1 /*
2  * Freescale GPMI NAND Flash Driver
3  *
4  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 #include <linux/clk.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_mtd.h>
29 #include "gpmi-nand.h"
30 #include "bch-regs.h"
31 
32 /* Resource names for the GPMI NAND driver. */
33 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
34 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
35 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
36 
37 /* add our owner bbt descriptor */
38 static uint8_t scan_ff_pattern[] = { 0xff };
39 static struct nand_bbt_descr gpmi_bbt_descr = {
40 	.options	= 0,
41 	.offs		= 0,
42 	.len		= 1,
43 	.pattern	= scan_ff_pattern
44 };
45 
46 /*
47  * We may change the layout if we can get the ECC info from the datasheet,
48  * else we will use all the (page + OOB).
49  */
50 static struct nand_ecclayout gpmi_hw_ecclayout = {
51 	.eccbytes = 0,
52 	.eccpos = { 0, },
53 	.oobfree = { {.offset = 0, .length = 0} }
54 };
55 
56 static const struct gpmi_devdata gpmi_devdata_imx23 = {
57 	.type = IS_MX23,
58 	.bch_max_ecc_strength = 20,
59 	.max_chain_delay = 16,
60 };
61 
62 static const struct gpmi_devdata gpmi_devdata_imx28 = {
63 	.type = IS_MX28,
64 	.bch_max_ecc_strength = 20,
65 	.max_chain_delay = 16,
66 };
67 
68 static const struct gpmi_devdata gpmi_devdata_imx6q = {
69 	.type = IS_MX6Q,
70 	.bch_max_ecc_strength = 40,
71 	.max_chain_delay = 12,
72 };
73 
74 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
75 	.type = IS_MX6SX,
76 	.bch_max_ecc_strength = 62,
77 	.max_chain_delay = 12,
78 };
79 
bch_irq(int irq,void * cookie)80 static irqreturn_t bch_irq(int irq, void *cookie)
81 {
82 	struct gpmi_nand_data *this = cookie;
83 
84 	gpmi_clear_bch(this);
85 	complete(&this->bch_done);
86 	return IRQ_HANDLED;
87 }
88 
89 /*
90  *  Calculate the ECC strength by hand:
91  *	E : The ECC strength.
92  *	G : the length of Galois Field.
93  *	N : The chunk count of per page.
94  *	O : the oobsize of the NAND chip.
95  *	M : the metasize of per page.
96  *
97  *	The formula is :
98  *		E * G * N
99  *	      ------------ <= (O - M)
100  *                  8
101  *
102  *      So, we get E by:
103  *                    (O - M) * 8
104  *              E <= -------------
105  *                       G * N
106  */
get_ecc_strength(struct gpmi_nand_data * this)107 static inline int get_ecc_strength(struct gpmi_nand_data *this)
108 {
109 	struct bch_geometry *geo = &this->bch_geometry;
110 	struct mtd_info	*mtd = &this->mtd;
111 	int ecc_strength;
112 
113 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
114 			/ (geo->gf_len * geo->ecc_chunk_count);
115 
116 	/* We need the minor even number. */
117 	return round_down(ecc_strength, 2);
118 }
119 
gpmi_check_ecc(struct gpmi_nand_data * this)120 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
121 {
122 	struct bch_geometry *geo = &this->bch_geometry;
123 
124 	/* Do the sanity check. */
125 	if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
126 		/* The mx23/mx28 only support the GF13. */
127 		if (geo->gf_len == 14)
128 			return false;
129 	}
130 	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
131 }
132 
133 /*
134  * If we can get the ECC information from the nand chip, we do not
135  * need to calculate them ourselves.
136  *
137  * We may have available oob space in this case.
138  */
set_geometry_by_ecc_info(struct gpmi_nand_data * this)139 static bool set_geometry_by_ecc_info(struct gpmi_nand_data *this)
140 {
141 	struct bch_geometry *geo = &this->bch_geometry;
142 	struct mtd_info *mtd = &this->mtd;
143 	struct nand_chip *chip = mtd->priv;
144 	struct nand_oobfree *of = gpmi_hw_ecclayout.oobfree;
145 	unsigned int block_mark_bit_offset;
146 
147 	if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
148 		return false;
149 
150 	switch (chip->ecc_step_ds) {
151 	case SZ_512:
152 		geo->gf_len = 13;
153 		break;
154 	case SZ_1K:
155 		geo->gf_len = 14;
156 		break;
157 	default:
158 		dev_err(this->dev,
159 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
160 			chip->ecc_strength_ds, chip->ecc_step_ds);
161 		return false;
162 	}
163 	geo->ecc_chunk_size = chip->ecc_step_ds;
164 	geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
165 	if (!gpmi_check_ecc(this))
166 		return false;
167 
168 	/* Keep the C >= O */
169 	if (geo->ecc_chunk_size < mtd->oobsize) {
170 		dev_err(this->dev,
171 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
172 			chip->ecc_step_ds, mtd->oobsize);
173 		return false;
174 	}
175 
176 	/* The default value, see comment in the legacy_set_geometry(). */
177 	geo->metadata_size = 10;
178 
179 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
180 
181 	/*
182 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
183 	 *
184 	 *    |                          P                            |
185 	 *    |<----------------------------------------------------->|
186 	 *    |                                                       |
187 	 *    |                                        (Block Mark)   |
188 	 *    |                      P'                      |      | |     |
189 	 *    |<-------------------------------------------->|  D   | |  O' |
190 	 *    |                                              |<---->| |<--->|
191 	 *    V                                              V      V V     V
192 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
193 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
194 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
195 	 *                                                   ^              ^
196 	 *                                                   |      O       |
197 	 *                                                   |<------------>|
198 	 *                                                   |              |
199 	 *
200 	 *	P : the page size for BCH module.
201 	 *	E : The ECC strength.
202 	 *	G : the length of Galois Field.
203 	 *	N : The chunk count of per page.
204 	 *	M : the metasize of per page.
205 	 *	C : the ecc chunk size, aka the "data" above.
206 	 *	P': the nand chip's page size.
207 	 *	O : the nand chip's oob size.
208 	 *	O': the free oob.
209 	 *
210 	 *	The formula for P is :
211 	 *
212 	 *	            E * G * N
213 	 *	       P = ------------ + P' + M
214 	 *                      8
215 	 *
216 	 * The position of block mark moves forward in the ECC-based view
217 	 * of page, and the delta is:
218 	 *
219 	 *                   E * G * (N - 1)
220 	 *             D = (---------------- + M)
221 	 *                          8
222 	 *
223 	 * Please see the comment in legacy_set_geometry().
224 	 * With the condition C >= O , we still can get same result.
225 	 * So the bit position of the physical block mark within the ECC-based
226 	 * view of the page is :
227 	 *             (P' - D) * 8
228 	 */
229 	geo->page_size = mtd->writesize + geo->metadata_size +
230 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
231 
232 	/* The available oob size we have. */
233 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
234 		of->offset = geo->page_size - mtd->writesize;
235 		of->length = mtd->oobsize - of->offset;
236 	}
237 
238 	geo->payload_size = mtd->writesize;
239 
240 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
241 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
242 				+ ALIGN(geo->ecc_chunk_count, 4);
243 
244 	if (!this->swap_block_mark)
245 		return true;
246 
247 	/* For bit swap. */
248 	block_mark_bit_offset = mtd->writesize * 8 -
249 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
250 				+ geo->metadata_size * 8);
251 
252 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
253 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
254 	return true;
255 }
256 
legacy_set_geometry(struct gpmi_nand_data * this)257 static int legacy_set_geometry(struct gpmi_nand_data *this)
258 {
259 	struct bch_geometry *geo = &this->bch_geometry;
260 	struct mtd_info *mtd = &this->mtd;
261 	unsigned int metadata_size;
262 	unsigned int status_size;
263 	unsigned int block_mark_bit_offset;
264 
265 	/*
266 	 * The size of the metadata can be changed, though we set it to 10
267 	 * bytes now. But it can't be too large, because we have to save
268 	 * enough space for BCH.
269 	 */
270 	geo->metadata_size = 10;
271 
272 	/* The default for the length of Galois Field. */
273 	geo->gf_len = 13;
274 
275 	/* The default for chunk size. */
276 	geo->ecc_chunk_size = 512;
277 	while (geo->ecc_chunk_size < mtd->oobsize) {
278 		geo->ecc_chunk_size *= 2; /* keep C >= O */
279 		geo->gf_len = 14;
280 	}
281 
282 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
283 
284 	/* We use the same ECC strength for all chunks. */
285 	geo->ecc_strength = get_ecc_strength(this);
286 	if (!gpmi_check_ecc(this)) {
287 		dev_err(this->dev,
288 			"required ecc strength of the NAND chip: %d is not supported by the GPMI controller (%d)\n",
289 			geo->ecc_strength,
290 			this->devdata->bch_max_ecc_strength);
291 		return -EINVAL;
292 	}
293 
294 	geo->page_size = mtd->writesize + mtd->oobsize;
295 	geo->payload_size = mtd->writesize;
296 
297 	/*
298 	 * The auxiliary buffer contains the metadata and the ECC status. The
299 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
300 	 * contains one byte for every ECC chunk, and is also padded to the
301 	 * nearest 32-bit boundary.
302 	 */
303 	metadata_size = ALIGN(geo->metadata_size, 4);
304 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
305 
306 	geo->auxiliary_size = metadata_size + status_size;
307 	geo->auxiliary_status_offset = metadata_size;
308 
309 	if (!this->swap_block_mark)
310 		return 0;
311 
312 	/*
313 	 * We need to compute the byte and bit offsets of
314 	 * the physical block mark within the ECC-based view of the page.
315 	 *
316 	 * NAND chip with 2K page shows below:
317 	 *                                             (Block Mark)
318 	 *                                                   |      |
319 	 *                                                   |  D   |
320 	 *                                                   |<---->|
321 	 *                                                   V      V
322 	 *    +---+----------+-+----------+-+----------+-+----------+-+
323 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
324 	 *    +---+----------+-+----------+-+----------+-+----------+-+
325 	 *
326 	 * The position of block mark moves forward in the ECC-based view
327 	 * of page, and the delta is:
328 	 *
329 	 *                   E * G * (N - 1)
330 	 *             D = (---------------- + M)
331 	 *                          8
332 	 *
333 	 * With the formula to compute the ECC strength, and the condition
334 	 *       : C >= O         (C is the ecc chunk size)
335 	 *
336 	 * It's easy to deduce to the following result:
337 	 *
338 	 *         E * G       (O - M)      C - M         C - M
339 	 *      ----------- <= ------- <=  --------  <  ---------
340 	 *           8            N           N          (N - 1)
341 	 *
342 	 *  So, we get:
343 	 *
344 	 *                   E * G * (N - 1)
345 	 *             D = (---------------- + M) < C
346 	 *                          8
347 	 *
348 	 *  The above inequality means the position of block mark
349 	 *  within the ECC-based view of the page is still in the data chunk,
350 	 *  and it's NOT in the ECC bits of the chunk.
351 	 *
352 	 *  Use the following to compute the bit position of the
353 	 *  physical block mark within the ECC-based view of the page:
354 	 *          (page_size - D) * 8
355 	 *
356 	 *  --Huang Shijie
357 	 */
358 	block_mark_bit_offset = mtd->writesize * 8 -
359 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
360 				+ geo->metadata_size * 8);
361 
362 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
363 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
364 	return 0;
365 }
366 
common_nfc_set_geometry(struct gpmi_nand_data * this)367 int common_nfc_set_geometry(struct gpmi_nand_data *this)
368 {
369 	if (of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")
370 		&& set_geometry_by_ecc_info(this))
371 		return 0;
372 	return legacy_set_geometry(this);
373 }
374 
get_dma_chan(struct gpmi_nand_data * this)375 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
376 {
377 	/* We use the DMA channel 0 to access all the nand chips. */
378 	return this->dma_chans[0];
379 }
380 
381 /* Can we use the upper's buffer directly for DMA? */
prepare_data_dma(struct gpmi_nand_data * this,enum dma_data_direction dr)382 void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
383 {
384 	struct scatterlist *sgl = &this->data_sgl;
385 	int ret;
386 
387 	/* first try to map the upper buffer directly */
388 	if (virt_addr_valid(this->upper_buf) &&
389 		!object_is_on_stack(this->upper_buf)) {
390 		sg_init_one(sgl, this->upper_buf, this->upper_len);
391 		ret = dma_map_sg(this->dev, sgl, 1, dr);
392 		if (ret == 0)
393 			goto map_fail;
394 
395 		this->direct_dma_map_ok = true;
396 		return;
397 	}
398 
399 map_fail:
400 	/* We have to use our own DMA buffer. */
401 	sg_init_one(sgl, this->data_buffer_dma, this->upper_len);
402 
403 	if (dr == DMA_TO_DEVICE)
404 		memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len);
405 
406 	dma_map_sg(this->dev, sgl, 1, dr);
407 
408 	this->direct_dma_map_ok = false;
409 }
410 
411 /* This will be called after the DMA operation is finished. */
dma_irq_callback(void * param)412 static void dma_irq_callback(void *param)
413 {
414 	struct gpmi_nand_data *this = param;
415 	struct completion *dma_c = &this->dma_done;
416 
417 	switch (this->dma_type) {
418 	case DMA_FOR_COMMAND:
419 		dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
420 		break;
421 
422 	case DMA_FOR_READ_DATA:
423 		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
424 		if (this->direct_dma_map_ok == false)
425 			memcpy(this->upper_buf, this->data_buffer_dma,
426 				this->upper_len);
427 		break;
428 
429 	case DMA_FOR_WRITE_DATA:
430 		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
431 		break;
432 
433 	case DMA_FOR_READ_ECC_PAGE:
434 	case DMA_FOR_WRITE_ECC_PAGE:
435 		/* We have to wait the BCH interrupt to finish. */
436 		break;
437 
438 	default:
439 		dev_err(this->dev, "in wrong DMA operation.\n");
440 	}
441 
442 	complete(dma_c);
443 }
444 
start_dma_without_bch_irq(struct gpmi_nand_data * this,struct dma_async_tx_descriptor * desc)445 int start_dma_without_bch_irq(struct gpmi_nand_data *this,
446 				struct dma_async_tx_descriptor *desc)
447 {
448 	struct completion *dma_c = &this->dma_done;
449 	unsigned long timeout;
450 
451 	init_completion(dma_c);
452 
453 	desc->callback		= dma_irq_callback;
454 	desc->callback_param	= this;
455 	dmaengine_submit(desc);
456 	dma_async_issue_pending(get_dma_chan(this));
457 
458 	/* Wait for the interrupt from the DMA block. */
459 	timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
460 	if (!timeout) {
461 		dev_err(this->dev, "DMA timeout, last DMA :%d\n",
462 			this->last_dma_type);
463 		gpmi_dump_info(this);
464 		return -ETIMEDOUT;
465 	}
466 	return 0;
467 }
468 
469 /*
470  * This function is used in BCH reading or BCH writing pages.
471  * It will wait for the BCH interrupt as long as ONE second.
472  * Actually, we must wait for two interrupts :
473  *	[1] firstly the DMA interrupt and
474  *	[2] secondly the BCH interrupt.
475  */
start_dma_with_bch_irq(struct gpmi_nand_data * this,struct dma_async_tx_descriptor * desc)476 int start_dma_with_bch_irq(struct gpmi_nand_data *this,
477 			struct dma_async_tx_descriptor *desc)
478 {
479 	struct completion *bch_c = &this->bch_done;
480 	unsigned long timeout;
481 
482 	/* Prepare to receive an interrupt from the BCH block. */
483 	init_completion(bch_c);
484 
485 	/* start the DMA */
486 	start_dma_without_bch_irq(this, desc);
487 
488 	/* Wait for the interrupt from the BCH block. */
489 	timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
490 	if (!timeout) {
491 		dev_err(this->dev, "BCH timeout, last DMA :%d\n",
492 			this->last_dma_type);
493 		gpmi_dump_info(this);
494 		return -ETIMEDOUT;
495 	}
496 	return 0;
497 }
498 
acquire_register_block(struct gpmi_nand_data * this,const char * res_name)499 static int acquire_register_block(struct gpmi_nand_data *this,
500 				  const char *res_name)
501 {
502 	struct platform_device *pdev = this->pdev;
503 	struct resources *res = &this->resources;
504 	struct resource *r;
505 	void __iomem *p;
506 
507 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
508 	p = devm_ioremap_resource(&pdev->dev, r);
509 	if (IS_ERR(p))
510 		return PTR_ERR(p);
511 
512 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
513 		res->gpmi_regs = p;
514 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
515 		res->bch_regs = p;
516 	else
517 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
518 
519 	return 0;
520 }
521 
acquire_bch_irq(struct gpmi_nand_data * this,irq_handler_t irq_h)522 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
523 {
524 	struct platform_device *pdev = this->pdev;
525 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
526 	struct resource *r;
527 	int err;
528 
529 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
530 	if (!r) {
531 		dev_err(this->dev, "Can't get resource for %s\n", res_name);
532 		return -ENODEV;
533 	}
534 
535 	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
536 	if (err)
537 		dev_err(this->dev, "error requesting BCH IRQ\n");
538 
539 	return err;
540 }
541 
release_dma_channels(struct gpmi_nand_data * this)542 static void release_dma_channels(struct gpmi_nand_data *this)
543 {
544 	unsigned int i;
545 	for (i = 0; i < DMA_CHANS; i++)
546 		if (this->dma_chans[i]) {
547 			dma_release_channel(this->dma_chans[i]);
548 			this->dma_chans[i] = NULL;
549 		}
550 }
551 
acquire_dma_channels(struct gpmi_nand_data * this)552 static int acquire_dma_channels(struct gpmi_nand_data *this)
553 {
554 	struct platform_device *pdev = this->pdev;
555 	struct dma_chan *dma_chan;
556 
557 	/* request dma channel */
558 	dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
559 	if (!dma_chan) {
560 		dev_err(this->dev, "Failed to request DMA channel.\n");
561 		goto acquire_err;
562 	}
563 
564 	this->dma_chans[0] = dma_chan;
565 	return 0;
566 
567 acquire_err:
568 	release_dma_channels(this);
569 	return -EINVAL;
570 }
571 
572 static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
573 	"gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
574 };
575 
gpmi_get_clks(struct gpmi_nand_data * this)576 static int gpmi_get_clks(struct gpmi_nand_data *this)
577 {
578 	struct resources *r = &this->resources;
579 	char **extra_clks = NULL;
580 	struct clk *clk;
581 	int err, i;
582 
583 	/* The main clock is stored in the first. */
584 	r->clock[0] = devm_clk_get(this->dev, "gpmi_io");
585 	if (IS_ERR(r->clock[0])) {
586 		err = PTR_ERR(r->clock[0]);
587 		goto err_clock;
588 	}
589 
590 	/* Get extra clocks */
591 	if (GPMI_IS_MX6(this))
592 		extra_clks = extra_clks_for_mx6q;
593 	if (!extra_clks)
594 		return 0;
595 
596 	for (i = 1; i < GPMI_CLK_MAX; i++) {
597 		if (extra_clks[i - 1] == NULL)
598 			break;
599 
600 		clk = devm_clk_get(this->dev, extra_clks[i - 1]);
601 		if (IS_ERR(clk)) {
602 			err = PTR_ERR(clk);
603 			goto err_clock;
604 		}
605 
606 		r->clock[i] = clk;
607 	}
608 
609 	if (GPMI_IS_MX6(this))
610 		/*
611 		 * Set the default value for the gpmi clock.
612 		 *
613 		 * If you want to use the ONFI nand which is in the
614 		 * Synchronous Mode, you should change the clock as you need.
615 		 */
616 		clk_set_rate(r->clock[0], 22000000);
617 
618 	return 0;
619 
620 err_clock:
621 	dev_dbg(this->dev, "failed in finding the clocks.\n");
622 	return err;
623 }
624 
acquire_resources(struct gpmi_nand_data * this)625 static int acquire_resources(struct gpmi_nand_data *this)
626 {
627 	int ret;
628 
629 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
630 	if (ret)
631 		goto exit_regs;
632 
633 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
634 	if (ret)
635 		goto exit_regs;
636 
637 	ret = acquire_bch_irq(this, bch_irq);
638 	if (ret)
639 		goto exit_regs;
640 
641 	ret = acquire_dma_channels(this);
642 	if (ret)
643 		goto exit_regs;
644 
645 	ret = gpmi_get_clks(this);
646 	if (ret)
647 		goto exit_clock;
648 	return 0;
649 
650 exit_clock:
651 	release_dma_channels(this);
652 exit_regs:
653 	return ret;
654 }
655 
release_resources(struct gpmi_nand_data * this)656 static void release_resources(struct gpmi_nand_data *this)
657 {
658 	release_dma_channels(this);
659 }
660 
init_hardware(struct gpmi_nand_data * this)661 static int init_hardware(struct gpmi_nand_data *this)
662 {
663 	int ret;
664 
665 	/*
666 	 * This structure contains the "safe" GPMI timing that should succeed
667 	 * with any NAND Flash device
668 	 * (although, with less-than-optimal performance).
669 	 */
670 	struct nand_timing  safe_timing = {
671 		.data_setup_in_ns        = 80,
672 		.data_hold_in_ns         = 60,
673 		.address_setup_in_ns     = 25,
674 		.gpmi_sample_delay_in_ns =  6,
675 		.tREA_in_ns              = -1,
676 		.tRLOH_in_ns             = -1,
677 		.tRHOH_in_ns             = -1,
678 	};
679 
680 	/* Initialize the hardwares. */
681 	ret = gpmi_init(this);
682 	if (ret)
683 		return ret;
684 
685 	this->timing = safe_timing;
686 	return 0;
687 }
688 
read_page_prepare(struct gpmi_nand_data * this,void * destination,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,void ** use_virt,dma_addr_t * use_phys)689 static int read_page_prepare(struct gpmi_nand_data *this,
690 			void *destination, unsigned length,
691 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
692 			void **use_virt, dma_addr_t *use_phys)
693 {
694 	struct device *dev = this->dev;
695 
696 	if (virt_addr_valid(destination)) {
697 		dma_addr_t dest_phys;
698 
699 		dest_phys = dma_map_single(dev, destination,
700 						length, DMA_FROM_DEVICE);
701 		if (dma_mapping_error(dev, dest_phys)) {
702 			if (alt_size < length) {
703 				dev_err(dev, "Alternate buffer is too small\n");
704 				return -ENOMEM;
705 			}
706 			goto map_failed;
707 		}
708 		*use_virt = destination;
709 		*use_phys = dest_phys;
710 		this->direct_dma_map_ok = true;
711 		return 0;
712 	}
713 
714 map_failed:
715 	*use_virt = alt_virt;
716 	*use_phys = alt_phys;
717 	this->direct_dma_map_ok = false;
718 	return 0;
719 }
720 
read_page_end(struct gpmi_nand_data * this,void * destination,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,void * used_virt,dma_addr_t used_phys)721 static inline void read_page_end(struct gpmi_nand_data *this,
722 			void *destination, unsigned length,
723 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
724 			void *used_virt, dma_addr_t used_phys)
725 {
726 	if (this->direct_dma_map_ok)
727 		dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
728 }
729 
read_page_swap_end(struct gpmi_nand_data * this,void * destination,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,void * used_virt,dma_addr_t used_phys)730 static inline void read_page_swap_end(struct gpmi_nand_data *this,
731 			void *destination, unsigned length,
732 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
733 			void *used_virt, dma_addr_t used_phys)
734 {
735 	if (!this->direct_dma_map_ok)
736 		memcpy(destination, alt_virt, length);
737 }
738 
send_page_prepare(struct gpmi_nand_data * this,const void * source,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,const void ** use_virt,dma_addr_t * use_phys)739 static int send_page_prepare(struct gpmi_nand_data *this,
740 			const void *source, unsigned length,
741 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
742 			const void **use_virt, dma_addr_t *use_phys)
743 {
744 	struct device *dev = this->dev;
745 
746 	if (virt_addr_valid(source)) {
747 		dma_addr_t source_phys;
748 
749 		source_phys = dma_map_single(dev, (void *)source, length,
750 						DMA_TO_DEVICE);
751 		if (dma_mapping_error(dev, source_phys)) {
752 			if (alt_size < length) {
753 				dev_err(dev, "Alternate buffer is too small\n");
754 				return -ENOMEM;
755 			}
756 			goto map_failed;
757 		}
758 		*use_virt = source;
759 		*use_phys = source_phys;
760 		return 0;
761 	}
762 map_failed:
763 	/*
764 	 * Copy the content of the source buffer into the alternate
765 	 * buffer and set up the return values accordingly.
766 	 */
767 	memcpy(alt_virt, source, length);
768 
769 	*use_virt = alt_virt;
770 	*use_phys = alt_phys;
771 	return 0;
772 }
773 
send_page_end(struct gpmi_nand_data * this,const void * source,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,const void * used_virt,dma_addr_t used_phys)774 static void send_page_end(struct gpmi_nand_data *this,
775 			const void *source, unsigned length,
776 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
777 			const void *used_virt, dma_addr_t used_phys)
778 {
779 	struct device *dev = this->dev;
780 	if (used_virt == source)
781 		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
782 }
783 
gpmi_free_dma_buffer(struct gpmi_nand_data * this)784 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
785 {
786 	struct device *dev = this->dev;
787 
788 	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
789 		dma_free_coherent(dev, this->page_buffer_size,
790 					this->page_buffer_virt,
791 					this->page_buffer_phys);
792 	kfree(this->cmd_buffer);
793 	kfree(this->data_buffer_dma);
794 	kfree(this->raw_buffer);
795 
796 	this->cmd_buffer	= NULL;
797 	this->data_buffer_dma	= NULL;
798 	this->page_buffer_virt	= NULL;
799 	this->page_buffer_size	=  0;
800 }
801 
802 /* Allocate the DMA buffers */
gpmi_alloc_dma_buffer(struct gpmi_nand_data * this)803 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
804 {
805 	struct bch_geometry *geo = &this->bch_geometry;
806 	struct device *dev = this->dev;
807 	struct mtd_info *mtd = &this->mtd;
808 
809 	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
810 	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
811 	if (this->cmd_buffer == NULL)
812 		goto error_alloc;
813 
814 	/*
815 	 * [2] Allocate a read/write data buffer.
816 	 *     The gpmi_alloc_dma_buffer can be called twice.
817 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
818 	 *     is called before the nand_scan_ident; and we allocate a buffer
819 	 *     of the real NAND page size when the gpmi_alloc_dma_buffer is
820 	 *     called after the nand_scan_ident.
821 	 */
822 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
823 					GFP_DMA | GFP_KERNEL);
824 	if (this->data_buffer_dma == NULL)
825 		goto error_alloc;
826 
827 	/*
828 	 * [3] Allocate the page buffer.
829 	 *
830 	 * Both the payload buffer and the auxiliary buffer must appear on
831 	 * 32-bit boundaries. We presume the size of the payload buffer is a
832 	 * power of two and is much larger than four, which guarantees the
833 	 * auxiliary buffer will appear on a 32-bit boundary.
834 	 */
835 	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
836 	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
837 					&this->page_buffer_phys, GFP_DMA);
838 	if (!this->page_buffer_virt)
839 		goto error_alloc;
840 
841 	this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
842 	if (!this->raw_buffer)
843 		goto error_alloc;
844 
845 	/* Slice up the page buffer. */
846 	this->payload_virt = this->page_buffer_virt;
847 	this->payload_phys = this->page_buffer_phys;
848 	this->auxiliary_virt = this->payload_virt + geo->payload_size;
849 	this->auxiliary_phys = this->payload_phys + geo->payload_size;
850 	return 0;
851 
852 error_alloc:
853 	gpmi_free_dma_buffer(this);
854 	return -ENOMEM;
855 }
856 
gpmi_cmd_ctrl(struct mtd_info * mtd,int data,unsigned int ctrl)857 static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
858 {
859 	struct nand_chip *chip = mtd->priv;
860 	struct gpmi_nand_data *this = chip->priv;
861 	int ret;
862 
863 	/*
864 	 * Every operation begins with a command byte and a series of zero or
865 	 * more address bytes. These are distinguished by either the Address
866 	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
867 	 * asserted. When MTD is ready to execute the command, it will deassert
868 	 * both latch enables.
869 	 *
870 	 * Rather than run a separate DMA operation for every single byte, we
871 	 * queue them up and run a single DMA operation for the entire series
872 	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
873 	 */
874 	if ((ctrl & (NAND_ALE | NAND_CLE))) {
875 		if (data != NAND_CMD_NONE)
876 			this->cmd_buffer[this->command_length++] = data;
877 		return;
878 	}
879 
880 	if (!this->command_length)
881 		return;
882 
883 	ret = gpmi_send_command(this);
884 	if (ret)
885 		dev_err(this->dev, "Chip: %u, Error %d\n",
886 			this->current_chip, ret);
887 
888 	this->command_length = 0;
889 }
890 
gpmi_dev_ready(struct mtd_info * mtd)891 static int gpmi_dev_ready(struct mtd_info *mtd)
892 {
893 	struct nand_chip *chip = mtd->priv;
894 	struct gpmi_nand_data *this = chip->priv;
895 
896 	return gpmi_is_ready(this, this->current_chip);
897 }
898 
gpmi_select_chip(struct mtd_info * mtd,int chipnr)899 static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
900 {
901 	struct nand_chip *chip = mtd->priv;
902 	struct gpmi_nand_data *this = chip->priv;
903 
904 	if ((this->current_chip < 0) && (chipnr >= 0))
905 		gpmi_begin(this);
906 	else if ((this->current_chip >= 0) && (chipnr < 0))
907 		gpmi_end(this);
908 
909 	this->current_chip = chipnr;
910 }
911 
gpmi_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)912 static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
913 {
914 	struct nand_chip *chip = mtd->priv;
915 	struct gpmi_nand_data *this = chip->priv;
916 
917 	dev_dbg(this->dev, "len is %d\n", len);
918 	this->upper_buf	= buf;
919 	this->upper_len	= len;
920 
921 	gpmi_read_data(this);
922 }
923 
gpmi_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)924 static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
925 {
926 	struct nand_chip *chip = mtd->priv;
927 	struct gpmi_nand_data *this = chip->priv;
928 
929 	dev_dbg(this->dev, "len is %d\n", len);
930 	this->upper_buf	= (uint8_t *)buf;
931 	this->upper_len	= len;
932 
933 	gpmi_send_data(this);
934 }
935 
gpmi_read_byte(struct mtd_info * mtd)936 static uint8_t gpmi_read_byte(struct mtd_info *mtd)
937 {
938 	struct nand_chip *chip = mtd->priv;
939 	struct gpmi_nand_data *this = chip->priv;
940 	uint8_t *buf = this->data_buffer_dma;
941 
942 	gpmi_read_buf(mtd, buf, 1);
943 	return buf[0];
944 }
945 
946 /*
947  * Handles block mark swapping.
948  * It can be called in swapping the block mark, or swapping it back,
949  * because the the operations are the same.
950  */
block_mark_swapping(struct gpmi_nand_data * this,void * payload,void * auxiliary)951 static void block_mark_swapping(struct gpmi_nand_data *this,
952 				void *payload, void *auxiliary)
953 {
954 	struct bch_geometry *nfc_geo = &this->bch_geometry;
955 	unsigned char *p;
956 	unsigned char *a;
957 	unsigned int  bit;
958 	unsigned char mask;
959 	unsigned char from_data;
960 	unsigned char from_oob;
961 
962 	if (!this->swap_block_mark)
963 		return;
964 
965 	/*
966 	 * If control arrives here, we're swapping. Make some convenience
967 	 * variables.
968 	 */
969 	bit = nfc_geo->block_mark_bit_offset;
970 	p   = payload + nfc_geo->block_mark_byte_offset;
971 	a   = auxiliary;
972 
973 	/*
974 	 * Get the byte from the data area that overlays the block mark. Since
975 	 * the ECC engine applies its own view to the bits in the page, the
976 	 * physical block mark won't (in general) appear on a byte boundary in
977 	 * the data.
978 	 */
979 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
980 
981 	/* Get the byte from the OOB. */
982 	from_oob = a[0];
983 
984 	/* Swap them. */
985 	a[0] = from_data;
986 
987 	mask = (0x1 << bit) - 1;
988 	p[0] = (p[0] & mask) | (from_oob << bit);
989 
990 	mask = ~0 << bit;
991 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
992 }
993 
gpmi_ecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)994 static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
995 				uint8_t *buf, int oob_required, int page)
996 {
997 	struct gpmi_nand_data *this = chip->priv;
998 	struct bch_geometry *nfc_geo = &this->bch_geometry;
999 	void          *payload_virt;
1000 	dma_addr_t    payload_phys;
1001 	void          *auxiliary_virt;
1002 	dma_addr_t    auxiliary_phys;
1003 	unsigned int  i;
1004 	unsigned char *status;
1005 	unsigned int  max_bitflips = 0;
1006 	int           ret;
1007 
1008 	dev_dbg(this->dev, "page number is : %d\n", page);
1009 	ret = read_page_prepare(this, buf, nfc_geo->payload_size,
1010 					this->payload_virt, this->payload_phys,
1011 					nfc_geo->payload_size,
1012 					&payload_virt, &payload_phys);
1013 	if (ret) {
1014 		dev_err(this->dev, "Inadequate DMA buffer\n");
1015 		ret = -ENOMEM;
1016 		return ret;
1017 	}
1018 	auxiliary_virt = this->auxiliary_virt;
1019 	auxiliary_phys = this->auxiliary_phys;
1020 
1021 	/* go! */
1022 	ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
1023 	read_page_end(this, buf, nfc_geo->payload_size,
1024 			this->payload_virt, this->payload_phys,
1025 			nfc_geo->payload_size,
1026 			payload_virt, payload_phys);
1027 	if (ret) {
1028 		dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
1029 		return ret;
1030 	}
1031 
1032 	/* handle the block mark swapping */
1033 	block_mark_swapping(this, payload_virt, auxiliary_virt);
1034 
1035 	/* Loop over status bytes, accumulating ECC status. */
1036 	status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
1037 
1038 	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
1039 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1040 			continue;
1041 
1042 		if (*status == STATUS_UNCORRECTABLE) {
1043 			mtd->ecc_stats.failed++;
1044 			continue;
1045 		}
1046 		mtd->ecc_stats.corrected += *status;
1047 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1048 	}
1049 
1050 	if (oob_required) {
1051 		/*
1052 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1053 		 * for details about our policy for delivering the OOB.
1054 		 *
1055 		 * We fill the caller's buffer with set bits, and then copy the
1056 		 * block mark to th caller's buffer. Note that, if block mark
1057 		 * swapping was necessary, it has already been done, so we can
1058 		 * rely on the first byte of the auxiliary buffer to contain
1059 		 * the block mark.
1060 		 */
1061 		memset(chip->oob_poi, ~0, mtd->oobsize);
1062 		chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
1063 	}
1064 
1065 	read_page_swap_end(this, buf, nfc_geo->payload_size,
1066 			this->payload_virt, this->payload_phys,
1067 			nfc_geo->payload_size,
1068 			payload_virt, payload_phys);
1069 
1070 	return max_bitflips;
1071 }
1072 
1073 /* Fake a virtual small page for the subpage read */
gpmi_ecc_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offs,uint32_t len,uint8_t * buf,int page)1074 static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1075 			uint32_t offs, uint32_t len, uint8_t *buf, int page)
1076 {
1077 	struct gpmi_nand_data *this = chip->priv;
1078 	void __iomem *bch_regs = this->resources.bch_regs;
1079 	struct bch_geometry old_geo = this->bch_geometry;
1080 	struct bch_geometry *geo = &this->bch_geometry;
1081 	int size = chip->ecc.size; /* ECC chunk size */
1082 	int meta, n, page_size;
1083 	u32 r1_old, r2_old, r1_new, r2_new;
1084 	unsigned int max_bitflips;
1085 	int first, last, marker_pos;
1086 	int ecc_parity_size;
1087 	int col = 0;
1088 	int old_swap_block_mark = this->swap_block_mark;
1089 
1090 	/* The size of ECC parity */
1091 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1092 
1093 	/* Align it with the chunk size */
1094 	first = offs / size;
1095 	last = (offs + len - 1) / size;
1096 
1097 	if (this->swap_block_mark) {
1098 		/*
1099 		 * Find the chunk which contains the Block Marker.
1100 		 * If this chunk is in the range of [first, last],
1101 		 * we have to read out the whole page.
1102 		 * Why? since we had swapped the data at the position of Block
1103 		 * Marker to the metadata which is bound with the chunk 0.
1104 		 */
1105 		marker_pos = geo->block_mark_byte_offset / size;
1106 		if (last >= marker_pos && first <= marker_pos) {
1107 			dev_dbg(this->dev,
1108 				"page:%d, first:%d, last:%d, marker at:%d\n",
1109 				page, first, last, marker_pos);
1110 			return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
1111 		}
1112 	}
1113 
1114 	meta = geo->metadata_size;
1115 	if (first) {
1116 		col = meta + (size + ecc_parity_size) * first;
1117 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
1118 
1119 		meta = 0;
1120 		buf = buf + first * size;
1121 	}
1122 
1123 	/* Save the old environment */
1124 	r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
1125 	r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
1126 
1127 	/* change the BCH registers and bch_geometry{} */
1128 	n = last - first + 1;
1129 	page_size = meta + (size + ecc_parity_size) * n;
1130 
1131 	r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
1132 			BM_BCH_FLASH0LAYOUT0_META_SIZE);
1133 	r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
1134 			| BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
1135 	writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
1136 
1137 	r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
1138 	r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
1139 	writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
1140 
1141 	geo->ecc_chunk_count = n;
1142 	geo->payload_size = n * size;
1143 	geo->page_size = page_size;
1144 	geo->auxiliary_status_offset = ALIGN(meta, 4);
1145 
1146 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1147 		page, offs, len, col, first, n, page_size);
1148 
1149 	/* Read the subpage now */
1150 	this->swap_block_mark = false;
1151 	max_bitflips = gpmi_ecc_read_page(mtd, chip, buf, 0, page);
1152 
1153 	/* Restore */
1154 	writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
1155 	writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
1156 	this->bch_geometry = old_geo;
1157 	this->swap_block_mark = old_swap_block_mark;
1158 
1159 	return max_bitflips;
1160 }
1161 
gpmi_ecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1162 static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1163 				const uint8_t *buf, int oob_required, int page)
1164 {
1165 	struct gpmi_nand_data *this = chip->priv;
1166 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1167 	const void *payload_virt;
1168 	dma_addr_t payload_phys;
1169 	const void *auxiliary_virt;
1170 	dma_addr_t auxiliary_phys;
1171 	int        ret;
1172 
1173 	dev_dbg(this->dev, "ecc write page.\n");
1174 	if (this->swap_block_mark) {
1175 		/*
1176 		 * If control arrives here, we're doing block mark swapping.
1177 		 * Since we can't modify the caller's buffers, we must copy them
1178 		 * into our own.
1179 		 */
1180 		memcpy(this->payload_virt, buf, mtd->writesize);
1181 		payload_virt = this->payload_virt;
1182 		payload_phys = this->payload_phys;
1183 
1184 		memcpy(this->auxiliary_virt, chip->oob_poi,
1185 				nfc_geo->auxiliary_size);
1186 		auxiliary_virt = this->auxiliary_virt;
1187 		auxiliary_phys = this->auxiliary_phys;
1188 
1189 		/* Handle block mark swapping. */
1190 		block_mark_swapping(this,
1191 				(void *)payload_virt, (void *)auxiliary_virt);
1192 	} else {
1193 		/*
1194 		 * If control arrives here, we're not doing block mark swapping,
1195 		 * so we can to try and use the caller's buffers.
1196 		 */
1197 		ret = send_page_prepare(this,
1198 				buf, mtd->writesize,
1199 				this->payload_virt, this->payload_phys,
1200 				nfc_geo->payload_size,
1201 				&payload_virt, &payload_phys);
1202 		if (ret) {
1203 			dev_err(this->dev, "Inadequate payload DMA buffer\n");
1204 			return 0;
1205 		}
1206 
1207 		ret = send_page_prepare(this,
1208 				chip->oob_poi, mtd->oobsize,
1209 				this->auxiliary_virt, this->auxiliary_phys,
1210 				nfc_geo->auxiliary_size,
1211 				&auxiliary_virt, &auxiliary_phys);
1212 		if (ret) {
1213 			dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
1214 			goto exit_auxiliary;
1215 		}
1216 	}
1217 
1218 	/* Ask the NFC. */
1219 	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1220 	if (ret)
1221 		dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
1222 
1223 	if (!this->swap_block_mark) {
1224 		send_page_end(this, chip->oob_poi, mtd->oobsize,
1225 				this->auxiliary_virt, this->auxiliary_phys,
1226 				nfc_geo->auxiliary_size,
1227 				auxiliary_virt, auxiliary_phys);
1228 exit_auxiliary:
1229 		send_page_end(this, buf, mtd->writesize,
1230 				this->payload_virt, this->payload_phys,
1231 				nfc_geo->payload_size,
1232 				payload_virt, payload_phys);
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 /*
1239  * There are several places in this driver where we have to handle the OOB and
1240  * block marks. This is the function where things are the most complicated, so
1241  * this is where we try to explain it all. All the other places refer back to
1242  * here.
1243  *
1244  * These are the rules, in order of decreasing importance:
1245  *
1246  * 1) Nothing the caller does can be allowed to imperil the block mark.
1247  *
1248  * 2) In read operations, the first byte of the OOB we return must reflect the
1249  *    true state of the block mark, no matter where that block mark appears in
1250  *    the physical page.
1251  *
1252  * 3) ECC-based read operations return an OOB full of set bits (since we never
1253  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1254  *    return).
1255  *
1256  * 4) "Raw" read operations return a direct view of the physical bytes in the
1257  *    page, using the conventional definition of which bytes are data and which
1258  *    are OOB. This gives the caller a way to see the actual, physical bytes
1259  *    in the page, without the distortions applied by our ECC engine.
1260  *
1261  *
1262  * What we do for this specific read operation depends on two questions:
1263  *
1264  * 1) Are we doing a "raw" read, or an ECC-based read?
1265  *
1266  * 2) Are we using block mark swapping or transcription?
1267  *
1268  * There are four cases, illustrated by the following Karnaugh map:
1269  *
1270  *                    |           Raw           |         ECC-based       |
1271  *       -------------+-------------------------+-------------------------+
1272  *                    | Read the conventional   |                         |
1273  *                    | OOB at the end of the   |                         |
1274  *       Swapping     | page and return it. It  |                         |
1275  *                    | contains exactly what   |                         |
1276  *                    | we want.                | Read the block mark and |
1277  *       -------------+-------------------------+ return it in a buffer   |
1278  *                    | Read the conventional   | full of set bits.       |
1279  *                    | OOB at the end of the   |                         |
1280  *                    | page and also the block |                         |
1281  *       Transcribing | mark in the metadata.   |                         |
1282  *                    | Copy the block mark     |                         |
1283  *                    | into the first byte of  |                         |
1284  *                    | the OOB.                |                         |
1285  *       -------------+-------------------------+-------------------------+
1286  *
1287  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1288  * giving an accurate view of the actual, physical bytes in the page (we're
1289  * overwriting the block mark). That's OK because it's more important to follow
1290  * rule #2.
1291  *
1292  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1293  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1294  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1295  * ECC-based or raw view of the page is implicit in which function it calls
1296  * (there is a similar pair of ECC-based/raw functions for writing).
1297  */
gpmi_ecc_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1298 static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1299 				int page)
1300 {
1301 	struct gpmi_nand_data *this = chip->priv;
1302 
1303 	dev_dbg(this->dev, "page number is %d\n", page);
1304 	/* clear the OOB buffer */
1305 	memset(chip->oob_poi, ~0, mtd->oobsize);
1306 
1307 	/* Read out the conventional OOB. */
1308 	chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1309 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1310 
1311 	/*
1312 	 * Now, we want to make sure the block mark is correct. In the
1313 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1314 	 * Otherwise, we need to explicitly read it.
1315 	 */
1316 	if (GPMI_IS_MX23(this)) {
1317 		/* Read the block mark into the first byte of the OOB buffer. */
1318 		chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1319 		chip->oob_poi[0] = chip->read_byte(mtd);
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static int
gpmi_ecc_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1326 gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1327 {
1328 	struct nand_oobfree *of = mtd->ecclayout->oobfree;
1329 	int status = 0;
1330 
1331 	/* Do we have available oob area? */
1332 	if (!of->length)
1333 		return -EPERM;
1334 
1335 	if (!nand_is_slc(chip))
1336 		return -EPERM;
1337 
1338 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of->offset, page);
1339 	chip->write_buf(mtd, chip->oob_poi + of->offset, of->length);
1340 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1341 
1342 	status = chip->waitfunc(mtd, chip);
1343 	return status & NAND_STATUS_FAIL ? -EIO : 0;
1344 }
1345 
1346 /*
1347  * This function reads a NAND page without involving the ECC engine (no HW
1348  * ECC correction).
1349  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1350  * inline (interleaved with payload DATA), and do not align data chunk on
1351  * byte boundaries.
1352  * We thus need to take care moving the payload data and ECC bits stored in the
1353  * page into the provided buffers, which is why we're using gpmi_copy_bits.
1354  *
1355  * See set_geometry_by_ecc_info inline comments to have a full description
1356  * of the layout used by the GPMI controller.
1357  */
gpmi_ecc_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1358 static int gpmi_ecc_read_page_raw(struct mtd_info *mtd,
1359 				  struct nand_chip *chip, uint8_t *buf,
1360 				  int oob_required, int page)
1361 {
1362 	struct gpmi_nand_data *this = chip->priv;
1363 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1364 	int eccsize = nfc_geo->ecc_chunk_size;
1365 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1366 	u8 *tmp_buf = this->raw_buffer;
1367 	size_t src_bit_off;
1368 	size_t oob_bit_off;
1369 	size_t oob_byte_off;
1370 	uint8_t *oob = chip->oob_poi;
1371 	int step;
1372 
1373 	chip->read_buf(mtd, tmp_buf,
1374 		       mtd->writesize + mtd->oobsize);
1375 
1376 	/*
1377 	 * If required, swap the bad block marker and the data stored in the
1378 	 * metadata section, so that we don't wrongly consider a block as bad.
1379 	 *
1380 	 * See the layout description for a detailed explanation on why this
1381 	 * is needed.
1382 	 */
1383 	if (this->swap_block_mark) {
1384 		u8 swap = tmp_buf[0];
1385 
1386 		tmp_buf[0] = tmp_buf[mtd->writesize];
1387 		tmp_buf[mtd->writesize] = swap;
1388 	}
1389 
1390 	/*
1391 	 * Copy the metadata section into the oob buffer (this section is
1392 	 * guaranteed to be aligned on a byte boundary).
1393 	 */
1394 	if (oob_required)
1395 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1396 
1397 	oob_bit_off = nfc_geo->metadata_size * 8;
1398 	src_bit_off = oob_bit_off;
1399 
1400 	/* Extract interleaved payload data and ECC bits */
1401 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1402 		if (buf)
1403 			gpmi_copy_bits(buf, step * eccsize * 8,
1404 				       tmp_buf, src_bit_off,
1405 				       eccsize * 8);
1406 		src_bit_off += eccsize * 8;
1407 
1408 		/* Align last ECC block to align a byte boundary */
1409 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1410 		    (oob_bit_off + eccbits) % 8)
1411 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1412 
1413 		if (oob_required)
1414 			gpmi_copy_bits(oob, oob_bit_off,
1415 				       tmp_buf, src_bit_off,
1416 				       eccbits);
1417 
1418 		src_bit_off += eccbits;
1419 		oob_bit_off += eccbits;
1420 	}
1421 
1422 	if (oob_required) {
1423 		oob_byte_off = oob_bit_off / 8;
1424 
1425 		if (oob_byte_off < mtd->oobsize)
1426 			memcpy(oob + oob_byte_off,
1427 			       tmp_buf + mtd->writesize + oob_byte_off,
1428 			       mtd->oobsize - oob_byte_off);
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 /*
1435  * This function writes a NAND page without involving the ECC engine (no HW
1436  * ECC generation).
1437  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1438  * inline (interleaved with payload DATA), and do not align data chunk on
1439  * byte boundaries.
1440  * We thus need to take care moving the OOB area at the right place in the
1441  * final page, which is why we're using gpmi_copy_bits.
1442  *
1443  * See set_geometry_by_ecc_info inline comments to have a full description
1444  * of the layout used by the GPMI controller.
1445  */
gpmi_ecc_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1446 static int gpmi_ecc_write_page_raw(struct mtd_info *mtd,
1447 				   struct nand_chip *chip,
1448 				   const uint8_t *buf,
1449 				   int oob_required, int page)
1450 {
1451 	struct gpmi_nand_data *this = chip->priv;
1452 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1453 	int eccsize = nfc_geo->ecc_chunk_size;
1454 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1455 	u8 *tmp_buf = this->raw_buffer;
1456 	uint8_t *oob = chip->oob_poi;
1457 	size_t dst_bit_off;
1458 	size_t oob_bit_off;
1459 	size_t oob_byte_off;
1460 	int step;
1461 
1462 	/*
1463 	 * Initialize all bits to 1 in case we don't have a buffer for the
1464 	 * payload or oob data in order to leave unspecified bits of data
1465 	 * to their initial state.
1466 	 */
1467 	if (!buf || !oob_required)
1468 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1469 
1470 	/*
1471 	 * First copy the metadata section (stored in oob buffer) at the
1472 	 * beginning of the page, as imposed by the GPMI layout.
1473 	 */
1474 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1475 	oob_bit_off = nfc_geo->metadata_size * 8;
1476 	dst_bit_off = oob_bit_off;
1477 
1478 	/* Interleave payload data and ECC bits */
1479 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1480 		if (buf)
1481 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1482 				       buf, step * eccsize * 8, eccsize * 8);
1483 		dst_bit_off += eccsize * 8;
1484 
1485 		/* Align last ECC block to align a byte boundary */
1486 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1487 		    (oob_bit_off + eccbits) % 8)
1488 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1489 
1490 		if (oob_required)
1491 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1492 				       oob, oob_bit_off, eccbits);
1493 
1494 		dst_bit_off += eccbits;
1495 		oob_bit_off += eccbits;
1496 	}
1497 
1498 	oob_byte_off = oob_bit_off / 8;
1499 
1500 	if (oob_required && oob_byte_off < mtd->oobsize)
1501 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1502 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1503 
1504 	/*
1505 	 * If required, swap the bad block marker and the first byte of the
1506 	 * metadata section, so that we don't modify the bad block marker.
1507 	 *
1508 	 * See the layout description for a detailed explanation on why this
1509 	 * is needed.
1510 	 */
1511 	if (this->swap_block_mark) {
1512 		u8 swap = tmp_buf[0];
1513 
1514 		tmp_buf[0] = tmp_buf[mtd->writesize];
1515 		tmp_buf[mtd->writesize] = swap;
1516 	}
1517 
1518 	chip->write_buf(mtd, tmp_buf, mtd->writesize + mtd->oobsize);
1519 
1520 	return 0;
1521 }
1522 
gpmi_ecc_read_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1523 static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1524 				 int page)
1525 {
1526 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1527 
1528 	return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page);
1529 }
1530 
gpmi_ecc_write_oob_raw(struct mtd_info * mtd,struct nand_chip * chip,int page)1531 static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1532 				 int page)
1533 {
1534 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page);
1535 
1536 	return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page);
1537 }
1538 
gpmi_block_markbad(struct mtd_info * mtd,loff_t ofs)1539 static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1540 {
1541 	struct nand_chip *chip = mtd->priv;
1542 	struct gpmi_nand_data *this = chip->priv;
1543 	int ret = 0;
1544 	uint8_t *block_mark;
1545 	int column, page, status, chipnr;
1546 
1547 	chipnr = (int)(ofs >> chip->chip_shift);
1548 	chip->select_chip(mtd, chipnr);
1549 
1550 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1551 
1552 	/* Write the block mark. */
1553 	block_mark = this->data_buffer_dma;
1554 	block_mark[0] = 0; /* bad block marker */
1555 
1556 	/* Shift to get page */
1557 	page = (int)(ofs >> chip->page_shift);
1558 
1559 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1560 	chip->write_buf(mtd, block_mark, 1);
1561 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1562 
1563 	status = chip->waitfunc(mtd, chip);
1564 	if (status & NAND_STATUS_FAIL)
1565 		ret = -EIO;
1566 
1567 	chip->select_chip(mtd, -1);
1568 
1569 	return ret;
1570 }
1571 
nand_boot_set_geometry(struct gpmi_nand_data * this)1572 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1573 {
1574 	struct boot_rom_geometry *geometry = &this->rom_geometry;
1575 
1576 	/*
1577 	 * Set the boot block stride size.
1578 	 *
1579 	 * In principle, we should be reading this from the OTP bits, since
1580 	 * that's where the ROM is going to get it. In fact, we don't have any
1581 	 * way to read the OTP bits, so we go with the default and hope for the
1582 	 * best.
1583 	 */
1584 	geometry->stride_size_in_pages = 64;
1585 
1586 	/*
1587 	 * Set the search area stride exponent.
1588 	 *
1589 	 * In principle, we should be reading this from the OTP bits, since
1590 	 * that's where the ROM is going to get it. In fact, we don't have any
1591 	 * way to read the OTP bits, so we go with the default and hope for the
1592 	 * best.
1593 	 */
1594 	geometry->search_area_stride_exponent = 2;
1595 	return 0;
1596 }
1597 
1598 static const char  *fingerprint = "STMP";
mx23_check_transcription_stamp(struct gpmi_nand_data * this)1599 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1600 {
1601 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1602 	struct device *dev = this->dev;
1603 	struct mtd_info *mtd = &this->mtd;
1604 	struct nand_chip *chip = &this->nand;
1605 	unsigned int search_area_size_in_strides;
1606 	unsigned int stride;
1607 	unsigned int page;
1608 	uint8_t *buffer = chip->buffers->databuf;
1609 	int saved_chip_number;
1610 	int found_an_ncb_fingerprint = false;
1611 
1612 	/* Compute the number of strides in a search area. */
1613 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1614 
1615 	saved_chip_number = this->current_chip;
1616 	chip->select_chip(mtd, 0);
1617 
1618 	/*
1619 	 * Loop through the first search area, looking for the NCB fingerprint.
1620 	 */
1621 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1622 
1623 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1624 		/* Compute the page addresses. */
1625 		page = stride * rom_geo->stride_size_in_pages;
1626 
1627 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1628 
1629 		/*
1630 		 * Read the NCB fingerprint. The fingerprint is four bytes long
1631 		 * and starts in the 12th byte of the page.
1632 		 */
1633 		chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1634 		chip->read_buf(mtd, buffer, strlen(fingerprint));
1635 
1636 		/* Look for the fingerprint. */
1637 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1638 			found_an_ncb_fingerprint = true;
1639 			break;
1640 		}
1641 
1642 	}
1643 
1644 	chip->select_chip(mtd, saved_chip_number);
1645 
1646 	if (found_an_ncb_fingerprint)
1647 		dev_dbg(dev, "\tFound a fingerprint\n");
1648 	else
1649 		dev_dbg(dev, "\tNo fingerprint found\n");
1650 	return found_an_ncb_fingerprint;
1651 }
1652 
1653 /* Writes a transcription stamp. */
mx23_write_transcription_stamp(struct gpmi_nand_data * this)1654 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1655 {
1656 	struct device *dev = this->dev;
1657 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1658 	struct mtd_info *mtd = &this->mtd;
1659 	struct nand_chip *chip = &this->nand;
1660 	unsigned int block_size_in_pages;
1661 	unsigned int search_area_size_in_strides;
1662 	unsigned int search_area_size_in_pages;
1663 	unsigned int search_area_size_in_blocks;
1664 	unsigned int block;
1665 	unsigned int stride;
1666 	unsigned int page;
1667 	uint8_t      *buffer = chip->buffers->databuf;
1668 	int saved_chip_number;
1669 	int status;
1670 
1671 	/* Compute the search area geometry. */
1672 	block_size_in_pages = mtd->erasesize / mtd->writesize;
1673 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1674 	search_area_size_in_pages = search_area_size_in_strides *
1675 					rom_geo->stride_size_in_pages;
1676 	search_area_size_in_blocks =
1677 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1678 				    block_size_in_pages;
1679 
1680 	dev_dbg(dev, "Search Area Geometry :\n");
1681 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1682 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1683 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1684 
1685 	/* Select chip 0. */
1686 	saved_chip_number = this->current_chip;
1687 	chip->select_chip(mtd, 0);
1688 
1689 	/* Loop over blocks in the first search area, erasing them. */
1690 	dev_dbg(dev, "Erasing the search area...\n");
1691 
1692 	for (block = 0; block < search_area_size_in_blocks; block++) {
1693 		/* Compute the page address. */
1694 		page = block * block_size_in_pages;
1695 
1696 		/* Erase this block. */
1697 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
1698 		chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1699 		chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1700 
1701 		/* Wait for the erase to finish. */
1702 		status = chip->waitfunc(mtd, chip);
1703 		if (status & NAND_STATUS_FAIL)
1704 			dev_err(dev, "[%s] Erase failed.\n", __func__);
1705 	}
1706 
1707 	/* Write the NCB fingerprint into the page buffer. */
1708 	memset(buffer, ~0, mtd->writesize);
1709 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1710 
1711 	/* Loop through the first search area, writing NCB fingerprints. */
1712 	dev_dbg(dev, "Writing NCB fingerprints...\n");
1713 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1714 		/* Compute the page addresses. */
1715 		page = stride * rom_geo->stride_size_in_pages;
1716 
1717 		/* Write the first page of the current stride. */
1718 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1719 		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1720 		chip->ecc.write_page_raw(mtd, chip, buffer, 0, page);
1721 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1722 
1723 		/* Wait for the write to finish. */
1724 		status = chip->waitfunc(mtd, chip);
1725 		if (status & NAND_STATUS_FAIL)
1726 			dev_err(dev, "[%s] Write failed.\n", __func__);
1727 	}
1728 
1729 	/* Deselect chip 0. */
1730 	chip->select_chip(mtd, saved_chip_number);
1731 	return 0;
1732 }
1733 
mx23_boot_init(struct gpmi_nand_data * this)1734 static int mx23_boot_init(struct gpmi_nand_data  *this)
1735 {
1736 	struct device *dev = this->dev;
1737 	struct nand_chip *chip = &this->nand;
1738 	struct mtd_info *mtd = &this->mtd;
1739 	unsigned int block_count;
1740 	unsigned int block;
1741 	int     chipnr;
1742 	int     page;
1743 	loff_t  byte;
1744 	uint8_t block_mark;
1745 	int     ret = 0;
1746 
1747 	/*
1748 	 * If control arrives here, we can't use block mark swapping, which
1749 	 * means we're forced to use transcription. First, scan for the
1750 	 * transcription stamp. If we find it, then we don't have to do
1751 	 * anything -- the block marks are already transcribed.
1752 	 */
1753 	if (mx23_check_transcription_stamp(this))
1754 		return 0;
1755 
1756 	/*
1757 	 * If control arrives here, we couldn't find a transcription stamp, so
1758 	 * so we presume the block marks are in the conventional location.
1759 	 */
1760 	dev_dbg(dev, "Transcribing bad block marks...\n");
1761 
1762 	/* Compute the number of blocks in the entire medium. */
1763 	block_count = chip->chipsize >> chip->phys_erase_shift;
1764 
1765 	/*
1766 	 * Loop over all the blocks in the medium, transcribing block marks as
1767 	 * we go.
1768 	 */
1769 	for (block = 0; block < block_count; block++) {
1770 		/*
1771 		 * Compute the chip, page and byte addresses for this block's
1772 		 * conventional mark.
1773 		 */
1774 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1775 		page = block << (chip->phys_erase_shift - chip->page_shift);
1776 		byte = block <<  chip->phys_erase_shift;
1777 
1778 		/* Send the command to read the conventional block mark. */
1779 		chip->select_chip(mtd, chipnr);
1780 		chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1781 		block_mark = chip->read_byte(mtd);
1782 		chip->select_chip(mtd, -1);
1783 
1784 		/*
1785 		 * Check if the block is marked bad. If so, we need to mark it
1786 		 * again, but this time the result will be a mark in the
1787 		 * location where we transcribe block marks.
1788 		 */
1789 		if (block_mark != 0xff) {
1790 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
1791 			ret = chip->block_markbad(mtd, byte);
1792 			if (ret)
1793 				dev_err(dev,
1794 					"Failed to mark block bad with ret %d\n",
1795 					ret);
1796 		}
1797 	}
1798 
1799 	/* Write the stamp that indicates we've transcribed the block marks. */
1800 	mx23_write_transcription_stamp(this);
1801 	return 0;
1802 }
1803 
nand_boot_init(struct gpmi_nand_data * this)1804 static int nand_boot_init(struct gpmi_nand_data  *this)
1805 {
1806 	nand_boot_set_geometry(this);
1807 
1808 	/* This is ROM arch-specific initilization before the BBT scanning. */
1809 	if (GPMI_IS_MX23(this))
1810 		return mx23_boot_init(this);
1811 	return 0;
1812 }
1813 
gpmi_set_geometry(struct gpmi_nand_data * this)1814 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1815 {
1816 	int ret;
1817 
1818 	/* Free the temporary DMA memory for reading ID. */
1819 	gpmi_free_dma_buffer(this);
1820 
1821 	/* Set up the NFC geometry which is used by BCH. */
1822 	ret = bch_set_geometry(this);
1823 	if (ret) {
1824 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
1825 		return ret;
1826 	}
1827 
1828 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
1829 	return gpmi_alloc_dma_buffer(this);
1830 }
1831 
gpmi_nand_exit(struct gpmi_nand_data * this)1832 static void gpmi_nand_exit(struct gpmi_nand_data *this)
1833 {
1834 	nand_release(&this->mtd);
1835 	gpmi_free_dma_buffer(this);
1836 }
1837 
gpmi_init_last(struct gpmi_nand_data * this)1838 static int gpmi_init_last(struct gpmi_nand_data *this)
1839 {
1840 	struct mtd_info *mtd = &this->mtd;
1841 	struct nand_chip *chip = mtd->priv;
1842 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1843 	struct bch_geometry *bch_geo = &this->bch_geometry;
1844 	int ret;
1845 
1846 	/* Set up the medium geometry */
1847 	ret = gpmi_set_geometry(this);
1848 	if (ret)
1849 		return ret;
1850 
1851 	/* Init the nand_ecc_ctrl{} */
1852 	ecc->read_page	= gpmi_ecc_read_page;
1853 	ecc->write_page	= gpmi_ecc_write_page;
1854 	ecc->read_oob	= gpmi_ecc_read_oob;
1855 	ecc->write_oob	= gpmi_ecc_write_oob;
1856 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
1857 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
1858 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
1859 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
1860 	ecc->mode	= NAND_ECC_HW;
1861 	ecc->size	= bch_geo->ecc_chunk_size;
1862 	ecc->strength	= bch_geo->ecc_strength;
1863 	ecc->layout	= &gpmi_hw_ecclayout;
1864 
1865 	/*
1866 	 * We only enable the subpage read when:
1867 	 *  (1) the chip is imx6, and
1868 	 *  (2) the size of the ECC parity is byte aligned.
1869 	 */
1870 	if (GPMI_IS_MX6(this) &&
1871 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
1872 		ecc->read_subpage = gpmi_ecc_read_subpage;
1873 		chip->options |= NAND_SUBPAGE_READ;
1874 	}
1875 
1876 	/*
1877 	 * Can we enable the extra features? such as EDO or Sync mode.
1878 	 *
1879 	 * We do not check the return value now. That's means if we fail in
1880 	 * enable the extra features, we still can run in the normal way.
1881 	 */
1882 	gpmi_extra_init(this);
1883 
1884 	return 0;
1885 }
1886 
gpmi_nand_init(struct gpmi_nand_data * this)1887 static int gpmi_nand_init(struct gpmi_nand_data *this)
1888 {
1889 	struct mtd_info  *mtd = &this->mtd;
1890 	struct nand_chip *chip = &this->nand;
1891 	struct mtd_part_parser_data ppdata = {};
1892 	int ret;
1893 
1894 	/* init current chip */
1895 	this->current_chip	= -1;
1896 
1897 	/* init the MTD data structures */
1898 	mtd->priv		= chip;
1899 	mtd->name		= "gpmi-nand";
1900 	mtd->dev.parent		= this->dev;
1901 
1902 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1903 	chip->priv		= this;
1904 	chip->select_chip	= gpmi_select_chip;
1905 	chip->cmd_ctrl		= gpmi_cmd_ctrl;
1906 	chip->dev_ready		= gpmi_dev_ready;
1907 	chip->read_byte		= gpmi_read_byte;
1908 	chip->read_buf		= gpmi_read_buf;
1909 	chip->write_buf		= gpmi_write_buf;
1910 	chip->badblock_pattern	= &gpmi_bbt_descr;
1911 	chip->block_markbad	= gpmi_block_markbad;
1912 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
1913 
1914 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1915 	this->swap_block_mark = !GPMI_IS_MX23(this);
1916 
1917 	if (of_get_nand_on_flash_bbt(this->dev->of_node)) {
1918 		chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1919 
1920 		if (of_property_read_bool(this->dev->of_node,
1921 						"fsl,no-blockmark-swap"))
1922 			this->swap_block_mark = false;
1923 	}
1924 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
1925 		this->swap_block_mark ? "en" : "dis");
1926 
1927 	/*
1928 	 * Allocate a temporary DMA buffer for reading ID in the
1929 	 * nand_scan_ident().
1930 	 */
1931 	this->bch_geometry.payload_size = 1024;
1932 	this->bch_geometry.auxiliary_size = 128;
1933 	ret = gpmi_alloc_dma_buffer(this);
1934 	if (ret)
1935 		goto err_out;
1936 
1937 	ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL);
1938 	if (ret)
1939 		goto err_out;
1940 
1941 	ret = gpmi_init_last(this);
1942 	if (ret)
1943 		goto err_out;
1944 
1945 	chip->options |= NAND_SKIP_BBTSCAN;
1946 	ret = nand_scan_tail(mtd);
1947 	if (ret)
1948 		goto err_out;
1949 
1950 	ret = nand_boot_init(this);
1951 	if (ret)
1952 		goto err_out;
1953 	ret = chip->scan_bbt(mtd);
1954 	if (ret)
1955 		goto err_out;
1956 
1957 	ppdata.of_node = this->pdev->dev.of_node;
1958 	ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1959 	if (ret)
1960 		goto err_out;
1961 	return 0;
1962 
1963 err_out:
1964 	gpmi_nand_exit(this);
1965 	return ret;
1966 }
1967 
1968 static const struct of_device_id gpmi_nand_id_table[] = {
1969 	{
1970 		.compatible = "fsl,imx23-gpmi-nand",
1971 		.data = &gpmi_devdata_imx23,
1972 	}, {
1973 		.compatible = "fsl,imx28-gpmi-nand",
1974 		.data = &gpmi_devdata_imx28,
1975 	}, {
1976 		.compatible = "fsl,imx6q-gpmi-nand",
1977 		.data = &gpmi_devdata_imx6q,
1978 	}, {
1979 		.compatible = "fsl,imx6sx-gpmi-nand",
1980 		.data = &gpmi_devdata_imx6sx,
1981 	}, {}
1982 };
1983 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1984 
gpmi_nand_probe(struct platform_device * pdev)1985 static int gpmi_nand_probe(struct platform_device *pdev)
1986 {
1987 	struct gpmi_nand_data *this;
1988 	const struct of_device_id *of_id;
1989 	int ret;
1990 
1991 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
1992 	if (!this)
1993 		return -ENOMEM;
1994 
1995 	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1996 	if (of_id) {
1997 		this->devdata = of_id->data;
1998 	} else {
1999 		dev_err(&pdev->dev, "Failed to find the right device id.\n");
2000 		return -ENODEV;
2001 	}
2002 
2003 	platform_set_drvdata(pdev, this);
2004 	this->pdev  = pdev;
2005 	this->dev   = &pdev->dev;
2006 
2007 	ret = acquire_resources(this);
2008 	if (ret)
2009 		goto exit_acquire_resources;
2010 
2011 	ret = init_hardware(this);
2012 	if (ret)
2013 		goto exit_nfc_init;
2014 
2015 	ret = gpmi_nand_init(this);
2016 	if (ret)
2017 		goto exit_nfc_init;
2018 
2019 	dev_info(this->dev, "driver registered.\n");
2020 
2021 	return 0;
2022 
2023 exit_nfc_init:
2024 	release_resources(this);
2025 exit_acquire_resources:
2026 
2027 	return ret;
2028 }
2029 
gpmi_nand_remove(struct platform_device * pdev)2030 static int gpmi_nand_remove(struct platform_device *pdev)
2031 {
2032 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2033 
2034 	gpmi_nand_exit(this);
2035 	release_resources(this);
2036 	return 0;
2037 }
2038 
2039 static struct platform_driver gpmi_nand_driver = {
2040 	.driver = {
2041 		.name = "gpmi-nand",
2042 		.of_match_table = gpmi_nand_id_table,
2043 	},
2044 	.probe   = gpmi_nand_probe,
2045 	.remove  = gpmi_nand_remove,
2046 };
2047 module_platform_driver(gpmi_nand_driver);
2048 
2049 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2050 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2051 MODULE_LICENSE("GPL");
2052