1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_mtd.h>
38 
39 #include <asm/mach/flash.h>
40 #include <linux/platform_data/mtd-mxc_nand.h>
41 
42 #define DRIVER_NAME "mxc_nand"
43 
44 /* Addresses for NFC registers */
45 #define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
46 #define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
47 #define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
48 #define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
49 #define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
50 #define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
51 #define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
52 #define NFC_V1_V2_RSLTSPARE_AREA	(host->regs + 0x10)
53 #define NFC_V1_V2_WRPROT		(host->regs + 0x12)
54 #define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
55 #define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
56 #define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
57 #define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
58 #define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
59 #define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
60 #define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
61 #define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
62 #define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
63 #define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
64 #define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
65 #define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
66 #define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
67 
68 #define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
69 #define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
70 #define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
71 #define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
72 #define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
73 #define NFC_V1_V2_CONFIG1_RST		(1 << 6)
74 #define NFC_V1_V2_CONFIG1_CE		(1 << 7)
75 #define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
76 #define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
77 #define NFC_V2_CONFIG1_FP_INT		(1 << 11)
78 
79 #define NFC_V1_V2_CONFIG2_INT		(1 << 15)
80 
81 /*
82  * Operation modes for the NFC. Valid for v1, v2 and v3
83  * type controllers.
84  */
85 #define NFC_CMD				(1 << 0)
86 #define NFC_ADDR			(1 << 1)
87 #define NFC_INPUT			(1 << 2)
88 #define NFC_OUTPUT			(1 << 3)
89 #define NFC_ID				(1 << 4)
90 #define NFC_STATUS			(1 << 5)
91 
92 #define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
93 #define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
94 
95 #define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
96 #define NFC_V3_CONFIG1_SP_EN		(1 << 0)
97 #define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
98 
99 #define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
100 
101 #define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
102 
103 #define NFC_V3_WRPROT			(host->regs_ip + 0x0)
104 #define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
105 #define NFC_V3_WRPROT_LOCK		(1 << 1)
106 #define NFC_V3_WRPROT_UNLOCK		(1 << 2)
107 #define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
108 
109 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
110 
111 #define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
112 #define NFC_V3_CONFIG2_PS_512			(0 << 0)
113 #define NFC_V3_CONFIG2_PS_2048			(1 << 0)
114 #define NFC_V3_CONFIG2_PS_4096			(2 << 0)
115 #define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
116 #define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
117 #define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
118 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
119 #define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
120 #define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
122 #define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
123 #define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
124 #define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
125 
126 #define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
127 #define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
128 #define NFC_V3_CONFIG3_FW8			(1 << 3)
129 #define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
130 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
131 #define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
132 #define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
133 
134 #define NFC_V3_IPC			(host->regs_ip + 0x2C)
135 #define NFC_V3_IPC_CREQ			(1 << 0)
136 #define NFC_V3_IPC_INT			(1 << 31)
137 
138 #define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
139 
140 struct mxc_nand_host;
141 
142 struct mxc_nand_devtype_data {
143 	void (*preset)(struct mtd_info *);
144 	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
145 	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
146 	void (*send_page)(struct mtd_info *, unsigned int);
147 	void (*send_read_id)(struct mxc_nand_host *);
148 	uint16_t (*get_dev_status)(struct mxc_nand_host *);
149 	int (*check_int)(struct mxc_nand_host *);
150 	void (*irq_control)(struct mxc_nand_host *, int);
151 	u32 (*get_ecc_status)(struct mxc_nand_host *);
152 	struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
153 	void (*select_chip)(struct mtd_info *mtd, int chip);
154 	int (*correct_data)(struct mtd_info *mtd, u_char *dat,
155 			u_char *read_ecc, u_char *calc_ecc);
156 
157 	/*
158 	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
159 	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
160 	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161 	 */
162 	int irqpending_quirk;
163 	int needs_ip;
164 
165 	size_t regs_offset;
166 	size_t spare0_offset;
167 	size_t axi_offset;
168 
169 	int spare_len;
170 	int eccbytes;
171 	int eccsize;
172 	int ppb_shift;
173 };
174 
175 struct mxc_nand_host {
176 	struct mtd_info		mtd;
177 	struct nand_chip	nand;
178 	struct device		*dev;
179 
180 	void __iomem		*spare0;
181 	void __iomem		*main_area0;
182 
183 	void __iomem		*base;
184 	void __iomem		*regs;
185 	void __iomem		*regs_axi;
186 	void __iomem		*regs_ip;
187 	int			status_request;
188 	struct clk		*clk;
189 	int			clk_act;
190 	int			irq;
191 	int			eccsize;
192 	int			used_oobsize;
193 	int			active_cs;
194 
195 	struct completion	op_completion;
196 
197 	uint8_t			*data_buf;
198 	unsigned int		buf_start;
199 
200 	const struct mxc_nand_devtype_data *devtype_data;
201 	struct mxc_nand_platform_data pdata;
202 };
203 
204 /* OOB placement block for use with hardware ecc generation */
205 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
206 	.eccbytes = 5,
207 	.eccpos = {6, 7, 8, 9, 10},
208 	.oobfree = {{0, 5}, {12, 4}, }
209 };
210 
211 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
212 	.eccbytes = 20,
213 	.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
214 		   38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
215 	.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
216 };
217 
218 /* OOB description for 512 byte pages with 16 byte OOB */
219 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
220 	.eccbytes = 1 * 9,
221 	.eccpos = {
222 		 7,  8,  9, 10, 11, 12, 13, 14, 15
223 	},
224 	.oobfree = {
225 		{.offset = 0, .length = 5}
226 	}
227 };
228 
229 /* OOB description for 2048 byte pages with 64 byte OOB */
230 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
231 	.eccbytes = 4 * 9,
232 	.eccpos = {
233 		 7,  8,  9, 10, 11, 12, 13, 14, 15,
234 		23, 24, 25, 26, 27, 28, 29, 30, 31,
235 		39, 40, 41, 42, 43, 44, 45, 46, 47,
236 		55, 56, 57, 58, 59, 60, 61, 62, 63
237 	},
238 	.oobfree = {
239 		{.offset = 2, .length = 4},
240 		{.offset = 16, .length = 7},
241 		{.offset = 32, .length = 7},
242 		{.offset = 48, .length = 7}
243 	}
244 };
245 
246 /* OOB description for 4096 byte pages with 128 byte OOB */
247 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
248 	.eccbytes = 8 * 9,
249 	.eccpos = {
250 		7,  8,  9, 10, 11, 12, 13, 14, 15,
251 		23, 24, 25, 26, 27, 28, 29, 30, 31,
252 		39, 40, 41, 42, 43, 44, 45, 46, 47,
253 		55, 56, 57, 58, 59, 60, 61, 62, 63,
254 		71, 72, 73, 74, 75, 76, 77, 78, 79,
255 		87, 88, 89, 90, 91, 92, 93, 94, 95,
256 		103, 104, 105, 106, 107, 108, 109, 110, 111,
257 		119, 120, 121, 122, 123, 124, 125, 126, 127,
258 	},
259 	.oobfree = {
260 		{.offset = 2, .length = 4},
261 		{.offset = 16, .length = 7},
262 		{.offset = 32, .length = 7},
263 		{.offset = 48, .length = 7},
264 		{.offset = 64, .length = 7},
265 		{.offset = 80, .length = 7},
266 		{.offset = 96, .length = 7},
267 		{.offset = 112, .length = 7},
268 	}
269 };
270 
271 static const char * const part_probes[] = {
272 	"cmdlinepart", "RedBoot", "ofpart", NULL };
273 
memcpy32_fromio(void * trg,const void __iomem * src,size_t size)274 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
275 {
276 	int i;
277 	u32 *t = trg;
278 	const __iomem u32 *s = src;
279 
280 	for (i = 0; i < (size >> 2); i++)
281 		*t++ = __raw_readl(s++);
282 }
283 
memcpy16_fromio(void * trg,const void __iomem * src,size_t size)284 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
285 {
286 	int i;
287 	u16 *t = trg;
288 	const __iomem u16 *s = src;
289 
290 	/* We assume that src (IO) is always 32bit aligned */
291 	if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
292 		memcpy32_fromio(trg, src, size);
293 		return;
294 	}
295 
296 	for (i = 0; i < (size >> 1); i++)
297 		*t++ = __raw_readw(s++);
298 }
299 
memcpy32_toio(void __iomem * trg,const void * src,int size)300 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
301 {
302 	/* __iowrite32_copy use 32bit size values so divide by 4 */
303 	__iowrite32_copy(trg, src, size / 4);
304 }
305 
memcpy16_toio(void __iomem * trg,const void * src,int size)306 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
307 {
308 	int i;
309 	__iomem u16 *t = trg;
310 	const u16 *s = src;
311 
312 	/* We assume that trg (IO) is always 32bit aligned */
313 	if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
314 		memcpy32_toio(trg, src, size);
315 		return;
316 	}
317 
318 	for (i = 0; i < (size >> 1); i++)
319 		__raw_writew(*s++, t++);
320 }
321 
check_int_v3(struct mxc_nand_host * host)322 static int check_int_v3(struct mxc_nand_host *host)
323 {
324 	uint32_t tmp;
325 
326 	tmp = readl(NFC_V3_IPC);
327 	if (!(tmp & NFC_V3_IPC_INT))
328 		return 0;
329 
330 	tmp &= ~NFC_V3_IPC_INT;
331 	writel(tmp, NFC_V3_IPC);
332 
333 	return 1;
334 }
335 
check_int_v1_v2(struct mxc_nand_host * host)336 static int check_int_v1_v2(struct mxc_nand_host *host)
337 {
338 	uint32_t tmp;
339 
340 	tmp = readw(NFC_V1_V2_CONFIG2);
341 	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
342 		return 0;
343 
344 	if (!host->devtype_data->irqpending_quirk)
345 		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
346 
347 	return 1;
348 }
349 
irq_control_v1_v2(struct mxc_nand_host * host,int activate)350 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
351 {
352 	uint16_t tmp;
353 
354 	tmp = readw(NFC_V1_V2_CONFIG1);
355 
356 	if (activate)
357 		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
358 	else
359 		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
360 
361 	writew(tmp, NFC_V1_V2_CONFIG1);
362 }
363 
irq_control_v3(struct mxc_nand_host * host,int activate)364 static void irq_control_v3(struct mxc_nand_host *host, int activate)
365 {
366 	uint32_t tmp;
367 
368 	tmp = readl(NFC_V3_CONFIG2);
369 
370 	if (activate)
371 		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
372 	else
373 		tmp |= NFC_V3_CONFIG2_INT_MSK;
374 
375 	writel(tmp, NFC_V3_CONFIG2);
376 }
377 
irq_control(struct mxc_nand_host * host,int activate)378 static void irq_control(struct mxc_nand_host *host, int activate)
379 {
380 	if (host->devtype_data->irqpending_quirk) {
381 		if (activate)
382 			enable_irq(host->irq);
383 		else
384 			disable_irq_nosync(host->irq);
385 	} else {
386 		host->devtype_data->irq_control(host, activate);
387 	}
388 }
389 
get_ecc_status_v1(struct mxc_nand_host * host)390 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
391 {
392 	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
393 }
394 
get_ecc_status_v2(struct mxc_nand_host * host)395 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
396 {
397 	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
398 }
399 
get_ecc_status_v3(struct mxc_nand_host * host)400 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
401 {
402 	return readl(NFC_V3_ECC_STATUS_RESULT);
403 }
404 
mxc_nfc_irq(int irq,void * dev_id)405 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
406 {
407 	struct mxc_nand_host *host = dev_id;
408 
409 	if (!host->devtype_data->check_int(host))
410 		return IRQ_NONE;
411 
412 	irq_control(host, 0);
413 
414 	complete(&host->op_completion);
415 
416 	return IRQ_HANDLED;
417 }
418 
419 /* This function polls the NANDFC to wait for the basic operation to
420  * complete by checking the INT bit of config2 register.
421  */
wait_op_done(struct mxc_nand_host * host,int useirq)422 static int wait_op_done(struct mxc_nand_host *host, int useirq)
423 {
424 	int ret = 0;
425 
426 	/*
427 	 * If operation is already complete, don't bother to setup an irq or a
428 	 * loop.
429 	 */
430 	if (host->devtype_data->check_int(host))
431 		return 0;
432 
433 	if (useirq) {
434 		unsigned long timeout;
435 
436 		reinit_completion(&host->op_completion);
437 
438 		irq_control(host, 1);
439 
440 		timeout = wait_for_completion_timeout(&host->op_completion, HZ);
441 		if (!timeout && !host->devtype_data->check_int(host)) {
442 			dev_dbg(host->dev, "timeout waiting for irq\n");
443 			ret = -ETIMEDOUT;
444 		}
445 	} else {
446 		int max_retries = 8000;
447 		int done;
448 
449 		do {
450 			udelay(1);
451 
452 			done = host->devtype_data->check_int(host);
453 			if (done)
454 				break;
455 
456 		} while (--max_retries);
457 
458 		if (!done) {
459 			dev_dbg(host->dev, "timeout polling for completion\n");
460 			ret = -ETIMEDOUT;
461 		}
462 	}
463 
464 	WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
465 
466 	return ret;
467 }
468 
send_cmd_v3(struct mxc_nand_host * host,uint16_t cmd,int useirq)469 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
470 {
471 	/* fill command */
472 	writel(cmd, NFC_V3_FLASH_CMD);
473 
474 	/* send out command */
475 	writel(NFC_CMD, NFC_V3_LAUNCH);
476 
477 	/* Wait for operation to complete */
478 	wait_op_done(host, useirq);
479 }
480 
481 /* This function issues the specified command to the NAND device and
482  * waits for completion. */
send_cmd_v1_v2(struct mxc_nand_host * host,uint16_t cmd,int useirq)483 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
484 {
485 	pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
486 
487 	writew(cmd, NFC_V1_V2_FLASH_CMD);
488 	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
489 
490 	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
491 		int max_retries = 100;
492 		/* Reset completion is indicated by NFC_CONFIG2 */
493 		/* being set to 0 */
494 		while (max_retries-- > 0) {
495 			if (readw(NFC_V1_V2_CONFIG2) == 0) {
496 				break;
497 			}
498 			udelay(1);
499 		}
500 		if (max_retries < 0)
501 			pr_debug("%s: RESET failed\n", __func__);
502 	} else {
503 		/* Wait for operation to complete */
504 		wait_op_done(host, useirq);
505 	}
506 }
507 
send_addr_v3(struct mxc_nand_host * host,uint16_t addr,int islast)508 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
509 {
510 	/* fill address */
511 	writel(addr, NFC_V3_FLASH_ADDR0);
512 
513 	/* send out address */
514 	writel(NFC_ADDR, NFC_V3_LAUNCH);
515 
516 	wait_op_done(host, 0);
517 }
518 
519 /* This function sends an address (or partial address) to the
520  * NAND device. The address is used to select the source/destination for
521  * a NAND command. */
send_addr_v1_v2(struct mxc_nand_host * host,uint16_t addr,int islast)522 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
523 {
524 	pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
525 
526 	writew(addr, NFC_V1_V2_FLASH_ADDR);
527 	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
528 
529 	/* Wait for operation to complete */
530 	wait_op_done(host, islast);
531 }
532 
send_page_v3(struct mtd_info * mtd,unsigned int ops)533 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
534 {
535 	struct nand_chip *nand_chip = mtd->priv;
536 	struct mxc_nand_host *host = nand_chip->priv;
537 	uint32_t tmp;
538 
539 	tmp = readl(NFC_V3_CONFIG1);
540 	tmp &= ~(7 << 4);
541 	writel(tmp, NFC_V3_CONFIG1);
542 
543 	/* transfer data from NFC ram to nand */
544 	writel(ops, NFC_V3_LAUNCH);
545 
546 	wait_op_done(host, false);
547 }
548 
send_page_v2(struct mtd_info * mtd,unsigned int ops)549 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
550 {
551 	struct nand_chip *nand_chip = mtd->priv;
552 	struct mxc_nand_host *host = nand_chip->priv;
553 
554 	/* NANDFC buffer 0 is used for page read/write */
555 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
556 
557 	writew(ops, NFC_V1_V2_CONFIG2);
558 
559 	/* Wait for operation to complete */
560 	wait_op_done(host, true);
561 }
562 
send_page_v1(struct mtd_info * mtd,unsigned int ops)563 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
564 {
565 	struct nand_chip *nand_chip = mtd->priv;
566 	struct mxc_nand_host *host = nand_chip->priv;
567 	int bufs, i;
568 
569 	if (mtd->writesize > 512)
570 		bufs = 4;
571 	else
572 		bufs = 1;
573 
574 	for (i = 0; i < bufs; i++) {
575 
576 		/* NANDFC buffer 0 is used for page read/write */
577 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
578 
579 		writew(ops, NFC_V1_V2_CONFIG2);
580 
581 		/* Wait for operation to complete */
582 		wait_op_done(host, true);
583 	}
584 }
585 
send_read_id_v3(struct mxc_nand_host * host)586 static void send_read_id_v3(struct mxc_nand_host *host)
587 {
588 	/* Read ID into main buffer */
589 	writel(NFC_ID, NFC_V3_LAUNCH);
590 
591 	wait_op_done(host, true);
592 
593 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
594 }
595 
596 /* Request the NANDFC to perform a read of the NAND device ID. */
send_read_id_v1_v2(struct mxc_nand_host * host)597 static void send_read_id_v1_v2(struct mxc_nand_host *host)
598 {
599 	/* NANDFC buffer 0 is used for device ID output */
600 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
601 
602 	writew(NFC_ID, NFC_V1_V2_CONFIG2);
603 
604 	/* Wait for operation to complete */
605 	wait_op_done(host, true);
606 
607 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
608 }
609 
get_dev_status_v3(struct mxc_nand_host * host)610 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
611 {
612 	writew(NFC_STATUS, NFC_V3_LAUNCH);
613 	wait_op_done(host, true);
614 
615 	return readl(NFC_V3_CONFIG1) >> 16;
616 }
617 
618 /* This function requests the NANDFC to perform a read of the
619  * NAND device status and returns the current status. */
get_dev_status_v1_v2(struct mxc_nand_host * host)620 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
621 {
622 	void __iomem *main_buf = host->main_area0;
623 	uint32_t store;
624 	uint16_t ret;
625 
626 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
627 
628 	/*
629 	 * The device status is stored in main_area0. To
630 	 * prevent corruption of the buffer save the value
631 	 * and restore it afterwards.
632 	 */
633 	store = readl(main_buf);
634 
635 	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
636 	wait_op_done(host, true);
637 
638 	ret = readw(main_buf);
639 
640 	writel(store, main_buf);
641 
642 	return ret;
643 }
644 
645 /* This functions is used by upper layer to checks if device is ready */
mxc_nand_dev_ready(struct mtd_info * mtd)646 static int mxc_nand_dev_ready(struct mtd_info *mtd)
647 {
648 	/*
649 	 * NFC handles R/B internally. Therefore, this function
650 	 * always returns status as ready.
651 	 */
652 	return 1;
653 }
654 
mxc_nand_enable_hwecc(struct mtd_info * mtd,int mode)655 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
656 {
657 	/*
658 	 * If HW ECC is enabled, we turn it on during init. There is
659 	 * no need to enable again here.
660 	 */
661 }
662 
mxc_nand_correct_data_v1(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)663 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
664 				 u_char *read_ecc, u_char *calc_ecc)
665 {
666 	struct nand_chip *nand_chip = mtd->priv;
667 	struct mxc_nand_host *host = nand_chip->priv;
668 
669 	/*
670 	 * 1-Bit errors are automatically corrected in HW.  No need for
671 	 * additional correction.  2-Bit errors cannot be corrected by
672 	 * HW ECC, so we need to return failure
673 	 */
674 	uint16_t ecc_status = get_ecc_status_v1(host);
675 
676 	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
677 		pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
678 		return -1;
679 	}
680 
681 	return 0;
682 }
683 
mxc_nand_correct_data_v2_v3(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)684 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
685 				 u_char *read_ecc, u_char *calc_ecc)
686 {
687 	struct nand_chip *nand_chip = mtd->priv;
688 	struct mxc_nand_host *host = nand_chip->priv;
689 	u32 ecc_stat, err;
690 	int no_subpages = 1;
691 	int ret = 0;
692 	u8 ecc_bit_mask, err_limit;
693 
694 	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
695 	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
696 
697 	no_subpages = mtd->writesize >> 9;
698 
699 	ecc_stat = host->devtype_data->get_ecc_status(host);
700 
701 	do {
702 		err = ecc_stat & ecc_bit_mask;
703 		if (err > err_limit) {
704 			printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
705 			return -1;
706 		} else {
707 			ret += err;
708 		}
709 		ecc_stat >>= 4;
710 	} while (--no_subpages);
711 
712 	pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
713 
714 	return ret;
715 }
716 
mxc_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)717 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
718 				  u_char *ecc_code)
719 {
720 	return 0;
721 }
722 
mxc_nand_read_byte(struct mtd_info * mtd)723 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
724 {
725 	struct nand_chip *nand_chip = mtd->priv;
726 	struct mxc_nand_host *host = nand_chip->priv;
727 	uint8_t ret;
728 
729 	/* Check for status request */
730 	if (host->status_request)
731 		return host->devtype_data->get_dev_status(host) & 0xFF;
732 
733 	if (nand_chip->options & NAND_BUSWIDTH_16) {
734 		/* only take the lower byte of each word */
735 		ret = *(uint16_t *)(host->data_buf + host->buf_start);
736 
737 		host->buf_start += 2;
738 	} else {
739 		ret = *(uint8_t *)(host->data_buf + host->buf_start);
740 		host->buf_start++;
741 	}
742 
743 	pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
744 	return ret;
745 }
746 
mxc_nand_read_word(struct mtd_info * mtd)747 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
748 {
749 	struct nand_chip *nand_chip = mtd->priv;
750 	struct mxc_nand_host *host = nand_chip->priv;
751 	uint16_t ret;
752 
753 	ret = *(uint16_t *)(host->data_buf + host->buf_start);
754 	host->buf_start += 2;
755 
756 	return ret;
757 }
758 
759 /* Write data of length len to buffer buf. The data to be
760  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
761  * Operation by the NFC, the data is written to NAND Flash */
mxc_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)762 static void mxc_nand_write_buf(struct mtd_info *mtd,
763 				const u_char *buf, int len)
764 {
765 	struct nand_chip *nand_chip = mtd->priv;
766 	struct mxc_nand_host *host = nand_chip->priv;
767 	u16 col = host->buf_start;
768 	int n = mtd->oobsize + mtd->writesize - col;
769 
770 	n = min(n, len);
771 
772 	memcpy(host->data_buf + col, buf, n);
773 
774 	host->buf_start += n;
775 }
776 
777 /* Read the data buffer from the NAND Flash. To read the data from NAND
778  * Flash first the data output cycle is initiated by the NFC, which copies
779  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
780  */
mxc_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)781 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
782 {
783 	struct nand_chip *nand_chip = mtd->priv;
784 	struct mxc_nand_host *host = nand_chip->priv;
785 	u16 col = host->buf_start;
786 	int n = mtd->oobsize + mtd->writesize - col;
787 
788 	n = min(n, len);
789 
790 	memcpy(buf, host->data_buf + col, n);
791 
792 	host->buf_start += n;
793 }
794 
795 /* This function is used by upper layer for select and
796  * deselect of the NAND chip */
mxc_nand_select_chip_v1_v3(struct mtd_info * mtd,int chip)797 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
798 {
799 	struct nand_chip *nand_chip = mtd->priv;
800 	struct mxc_nand_host *host = nand_chip->priv;
801 
802 	if (chip == -1) {
803 		/* Disable the NFC clock */
804 		if (host->clk_act) {
805 			clk_disable_unprepare(host->clk);
806 			host->clk_act = 0;
807 		}
808 		return;
809 	}
810 
811 	if (!host->clk_act) {
812 		/* Enable the NFC clock */
813 		clk_prepare_enable(host->clk);
814 		host->clk_act = 1;
815 	}
816 }
817 
mxc_nand_select_chip_v2(struct mtd_info * mtd,int chip)818 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
819 {
820 	struct nand_chip *nand_chip = mtd->priv;
821 	struct mxc_nand_host *host = nand_chip->priv;
822 
823 	if (chip == -1) {
824 		/* Disable the NFC clock */
825 		if (host->clk_act) {
826 			clk_disable_unprepare(host->clk);
827 			host->clk_act = 0;
828 		}
829 		return;
830 	}
831 
832 	if (!host->clk_act) {
833 		/* Enable the NFC clock */
834 		clk_prepare_enable(host->clk);
835 		host->clk_act = 1;
836 	}
837 
838 	host->active_cs = chip;
839 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
840 }
841 
842 /*
843  * The controller splits a page into data chunks of 512 bytes + partial oob.
844  * There are writesize / 512 such chunks, the size of the partial oob parts is
845  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
846  * contains additionally the byte lost by rounding (if any).
847  * This function handles the needed shuffling between host->data_buf (which
848  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
849  * spare) and the NFC buffer.
850  */
copy_spare(struct mtd_info * mtd,bool bfrom)851 static void copy_spare(struct mtd_info *mtd, bool bfrom)
852 {
853 	struct nand_chip *this = mtd->priv;
854 	struct mxc_nand_host *host = this->priv;
855 	u16 i, oob_chunk_size;
856 	u16 num_chunks = mtd->writesize / 512;
857 
858 	u8 *d = host->data_buf + mtd->writesize;
859 	u8 __iomem *s = host->spare0;
860 	u16 sparebuf_size = host->devtype_data->spare_len;
861 
862 	/* size of oob chunk for all but possibly the last one */
863 	oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
864 
865 	if (bfrom) {
866 		for (i = 0; i < num_chunks - 1; i++)
867 			memcpy16_fromio(d + i * oob_chunk_size,
868 					s + i * sparebuf_size,
869 					oob_chunk_size);
870 
871 		/* the last chunk */
872 		memcpy16_fromio(d + i * oob_chunk_size,
873 				s + i * sparebuf_size,
874 				host->used_oobsize - i * oob_chunk_size);
875 	} else {
876 		for (i = 0; i < num_chunks - 1; i++)
877 			memcpy16_toio(&s[i * sparebuf_size],
878 				      &d[i * oob_chunk_size],
879 				      oob_chunk_size);
880 
881 		/* the last chunk */
882 		memcpy16_toio(&s[i * sparebuf_size],
883 			      &d[i * oob_chunk_size],
884 			      host->used_oobsize - i * oob_chunk_size);
885 	}
886 }
887 
888 /*
889  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
890  * the upper layers perform a read/write buf operation, the saved column address
891  * is used to index into the full page. So usually this function is called with
892  * column == 0 (unless no column cycle is needed indicated by column == -1)
893  */
mxc_do_addr_cycle(struct mtd_info * mtd,int column,int page_addr)894 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
895 {
896 	struct nand_chip *nand_chip = mtd->priv;
897 	struct mxc_nand_host *host = nand_chip->priv;
898 
899 	/* Write out column address, if necessary */
900 	if (column != -1) {
901 		host->devtype_data->send_addr(host, column & 0xff,
902 					      page_addr == -1);
903 		if (mtd->writesize > 512)
904 			/* another col addr cycle for 2k page */
905 			host->devtype_data->send_addr(host,
906 						      (column >> 8) & 0xff,
907 						      false);
908 	}
909 
910 	/* Write out page address, if necessary */
911 	if (page_addr != -1) {
912 		/* paddr_0 - p_addr_7 */
913 		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
914 
915 		if (mtd->writesize > 512) {
916 			if (mtd->size >= 0x10000000) {
917 				/* paddr_8 - paddr_15 */
918 				host->devtype_data->send_addr(host,
919 						(page_addr >> 8) & 0xff,
920 						false);
921 				host->devtype_data->send_addr(host,
922 						(page_addr >> 16) & 0xff,
923 						true);
924 			} else
925 				/* paddr_8 - paddr_15 */
926 				host->devtype_data->send_addr(host,
927 						(page_addr >> 8) & 0xff, true);
928 		} else {
929 			/* One more address cycle for higher density devices */
930 			if (mtd->size >= 0x4000000) {
931 				/* paddr_8 - paddr_15 */
932 				host->devtype_data->send_addr(host,
933 						(page_addr >> 8) & 0xff,
934 						false);
935 				host->devtype_data->send_addr(host,
936 						(page_addr >> 16) & 0xff,
937 						true);
938 			} else
939 				/* paddr_8 - paddr_15 */
940 				host->devtype_data->send_addr(host,
941 						(page_addr >> 8) & 0xff, true);
942 		}
943 	}
944 }
945 
946 /*
947  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
948  * on how much oob the nand chip has. For 8bit ecc we need at least
949  * 26 bytes of oob data per 512 byte block.
950  */
get_eccsize(struct mtd_info * mtd)951 static int get_eccsize(struct mtd_info *mtd)
952 {
953 	int oobbytes_per_512 = 0;
954 
955 	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
956 
957 	if (oobbytes_per_512 < 26)
958 		return 4;
959 	else
960 		return 8;
961 }
962 
ecc_8bit_layout_4k(struct nand_ecclayout * layout)963 static void ecc_8bit_layout_4k(struct nand_ecclayout *layout)
964 {
965 	int i, j;
966 
967 	layout->eccbytes = 8*18;
968 	for (i = 0; i < 8; i++)
969 		for (j = 0; j < 18; j++)
970 			layout->eccpos[i*18 + j] = i*26 + j + 7;
971 
972 	layout->oobfree[0].offset = 2;
973 	layout->oobfree[0].length = 4;
974 	for (i = 1; i < 8; i++) {
975 		layout->oobfree[i].offset = i*26;
976 		layout->oobfree[i].length = 7;
977 	}
978 }
979 
preset_v1(struct mtd_info * mtd)980 static void preset_v1(struct mtd_info *mtd)
981 {
982 	struct nand_chip *nand_chip = mtd->priv;
983 	struct mxc_nand_host *host = nand_chip->priv;
984 	uint16_t config1 = 0;
985 
986 	if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
987 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
988 
989 	if (!host->devtype_data->irqpending_quirk)
990 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
991 
992 	host->eccsize = 1;
993 
994 	writew(config1, NFC_V1_V2_CONFIG1);
995 	/* preset operation */
996 
997 	/* Unlock the internal RAM Buffer */
998 	writew(0x2, NFC_V1_V2_CONFIG);
999 
1000 	/* Blocks to be unlocked */
1001 	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1002 	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1003 
1004 	/* Unlock Block Command for given address range */
1005 	writew(0x4, NFC_V1_V2_WRPROT);
1006 }
1007 
preset_v2(struct mtd_info * mtd)1008 static void preset_v2(struct mtd_info *mtd)
1009 {
1010 	struct nand_chip *nand_chip = mtd->priv;
1011 	struct mxc_nand_host *host = nand_chip->priv;
1012 	uint16_t config1 = 0;
1013 
1014 	config1 |= NFC_V2_CONFIG1_FP_INT;
1015 
1016 	if (!host->devtype_data->irqpending_quirk)
1017 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1018 
1019 	if (mtd->writesize) {
1020 		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1021 
1022 		if (nand_chip->ecc.mode == NAND_ECC_HW)
1023 			config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1024 
1025 		host->eccsize = get_eccsize(mtd);
1026 		if (host->eccsize == 4)
1027 			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1028 
1029 		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1030 	} else {
1031 		host->eccsize = 1;
1032 	}
1033 
1034 	writew(config1, NFC_V1_V2_CONFIG1);
1035 	/* preset operation */
1036 
1037 	/* Unlock the internal RAM Buffer */
1038 	writew(0x2, NFC_V1_V2_CONFIG);
1039 
1040 	/* Blocks to be unlocked */
1041 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1042 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1043 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1044 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1045 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1046 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1047 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1048 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1049 
1050 	/* Unlock Block Command for given address range */
1051 	writew(0x4, NFC_V1_V2_WRPROT);
1052 }
1053 
preset_v3(struct mtd_info * mtd)1054 static void preset_v3(struct mtd_info *mtd)
1055 {
1056 	struct nand_chip *chip = mtd->priv;
1057 	struct mxc_nand_host *host = chip->priv;
1058 	uint32_t config2, config3;
1059 	int i, addr_phases;
1060 
1061 	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1062 	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1063 
1064 	/* Unlock the internal RAM Buffer */
1065 	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1066 			NFC_V3_WRPROT);
1067 
1068 	/* Blocks to be unlocked */
1069 	for (i = 0; i < NAND_MAX_CHIPS; i++)
1070 		writel(0x0 |	(0xffff << 16),
1071 				NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1072 
1073 	writel(0, NFC_V3_IPC);
1074 
1075 	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1076 		NFC_V3_CONFIG2_2CMD_PHASES |
1077 		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1078 		NFC_V3_CONFIG2_ST_CMD(0x70) |
1079 		NFC_V3_CONFIG2_INT_MSK |
1080 		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1081 
1082 	addr_phases = fls(chip->pagemask) >> 3;
1083 
1084 	if (mtd->writesize == 2048) {
1085 		config2 |= NFC_V3_CONFIG2_PS_2048;
1086 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1087 	} else if (mtd->writesize == 4096) {
1088 		config2 |= NFC_V3_CONFIG2_PS_4096;
1089 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1090 	} else {
1091 		config2 |= NFC_V3_CONFIG2_PS_512;
1092 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1093 	}
1094 
1095 	if (mtd->writesize) {
1096 		if (chip->ecc.mode == NAND_ECC_HW)
1097 			config2 |= NFC_V3_CONFIG2_ECC_EN;
1098 
1099 		config2 |= NFC_V3_CONFIG2_PPB(
1100 				ffs(mtd->erasesize / mtd->writesize) - 6,
1101 				host->devtype_data->ppb_shift);
1102 		host->eccsize = get_eccsize(mtd);
1103 		if (host->eccsize == 8)
1104 			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1105 	}
1106 
1107 	writel(config2, NFC_V3_CONFIG2);
1108 
1109 	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1110 			NFC_V3_CONFIG3_NO_SDMA |
1111 			NFC_V3_CONFIG3_RBB_MODE |
1112 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1113 			NFC_V3_CONFIG3_ADD_OP(0);
1114 
1115 	if (!(chip->options & NAND_BUSWIDTH_16))
1116 		config3 |= NFC_V3_CONFIG3_FW8;
1117 
1118 	writel(config3, NFC_V3_CONFIG3);
1119 
1120 	writel(0, NFC_V3_DELAY_LINE);
1121 }
1122 
1123 /* Used by the upper layer to write command to NAND Flash for
1124  * different operations to be carried out on NAND Flash */
mxc_nand_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)1125 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1126 				int column, int page_addr)
1127 {
1128 	struct nand_chip *nand_chip = mtd->priv;
1129 	struct mxc_nand_host *host = nand_chip->priv;
1130 
1131 	pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1132 	      command, column, page_addr);
1133 
1134 	/* Reset command state information */
1135 	host->status_request = false;
1136 
1137 	/* Command pre-processing step */
1138 	switch (command) {
1139 	case NAND_CMD_RESET:
1140 		host->devtype_data->preset(mtd);
1141 		host->devtype_data->send_cmd(host, command, false);
1142 		break;
1143 
1144 	case NAND_CMD_STATUS:
1145 		host->buf_start = 0;
1146 		host->status_request = true;
1147 
1148 		host->devtype_data->send_cmd(host, command, true);
1149 		WARN_ONCE(column != -1 || page_addr != -1,
1150 			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1151 			  command, column, page_addr);
1152 		mxc_do_addr_cycle(mtd, column, page_addr);
1153 		break;
1154 
1155 	case NAND_CMD_READ0:
1156 	case NAND_CMD_READOOB:
1157 		if (command == NAND_CMD_READ0)
1158 			host->buf_start = column;
1159 		else
1160 			host->buf_start = column + mtd->writesize;
1161 
1162 		command = NAND_CMD_READ0; /* only READ0 is valid */
1163 
1164 		host->devtype_data->send_cmd(host, command, false);
1165 		WARN_ONCE(column < 0,
1166 			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1167 			  command, column, page_addr);
1168 		mxc_do_addr_cycle(mtd, 0, page_addr);
1169 
1170 		if (mtd->writesize > 512)
1171 			host->devtype_data->send_cmd(host,
1172 					NAND_CMD_READSTART, true);
1173 
1174 		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1175 
1176 		memcpy32_fromio(host->data_buf, host->main_area0,
1177 				mtd->writesize);
1178 		copy_spare(mtd, true);
1179 		break;
1180 
1181 	case NAND_CMD_SEQIN:
1182 		if (column >= mtd->writesize)
1183 			/* call ourself to read a page */
1184 			mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1185 
1186 		host->buf_start = column;
1187 
1188 		host->devtype_data->send_cmd(host, command, false);
1189 		WARN_ONCE(column < -1,
1190 			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1191 			  command, column, page_addr);
1192 		mxc_do_addr_cycle(mtd, 0, page_addr);
1193 		break;
1194 
1195 	case NAND_CMD_PAGEPROG:
1196 		memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1197 		copy_spare(mtd, false);
1198 		host->devtype_data->send_page(mtd, NFC_INPUT);
1199 		host->devtype_data->send_cmd(host, command, true);
1200 		WARN_ONCE(column != -1 || page_addr != -1,
1201 			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1202 			  command, column, page_addr);
1203 		mxc_do_addr_cycle(mtd, column, page_addr);
1204 		break;
1205 
1206 	case NAND_CMD_READID:
1207 		host->devtype_data->send_cmd(host, command, true);
1208 		mxc_do_addr_cycle(mtd, column, page_addr);
1209 		host->devtype_data->send_read_id(host);
1210 		host->buf_start = 0;
1211 		break;
1212 
1213 	case NAND_CMD_ERASE1:
1214 	case NAND_CMD_ERASE2:
1215 		host->devtype_data->send_cmd(host, command, false);
1216 		WARN_ONCE(column != -1,
1217 			  "Unexpected column value (cmd=%u, col=%d)\n",
1218 			  command, column);
1219 		mxc_do_addr_cycle(mtd, column, page_addr);
1220 
1221 		break;
1222 	case NAND_CMD_PARAM:
1223 		host->devtype_data->send_cmd(host, command, false);
1224 		mxc_do_addr_cycle(mtd, column, page_addr);
1225 		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1226 		memcpy32_fromio(host->data_buf, host->main_area0, 512);
1227 		host->buf_start = 0;
1228 		break;
1229 	default:
1230 		WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1231 			  command);
1232 		break;
1233 	}
1234 }
1235 
1236 /*
1237  * The generic flash bbt decriptors overlap with our ecc
1238  * hardware, so define some i.MX specific ones.
1239  */
1240 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1241 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1242 
1243 static struct nand_bbt_descr bbt_main_descr = {
1244 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1245 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1246 	.offs = 0,
1247 	.len = 4,
1248 	.veroffs = 4,
1249 	.maxblocks = 4,
1250 	.pattern = bbt_pattern,
1251 };
1252 
1253 static struct nand_bbt_descr bbt_mirror_descr = {
1254 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1255 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1256 	.offs = 0,
1257 	.len = 4,
1258 	.veroffs = 4,
1259 	.maxblocks = 4,
1260 	.pattern = mirror_pattern,
1261 };
1262 
1263 /* v1 + irqpending_quirk: i.MX21 */
1264 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1265 	.preset = preset_v1,
1266 	.send_cmd = send_cmd_v1_v2,
1267 	.send_addr = send_addr_v1_v2,
1268 	.send_page = send_page_v1,
1269 	.send_read_id = send_read_id_v1_v2,
1270 	.get_dev_status = get_dev_status_v1_v2,
1271 	.check_int = check_int_v1_v2,
1272 	.irq_control = irq_control_v1_v2,
1273 	.get_ecc_status = get_ecc_status_v1,
1274 	.ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1275 	.ecclayout_2k = &nandv1_hw_eccoob_largepage,
1276 	.ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1277 	.select_chip = mxc_nand_select_chip_v1_v3,
1278 	.correct_data = mxc_nand_correct_data_v1,
1279 	.irqpending_quirk = 1,
1280 	.needs_ip = 0,
1281 	.regs_offset = 0xe00,
1282 	.spare0_offset = 0x800,
1283 	.spare_len = 16,
1284 	.eccbytes = 3,
1285 	.eccsize = 1,
1286 };
1287 
1288 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1289 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1290 	.preset = preset_v1,
1291 	.send_cmd = send_cmd_v1_v2,
1292 	.send_addr = send_addr_v1_v2,
1293 	.send_page = send_page_v1,
1294 	.send_read_id = send_read_id_v1_v2,
1295 	.get_dev_status = get_dev_status_v1_v2,
1296 	.check_int = check_int_v1_v2,
1297 	.irq_control = irq_control_v1_v2,
1298 	.get_ecc_status = get_ecc_status_v1,
1299 	.ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1300 	.ecclayout_2k = &nandv1_hw_eccoob_largepage,
1301 	.ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1302 	.select_chip = mxc_nand_select_chip_v1_v3,
1303 	.correct_data = mxc_nand_correct_data_v1,
1304 	.irqpending_quirk = 0,
1305 	.needs_ip = 0,
1306 	.regs_offset = 0xe00,
1307 	.spare0_offset = 0x800,
1308 	.axi_offset = 0,
1309 	.spare_len = 16,
1310 	.eccbytes = 3,
1311 	.eccsize = 1,
1312 };
1313 
1314 /* v21: i.MX25, i.MX35 */
1315 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1316 	.preset = preset_v2,
1317 	.send_cmd = send_cmd_v1_v2,
1318 	.send_addr = send_addr_v1_v2,
1319 	.send_page = send_page_v2,
1320 	.send_read_id = send_read_id_v1_v2,
1321 	.get_dev_status = get_dev_status_v1_v2,
1322 	.check_int = check_int_v1_v2,
1323 	.irq_control = irq_control_v1_v2,
1324 	.get_ecc_status = get_ecc_status_v2,
1325 	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1326 	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1327 	.ecclayout_4k = &nandv2_hw_eccoob_4k,
1328 	.select_chip = mxc_nand_select_chip_v2,
1329 	.correct_data = mxc_nand_correct_data_v2_v3,
1330 	.irqpending_quirk = 0,
1331 	.needs_ip = 0,
1332 	.regs_offset = 0x1e00,
1333 	.spare0_offset = 0x1000,
1334 	.axi_offset = 0,
1335 	.spare_len = 64,
1336 	.eccbytes = 9,
1337 	.eccsize = 0,
1338 };
1339 
1340 /* v3.2a: i.MX51 */
1341 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1342 	.preset = preset_v3,
1343 	.send_cmd = send_cmd_v3,
1344 	.send_addr = send_addr_v3,
1345 	.send_page = send_page_v3,
1346 	.send_read_id = send_read_id_v3,
1347 	.get_dev_status = get_dev_status_v3,
1348 	.check_int = check_int_v3,
1349 	.irq_control = irq_control_v3,
1350 	.get_ecc_status = get_ecc_status_v3,
1351 	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1352 	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1353 	.ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1354 	.select_chip = mxc_nand_select_chip_v1_v3,
1355 	.correct_data = mxc_nand_correct_data_v2_v3,
1356 	.irqpending_quirk = 0,
1357 	.needs_ip = 1,
1358 	.regs_offset = 0,
1359 	.spare0_offset = 0x1000,
1360 	.axi_offset = 0x1e00,
1361 	.spare_len = 64,
1362 	.eccbytes = 0,
1363 	.eccsize = 0,
1364 	.ppb_shift = 7,
1365 };
1366 
1367 /* v3.2b: i.MX53 */
1368 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1369 	.preset = preset_v3,
1370 	.send_cmd = send_cmd_v3,
1371 	.send_addr = send_addr_v3,
1372 	.send_page = send_page_v3,
1373 	.send_read_id = send_read_id_v3,
1374 	.get_dev_status = get_dev_status_v3,
1375 	.check_int = check_int_v3,
1376 	.irq_control = irq_control_v3,
1377 	.get_ecc_status = get_ecc_status_v3,
1378 	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1379 	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1380 	.ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1381 	.select_chip = mxc_nand_select_chip_v1_v3,
1382 	.correct_data = mxc_nand_correct_data_v2_v3,
1383 	.irqpending_quirk = 0,
1384 	.needs_ip = 1,
1385 	.regs_offset = 0,
1386 	.spare0_offset = 0x1000,
1387 	.axi_offset = 0x1e00,
1388 	.spare_len = 64,
1389 	.eccbytes = 0,
1390 	.eccsize = 0,
1391 	.ppb_shift = 8,
1392 };
1393 
is_imx21_nfc(struct mxc_nand_host * host)1394 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1395 {
1396 	return host->devtype_data == &imx21_nand_devtype_data;
1397 }
1398 
is_imx27_nfc(struct mxc_nand_host * host)1399 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1400 {
1401 	return host->devtype_data == &imx27_nand_devtype_data;
1402 }
1403 
is_imx25_nfc(struct mxc_nand_host * host)1404 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1405 {
1406 	return host->devtype_data == &imx25_nand_devtype_data;
1407 }
1408 
is_imx51_nfc(struct mxc_nand_host * host)1409 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1410 {
1411 	return host->devtype_data == &imx51_nand_devtype_data;
1412 }
1413 
is_imx53_nfc(struct mxc_nand_host * host)1414 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1415 {
1416 	return host->devtype_data == &imx53_nand_devtype_data;
1417 }
1418 
1419 static const struct platform_device_id mxcnd_devtype[] = {
1420 	{
1421 		.name = "imx21-nand",
1422 		.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1423 	}, {
1424 		.name = "imx27-nand",
1425 		.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1426 	}, {
1427 		.name = "imx25-nand",
1428 		.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1429 	}, {
1430 		.name = "imx51-nand",
1431 		.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1432 	}, {
1433 		.name = "imx53-nand",
1434 		.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1435 	}, {
1436 		/* sentinel */
1437 	}
1438 };
1439 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1440 
1441 #ifdef CONFIG_OF_MTD
1442 static const struct of_device_id mxcnd_dt_ids[] = {
1443 	{
1444 		.compatible = "fsl,imx21-nand",
1445 		.data = &imx21_nand_devtype_data,
1446 	}, {
1447 		.compatible = "fsl,imx27-nand",
1448 		.data = &imx27_nand_devtype_data,
1449 	}, {
1450 		.compatible = "fsl,imx25-nand",
1451 		.data = &imx25_nand_devtype_data,
1452 	}, {
1453 		.compatible = "fsl,imx51-nand",
1454 		.data = &imx51_nand_devtype_data,
1455 	}, {
1456 		.compatible = "fsl,imx53-nand",
1457 		.data = &imx53_nand_devtype_data,
1458 	},
1459 	{ /* sentinel */ }
1460 };
1461 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1462 
mxcnd_probe_dt(struct mxc_nand_host * host)1463 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1464 {
1465 	struct device_node *np = host->dev->of_node;
1466 	struct mxc_nand_platform_data *pdata = &host->pdata;
1467 	const struct of_device_id *of_id =
1468 		of_match_device(mxcnd_dt_ids, host->dev);
1469 	int buswidth;
1470 
1471 	if (!np)
1472 		return 1;
1473 
1474 	if (of_get_nand_ecc_mode(np) >= 0)
1475 		pdata->hw_ecc = 1;
1476 
1477 	pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1478 
1479 	buswidth = of_get_nand_bus_width(np);
1480 	if (buswidth < 0)
1481 		return buswidth;
1482 
1483 	pdata->width = buswidth / 8;
1484 
1485 	host->devtype_data = of_id->data;
1486 
1487 	return 0;
1488 }
1489 #else
mxcnd_probe_dt(struct mxc_nand_host * host)1490 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1491 {
1492 	return 1;
1493 }
1494 #endif
1495 
mxcnd_probe(struct platform_device * pdev)1496 static int mxcnd_probe(struct platform_device *pdev)
1497 {
1498 	struct nand_chip *this;
1499 	struct mtd_info *mtd;
1500 	struct mxc_nand_host *host;
1501 	struct resource *res;
1502 	int err = 0;
1503 
1504 	/* Allocate memory for MTD device structure and private data */
1505 	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1506 			GFP_KERNEL);
1507 	if (!host)
1508 		return -ENOMEM;
1509 
1510 	/* allocate a temporary buffer for the nand_scan_ident() */
1511 	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1512 	if (!host->data_buf)
1513 		return -ENOMEM;
1514 
1515 	host->dev = &pdev->dev;
1516 	/* structures must be linked */
1517 	this = &host->nand;
1518 	mtd = &host->mtd;
1519 	mtd->priv = this;
1520 	mtd->dev.parent = &pdev->dev;
1521 	mtd->name = DRIVER_NAME;
1522 
1523 	/* 50 us command delay time */
1524 	this->chip_delay = 5;
1525 
1526 	this->priv = host;
1527 	this->dev_ready = mxc_nand_dev_ready;
1528 	this->cmdfunc = mxc_nand_command;
1529 	this->read_byte = mxc_nand_read_byte;
1530 	this->read_word = mxc_nand_read_word;
1531 	this->write_buf = mxc_nand_write_buf;
1532 	this->read_buf = mxc_nand_read_buf;
1533 
1534 	host->clk = devm_clk_get(&pdev->dev, NULL);
1535 	if (IS_ERR(host->clk))
1536 		return PTR_ERR(host->clk);
1537 
1538 	err = mxcnd_probe_dt(host);
1539 	if (err > 0) {
1540 		struct mxc_nand_platform_data *pdata =
1541 					dev_get_platdata(&pdev->dev);
1542 		if (pdata) {
1543 			host->pdata = *pdata;
1544 			host->devtype_data = (struct mxc_nand_devtype_data *)
1545 						pdev->id_entry->driver_data;
1546 		} else {
1547 			err = -ENODEV;
1548 		}
1549 	}
1550 	if (err < 0)
1551 		return err;
1552 
1553 	if (host->devtype_data->needs_ip) {
1554 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1555 		host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1556 		if (IS_ERR(host->regs_ip))
1557 			return PTR_ERR(host->regs_ip);
1558 
1559 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1560 	} else {
1561 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1562 	}
1563 
1564 	host->base = devm_ioremap_resource(&pdev->dev, res);
1565 	if (IS_ERR(host->base))
1566 		return PTR_ERR(host->base);
1567 
1568 	host->main_area0 = host->base;
1569 
1570 	if (host->devtype_data->regs_offset)
1571 		host->regs = host->base + host->devtype_data->regs_offset;
1572 	host->spare0 = host->base + host->devtype_data->spare0_offset;
1573 	if (host->devtype_data->axi_offset)
1574 		host->regs_axi = host->base + host->devtype_data->axi_offset;
1575 
1576 	this->ecc.bytes = host->devtype_data->eccbytes;
1577 	host->eccsize = host->devtype_data->eccsize;
1578 
1579 	this->select_chip = host->devtype_data->select_chip;
1580 	this->ecc.size = 512;
1581 	this->ecc.layout = host->devtype_data->ecclayout_512;
1582 
1583 	if (host->pdata.hw_ecc) {
1584 		this->ecc.calculate = mxc_nand_calculate_ecc;
1585 		this->ecc.hwctl = mxc_nand_enable_hwecc;
1586 		this->ecc.correct = host->devtype_data->correct_data;
1587 		this->ecc.mode = NAND_ECC_HW;
1588 	} else {
1589 		this->ecc.mode = NAND_ECC_SOFT;
1590 	}
1591 
1592 	/* NAND bus width determines access functions used by upper layer */
1593 	if (host->pdata.width == 2)
1594 		this->options |= NAND_BUSWIDTH_16;
1595 
1596 	if (host->pdata.flash_bbt) {
1597 		this->bbt_td = &bbt_main_descr;
1598 		this->bbt_md = &bbt_mirror_descr;
1599 		/* update flash based bbt */
1600 		this->bbt_options |= NAND_BBT_USE_FLASH;
1601 	}
1602 
1603 	init_completion(&host->op_completion);
1604 
1605 	host->irq = platform_get_irq(pdev, 0);
1606 	if (host->irq < 0)
1607 		return host->irq;
1608 
1609 	/*
1610 	 * Use host->devtype_data->irq_control() here instead of irq_control()
1611 	 * because we must not disable_irq_nosync without having requested the
1612 	 * irq.
1613 	 */
1614 	host->devtype_data->irq_control(host, 0);
1615 
1616 	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1617 			0, DRIVER_NAME, host);
1618 	if (err)
1619 		return err;
1620 
1621 	err = clk_prepare_enable(host->clk);
1622 	if (err)
1623 		return err;
1624 	host->clk_act = 1;
1625 
1626 	/*
1627 	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1628 	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1629 	 * on this machine.
1630 	 */
1631 	if (host->devtype_data->irqpending_quirk) {
1632 		disable_irq_nosync(host->irq);
1633 		host->devtype_data->irq_control(host, 1);
1634 	}
1635 
1636 	/* first scan to find the device and get the page size */
1637 	if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1638 		err = -ENXIO;
1639 		goto escan;
1640 	}
1641 
1642 	/* allocate the right size buffer now */
1643 	devm_kfree(&pdev->dev, (void *)host->data_buf);
1644 	host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1645 					GFP_KERNEL);
1646 	if (!host->data_buf) {
1647 		err = -ENOMEM;
1648 		goto escan;
1649 	}
1650 
1651 	/* Call preset again, with correct writesize this time */
1652 	host->devtype_data->preset(mtd);
1653 
1654 	if (mtd->writesize == 2048)
1655 		this->ecc.layout = host->devtype_data->ecclayout_2k;
1656 	else if (mtd->writesize == 4096) {
1657 		this->ecc.layout = host->devtype_data->ecclayout_4k;
1658 		if (get_eccsize(mtd) == 8)
1659 			ecc_8bit_layout_4k(this->ecc.layout);
1660 	}
1661 
1662 	/*
1663 	 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1664 	 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1665 	 * into copying invalid data to/from the spare IO buffer, as this
1666 	 * might cause ECC data corruption when doing sub-page write to a
1667 	 * partially written page.
1668 	 */
1669 	host->used_oobsize = min(mtd->oobsize, 218U);
1670 
1671 	if (this->ecc.mode == NAND_ECC_HW) {
1672 		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1673 			this->ecc.strength = 1;
1674 		else
1675 			this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1676 	}
1677 
1678 	/* second phase scan */
1679 	if (nand_scan_tail(mtd)) {
1680 		err = -ENXIO;
1681 		goto escan;
1682 	}
1683 
1684 	/* Register the partitions */
1685 	mtd_device_parse_register(mtd, part_probes,
1686 			&(struct mtd_part_parser_data){
1687 				.of_node = pdev->dev.of_node,
1688 			},
1689 			host->pdata.parts,
1690 			host->pdata.nr_parts);
1691 
1692 	platform_set_drvdata(pdev, host);
1693 
1694 	return 0;
1695 
1696 escan:
1697 	if (host->clk_act)
1698 		clk_disable_unprepare(host->clk);
1699 
1700 	return err;
1701 }
1702 
mxcnd_remove(struct platform_device * pdev)1703 static int mxcnd_remove(struct platform_device *pdev)
1704 {
1705 	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1706 
1707 	nand_release(&host->mtd);
1708 	if (host->clk_act)
1709 		clk_disable_unprepare(host->clk);
1710 
1711 	return 0;
1712 }
1713 
1714 static struct platform_driver mxcnd_driver = {
1715 	.driver = {
1716 		   .name = DRIVER_NAME,
1717 		   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1718 	},
1719 	.id_table = mxcnd_devtype,
1720 	.probe = mxcnd_probe,
1721 	.remove = mxcnd_remove,
1722 };
1723 module_platform_driver(mxcnd_driver);
1724 
1725 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1726 MODULE_DESCRIPTION("MXC NAND MTD driver");
1727 MODULE_LICENSE("GPL");
1728