed usec exceeed hardware limiation");
2516 		return -EINVAL;
2517 	}
2518 
2519 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2520 	if (cycle > 0xFFFF) {
2521 		pr_err("Rx coalesed usec exceeed hardware limiation");
2522 		return -EINVAL;
2523 	}
2524 
2525 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2526 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2527 
2528 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2529 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2530 
2531 	fec_enet_itr_coal_set(ndev);
2532 
2533 	return 0;
2534 }
2535 
fec_enet_itr_coal_init(struct net_device * ndev)2536 static void fec_enet_itr_coal_init(struct net_device *ndev)
2537 {
2538 	struct ethtool_coalesce ec;
2539 
2540 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2541 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2542 
2543 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2544 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2545 
2546 	fec_enet_set_coalesce(ndev, &ec);
2547 }
2548 
fec_enet_get_tunable(struct net_device * netdev,const struct ethtool_tunable * tuna,void * data)2549 static int fec_enet_get_tunable(struct net_device *netdev,
2550 				const struct ethtool_tunable *tuna,
2551 				void *data)
2552 {
2553 	struct fec_enet_private *fep = netdev_priv(netdev);
2554 	int ret = 0;
2555 
2556 	switch (tuna->id) {
2557 	case ETHTOOL_RX_COPYBREAK:
2558 		*(u32 *)data = fep->rx_copybreak;
2559 		break;
2560 	default:
2561 		ret = -EINVAL;
2562 		break;
2563 	}
2564 
2565 	return ret;
2566 }
2567 
fec_enet_set_tunable(struct net_device * netdev,const struct ethtool_tunable * tuna,const void * data)2568 static int fec_enet_set_tunable(struct net_device *netdev,
2569 				const struct ethtool_tunable *tuna,
2570 				const void *data)
2571 {
2572 	struct fec_enet_private *fep = netdev_priv(netdev);
2573 	int ret = 0;
2574 
2575 	switch (tuna->id) {
2576 	case ETHTOOL_RX_COPYBREAK:
2577 		fep->rx_copybreak = *(u32 *)data;
2578 		break;
2579 	default:
2580 		ret = -EINVAL;
2581 		break;
2582 	}
2583 
2584 	return ret;
2585 }
2586 
2587 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2588 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2589 {
2590 	struct fec_enet_private *fep = netdev_priv(ndev);
2591 
2592 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2593 		wol->supported = WAKE_MAGIC;
2594 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2595 	} else {
2596 		wol->supported = wol->wolopts = 0;
2597 	}
2598 }
2599 
2600 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2601 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2602 {
2603 	struct fec_enet_private *fep = netdev_priv(ndev);
2604 
2605 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2606 		return -EINVAL;
2607 
2608 	if (wol->wolopts & ~WAKE_MAGIC)
2609 		return -EINVAL;
2610 
2611 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2612 	if (device_may_wakeup(&ndev->dev)) {
2613 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2614 		if (fep->irq[0] > 0)
2615 			enable_irq_wake(fep->irq[0]);
2616 	} else {
2617 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2618 		if (fep->irq[0] > 0)
2619 			disable_irq_wake(fep->irq[0]);
2620 	}
2621 
2622 	return 0;
2623 }
2624 
2625 static const struct ethtool_ops fec_enet_ethtool_ops = {
2626 	.get_settings		= fec_enet_get_settings,
2627 	.set_settings		= fec_enet_set_settings,
2628 	.get_drvinfo		= fec_enet_get_drvinfo,
2629 	.get_regs_len		= fec_enet_get_regs_len,
2630 	.get_regs		= fec_enet_get_regs,
2631 	.nway_reset		= fec_enet_nway_reset,
2632 	.get_link		= ethtool_op_get_link,
2633 	.get_coalesce		= fec_enet_get_coalesce,
2634 	.set_coalesce		= fec_enet_set_coalesce,
2635 #ifndef CONFIG_M5272
2636 	.get_pauseparam		= fec_enet_get_pauseparam,
2637 	.set_pauseparam		= fec_enet_set_pauseparam,
2638 	.get_strings		= fec_enet_get_strings,
2639 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2640 	.get_sset_count		= fec_enet_get_sset_count,
2641 #endif
2642 	.get_ts_info		= fec_enet_get_ts_info,
2643 	.get_tunable		= fec_enet_get_tunable,
2644 	.set_tunable		= fec_enet_set_tunable,
2645 	.get_wol		= fec_enet_get_wol,
2646 	.set_wol		= fec_enet_set_wol,
2647 };
2648 
fec_enet_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)2649 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2650 {
2651 	struct fec_enet_private *fep = netdev_priv(ndev);
2652 	struct phy_device *phydev = fep->phy_dev;
2653 
2654 	if (!netif_running(ndev))
2655 		return -EINVAL;
2656 
2657 	if (!phydev)
2658 		return -ENODEV;
2659 
2660 	if (fep->bufdesc_ex) {
2661 		if (cmd == SIOCSHWTSTAMP)
2662 			return fec_ptp_set(ndev, rq);
2663 		if (cmd == SIOCGHWTSTAMP)
2664 			return fec_ptp_get(ndev, rq);
2665 	}
2666 
2667 	return phy_mii_ioctl(phydev, rq, cmd);
2668 }
2669 
fec_enet_free_buffers(struct net_device * ndev)2670 static void fec_enet_free_buffers(struct net_device *ndev)
2671 {
2672 	struct fec_enet_private *fep = netdev_priv(ndev);
2673 	unsigned int i;
2674 	struct sk_buff *skb;
2675 	struct bufdesc	*bdp;
2676 	struct fec_enet_priv_tx_q *txq;
2677 	struct fec_enet_priv_rx_q *rxq;
2678 	unsigned int q;
2679 
2680 	for (q = 0; q < fep->num_rx_queues; q++) {
2681 		rxq = fep->rx_queue[q];
2682 		bdp = rxq->rx_bd_base;
2683 		for (i = 0; i < rxq->rx_ring_size; i++) {
2684 			skb = rxq->rx_skbuff[i];
2685 			rxq->rx_skbuff[i] = NULL;
2686 			if (skb) {
2687 				dma_unmap_single(&fep->pdev->dev,
2688 						 bdp->cbd_bufaddr,
2689 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2690 						 DMA_FROM_DEVICE);
2691 				dev_kfree_skb(skb);
2692 			}
2693 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2694 		}
2695 	}
2696 
2697 	for (q = 0; q < fep->num_tx_queues; q++) {
2698 		txq = fep->tx_queue[q];
2699 		bdp = txq->tx_bd_base;
2700 		for (i = 0; i < txq->tx_ring_size; i++) {
2701 			kfree(txq->tx_bounce[i]);
2702 			txq->tx_bounce[i] = NULL;
2703 			skb = txq->tx_skbuff[i];
2704 			txq->tx_skbuff[i] = NULL;
2705 			dev_kfree_skb(skb);
2706 		}
2707 	}
2708 }
2709 
fec_enet_free_queue(struct net_device * ndev)2710 static void fec_enet_free_queue(struct net_device *ndev)
2711 {
2712 	struct fec_enet_private *fep = netdev_priv(ndev);
2713 	int i;
2714 	struct fec_enet_priv_tx_q *txq;
2715 
2716 	for (i = 0; i < fep->num_tx_queues; i++)
2717 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2718 			txq = fep->tx_queue[i];
2719 			dma_free_coherent(NULL,
2720 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2721 					  txq->tso_hdrs,
2722 					  txq->tso_hdrs_dma);
2723 		}
2724 
2725 	for (i = 0; i < fep->num_rx_queues; i++)
2726 		kfree(fep->rx_queue[i]);
2727 	for (i = 0; i < fep->num_tx_queues; i++)
2728 		kfree(fep->tx_queue[i]);
2729 }
2730 
fec_enet_alloc_queue(struct net_device * ndev)2731 static int fec_enet_alloc_queue(struct net_device *ndev)
2732 {
2733 	struct fec_enet_private *fep = netdev_priv(ndev);
2734 	int i;
2735 	int ret = 0;
2736 	struct fec_enet_priv_tx_q *txq;
2737 
2738 	for (i = 0; i < fep->num_tx_queues; i++) {
2739 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2740 		if (!txq) {
2741 			ret = -ENOMEM;
2742 			goto alloc_failed;
2743 		}
2744 
2745 		fep->tx_queue[i] = txq;
2746 		txq->tx_ring_size = TX_RING_SIZE;
2747 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2748 
2749 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2750 		txq->tx_wake_threshold =
2751 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2752 
2753 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2754 					txq->tx_ring_size * TSO_HEADER_SIZE,
2755 					&txq->tso_hdrs_dma,
2756 					GFP_KERNEL);
2757 		if (!txq->tso_hdrs) {
2758 			ret = -ENOMEM;
2759 			goto alloc_failed;
2760 		}
2761 	}
2762 
2763 	for (i = 0; i < fep->num_rx_queues; i++) {
2764 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2765 					   GFP_KERNEL);
2766 		if (!fep->rx_queue[i]) {
2767 			ret = -ENOMEM;
2768 			goto alloc_failed;
2769 		}
2770 
2771 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2772 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2773 	}
2774 	return ret;
2775 
2776 alloc_failed:
2777 	fec_enet_free_queue(ndev);
2778 	return ret;
2779 }
2780 
2781 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)2782 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2783 {
2784 	struct fec_enet_private *fep = netdev_priv(ndev);
2785 	unsigned int i;
2786 	struct sk_buff *skb;
2787 	struct bufdesc	*bdp;
2788 	struct fec_enet_priv_rx_q *rxq;
2789 
2790 	rxq = fep->rx_queue[queue];
2791 	bdp = rxq->rx_bd_base;
2792 	for (i = 0; i < rxq->rx_ring_size; i++) {
2793 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2794 		if (!skb)
2795 			goto err_alloc;
2796 
2797 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2798 			dev_kfree_skb(skb);
2799 			goto err_alloc;
2800 		}
2801 
2802 		rxq->rx_skbuff[i] = skb;
2803 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2804 
2805 		if (fep->bufdesc_ex) {
2806 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2807 			ebdp->cbd_esc = BD_ENET_RX_INT;
2808 		}
2809 
2810 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2811 	}
2812 
2813 	/* Set the last buffer to wrap. */
2814 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2815 	bdp->cbd_sc |= BD_SC_WRAP;
2816 	return 0;
2817 
2818  err_alloc:
2819 	fec_enet_free_buffers(ndev);
2820 	return -ENOMEM;
2821 }
2822 
2823 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)2824 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2825 {
2826 	struct fec_enet_private *fep = netdev_priv(ndev);
2827 	unsigned int i;
2828 	struct bufdesc  *bdp;
2829 	struct fec_enet_priv_tx_q *txq;
2830 
2831 	txq = fep->tx_queue[queue];
2832 	bdp = txq->tx_bd_base;
2833 	for (i = 0; i < txq->tx_ring_size; i++) {
2834 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2835 		if (!txq->tx_bounce[i])
2836 			goto err_alloc;
2837 
2838 		bdp->cbd_sc = 0;
2839 		bdp->cbd_bufaddr = 0;
2840 
2841 		if (fep->bufdesc_ex) {
2842 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2843 			ebdp->cbd_esc = BD_ENET_TX_INT;
2844 		}
2845 
2846 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2847 	}
2848 
2849 	/* Set the last buffer to wrap. */
2850 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2851 	bdp->cbd_sc |= BD_SC_WRAP;
2852 
2853 	return 0;
2854 
2855  err_alloc:
2856 	fec_enet_free_buffers(ndev);
2857 	return -ENOMEM;
2858 }
2859 
fec_enet_alloc_buffers(struct net_device * ndev)2860 static int fec_enet_alloc_buffers(struct net_device *ndev)
2861 {
2862 	struct fec_enet_private *fep = netdev_priv(ndev);
2863 	unsigned int i;
2864 
2865 	for (i = 0; i < fep->num_rx_queues; i++)
2866 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2867 			return -ENOMEM;
2868 
2869 	for (i = 0; i < fep->num_tx_queues; i++)
2870 		if (fec_enet_alloc_txq_buffers(ndev, i))
2871 			return -ENOMEM;
2872 	return 0;
2873 }
2874 
2875 static int
fec_enet_open(struct net_device * ndev)2876 fec_enet_open(struct net_device *ndev)
2877 {
2878 	struct fec_enet_private *fep = netdev_priv(ndev);
2879 	int ret;
2880 
2881 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2882 	if (ret < 0)
2883 		return ret;
2884 
2885 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2886 	ret = fec_enet_clk_enable(ndev, true);
2887 	if (ret)
2888 		goto clk_enable;
2889 
2890 	/* I should reset the ring buffers here, but I don't yet know
2891 	 * a simple way to do that.
2892 	 */
2893 
2894 	ret = fec_enet_alloc_buffers(ndev);
2895 	if (ret)
2896 		goto err_enet_alloc;
2897 
2898 	/* Init MAC prior to mii bus probe */
2899 	fec_restart(ndev);
2900 
2901 	/* Probe and connect to PHY when open the interface */
2902 	ret = fec_enet_mii_probe(ndev);
2903 	if (ret)
2904 		goto err_enet_mii_probe;
2905 
2906 	napi_enable(&fep->napi);
2907 	phy_start(fep->phy_dev);
2908 	netif_tx_start_all_queues(ndev);
2909 
2910 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2911 				 FEC_WOL_FLAG_ENABLE);
2912 
2913 	return 0;
2914 
2915 err_enet_mii_probe:
2916 	fec_enet_free_buffers(ndev);
2917 err_enet_alloc:
2918 	fec_enet_clk_enable(ndev, false);
2919 clk_enable:
2920 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2921 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2922 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2923 	return ret;
2924 }
2925 
2926 static int
fec_enet_close(struct net_device * ndev)2927 fec_enet_close(struct net_device *ndev)
2928 {
2929 	struct fec_enet_private *fep = netdev_priv(ndev);
2930 
2931 	phy_stop(fep->phy_dev);
2932 
2933 	if (netif_device_present(ndev)) {
2934 		napi_disable(&fep->napi);
2935 		netif_tx_disable(ndev);
2936 		fec_stop(ndev);
2937 	}
2938 
2939 	phy_disconnect(fep->phy_dev);
2940 	fep->phy_dev = NULL;
2941 
2942 	fec_enet_clk_enable(ndev, false);
2943 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2944 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2945 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2946 
2947 	fec_enet_free_buffers(ndev);
2948 
2949 	return 0;
2950 }
2951 
2952 /* Set or clear the multicast filter for this adaptor.
2953  * Skeleton taken from sunlance driver.
2954  * The CPM Ethernet implementation allows Multicast as well as individual
2955  * MAC address filtering.  Some of the drivers check to make sure it is
2956  * a group multicast address, and discard those that are not.  I guess I
2957  * will do the same for now, but just remove the test if you want
2958  * individual filtering as well (do the upper net layers want or support
2959  * this kind of feature?).
2960  */
2961 
2962 #define HASH_BITS	6		/* #bits in hash */
2963 #define CRC32_POLY	0xEDB88320
2964 
set_multicast_list(struct net_device * ndev)2965 static void set_multicast_list(struct net_device *ndev)
2966 {
2967 	struct fec_enet_private *fep = netdev_priv(ndev);
2968 	struct netdev_hw_addr *ha;
2969 	unsigned int i, bit, data, crc, tmp;
2970 	unsigned char hash;
2971 
2972 	if (ndev->flags & IFF_PROMISC) {
2973 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2974 		tmp |= 0x8;
2975 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2976 		return;
2977 	}
2978 
2979 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2980 	tmp &= ~0x8;
2981 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2982 
2983 	if (ndev->flags & IFF_ALLMULTI) {
2984 		/* Catch all multicast addresses, so set the
2985 		 * filter to all 1's
2986 		 */
2987 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2988 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2989 
2990 		return;
2991 	}
2992 
2993 	/* Clear filter and add the addresses in hash register
2994 	 */
2995 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2996 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2997 
2998 	netdev_for_each_mc_addr(ha, ndev) {
2999 		/* calculate crc32 value of mac address */
3000 		crc = 0xffffffff;
3001 
3002 		for (i = 0; i < ndev->addr_len; i++) {
3003 			data = ha->addr[i];
3004 			for (bit = 0; bit < 8; bit++, data >>= 1) {
3005 				crc = (crc >> 1) ^
3006 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
3007 			}
3008 		}
3009 
3010 		/* only upper 6 bits (HASH_BITS) are used
3011 		 * which point to specific bit in he hash registers
3012 		 */
3013 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
3014 
3015 		if (hash > 31) {
3016 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3017 			tmp |= 1 << (hash - 32);
3018 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3019 		} else {
3020 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3021 			tmp |= 1 << hash;
3022 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3023 		}
3024 	}
3025 }
3026 
3027 /* Set a MAC change in hardware. */
3028 static int
fec_set_mac_address(struct net_device * ndev,void * p)3029 fec_set_mac_address(struct net_device *ndev, void *p)
3030 {
3031 	struct fec_enet_private *fep = netdev_priv(ndev);
3032 	struct sockaddr *addr = p;
3033 
3034 	if (addr) {
3035 		if (!is_valid_ether_addr(addr->sa_data))
3036 			return -EADDRNOTAVAIL;
3037 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3038 	}
3039 
3040 	/* Add netif status check here to avoid system hang in below case:
3041 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3042 	 * After ethx down, fec all clocks are gated off and then register
3043 	 * access causes system hang.
3044 	 */
3045 	if (!netif_running(ndev))
3046 		return 0;
3047 
3048 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3049 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3050 		fep->hwp + FEC_ADDR_LOW);
3051 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3052 		fep->hwp + FEC_ADDR_HIGH);
3053 	return 0;
3054 }
3055 
3056 #ifdef CONFIG_NET_POLL_CONTROLLER
3057 /**
3058  * fec_poll_controller - FEC Poll controller function
3059  * @dev: The FEC network adapter
3060  *
3061  * Polled functionality used by netconsole and others in non interrupt mode
3062  *
3063  */
fec_poll_controller(struct net_device * dev)3064 static void fec_poll_controller(struct net_device *dev)
3065 {
3066 	int i;
3067 	struct fec_enet_private *fep = netdev_priv(dev);
3068 
3069 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3070 		if (fep->irq[i] > 0) {
3071 			disable_irq(fep->irq[i]);
3072 			fec_enet_interrupt(fep->irq[i], dev);
3073 			enable_irq(fep->irq[i]);
3074 		}
3075 	}
3076 }
3077 #endif
3078 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3079 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3080 	netdev_features_t features)
3081 {
3082 	struct fec_enet_private *fep = netdev_priv(netdev);
3083 	netdev_features_t changed = features ^ netdev->features;
3084 
3085 	netdev->features = features;
3086 
3087 	/* Receive checksum has been changed */
3088 	if (changed & NETIF_F_RXCSUM) {
3089 		if (features & NETIF_F_RXCSUM)
3090 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3091 		else
3092 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3093 	}
3094 }
3095 
fec_set_features(struct net_device * netdev,netdev_features_t features)3096 static int fec_set_features(struct net_device *netdev,
3097 	netdev_features_t features)
3098 {
3099 	struct fec_enet_private *fep = netdev_priv(netdev);
3100 	netdev_features_t changed = features ^ netdev->features;
3101 
3102 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3103 		napi_disable(&fep->napi);
3104 		netif_tx_lock_bh(netdev);
3105 		fec_stop(netdev);
3106 		fec_enet_set_netdev_features(netdev, features);
3107 		fec_restart(netdev);
3108 		netif_tx_wake_all_queues(netdev);
3109 		netif_tx_unlock_bh(netdev);
3110 		napi_enable(&fep->napi);
3111 	} else {
3112 		fec_enet_set_netdev_features(netdev, features);
3113 	}
3114 
3115 	return 0;
3116 }
3117 
3118 static const struct net_device_ops fec_netdev_ops = {
3119 	.ndo_open		= fec_enet_open,
3120 	.ndo_stop		= fec_enet_close,
3121 	.ndo_start_xmit		= fec_enet_start_xmit,
3122 	.ndo_set_rx_mode	= set_multicast_list,
3123 	.ndo_change_mtu		= eth_change_mtu,
3124 	.ndo_validate_addr	= eth_validate_addr,
3125 	.ndo_tx_timeout		= fec_timeout,
3126 	.ndo_set_mac_address	= fec_set_mac_address,
3127 	.ndo_do_ioctl		= fec_enet_ioctl,
3128 #ifdef CONFIG_NET_POLL_CONTROLLER
3129 	.ndo_poll_controller	= fec_poll_controller,
3130 #endif
3131 	.ndo_set_features	= fec_set_features,
3132 };
3133 
3134  /*
3135   * XXX:  We need to clean up on failure exits here.
3136   *
3137   */
fec_enet_init(struct net_device * ndev)3138 static int fec_enet_init(struct net_device *ndev)
3139 {
3140 	struct fec_enet_private *fep = netdev_priv(ndev);
3141 	struct fec_enet_priv_tx_q *txq;
3142 	struct fec_enet_priv_rx_q *rxq;
3143 	struct bufdesc *cbd_base;
3144 	dma_addr_t bd_dma;
3145 	int bd_size;
3146 	unsigned int i;
3147 
3148 #if defined(CONFIG_ARM)
3149 	fep->rx_align = 0xf;
3150 	fep->tx_align = 0xf;
3151 #else
3152 	fep->rx_align = 0x3;
3153 	fep->tx_align = 0x3;
3154 #endif
3155 
3156 	fec_enet_alloc_queue(ndev);
3157 
3158 	if (fep->bufdesc_ex)
3159 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
3160 	else
3161 		fep->bufdesc_size = sizeof(struct bufdesc);
3162 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3163 			fep->bufdesc_size;
3164 
3165 	/* Allocate memory for buffer descriptors. */
3166 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3167 				       GFP_KERNEL);
3168 	if (!cbd_base) {
3169 		return -ENOMEM;
3170 	}
3171 
3172 	memset(cbd_base, 0, bd_size);
3173 
3174 	/* Get the Ethernet address */
3175 	fec_get_mac(ndev);
3176 	/* make sure MAC we just acquired is programmed into the hw */
3177 	fec_set_mac_address(ndev, NULL);
3178 
3179 	/* Set receive and transmit descriptor base. */
3180 	for (i = 0; i < fep->num_rx_queues; i++) {
3181 		rxq = fep->rx_queue[i];
3182 		rxq->index = i;
3183 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3184 		rxq->bd_dma = bd_dma;
3185 		if (fep->bufdesc_ex) {
3186 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3187 			cbd_base = (struct bufdesc *)
3188 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3189 		} else {
3190 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3191 			cbd_base += rxq->rx_ring_size;
3192 		}
3193 	}
3194 
3195 	for (i = 0; i < fep->num_tx_queues; i++) {
3196 		txq = fep->tx_queue[i];
3197 		txq->index = i;
3198 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3199 		txq->bd_dma = bd_dma;
3200 		if (fep->bufdesc_ex) {
3201 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3202 			cbd_base = (struct bufdesc *)
3203 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3204 		} else {
3205 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3206 			cbd_base += txq->tx_ring_size;
3207 		}
3208 	}
3209 
3210 
3211 	/* The FEC Ethernet specific entries in the device structure */
3212 	ndev->watchdog_timeo = TX_TIMEOUT;
3213 	ndev->netdev_ops = &fec_netdev_ops;
3214 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3215 
3216 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3217 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3218 
3219 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3220 		/* enable hw VLAN support */
3221 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3222 
3223 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3224 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3225 
3226 		/* enable hw accelerator */
3227 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3228 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3229 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3230 	}
3231 
3232 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3233 		fep->tx_align = 0;
3234 		fep->rx_align = 0x3f;
3235 	}
3236 
3237 	ndev->hw_features = ndev->features;
3238 
3239 	fec_restart(ndev);
3240 
3241 	return 0;
3242 }
3243 
3244 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)3245 static void fec_reset_phy(struct platform_device *pdev)
3246 {
3247 	int err, phy_reset;
3248 	int msec = 1;
3249 	struct device_node *np = pdev->dev.of_node;
3250 
3251 	if (!np)
3252 		return;
3253 
3254 	of_property_read_u32(np, "phy-reset-duration", &msec);
3255 	/* A sane reset duration should not be longer than 1s */
3256 	if (msec > 1000)
3257 		msec = 1;
3258 
3259 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3260 	if (!gpio_is_valid(phy_reset))
3261 		return;
3262 
3263 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3264 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3265 	if (err) {
3266 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3267 		return;
3268 	}
3269 	msleep(msec);
3270 	gpio_set_value_cansleep(phy_reset, 1);
3271 }
3272 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)3273 static void fec_reset_phy(struct platform_device *pdev)
3274 {
3275 	/*
3276 	 * In case of platform probe, the reset has been done
3277 	 * by machine code.
3278 	 */
3279 }
3280 #endif /* CONFIG_OF */
3281 
3282 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)3283 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3284 {
3285 	struct device_node *np = pdev->dev.of_node;
3286 	int err;
3287 
3288 	*num_tx = *num_rx = 1;
3289 
3290 	if (!np || !of_device_is_available(np))
3291 		return;
3292 
3293 	/* parse the num of tx and rx queues */
3294 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3295 	if (err)
3296 		*num_tx = 1;
3297 
3298 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3299 	if (err)
3300 		*num_rx = 1;
3301 
3302 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3303 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3304 			 *num_tx);
3305 		*num_tx = 1;
3306 		return;
3307 	}
3308 
3309 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3310 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3311 			 *num_rx);
3312 		*num_rx = 1;
3313 		return;
3314 	}
3315 
3316 }
3317 
3318 static int
fec_probe(struct platform_device * pdev)3319 fec_probe(struct platform_device *pdev)
3320 {
3321 	struct fec_enet_private *fep;
3322 	struct fec_platform_data *pdata;
3323 	struct net_device *ndev;
3324 	int i, irq, ret = 0;
3325 	struct resource *r;
3326 	const struct of_device_id *of_id;
3327 	static int dev_id;
3328 	struct device_node *np = pdev->dev.of_node, *phy_node;
3329 	int num_tx_qs;
3330 	int num_rx_qs;
3331 
3332 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3333 
3334 	/* Init network device */
3335 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3336 				  num_tx_qs, num_rx_qs);
3337 	if (!ndev)
3338 		return -ENOMEM;
3339 
3340 	SET_NETDEV_DEV(ndev, &pdev->dev);
3341 
3342 	/* setup board info structure */
3343 	fep = netdev_priv(ndev);
3344 
3345 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3346 	if (of_id)
3347 		pdev->id_entry = of_id->data;
3348 	fep->quirks = pdev->id_entry->driver_data;
3349 
3350 	fep->netdev = ndev;
3351 	fep->num_rx_queues = num_rx_qs;
3352 	fep->num_tx_queues = num_tx_qs;
3353 
3354 #if !defined(CONFIG_M5272)
3355 	/* default enable pause frame auto negotiation */
3356 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3357 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3358 #endif
3359 
3360 	/* Select default pin state */
3361 	pinctrl_pm_select_default_state(&pdev->dev);
3362 
3363 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3364 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3365 	if (IS_ERR(fep->hwp)) {
3366 		ret = PTR_ERR(fep->hwp);
3367 		goto failed_ioremap;
3368 	}
3369 
3370 	fep->pdev = pdev;
3371 	fep->dev_id = dev_id++;
3372 
3373 	platform_set_drvdata(pdev, ndev);
3374 
3375 	if (of_get_property(np, "fsl,magic-packet", NULL))
3376 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3377 
3378 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3379 	if (!phy_node && of_phy_is_fixed_link(np)) {
3380 		ret = of_phy_register_fixed_link(np);
3381 		if (ret < 0) {
3382 			dev_err(&pdev->dev,
3383 				"broken fixed-link specification\n");
3384 			goto failed_phy;
3385 		}
3386 		phy_node = of_node_get(np);
3387 	}
3388 	fep->phy_node = phy_node;
3389 
3390 	ret = of_get_phy_mode(pdev->dev.of_node);
3391 	if (ret < 0) {
3392 		pdata = dev_get_platdata(&pdev->dev);
3393 		if (pdata)
3394 			fep->phy_interface = pdata->phy;
3395 		else
3396 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3397 	} else {
3398 		fep->phy_interface = ret;
3399 	}
3400 
3401 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3402 	if (IS_ERR(fep->clk_ipg)) {
3403 		ret = PTR_ERR(fep->clk_ipg);
3404 		goto failed_clk;
3405 	}
3406 
3407 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3408 	if (IS_ERR(fep->clk_ahb)) {
3409 		ret = PTR_ERR(fep->clk_ahb);
3410 		goto failed_clk;
3411 	}
3412 
3413 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3414 
3415 	/* enet_out is optional, depends on board */
3416 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3417 	if (IS_ERR(fep->clk_enet_out))
3418 		fep->clk_enet_out = NULL;
3419 
3420 	fep->ptp_clk_on = false;
3421 	mutex_init(&fep->ptp_clk_mutex);
3422 
3423 	/* clk_ref is optional, depends on board */
3424 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3425 	if (IS_ERR(fep->clk_ref))
3426 		fep->clk_ref = NULL;
3427 
3428 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3429 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3430 	if (IS_ERR(fep->clk_ptp)) {
3431 		fep->clk_ptp = NULL;
3432 		fep->bufdesc_ex = false;
3433 	}
3434 
3435 	ret = fec_enet_clk_enable(ndev, true);
3436 	if (ret)
3437 		goto failed_clk;
3438 
3439 	ret = clk_prepare_enable(fep->clk_ipg);
3440 	if (ret)
3441 		goto failed_clk_ipg;
3442 
3443 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3444 	if (!IS_ERR(fep->reg_phy)) {
3445 		ret = regulator_enable(fep->reg_phy);
3446 		if (ret) {
3447 			dev_err(&pdev->dev,
3448 				"Failed to enable phy regulator: %d\n", ret);
3449 			goto failed_regulator;
3450 		}
3451 	} else {
3452 		fep->reg_phy = NULL;
3453 	}
3454 
3455 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3456 	pm_runtime_use_autosuspend(&pdev->dev);
3457 	pm_runtime_get_noresume(&pdev->dev);
3458 	pm_runtime_set_active(&pdev->dev);
3459 	pm_runtime_enable(&pdev->dev);
3460 
3461 	fec_reset_phy(pdev);
3462 
3463 	if (fep->bufdesc_ex)
3464 		fec_ptp_init(pdev);
3465 
3466 	ret = fec_enet_init(ndev);
3467 	if (ret)
3468 		goto failed_init;
3469 
3470 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3471 		irq = platform_get_irq(pdev, i);
3472 		if (irq < 0) {
3473 			if (i)
3474 				break;
3475 			ret = irq;
3476 			goto failed_irq;
3477 		}
3478 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3479 				       0, pdev->name, ndev);
3480 		if (ret)
3481 			goto failed_irq;
3482 
3483 		fep->irq[i] = irq;
3484 	}
3485 
3486 	init_completion(&fep->mdio_done);
3487 	ret = fec_enet_mii_init(pdev);
3488 	if (ret)
3489 		goto failed_mii_init;
3490 
3491 	/* Carrier starts down, phylib will bring it up */
3492 	netif_carrier_off(ndev);
3493 	fec_enet_clk_enable(ndev, false);
3494 	pinctrl_pm_select_sleep_state(&pdev->dev);
3495 
3496 	ret = register_netdev(ndev);
3497 	if (ret)
3498 		goto failed_register;
3499 
3500 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3501 			   FEC_WOL_HAS_MAGIC_PACKET);
3502 
3503 	if (fep->bufdesc_ex && fep->ptp_clock)
3504 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3505 
3506 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3507 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3508 
3509 	pm_runtime_mark_last_busy(&pdev->dev);
3510 	pm_runtime_put_autosuspend(&pdev->dev);
3511 
3512 	return 0;
3513 
3514 failed_register:
3515 	fec_enet_mii_remove(fep);
3516 failed_mii_init:
3517 failed_irq:
3518 failed_init:
3519 	fec_ptp_stop(pdev);
3520 	if (fep->reg_phy)
3521 		regulator_disable(fep->reg_phy);
3522 failed_regulator:
3523 	clk_disable_unprepare(fep->clk_ipg);
3524 failed_clk_ipg:
3525 	fec_enet_clk_enable(ndev, false);
3526 failed_clk:
3527 failed_phy:
3528 	of_node_put(phy_node);
3529 failed_ioremap:
3530 	free_netdev(ndev);
3531 
3532 	return ret;
3533 }
3534 
3535 static int
fec_drv_remove(struct platform_device * pdev)3536 fec_drv_remove(struct platform_device *pdev)
3537 {
3538 	struct net_device *ndev = platform_get_drvdata(pdev);
3539 	struct fec_enet_private *fep = netdev_priv(ndev);
3540 
3541 	cancel_work_sync(&fep->tx_timeout_work);
3542 	fec_ptp_stop(pdev);
3543 	unregister_netdev(ndev);
3544 	fec_enet_mii_remove(fep);
3545 	if (fep->reg_phy)
3546 		regulator_disable(fep->reg_phy);
3547 	of_node_put(fep->phy_node);
3548 	free_netdev(ndev);
3549 
3550 	return 0;
3551 }
3552 
fec_suspend(struct device * dev)3553 static int __maybe_unused fec_suspend(struct device *dev)
3554 {
3555 	struct net_device *ndev = dev_get_drvdata(dev);
3556 	struct fec_enet_private *fep = netdev_priv(ndev);
3557 
3558 	rtnl_lock();
3559 	if (netif_running(ndev)) {
3560 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3561 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3562 		phy_stop(fep->phy_dev);
3563 		napi_disable(&fep->napi);
3564 		netif_tx_lock_bh(ndev);
3565 		netif_device_detach(ndev);
3566 		netif_tx_unlock_bh(ndev);
3567 		fec_stop(ndev);
3568 		fec_enet_clk_enable(ndev, false);
3569 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3570 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3571 	}
3572 	rtnl_unlock();
3573 
3574 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3575 		regulator_disable(fep->reg_phy);
3576 
3577 	/* SOC supply clock to phy, when clock is disabled, phy link down
3578 	 * SOC control phy regulator, when regulator is disabled, phy link down
3579 	 */
3580 	if (fep->clk_enet_out || fep->reg_phy)
3581 		fep->link = 0;
3582 
3583 	return 0;
3584 }
3585 
fec_resume(struct device * dev)3586 static int __maybe_unused fec_resume(struct device *dev)
3587 {
3588 	struct net_device *ndev = dev_get_drvdata(dev);
3589 	struct fec_enet_private *fep = netdev_priv(ndev);
3590 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3591 	int ret;
3592 	int val;
3593 
3594 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3595 		ret = regulator_enable(fep->reg_phy);
3596 		if (ret)
3597 			return ret;
3598 	}
3599 
3600 	rtnl_lock();
3601 	if (netif_running(ndev)) {
3602 		ret = fec_enet_clk_enable(ndev, true);
3603 		if (ret) {
3604 			rtnl_unlock();
3605 			goto failed_clk;
3606 		}
3607 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3608 			if (pdata && pdata->sleep_mode_enable)
3609 				pdata->sleep_mode_enable(false);
3610 			val = readl(fep->hwp + FEC_ECNTRL);
3611 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3612 			writel(val, fep->hwp + FEC_ECNTRL);
3613 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3614 		} else {
3615 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3616 		}
3617 		fec_restart(ndev);
3618 		netif_tx_lock_bh(ndev);
3619 		netif_device_attach(ndev);
3620 		netif_tx_unlock_bh(ndev);
3621 		napi_enable(&fep->napi);
3622 		phy_start(fep->phy_dev);
3623 	}
3624 	rtnl_unlock();
3625 
3626 	return 0;
3627 
3628 failed_clk:
3629 	if (fep->reg_phy)
3630 		regulator_disable(fep->reg_phy);
3631 	return ret;
3632 }
3633 
fec_runtime_suspend(struct device * dev)3634 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3635 {
3636 	struct net_device *ndev = dev_get_drvdata(dev);
3637 	struct fec_enet_private *fep = netdev_priv(ndev);
3638 
3639 	clk_disable_unprepare(fep->clk_ipg);
3640 
3641 	return 0;
3642 }
3643 
fec_runtime_resume(struct device * dev)3644 static int __maybe_unused fec_runtime_resume(struct device *dev)
3645 {
3646 	struct net_device *ndev = dev_get_drvdata(dev);
3647 	struct fec_enet_private *fep = netdev_priv(ndev);
3648 
3649 	return clk_prepare_enable(fep->clk_ipg);
3650 }
3651 
3652 static const struct dev_pm_ops fec_pm_ops = {
3653 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3654 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3655 };
3656 
3657 static struct platform_driver fec_driver = {
3658 	.driver	= {
3659 		.name	= DRIVER_NAME,
3660 		.pm	= &fec_pm_ops,
3661 		.of_match_table = fec_dt_ids,
3662 	},
3663 	.id_table = fec_devtype,
3664 	.probe	= fec_probe,
3665 	.remove	= fec_drv_remove,
3666 };
3667 
3668 module_platform_driver(fec_driver);
3669 
3670 MODULE_ALIAS("platform:"DRIVER_NAME);
3671 MODULE_LICENSE("GPL");
3672