1/*
2 * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3 *
4 * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19#include <linux/signal.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/netdevice.h>
23#include <linux/usb.h>
24
25#include <linux/can.h>
26#include <linux/can/dev.h>
27#include <linux/can/error.h>
28
29MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31MODULE_LICENSE("GPL v2");
32
33/* Control-Values for CPC_Control() Command Subject Selection */
34#define CONTR_CAN_MESSAGE 0x04
35#define CONTR_CAN_STATE   0x0C
36#define CONTR_BUS_ERROR   0x1C
37
38/* Control Command Actions */
39#define CONTR_CONT_OFF 0
40#define CONTR_CONT_ON  1
41#define CONTR_ONCE     2
42
43/* Messages from CPC to PC */
44#define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
45#define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
46#define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
47#define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
48#define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
49#define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
50#define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
51#define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
52#define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
53#define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54#define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
55
56/* Messages from the PC to the CPC interface  */
57#define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
58#define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
59#define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
60#define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
61#define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
62#define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
63#define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
64#define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
65
66#define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67#define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
68#define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69
70#define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71
72#define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73
74/* Overrun types */
75#define CPC_OVR_EVENT_CAN       0x01
76#define CPC_OVR_EVENT_CANSTATE  0x02
77#define CPC_OVR_EVENT_BUSERROR  0x04
78
79/*
80 * If the CAN controller lost a message we indicate it with the highest bit
81 * set in the count field.
82 */
83#define CPC_OVR_HW 0x80
84
85/* Size of the "struct ems_cpc_msg" without the union */
86#define CPC_MSG_HEADER_LEN   11
87#define CPC_CAN_MSG_MIN_SIZE 5
88
89/* Define these values to match your devices */
90#define USB_CPCUSB_VENDOR_ID 0x12D6
91
92#define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93
94/* Mode register NXP LPC2119/SJA1000 CAN Controller */
95#define SJA1000_MOD_NORMAL 0x00
96#define SJA1000_MOD_RM     0x01
97
98/* ECC register NXP LPC2119/SJA1000 CAN Controller */
99#define SJA1000_ECC_SEG   0x1F
100#define SJA1000_ECC_DIR   0x20
101#define SJA1000_ECC_ERR   0x06
102#define SJA1000_ECC_BIT   0x00
103#define SJA1000_ECC_FORM  0x40
104#define SJA1000_ECC_STUFF 0x80
105#define SJA1000_ECC_MASK  0xc0
106
107/* Status register content */
108#define SJA1000_SR_BS 0x80
109#define SJA1000_SR_ES 0x40
110
111#define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112
113/*
114 * The device actually uses a 16MHz clock to generate the CAN clock
115 * but it expects SJA1000 bit settings based on 8MHz (is internally
116 * converted).
117 */
118#define EMS_USB_ARM7_CLOCK 8000000
119
120#define CPC_TX_QUEUE_TRIGGER_LOW	25
121#define CPC_TX_QUEUE_TRIGGER_HIGH	35
122
123/*
124 * CAN-Message representation in a CPC_MSG. Message object type is
125 * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
126 * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
127 */
128struct cpc_can_msg {
129	__le32 id;
130	u8 length;
131	u8 msg[8];
132};
133
134/* Representation of the CAN parameters for the SJA1000 controller */
135struct cpc_sja1000_params {
136	u8 mode;
137	u8 acc_code0;
138	u8 acc_code1;
139	u8 acc_code2;
140	u8 acc_code3;
141	u8 acc_mask0;
142	u8 acc_mask1;
143	u8 acc_mask2;
144	u8 acc_mask3;
145	u8 btr0;
146	u8 btr1;
147	u8 outp_contr;
148};
149
150/* CAN params message representation */
151struct cpc_can_params {
152	u8 cc_type;
153
154	/* Will support M16C CAN controller in the future */
155	union {
156		struct cpc_sja1000_params sja1000;
157	} cc_params;
158};
159
160/* Structure for confirmed message handling */
161struct cpc_confirm {
162	u8 error; /* error code */
163};
164
165/* Structure for overrun conditions */
166struct cpc_overrun {
167	u8 event;
168	u8 count;
169};
170
171/* SJA1000 CAN errors (compatible to NXP LPC2119) */
172struct cpc_sja1000_can_error {
173	u8 ecc;
174	u8 rxerr;
175	u8 txerr;
176};
177
178/* structure for CAN error conditions */
179struct cpc_can_error {
180	u8 ecode;
181
182	struct {
183		u8 cc_type;
184
185		/* Other controllers may also provide error code capture regs */
186		union {
187			struct cpc_sja1000_can_error sja1000;
188		} regs;
189	} cc;
190};
191
192/*
193 * Structure containing RX/TX error counter. This structure is used to request
194 * the values of the CAN controllers TX and RX error counter.
195 */
196struct cpc_can_err_counter {
197	u8 rx;
198	u8 tx;
199};
200
201/* Main message type used between library and application */
202struct __packed ems_cpc_msg {
203	u8 type;	/* type of message */
204	u8 length;	/* length of data within union 'msg' */
205	u8 msgid;	/* confirmation handle */
206	__le32 ts_sec;	/* timestamp in seconds */
207	__le32 ts_nsec;	/* timestamp in nano seconds */
208
209	union {
210		u8 generic[64];
211		struct cpc_can_msg can_msg;
212		struct cpc_can_params can_params;
213		struct cpc_confirm confirmation;
214		struct cpc_overrun overrun;
215		struct cpc_can_error error;
216		struct cpc_can_err_counter err_counter;
217		u8 can_state;
218	} msg;
219};
220
221/*
222 * Table of devices that work with this driver
223 * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
224 */
225static struct usb_device_id ems_usb_table[] = {
226	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
227	{} /* Terminating entry */
228};
229
230MODULE_DEVICE_TABLE(usb, ems_usb_table);
231
232#define RX_BUFFER_SIZE      64
233#define CPC_HEADER_SIZE     4
234#define INTR_IN_BUFFER_SIZE 4
235
236#define MAX_RX_URBS 10
237#define MAX_TX_URBS 10
238
239struct ems_usb;
240
241struct ems_tx_urb_context {
242	struct ems_usb *dev;
243
244	u32 echo_index;
245	u8 dlc;
246};
247
248struct ems_usb {
249	struct can_priv can; /* must be the first member */
250
251	struct sk_buff *echo_skb[MAX_TX_URBS];
252
253	struct usb_device *udev;
254	struct net_device *netdev;
255
256	atomic_t active_tx_urbs;
257	struct usb_anchor tx_submitted;
258	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
259
260	struct usb_anchor rx_submitted;
261
262	struct urb *intr_urb;
263
264	u8 *tx_msg_buffer;
265
266	u8 *intr_in_buffer;
267	unsigned int free_slots; /* remember number of available slots */
268
269	struct ems_cpc_msg active_params; /* active controller parameters */
270};
271
272static void ems_usb_read_interrupt_callback(struct urb *urb)
273{
274	struct ems_usb *dev = urb->context;
275	struct net_device *netdev = dev->netdev;
276	int err;
277
278	if (!netif_device_present(netdev))
279		return;
280
281	switch (urb->status) {
282	case 0:
283		dev->free_slots = dev->intr_in_buffer[1];
284		if(dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH){
285			if (netif_queue_stopped(netdev)){
286				netif_wake_queue(netdev);
287			}
288		}
289		break;
290
291	case -ECONNRESET: /* unlink */
292	case -ENOENT:
293	case -ESHUTDOWN:
294		return;
295
296	default:
297		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
298		break;
299	}
300
301	err = usb_submit_urb(urb, GFP_ATOMIC);
302
303	if (err == -ENODEV)
304		netif_device_detach(netdev);
305	else if (err)
306		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
307}
308
309static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
310{
311	struct can_frame *cf;
312	struct sk_buff *skb;
313	int i;
314	struct net_device_stats *stats = &dev->netdev->stats;
315
316	skb = alloc_can_skb(dev->netdev, &cf);
317	if (skb == NULL)
318		return;
319
320	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
321	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
322
323	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
324	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
325		cf->can_id |= CAN_EFF_FLAG;
326
327	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
328	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
329		cf->can_id |= CAN_RTR_FLAG;
330	} else {
331		for (i = 0; i < cf->can_dlc; i++)
332			cf->data[i] = msg->msg.can_msg.msg[i];
333	}
334
335	stats->rx_packets++;
336	stats->rx_bytes += cf->can_dlc;
337	netif_rx(skb);
338}
339
340static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
341{
342	struct can_frame *cf;
343	struct sk_buff *skb;
344	struct net_device_stats *stats = &dev->netdev->stats;
345
346	skb = alloc_can_err_skb(dev->netdev, &cf);
347	if (skb == NULL)
348		return;
349
350	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
351		u8 state = msg->msg.can_state;
352
353		if (state & SJA1000_SR_BS) {
354			dev->can.state = CAN_STATE_BUS_OFF;
355			cf->can_id |= CAN_ERR_BUSOFF;
356
357			dev->can.can_stats.bus_off++;
358			can_bus_off(dev->netdev);
359		} else if (state & SJA1000_SR_ES) {
360			dev->can.state = CAN_STATE_ERROR_WARNING;
361			dev->can.can_stats.error_warning++;
362		} else {
363			dev->can.state = CAN_STATE_ERROR_ACTIVE;
364			dev->can.can_stats.error_passive++;
365		}
366	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
367		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
368		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
369		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
370
371		/* bus error interrupt */
372		dev->can.can_stats.bus_error++;
373		stats->rx_errors++;
374
375		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
376
377		switch (ecc & SJA1000_ECC_MASK) {
378		case SJA1000_ECC_BIT:
379			cf->data[2] |= CAN_ERR_PROT_BIT;
380			break;
381		case SJA1000_ECC_FORM:
382			cf->data[2] |= CAN_ERR_PROT_FORM;
383			break;
384		case SJA1000_ECC_STUFF:
385			cf->data[2] |= CAN_ERR_PROT_STUFF;
386			break;
387		default:
388			cf->data[3] = ecc & SJA1000_ECC_SEG;
389			break;
390		}
391
392		/* Error occurred during transmission? */
393		if ((ecc & SJA1000_ECC_DIR) == 0)
394			cf->data[2] |= CAN_ERR_PROT_TX;
395
396		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
397		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
398			cf->data[1] = (txerr > rxerr) ?
399			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
400		}
401	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
402		cf->can_id |= CAN_ERR_CRTL;
403		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
404
405		stats->rx_over_errors++;
406		stats->rx_errors++;
407	}
408
409	stats->rx_packets++;
410	stats->rx_bytes += cf->can_dlc;
411	netif_rx(skb);
412}
413
414/*
415 * callback for bulk IN urb
416 */
417static void ems_usb_read_bulk_callback(struct urb *urb)
418{
419	struct ems_usb *dev = urb->context;
420	struct net_device *netdev;
421	int retval;
422
423	netdev = dev->netdev;
424
425	if (!netif_device_present(netdev))
426		return;
427
428	switch (urb->status) {
429	case 0: /* success */
430		break;
431
432	case -ENOENT:
433		return;
434
435	default:
436		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
437		goto resubmit_urb;
438	}
439
440	if (urb->actual_length > CPC_HEADER_SIZE) {
441		struct ems_cpc_msg *msg;
442		u8 *ibuf = urb->transfer_buffer;
443		u8 msg_count, start;
444
445		msg_count = ibuf[0] & ~0x80;
446
447		start = CPC_HEADER_SIZE;
448
449		while (msg_count) {
450			msg = (struct ems_cpc_msg *)&ibuf[start];
451
452			switch (msg->type) {
453			case CPC_MSG_TYPE_CAN_STATE:
454				/* Process CAN state changes */
455				ems_usb_rx_err(dev, msg);
456				break;
457
458			case CPC_MSG_TYPE_CAN_FRAME:
459			case CPC_MSG_TYPE_EXT_CAN_FRAME:
460			case CPC_MSG_TYPE_RTR_FRAME:
461			case CPC_MSG_TYPE_EXT_RTR_FRAME:
462				ems_usb_rx_can_msg(dev, msg);
463				break;
464
465			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
466				/* Process errorframe */
467				ems_usb_rx_err(dev, msg);
468				break;
469
470			case CPC_MSG_TYPE_OVERRUN:
471				/* Message lost while receiving */
472				ems_usb_rx_err(dev, msg);
473				break;
474			}
475
476			start += CPC_MSG_HEADER_LEN + msg->length;
477			msg_count--;
478
479			if (start > urb->transfer_buffer_length) {
480				netdev_err(netdev, "format error\n");
481				break;
482			}
483		}
484	}
485
486resubmit_urb:
487	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
488			  urb->transfer_buffer, RX_BUFFER_SIZE,
489			  ems_usb_read_bulk_callback, dev);
490
491	retval = usb_submit_urb(urb, GFP_ATOMIC);
492
493	if (retval == -ENODEV)
494		netif_device_detach(netdev);
495	else if (retval)
496		netdev_err(netdev,
497			   "failed resubmitting read bulk urb: %d\n", retval);
498}
499
500/*
501 * callback for bulk IN urb
502 */
503static void ems_usb_write_bulk_callback(struct urb *urb)
504{
505	struct ems_tx_urb_context *context = urb->context;
506	struct ems_usb *dev;
507	struct net_device *netdev;
508
509	BUG_ON(!context);
510
511	dev = context->dev;
512	netdev = dev->netdev;
513
514	/* free up our allocated buffer */
515	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
516			  urb->transfer_buffer, urb->transfer_dma);
517
518	atomic_dec(&dev->active_tx_urbs);
519
520	if (!netif_device_present(netdev))
521		return;
522
523	if (urb->status)
524		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
525
526	netdev->trans_start = jiffies;
527
528	/* transmission complete interrupt */
529	netdev->stats.tx_packets++;
530	netdev->stats.tx_bytes += context->dlc;
531
532	can_get_echo_skb(netdev, context->echo_index);
533
534	/* Release context */
535	context->echo_index = MAX_TX_URBS;
536
537}
538
539/*
540 * Send the given CPC command synchronously
541 */
542static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
543{
544	int actual_length;
545
546	/* Copy payload */
547	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
548	       msg->length + CPC_MSG_HEADER_LEN);
549
550	/* Clear header */
551	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
552
553	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
554			    &dev->tx_msg_buffer[0],
555			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
556			    &actual_length, 1000);
557}
558
559/*
560 * Change CAN controllers' mode register
561 */
562static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
563{
564	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
565
566	return ems_usb_command_msg(dev, &dev->active_params);
567}
568
569/*
570 * Send a CPC_Control command to change behaviour when interface receives a CAN
571 * message, bus error or CAN state changed notifications.
572 */
573static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
574{
575	struct ems_cpc_msg cmd;
576
577	cmd.type = CPC_CMD_TYPE_CONTROL;
578	cmd.length = CPC_MSG_HEADER_LEN + 1;
579
580	cmd.msgid = 0;
581
582	cmd.msg.generic[0] = val;
583
584	return ems_usb_command_msg(dev, &cmd);
585}
586
587/*
588 * Start interface
589 */
590static int ems_usb_start(struct ems_usb *dev)
591{
592	struct net_device *netdev = dev->netdev;
593	int err, i;
594
595	dev->intr_in_buffer[0] = 0;
596	dev->free_slots = 50; /* initial size */
597
598	for (i = 0; i < MAX_RX_URBS; i++) {
599		struct urb *urb = NULL;
600		u8 *buf = NULL;
601
602		/* create a URB, and a buffer for it */
603		urb = usb_alloc_urb(0, GFP_KERNEL);
604		if (!urb) {
605			netdev_err(netdev, "No memory left for URBs\n");
606			err = -ENOMEM;
607			break;
608		}
609
610		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
611					 &urb->transfer_dma);
612		if (!buf) {
613			netdev_err(netdev, "No memory left for USB buffer\n");
614			usb_free_urb(urb);
615			err = -ENOMEM;
616			break;
617		}
618
619		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
620				  buf, RX_BUFFER_SIZE,
621				  ems_usb_read_bulk_callback, dev);
622		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
623		usb_anchor_urb(urb, &dev->rx_submitted);
624
625		err = usb_submit_urb(urb, GFP_KERNEL);
626		if (err) {
627			usb_unanchor_urb(urb);
628			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
629					  urb->transfer_dma);
630			usb_free_urb(urb);
631			break;
632		}
633
634		/* Drop reference, USB core will take care of freeing it */
635		usb_free_urb(urb);
636	}
637
638	/* Did we submit any URBs */
639	if (i == 0) {
640		netdev_warn(netdev, "couldn't setup read URBs\n");
641		return err;
642	}
643
644	/* Warn if we've couldn't transmit all the URBs */
645	if (i < MAX_RX_URBS)
646		netdev_warn(netdev, "rx performance may be slow\n");
647
648	/* Setup and start interrupt URB */
649	usb_fill_int_urb(dev->intr_urb, dev->udev,
650			 usb_rcvintpipe(dev->udev, 1),
651			 dev->intr_in_buffer,
652			 INTR_IN_BUFFER_SIZE,
653			 ems_usb_read_interrupt_callback, dev, 1);
654
655	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
656	if (err) {
657		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
658
659		return err;
660	}
661
662	/* CPC-USB will transfer received message to host */
663	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
664	if (err)
665		goto failed;
666
667	/* CPC-USB will transfer CAN state changes to host */
668	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
669	if (err)
670		goto failed;
671
672	/* CPC-USB will transfer bus errors to host */
673	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
674	if (err)
675		goto failed;
676
677	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
678	if (err)
679		goto failed;
680
681	dev->can.state = CAN_STATE_ERROR_ACTIVE;
682
683	return 0;
684
685failed:
686	netdev_warn(netdev, "couldn't submit control: %d\n", err);
687
688	return err;
689}
690
691static void unlink_all_urbs(struct ems_usb *dev)
692{
693	int i;
694
695	usb_unlink_urb(dev->intr_urb);
696
697	usb_kill_anchored_urbs(&dev->rx_submitted);
698
699	usb_kill_anchored_urbs(&dev->tx_submitted);
700	atomic_set(&dev->active_tx_urbs, 0);
701
702	for (i = 0; i < MAX_TX_URBS; i++)
703		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
704}
705
706static int ems_usb_open(struct net_device *netdev)
707{
708	struct ems_usb *dev = netdev_priv(netdev);
709	int err;
710
711	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
712	if (err)
713		return err;
714
715	/* common open */
716	err = open_candev(netdev);
717	if (err)
718		return err;
719
720	/* finally start device */
721	err = ems_usb_start(dev);
722	if (err) {
723		if (err == -ENODEV)
724			netif_device_detach(dev->netdev);
725
726		netdev_warn(netdev, "couldn't start device: %d\n", err);
727
728		close_candev(netdev);
729
730		return err;
731	}
732
733
734	netif_start_queue(netdev);
735
736	return 0;
737}
738
739static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
740{
741	struct ems_usb *dev = netdev_priv(netdev);
742	struct ems_tx_urb_context *context = NULL;
743	struct net_device_stats *stats = &netdev->stats;
744	struct can_frame *cf = (struct can_frame *)skb->data;
745	struct ems_cpc_msg *msg;
746	struct urb *urb;
747	u8 *buf;
748	int i, err;
749	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
750			+ sizeof(struct cpc_can_msg);
751
752	if (can_dropped_invalid_skb(netdev, skb))
753		return NETDEV_TX_OK;
754
755	/* create a URB, and a buffer for it, and copy the data to the URB */
756	urb = usb_alloc_urb(0, GFP_ATOMIC);
757	if (!urb) {
758		netdev_err(netdev, "No memory left for URBs\n");
759		goto nomem;
760	}
761
762	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
763	if (!buf) {
764		netdev_err(netdev, "No memory left for USB buffer\n");
765		usb_free_urb(urb);
766		goto nomem;
767	}
768
769	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
770
771	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
772	msg->msg.can_msg.length = cf->can_dlc;
773
774	if (cf->can_id & CAN_RTR_FLAG) {
775		msg->type = cf->can_id & CAN_EFF_FLAG ?
776			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
777
778		msg->length = CPC_CAN_MSG_MIN_SIZE;
779	} else {
780		msg->type = cf->can_id & CAN_EFF_FLAG ?
781			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
782
783		for (i = 0; i < cf->can_dlc; i++)
784			msg->msg.can_msg.msg[i] = cf->data[i];
785
786		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
787	}
788
789	for (i = 0; i < MAX_TX_URBS; i++) {
790		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
791			context = &dev->tx_contexts[i];
792			break;
793		}
794	}
795
796	/*
797	 * May never happen! When this happens we'd more URBs in flight as
798	 * allowed (MAX_TX_URBS).
799	 */
800	if (!context) {
801		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
802		usb_free_urb(urb);
803
804		netdev_warn(netdev, "couldn't find free context\n");
805
806		return NETDEV_TX_BUSY;
807	}
808
809	context->dev = dev;
810	context->echo_index = i;
811	context->dlc = cf->can_dlc;
812
813	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
814			  size, ems_usb_write_bulk_callback, context);
815	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
816	usb_anchor_urb(urb, &dev->tx_submitted);
817
818	can_put_echo_skb(skb, netdev, context->echo_index);
819
820	atomic_inc(&dev->active_tx_urbs);
821
822	err = usb_submit_urb(urb, GFP_ATOMIC);
823	if (unlikely(err)) {
824		can_free_echo_skb(netdev, context->echo_index);
825
826		usb_unanchor_urb(urb);
827		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
828		dev_kfree_skb(skb);
829
830		atomic_dec(&dev->active_tx_urbs);
831
832		if (err == -ENODEV) {
833			netif_device_detach(netdev);
834		} else {
835			netdev_warn(netdev, "failed tx_urb %d\n", err);
836
837			stats->tx_dropped++;
838		}
839	} else {
840		netdev->trans_start = jiffies;
841
842		/* Slow down tx path */
843		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
844		    dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
845			netif_stop_queue(netdev);
846		}
847	}
848
849	/*
850	 * Release our reference to this URB, the USB core will eventually free
851	 * it entirely.
852	 */
853	usb_free_urb(urb);
854
855	return NETDEV_TX_OK;
856
857nomem:
858	dev_kfree_skb(skb);
859	stats->tx_dropped++;
860
861	return NETDEV_TX_OK;
862}
863
864static int ems_usb_close(struct net_device *netdev)
865{
866	struct ems_usb *dev = netdev_priv(netdev);
867
868	/* Stop polling */
869	unlink_all_urbs(dev);
870
871	netif_stop_queue(netdev);
872
873	/* Set CAN controller to reset mode */
874	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
875		netdev_warn(netdev, "couldn't stop device");
876
877	close_candev(netdev);
878
879	return 0;
880}
881
882static const struct net_device_ops ems_usb_netdev_ops = {
883	.ndo_open = ems_usb_open,
884	.ndo_stop = ems_usb_close,
885	.ndo_start_xmit = ems_usb_start_xmit,
886	.ndo_change_mtu = can_change_mtu,
887};
888
889static const struct can_bittiming_const ems_usb_bittiming_const = {
890	.name = "ems_usb",
891	.tseg1_min = 1,
892	.tseg1_max = 16,
893	.tseg2_min = 1,
894	.tseg2_max = 8,
895	.sjw_max = 4,
896	.brp_min = 1,
897	.brp_max = 64,
898	.brp_inc = 1,
899};
900
901static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
902{
903	struct ems_usb *dev = netdev_priv(netdev);
904
905	switch (mode) {
906	case CAN_MODE_START:
907		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
908			netdev_warn(netdev, "couldn't start device");
909
910		if (netif_queue_stopped(netdev))
911			netif_wake_queue(netdev);
912		break;
913
914	default:
915		return -EOPNOTSUPP;
916	}
917
918	return 0;
919}
920
921static int ems_usb_set_bittiming(struct net_device *netdev)
922{
923	struct ems_usb *dev = netdev_priv(netdev);
924	struct can_bittiming *bt = &dev->can.bittiming;
925	u8 btr0, btr1;
926
927	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
928	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
929		(((bt->phase_seg2 - 1) & 0x7) << 4);
930	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
931		btr1 |= 0x80;
932
933	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
934
935	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
936	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
937
938	return ems_usb_command_msg(dev, &dev->active_params);
939}
940
941static void init_params_sja1000(struct ems_cpc_msg *msg)
942{
943	struct cpc_sja1000_params *sja1000 =
944		&msg->msg.can_params.cc_params.sja1000;
945
946	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
947	msg->length = sizeof(struct cpc_can_params);
948	msg->msgid = 0;
949
950	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
951
952	/* Acceptance filter open */
953	sja1000->acc_code0 = 0x00;
954	sja1000->acc_code1 = 0x00;
955	sja1000->acc_code2 = 0x00;
956	sja1000->acc_code3 = 0x00;
957
958	/* Acceptance filter open */
959	sja1000->acc_mask0 = 0xFF;
960	sja1000->acc_mask1 = 0xFF;
961	sja1000->acc_mask2 = 0xFF;
962	sja1000->acc_mask3 = 0xFF;
963
964	sja1000->btr0 = 0;
965	sja1000->btr1 = 0;
966
967	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
968	sja1000->mode = SJA1000_MOD_RM;
969}
970
971/*
972 * probe function for new CPC-USB devices
973 */
974static int ems_usb_probe(struct usb_interface *intf,
975			 const struct usb_device_id *id)
976{
977	struct net_device *netdev;
978	struct ems_usb *dev;
979	int i, err = -ENOMEM;
980
981	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
982	if (!netdev) {
983		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
984		return -ENOMEM;
985	}
986
987	dev = netdev_priv(netdev);
988
989	dev->udev = interface_to_usbdev(intf);
990	dev->netdev = netdev;
991
992	dev->can.state = CAN_STATE_STOPPED;
993	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
994	dev->can.bittiming_const = &ems_usb_bittiming_const;
995	dev->can.do_set_bittiming = ems_usb_set_bittiming;
996	dev->can.do_set_mode = ems_usb_set_mode;
997	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
998
999	netdev->netdev_ops = &ems_usb_netdev_ops;
1000
1001	netdev->flags |= IFF_ECHO; /* we support local echo */
1002
1003	init_usb_anchor(&dev->rx_submitted);
1004
1005	init_usb_anchor(&dev->tx_submitted);
1006	atomic_set(&dev->active_tx_urbs, 0);
1007
1008	for (i = 0; i < MAX_TX_URBS; i++)
1009		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1010
1011	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1012	if (!dev->intr_urb) {
1013		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1014		goto cleanup_candev;
1015	}
1016
1017	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1018	if (!dev->intr_in_buffer)
1019		goto cleanup_intr_urb;
1020
1021	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1022				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1023	if (!dev->tx_msg_buffer)
1024		goto cleanup_intr_in_buffer;
1025
1026	usb_set_intfdata(intf, dev);
1027
1028	SET_NETDEV_DEV(netdev, &intf->dev);
1029
1030	init_params_sja1000(&dev->active_params);
1031
1032	err = ems_usb_command_msg(dev, &dev->active_params);
1033	if (err) {
1034		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1035		goto cleanup_tx_msg_buffer;
1036	}
1037
1038	err = register_candev(netdev);
1039	if (err) {
1040		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1041		goto cleanup_tx_msg_buffer;
1042	}
1043
1044	return 0;
1045
1046cleanup_tx_msg_buffer:
1047	kfree(dev->tx_msg_buffer);
1048
1049cleanup_intr_in_buffer:
1050	kfree(dev->intr_in_buffer);
1051
1052cleanup_intr_urb:
1053	usb_free_urb(dev->intr_urb);
1054
1055cleanup_candev:
1056	free_candev(netdev);
1057
1058	return err;
1059}
1060
1061/*
1062 * called by the usb core when the device is removed from the system
1063 */
1064static void ems_usb_disconnect(struct usb_interface *intf)
1065{
1066	struct ems_usb *dev = usb_get_intfdata(intf);
1067
1068	usb_set_intfdata(intf, NULL);
1069
1070	if (dev) {
1071		unregister_netdev(dev->netdev);
1072		free_candev(dev->netdev);
1073
1074		unlink_all_urbs(dev);
1075
1076		usb_free_urb(dev->intr_urb);
1077
1078		kfree(dev->intr_in_buffer);
1079	}
1080}
1081
1082/* usb specific object needed to register this driver with the usb subsystem */
1083static struct usb_driver ems_usb_driver = {
1084	.name = "ems_usb",
1085	.probe = ems_usb_probe,
1086	.disconnect = ems_usb_disconnect,
1087	.id_table = ems_usb_table,
1088};
1089
1090module_usb_driver(ems_usb_driver);
1091