1/*
2 * Freescale GPMI NAND Flash Driver
3 *
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21#include <linux/delay.h>
22#include <linux/clk.h>
23#include <linux/slab.h>
24
25#include "gpmi-nand.h"
26#include "gpmi-regs.h"
27#include "bch-regs.h"
28
29static struct timing_threshod timing_default_threshold = {
30	.max_data_setup_cycles       = (BM_GPMI_TIMING0_DATA_SETUP >>
31						BP_GPMI_TIMING0_DATA_SETUP),
32	.internal_data_setup_in_ns   = 0,
33	.max_sample_delay_factor     = (BM_GPMI_CTRL1_RDN_DELAY >>
34						BP_GPMI_CTRL1_RDN_DELAY),
35	.max_dll_clock_period_in_ns  = 32,
36	.max_dll_delay_in_ns         = 16,
37};
38
39#define MXS_SET_ADDR		0x4
40#define MXS_CLR_ADDR		0x8
41/*
42 * Clear the bit and poll it cleared.  This is usually called with
43 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
44 * (bit 30).
45 */
46static int clear_poll_bit(void __iomem *addr, u32 mask)
47{
48	int timeout = 0x400;
49
50	/* clear the bit */
51	writel(mask, addr + MXS_CLR_ADDR);
52
53	/*
54	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
55	 * recommends to wait 1us.
56	 */
57	udelay(1);
58
59	/* poll the bit becoming clear */
60	while ((readl(addr) & mask) && --timeout)
61		/* nothing */;
62
63	return !timeout;
64}
65
66#define MODULE_CLKGATE		(1 << 30)
67#define MODULE_SFTRST		(1 << 31)
68/*
69 * The current mxs_reset_block() will do two things:
70 *  [1] enable the module.
71 *  [2] reset the module.
72 *
73 * In most of the cases, it's ok.
74 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75 * If you try to soft reset the BCH block, it becomes unusable until
76 * the next hard reset. This case occurs in the NAND boot mode. When the board
77 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
78 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79 * You will see a DMA timeout in this case. The bug has been fixed
80 * in the following chips, such as MX28.
81 *
82 * To avoid this bug, just add a new parameter `just_enable` for
83 * the mxs_reset_block(), and rewrite it here.
84 */
85static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
86{
87	int ret;
88	int timeout = 0x400;
89
90	/* clear and poll SFTRST */
91	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
92	if (unlikely(ret))
93		goto error;
94
95	/* clear CLKGATE */
96	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
97
98	if (!just_enable) {
99		/* set SFTRST to reset the block */
100		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
101		udelay(1);
102
103		/* poll CLKGATE becoming set */
104		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
105			/* nothing */;
106		if (unlikely(!timeout))
107			goto error;
108	}
109
110	/* clear and poll SFTRST */
111	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
112	if (unlikely(ret))
113		goto error;
114
115	/* clear and poll CLKGATE */
116	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
117	if (unlikely(ret))
118		goto error;
119
120	return 0;
121
122error:
123	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
124	return -ETIMEDOUT;
125}
126
127static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
128{
129	struct clk *clk;
130	int ret;
131	int i;
132
133	for (i = 0; i < GPMI_CLK_MAX; i++) {
134		clk = this->resources.clock[i];
135		if (!clk)
136			break;
137
138		if (v) {
139			ret = clk_prepare_enable(clk);
140			if (ret)
141				goto err_clk;
142		} else {
143			clk_disable_unprepare(clk);
144		}
145	}
146	return 0;
147
148err_clk:
149	for (; i > 0; i--)
150		clk_disable_unprepare(this->resources.clock[i - 1]);
151	return ret;
152}
153
154#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
155#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
156
157int gpmi_init(struct gpmi_nand_data *this)
158{
159	struct resources *r = &this->resources;
160	int ret;
161
162	ret = gpmi_enable_clk(this);
163	if (ret)
164		goto err_out;
165	ret = gpmi_reset_block(r->gpmi_regs, false);
166	if (ret)
167		goto err_out;
168
169	/*
170	 * Reset BCH here, too. We got failures otherwise :(
171	 * See later BCH reset for explanation of MX23 handling
172	 */
173	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
174	if (ret)
175		goto err_out;
176
177
178	/* Choose NAND mode. */
179	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
180
181	/* Set the IRQ polarity. */
182	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
183				r->gpmi_regs + HW_GPMI_CTRL1_SET);
184
185	/* Disable Write-Protection. */
186	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
187
188	/* Select BCH ECC. */
189	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
190
191	/*
192	 * Decouple the chip select from dma channel. We use dma0 for all
193	 * the chips.
194	 */
195	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
196
197	gpmi_disable_clk(this);
198	return 0;
199err_out:
200	return ret;
201}
202
203/* This function is very useful. It is called only when the bug occur. */
204void gpmi_dump_info(struct gpmi_nand_data *this)
205{
206	struct resources *r = &this->resources;
207	struct bch_geometry *geo = &this->bch_geometry;
208	u32 reg;
209	int i;
210
211	dev_err(this->dev, "Show GPMI registers :\n");
212	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
213		reg = readl(r->gpmi_regs + i * 0x10);
214		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
215	}
216
217	/* start to print out the BCH info */
218	dev_err(this->dev, "Show BCH registers :\n");
219	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
220		reg = readl(r->bch_regs + i * 0x10);
221		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
222	}
223	dev_err(this->dev, "BCH Geometry :\n"
224		"GF length              : %u\n"
225		"ECC Strength           : %u\n"
226		"Page Size in Bytes     : %u\n"
227		"Metadata Size in Bytes : %u\n"
228		"ECC Chunk Size in Bytes: %u\n"
229		"ECC Chunk Count        : %u\n"
230		"Payload Size in Bytes  : %u\n"
231		"Auxiliary Size in Bytes: %u\n"
232		"Auxiliary Status Offset: %u\n"
233		"Block Mark Byte Offset : %u\n"
234		"Block Mark Bit Offset  : %u\n",
235		geo->gf_len,
236		geo->ecc_strength,
237		geo->page_size,
238		geo->metadata_size,
239		geo->ecc_chunk_size,
240		geo->ecc_chunk_count,
241		geo->payload_size,
242		geo->auxiliary_size,
243		geo->auxiliary_status_offset,
244		geo->block_mark_byte_offset,
245		geo->block_mark_bit_offset);
246}
247
248/* Configures the geometry for BCH.  */
249int bch_set_geometry(struct gpmi_nand_data *this)
250{
251	struct resources *r = &this->resources;
252	struct bch_geometry *bch_geo = &this->bch_geometry;
253	unsigned int block_count;
254	unsigned int block_size;
255	unsigned int metadata_size;
256	unsigned int ecc_strength;
257	unsigned int page_size;
258	unsigned int gf_len;
259	int ret;
260
261	if (common_nfc_set_geometry(this))
262		return !0;
263
264	block_count   = bch_geo->ecc_chunk_count - 1;
265	block_size    = bch_geo->ecc_chunk_size;
266	metadata_size = bch_geo->metadata_size;
267	ecc_strength  = bch_geo->ecc_strength >> 1;
268	page_size     = bch_geo->page_size;
269	gf_len        = bch_geo->gf_len;
270
271	ret = gpmi_enable_clk(this);
272	if (ret)
273		goto err_out;
274
275	/*
276	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
277	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
278	* On the other hand, the MX28 needs the reset, because one case has been
279	* seen where the BCH produced ECC errors constantly after 10000
280	* consecutive reboots. The latter case has not been seen on the MX23
281	* yet, still we don't know if it could happen there as well.
282	*/
283	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
284	if (ret)
285		goto err_out;
286
287	/* Configure layout 0. */
288	writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
289			| BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
290			| BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
291			| BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
292			| BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
293			r->bch_regs + HW_BCH_FLASH0LAYOUT0);
294
295	writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
296			| BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
297			| BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
298			| BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
299			r->bch_regs + HW_BCH_FLASH0LAYOUT1);
300
301	/* Set *all* chip selects to use layout 0. */
302	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
303
304	/* Enable interrupts. */
305	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
306				r->bch_regs + HW_BCH_CTRL_SET);
307
308	gpmi_disable_clk(this);
309	return 0;
310err_out:
311	return ret;
312}
313
314/* Converts time in nanoseconds to cycles. */
315static unsigned int ns_to_cycles(unsigned int time,
316			unsigned int period, unsigned int min)
317{
318	unsigned int k;
319
320	k = (time + period - 1) / period;
321	return max(k, min);
322}
323
324#define DEF_MIN_PROP_DELAY	5
325#define DEF_MAX_PROP_DELAY	9
326/* Apply timing to current hardware conditions. */
327static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
328					struct gpmi_nfc_hardware_timing *hw)
329{
330	struct timing_threshod *nfc = &timing_default_threshold;
331	struct resources *r = &this->resources;
332	struct nand_chip *nand = &this->nand;
333	struct nand_timing target = this->timing;
334	bool improved_timing_is_available;
335	unsigned long clock_frequency_in_hz;
336	unsigned int clock_period_in_ns;
337	bool dll_use_half_periods;
338	unsigned int dll_delay_shift;
339	unsigned int max_sample_delay_in_ns;
340	unsigned int address_setup_in_cycles;
341	unsigned int data_setup_in_ns;
342	unsigned int data_setup_in_cycles;
343	unsigned int data_hold_in_cycles;
344	int ideal_sample_delay_in_ns;
345	unsigned int sample_delay_factor;
346	int tEYE;
347	unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
348	unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
349
350	/*
351	 * If there are multiple chips, we need to relax the timings to allow
352	 * for signal distortion due to higher capacitance.
353	 */
354	if (nand->numchips > 2) {
355		target.data_setup_in_ns    += 10;
356		target.data_hold_in_ns     += 10;
357		target.address_setup_in_ns += 10;
358	} else if (nand->numchips > 1) {
359		target.data_setup_in_ns    += 5;
360		target.data_hold_in_ns     += 5;
361		target.address_setup_in_ns += 5;
362	}
363
364	/* Check if improved timing information is available. */
365	improved_timing_is_available =
366		(target.tREA_in_ns  >= 0) &&
367		(target.tRLOH_in_ns >= 0) &&
368		(target.tRHOH_in_ns >= 0);
369
370	/* Inspect the clock. */
371	nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
372	clock_frequency_in_hz = nfc->clock_frequency_in_hz;
373	clock_period_in_ns    = NSEC_PER_SEC / clock_frequency_in_hz;
374
375	/*
376	 * The NFC quantizes setup and hold parameters in terms of clock cycles.
377	 * Here, we quantize the setup and hold timing parameters to the
378	 * next-highest clock period to make sure we apply at least the
379	 * specified times.
380	 *
381	 * For data setup and data hold, the hardware interprets a value of zero
382	 * as the largest possible delay. This is not what's intended by a zero
383	 * in the input parameter, so we impose a minimum of one cycle.
384	 */
385	data_setup_in_cycles    = ns_to_cycles(target.data_setup_in_ns,
386							clock_period_in_ns, 1);
387	data_hold_in_cycles     = ns_to_cycles(target.data_hold_in_ns,
388							clock_period_in_ns, 1);
389	address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
390							clock_period_in_ns, 0);
391
392	/*
393	 * The clock's period affects the sample delay in a number of ways:
394	 *
395	 * (1) The NFC HAL tells us the maximum clock period the sample delay
396	 *     DLL can tolerate. If the clock period is greater than half that
397	 *     maximum, we must configure the DLL to be driven by half periods.
398	 *
399	 * (2) We need to convert from an ideal sample delay, in ns, to a
400	 *     "sample delay factor," which the NFC uses. This factor depends on
401	 *     whether we're driving the DLL with full or half periods.
402	 *     Paraphrasing the reference manual:
403	 *
404	 *         AD = SDF x 0.125 x RP
405	 *
406	 * where:
407	 *
408	 *     AD   is the applied delay, in ns.
409	 *     SDF  is the sample delay factor, which is dimensionless.
410	 *     RP   is the reference period, in ns, which is a full clock period
411	 *          if the DLL is being driven by full periods, or half that if
412	 *          the DLL is being driven by half periods.
413	 *
414	 * Let's re-arrange this in a way that's more useful to us:
415	 *
416	 *                        8
417	 *         SDF  =  AD x ----
418	 *                       RP
419	 *
420	 * The reference period is either the clock period or half that, so this
421	 * is:
422	 *
423	 *                        8       AD x DDF
424	 *         SDF  =  AD x -----  =  --------
425	 *                      f x P        P
426	 *
427	 * where:
428	 *
429	 *       f  is 1 or 1/2, depending on how we're driving the DLL.
430	 *       P  is the clock period.
431	 *     DDF  is the DLL Delay Factor, a dimensionless value that
432	 *          incorporates all the constants in the conversion.
433	 *
434	 * DDF will be either 8 or 16, both of which are powers of two. We can
435	 * reduce the cost of this conversion by using bit shifts instead of
436	 * multiplication or division. Thus:
437	 *
438	 *                 AD << DDS
439	 *         SDF  =  ---------
440	 *                     P
441	 *
442	 *     or
443	 *
444	 *         AD  =  (SDF >> DDS) x P
445	 *
446	 * where:
447	 *
448	 *     DDS  is the DLL Delay Shift, the logarithm to base 2 of the DDF.
449	 */
450	if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
451		dll_use_half_periods = true;
452		dll_delay_shift      = 3 + 1;
453	} else {
454		dll_use_half_periods = false;
455		dll_delay_shift      = 3;
456	}
457
458	/*
459	 * Compute the maximum sample delay the NFC allows, under current
460	 * conditions. If the clock is running too slowly, no sample delay is
461	 * possible.
462	 */
463	if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
464		max_sample_delay_in_ns = 0;
465	else {
466		/*
467		 * Compute the delay implied by the largest sample delay factor
468		 * the NFC allows.
469		 */
470		max_sample_delay_in_ns =
471			(nfc->max_sample_delay_factor * clock_period_in_ns) >>
472								dll_delay_shift;
473
474		/*
475		 * Check if the implied sample delay larger than the NFC
476		 * actually allows.
477		 */
478		if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
479			max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
480	}
481
482	/*
483	 * Check if improved timing information is available. If not, we have to
484	 * use a less-sophisticated algorithm.
485	 */
486	if (!improved_timing_is_available) {
487		/*
488		 * Fold the read setup time required by the NFC into the ideal
489		 * sample delay.
490		 */
491		ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
492						nfc->internal_data_setup_in_ns;
493
494		/*
495		 * The ideal sample delay may be greater than the maximum
496		 * allowed by the NFC. If so, we can trade off sample delay time
497		 * for more data setup time.
498		 *
499		 * In each iteration of the following loop, we add a cycle to
500		 * the data setup time and subtract a corresponding amount from
501		 * the sample delay until we've satisified the constraints or
502		 * can't do any better.
503		 */
504		while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
505			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
506
507			data_setup_in_cycles++;
508			ideal_sample_delay_in_ns -= clock_period_in_ns;
509
510			if (ideal_sample_delay_in_ns < 0)
511				ideal_sample_delay_in_ns = 0;
512
513		}
514
515		/*
516		 * Compute the sample delay factor that corresponds most closely
517		 * to the ideal sample delay. If the result is too large for the
518		 * NFC, use the maximum value.
519		 *
520		 * Notice that we use the ns_to_cycles function to compute the
521		 * sample delay factor. We do this because the form of the
522		 * computation is the same as that for calculating cycles.
523		 */
524		sample_delay_factor =
525			ns_to_cycles(
526				ideal_sample_delay_in_ns << dll_delay_shift,
527							clock_period_in_ns, 0);
528
529		if (sample_delay_factor > nfc->max_sample_delay_factor)
530			sample_delay_factor = nfc->max_sample_delay_factor;
531
532		/* Skip to the part where we return our results. */
533		goto return_results;
534	}
535
536	/*
537	 * If control arrives here, we have more detailed timing information,
538	 * so we can use a better algorithm.
539	 */
540
541	/*
542	 * Fold the read setup time required by the NFC into the maximum
543	 * propagation delay.
544	 */
545	max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
546
547	/*
548	 * Earlier, we computed the number of clock cycles required to satisfy
549	 * the data setup time. Now, we need to know the actual nanoseconds.
550	 */
551	data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
552
553	/*
554	 * Compute tEYE, the width of the data eye when reading from the NAND
555	 * Flash. The eye width is fundamentally determined by the data setup
556	 * time, perturbed by propagation delays and some characteristics of the
557	 * NAND Flash device.
558	 *
559	 * start of the eye = max_prop_delay + tREA
560	 * end of the eye   = min_prop_delay + tRHOH + data_setup
561	 */
562	tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
563							(int)data_setup_in_ns;
564
565	tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
566
567	/*
568	 * The eye must be open. If it's not, we can try to open it by
569	 * increasing its main forcer, the data setup time.
570	 *
571	 * In each iteration of the following loop, we increase the data setup
572	 * time by a single clock cycle. We do this until either the eye is
573	 * open or we run into NFC limits.
574	 */
575	while ((tEYE <= 0) &&
576			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
577		/* Give a cycle to data setup. */
578		data_setup_in_cycles++;
579		/* Synchronize the data setup time with the cycles. */
580		data_setup_in_ns += clock_period_in_ns;
581		/* Adjust tEYE accordingly. */
582		tEYE += clock_period_in_ns;
583	}
584
585	/*
586	 * When control arrives here, the eye is open. The ideal time to sample
587	 * the data is in the center of the eye:
588	 *
589	 *     end of the eye + start of the eye
590	 *     ---------------------------------  -  data_setup
591	 *                    2
592	 *
593	 * After some algebra, this simplifies to the code immediately below.
594	 */
595	ideal_sample_delay_in_ns =
596		((int)max_prop_delay_in_ns +
597			(int)target.tREA_in_ns +
598				(int)min_prop_delay_in_ns +
599					(int)target.tRHOH_in_ns -
600						(int)data_setup_in_ns) >> 1;
601
602	/*
603	 * The following figure illustrates some aspects of a NAND Flash read:
604	 *
605	 *
606	 *           __                   _____________________________________
607	 * RDN         \_________________/
608	 *
609	 *                                         <---- tEYE ----->
610	 *                                        /-----------------\
611	 * Read Data ----------------------------<                   >---------
612	 *                                        \-----------------/
613	 *             ^                 ^                 ^              ^
614	 *             |                 |                 |              |
615	 *             |<--Data Setup -->|<--Delay Time -->|              |
616	 *             |                 |                 |              |
617	 *             |                 |                                |
618	 *             |                 |<--   Quantized Delay Time   -->|
619	 *             |                 |                                |
620	 *
621	 *
622	 * We have some issues we must now address:
623	 *
624	 * (1) The *ideal* sample delay time must not be negative. If it is, we
625	 *     jam it to zero.
626	 *
627	 * (2) The *ideal* sample delay time must not be greater than that
628	 *     allowed by the NFC. If it is, we can increase the data setup
629	 *     time, which will reduce the delay between the end of the data
630	 *     setup and the center of the eye. It will also make the eye
631	 *     larger, which might help with the next issue...
632	 *
633	 * (3) The *quantized* sample delay time must not fall either before the
634	 *     eye opens or after it closes (the latter is the problem
635	 *     illustrated in the above figure).
636	 */
637
638	/* Jam a negative ideal sample delay to zero. */
639	if (ideal_sample_delay_in_ns < 0)
640		ideal_sample_delay_in_ns = 0;
641
642	/*
643	 * Extend the data setup as needed to reduce the ideal sample delay
644	 * below the maximum permitted by the NFC.
645	 */
646	while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
647			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
648
649		/* Give a cycle to data setup. */
650		data_setup_in_cycles++;
651		/* Synchronize the data setup time with the cycles. */
652		data_setup_in_ns += clock_period_in_ns;
653		/* Adjust tEYE accordingly. */
654		tEYE += clock_period_in_ns;
655
656		/*
657		 * Decrease the ideal sample delay by one half cycle, to keep it
658		 * in the middle of the eye.
659		 */
660		ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
661
662		/* Jam a negative ideal sample delay to zero. */
663		if (ideal_sample_delay_in_ns < 0)
664			ideal_sample_delay_in_ns = 0;
665	}
666
667	/*
668	 * Compute the sample delay factor that corresponds to the ideal sample
669	 * delay. If the result is too large, then use the maximum allowed
670	 * value.
671	 *
672	 * Notice that we use the ns_to_cycles function to compute the sample
673	 * delay factor. We do this because the form of the computation is the
674	 * same as that for calculating cycles.
675	 */
676	sample_delay_factor =
677		ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
678							clock_period_in_ns, 0);
679
680	if (sample_delay_factor > nfc->max_sample_delay_factor)
681		sample_delay_factor = nfc->max_sample_delay_factor;
682
683	/*
684	 * These macros conveniently encapsulate a computation we'll use to
685	 * continuously evaluate whether or not the data sample delay is inside
686	 * the eye.
687	 */
688	#define IDEAL_DELAY  ((int) ideal_sample_delay_in_ns)
689
690	#define QUANTIZED_DELAY  \
691		((int) ((sample_delay_factor * clock_period_in_ns) >> \
692							dll_delay_shift))
693
694	#define DELAY_ERROR  (abs(QUANTIZED_DELAY - IDEAL_DELAY))
695
696	#define SAMPLE_IS_NOT_WITHIN_THE_EYE  (DELAY_ERROR > (tEYE >> 1))
697
698	/*
699	 * While the quantized sample time falls outside the eye, reduce the
700	 * sample delay or extend the data setup to move the sampling point back
701	 * toward the eye. Do not allow the number of data setup cycles to
702	 * exceed the maximum allowed by the NFC.
703	 */
704	while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
705			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
706		/*
707		 * If control arrives here, the quantized sample delay falls
708		 * outside the eye. Check if it's before the eye opens, or after
709		 * the eye closes.
710		 */
711		if (QUANTIZED_DELAY > IDEAL_DELAY) {
712			/*
713			 * If control arrives here, the quantized sample delay
714			 * falls after the eye closes. Decrease the quantized
715			 * delay time and then go back to re-evaluate.
716			 */
717			if (sample_delay_factor != 0)
718				sample_delay_factor--;
719			continue;
720		}
721
722		/*
723		 * If control arrives here, the quantized sample delay falls
724		 * before the eye opens. Shift the sample point by increasing
725		 * data setup time. This will also make the eye larger.
726		 */
727
728		/* Give a cycle to data setup. */
729		data_setup_in_cycles++;
730		/* Synchronize the data setup time with the cycles. */
731		data_setup_in_ns += clock_period_in_ns;
732		/* Adjust tEYE accordingly. */
733		tEYE += clock_period_in_ns;
734
735		/*
736		 * Decrease the ideal sample delay by one half cycle, to keep it
737		 * in the middle of the eye.
738		 */
739		ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
740
741		/* ...and one less period for the delay time. */
742		ideal_sample_delay_in_ns -= clock_period_in_ns;
743
744		/* Jam a negative ideal sample delay to zero. */
745		if (ideal_sample_delay_in_ns < 0)
746			ideal_sample_delay_in_ns = 0;
747
748		/*
749		 * We have a new ideal sample delay, so re-compute the quantized
750		 * delay.
751		 */
752		sample_delay_factor =
753			ns_to_cycles(
754				ideal_sample_delay_in_ns << dll_delay_shift,
755							clock_period_in_ns, 0);
756
757		if (sample_delay_factor > nfc->max_sample_delay_factor)
758			sample_delay_factor = nfc->max_sample_delay_factor;
759	}
760
761	/* Control arrives here when we're ready to return our results. */
762return_results:
763	hw->data_setup_in_cycles    = data_setup_in_cycles;
764	hw->data_hold_in_cycles     = data_hold_in_cycles;
765	hw->address_setup_in_cycles = address_setup_in_cycles;
766	hw->use_half_periods        = dll_use_half_periods;
767	hw->sample_delay_factor     = sample_delay_factor;
768	hw->device_busy_timeout     = GPMI_DEFAULT_BUSY_TIMEOUT;
769	hw->wrn_dly_sel             = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
770
771	/* Return success. */
772	return 0;
773}
774
775/*
776 * <1> Firstly, we should know what's the GPMI-clock means.
777 *     The GPMI-clock is the internal clock in the gpmi nand controller.
778 *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
779 *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
780 *
781 * <2> Secondly, we should know what's the frequency on the nand chip pins.
782 *     The frequency on the nand chip pins is derived from the GPMI-clock.
783 *     We can get it from the following equation:
784 *
785 *         F = G / (DS + DH)
786 *
787 *         F  : the frequency on the nand chip pins.
788 *         G  : the GPMI clock, such as 100MHz.
789 *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
790 *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
791 *
792 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
793 *     the nand EDO(extended Data Out) timing could be applied.
794 *     The GPMI implements a feedback read strobe to sample the read data.
795 *     The feedback read strobe can be delayed to support the nand EDO timing
796 *     where the read strobe may deasserts before the read data is valid, and
797 *     read data is valid for some time after read strobe.
798 *
799 *     The following figure illustrates some aspects of a NAND Flash read:
800 *
801 *                   |<---tREA---->|
802 *                   |             |
803 *                   |         |   |
804 *                   |<--tRP-->|   |
805 *                   |         |   |
806 *                  __          ___|__________________________________
807 *     RDN            \________/   |
808 *                                 |
809 *                                 /---------\
810 *     Read Data    --------------<           >---------
811 *                                 \---------/
812 *                                |     |
813 *                                |<-D->|
814 *     FeedbackRDN  ________             ____________
815 *                          \___________/
816 *
817 *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
818 *
819 *
820 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
821 *
822 *  4.1) From the aspect of the nand chip pins:
823 *        Delay = (tREA + C - tRP)               {1}
824 *
825 *        tREA : the maximum read access time. From the ONFI nand standards,
826 *               we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
827 *               Please check it in : www.onfi.org
828 *        C    : a constant for adjust the delay. default is 4.
829 *        tRP  : the read pulse width.
830 *               Specified by the HW_GPMI_TIMING0:DATA_SETUP:
831 *                    tRP = (GPMI-clock-period) * DATA_SETUP
832 *
833 *  4.2) From the aspect of the GPMI nand controller:
834 *         Delay = RDN_DELAY * 0.125 * RP        {2}
835 *
836 *         RP   : the DLL reference period.
837 *            if (GPMI-clock-period > DLL_THRETHOLD)
838 *                   RP = GPMI-clock-period / 2;
839 *            else
840 *                   RP = GPMI-clock-period;
841 *
842 *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
843 *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
844 *            is 16ns, but in mx6q, we use 12ns.
845 *
846 *  4.3) since {1} equals {2}, we get:
847 *
848 *                    (tREA + 4 - tRP) * 8
849 *         RDN_DELAY = ---------------------     {3}
850 *                           RP
851 *
852 *  4.4) We only support the fastest asynchronous mode of ONFI nand.
853 *       For some ONFI nand, the mode 4 is the fastest mode;
854 *       while for some ONFI nand, the mode 5 is the fastest mode.
855 *       So we only support the mode 4 and mode 5. It is no need to
856 *       support other modes.
857 */
858static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
859			struct gpmi_nfc_hardware_timing *hw)
860{
861	struct resources *r = &this->resources;
862	unsigned long rate = clk_get_rate(r->clock[0]);
863	int mode = this->timing_mode;
864	int dll_threshold = this->devdata->max_chain_delay;
865	unsigned long delay;
866	unsigned long clk_period;
867	int t_rea;
868	int c = 4;
869	int t_rp;
870	int rp;
871
872	/*
873	 * [1] for GPMI_HW_GPMI_TIMING0:
874	 *     The async mode requires 40MHz for mode 4, 50MHz for mode 5.
875	 *     The GPMI can support 100MHz at most. So if we want to
876	 *     get the 40MHz or 50MHz, we have to set DS=1, DH=1.
877	 *     Set the ADDRESS_SETUP to 0 in mode 4.
878	 */
879	hw->data_setup_in_cycles = 1;
880	hw->data_hold_in_cycles = 1;
881	hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
882
883	/* [2] for GPMI_HW_GPMI_TIMING1 */
884	hw->device_busy_timeout = 0x9000;
885
886	/* [3] for GPMI_HW_GPMI_CTRL1 */
887	hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
888
889	/*
890	 * Enlarge 10 times for the numerator and denominator in {3}.
891	 * This make us to get more accurate result.
892	 */
893	clk_period = NSEC_PER_SEC / (rate / 10);
894	dll_threshold *= 10;
895	t_rea = ((mode == 5) ? 16 : 20) * 10;
896	c *= 10;
897
898	t_rp = clk_period * 1; /* DATA_SETUP is 1 */
899
900	if (clk_period > dll_threshold) {
901		hw->use_half_periods = 1;
902		rp = clk_period / 2;
903	} else {
904		hw->use_half_periods = 0;
905		rp = clk_period;
906	}
907
908	/*
909	 * Multiply the numerator with 10, we could do a round off:
910	 *      7.8 round up to 8; 7.4 round down to 7.
911	 */
912	delay  = (((t_rea + c - t_rp) * 8) * 10) / rp;
913	delay = (delay + 5) / 10;
914
915	hw->sample_delay_factor = delay;
916}
917
918static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
919{
920	struct resources  *r = &this->resources;
921	struct nand_chip *nand = &this->nand;
922	struct mtd_info	 *mtd = &this->mtd;
923	uint8_t *feature;
924	unsigned long rate;
925	int ret;
926
927	feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
928	if (!feature)
929		return -ENOMEM;
930
931	nand->select_chip(mtd, 0);
932
933	/* [1] send SET FEATURE commond to NAND */
934	feature[0] = mode;
935	ret = nand->onfi_set_features(mtd, nand,
936				ONFI_FEATURE_ADDR_TIMING_MODE, feature);
937	if (ret)
938		goto err_out;
939
940	/* [2] send GET FEATURE command to double-check the timing mode */
941	memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
942	ret = nand->onfi_get_features(mtd, nand,
943				ONFI_FEATURE_ADDR_TIMING_MODE, feature);
944	if (ret || feature[0] != mode)
945		goto err_out;
946
947	nand->select_chip(mtd, -1);
948
949	/* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
950	rate = (mode == 5) ? 100000000 : 80000000;
951	clk_set_rate(r->clock[0], rate);
952
953	/* Let the gpmi_begin() re-compute the timing again. */
954	this->flags &= ~GPMI_TIMING_INIT_OK;
955
956	this->flags |= GPMI_ASYNC_EDO_ENABLED;
957	this->timing_mode = mode;
958	kfree(feature);
959	dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
960	return 0;
961
962err_out:
963	nand->select_chip(mtd, -1);
964	kfree(feature);
965	dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
966	return -EINVAL;
967}
968
969int gpmi_extra_init(struct gpmi_nand_data *this)
970{
971	struct nand_chip *chip = &this->nand;
972
973	/* Enable the asynchronous EDO feature. */
974	if (GPMI_IS_MX6(this) && chip->onfi_version) {
975		int mode = onfi_get_async_timing_mode(chip);
976
977		/* We only support the timing mode 4 and mode 5. */
978		if (mode & ONFI_TIMING_MODE_5)
979			mode = 5;
980		else if (mode & ONFI_TIMING_MODE_4)
981			mode = 4;
982		else
983			return 0;
984
985		return enable_edo_mode(this, mode);
986	}
987	return 0;
988}
989
990/* Begin the I/O */
991void gpmi_begin(struct gpmi_nand_data *this)
992{
993	struct resources *r = &this->resources;
994	void __iomem *gpmi_regs = r->gpmi_regs;
995	unsigned int   clock_period_in_ns;
996	uint32_t       reg;
997	unsigned int   dll_wait_time_in_us;
998	struct gpmi_nfc_hardware_timing  hw;
999	int ret;
1000
1001	/* Enable the clock. */
1002	ret = gpmi_enable_clk(this);
1003	if (ret) {
1004		dev_err(this->dev, "We failed in enable the clk\n");
1005		goto err_out;
1006	}
1007
1008	/* Only initialize the timing once */
1009	if (this->flags & GPMI_TIMING_INIT_OK)
1010		return;
1011	this->flags |= GPMI_TIMING_INIT_OK;
1012
1013	if (this->flags & GPMI_ASYNC_EDO_ENABLED)
1014		gpmi_compute_edo_timing(this, &hw);
1015	else
1016		gpmi_nfc_compute_hardware_timing(this, &hw);
1017
1018	/* [1] Set HW_GPMI_TIMING0 */
1019	reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
1020		BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles)         |
1021		BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
1022
1023	writel(reg, gpmi_regs + HW_GPMI_TIMING0);
1024
1025	/* [2] Set HW_GPMI_TIMING1 */
1026	writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
1027		gpmi_regs + HW_GPMI_TIMING1);
1028
1029	/* [3] The following code is to set the HW_GPMI_CTRL1. */
1030
1031	/* Set the WRN_DLY_SEL */
1032	writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
1033	writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
1034					gpmi_regs + HW_GPMI_CTRL1_SET);
1035
1036	/* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1037	writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
1038
1039	/* Clear out the DLL control fields. */
1040	reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
1041	writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1042
1043	/* If no sample delay is called for, return immediately. */
1044	if (!hw.sample_delay_factor)
1045		return;
1046
1047	/* Set RDN_DELAY or HALF_PERIOD. */
1048	reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
1049		| BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1050
1051	writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1052
1053	/* At last, we enable the DLL. */
1054	writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
1055
1056	/*
1057	 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1058	 * we can use the GPMI. Calculate the amount of time we need to wait,
1059	 * in microseconds.
1060	 */
1061	clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1062	dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
1063
1064	if (!dll_wait_time_in_us)
1065		dll_wait_time_in_us = 1;
1066
1067	/* Wait for the DLL to settle. */
1068	udelay(dll_wait_time_in_us);
1069
1070err_out:
1071	return;
1072}
1073
1074void gpmi_end(struct gpmi_nand_data *this)
1075{
1076	gpmi_disable_clk(this);
1077}
1078
1079/* Clears a BCH interrupt. */
1080void gpmi_clear_bch(struct gpmi_nand_data *this)
1081{
1082	struct resources *r = &this->resources;
1083	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1084}
1085
1086/* Returns the Ready/Busy status of the given chip. */
1087int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
1088{
1089	struct resources *r = &this->resources;
1090	uint32_t mask = 0;
1091	uint32_t reg = 0;
1092
1093	if (GPMI_IS_MX23(this)) {
1094		mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
1095		reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1096	} else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
1097		/*
1098		 * In the imx6, all the ready/busy pins are bound
1099		 * together. So we only need to check chip 0.
1100		 */
1101		if (GPMI_IS_MX6(this))
1102			chip = 0;
1103
1104		/* MX28 shares the same R/B register as MX6Q. */
1105		mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
1106		reg = readl(r->gpmi_regs + HW_GPMI_STAT);
1107	} else
1108		dev_err(this->dev, "unknown arch.\n");
1109	return reg & mask;
1110}
1111
1112static inline void set_dma_type(struct gpmi_nand_data *this,
1113					enum dma_ops_type type)
1114{
1115	this->last_dma_type = this->dma_type;
1116	this->dma_type = type;
1117}
1118
1119int gpmi_send_command(struct gpmi_nand_data *this)
1120{
1121	struct dma_chan *channel = get_dma_chan(this);
1122	struct dma_async_tx_descriptor *desc;
1123	struct scatterlist *sgl;
1124	int chip = this->current_chip;
1125	u32 pio[3];
1126
1127	/* [1] send out the PIO words */
1128	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
1129		| BM_GPMI_CTRL0_WORD_LENGTH
1130		| BF_GPMI_CTRL0_CS(chip, this)
1131		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1132		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
1133		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
1134		| BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
1135	pio[1] = pio[2] = 0;
1136	desc = dmaengine_prep_slave_sg(channel,
1137					(struct scatterlist *)pio,
1138					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1139	if (!desc)
1140		return -EINVAL;
1141
1142	/* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1143	sgl = &this->cmd_sgl;
1144
1145	sg_init_one(sgl, this->cmd_buffer, this->command_length);
1146	dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1147	desc = dmaengine_prep_slave_sg(channel,
1148				sgl, 1, DMA_MEM_TO_DEV,
1149				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1150	if (!desc)
1151		return -EINVAL;
1152
1153	/* [3] submit the DMA */
1154	set_dma_type(this, DMA_FOR_COMMAND);
1155	return start_dma_without_bch_irq(this, desc);
1156}
1157
1158int gpmi_send_data(struct gpmi_nand_data *this)
1159{
1160	struct dma_async_tx_descriptor *desc;
1161	struct dma_chan *channel = get_dma_chan(this);
1162	int chip = this->current_chip;
1163	uint32_t command_mode;
1164	uint32_t address;
1165	u32 pio[2];
1166
1167	/* [1] PIO */
1168	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1169	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1170
1171	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1172		| BM_GPMI_CTRL0_WORD_LENGTH
1173		| BF_GPMI_CTRL0_CS(chip, this)
1174		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1175		| BF_GPMI_CTRL0_ADDRESS(address)
1176		| BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1177	pio[1] = 0;
1178	desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1179					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1180	if (!desc)
1181		return -EINVAL;
1182
1183	/* [2] send DMA request */
1184	prepare_data_dma(this, DMA_TO_DEVICE);
1185	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1186					1, DMA_MEM_TO_DEV,
1187					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1188	if (!desc)
1189		return -EINVAL;
1190
1191	/* [3] submit the DMA */
1192	set_dma_type(this, DMA_FOR_WRITE_DATA);
1193	return start_dma_without_bch_irq(this, desc);
1194}
1195
1196int gpmi_read_data(struct gpmi_nand_data *this)
1197{
1198	struct dma_async_tx_descriptor *desc;
1199	struct dma_chan *channel = get_dma_chan(this);
1200	int chip = this->current_chip;
1201	u32 pio[2];
1202
1203	/* [1] : send PIO */
1204	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
1205		| BM_GPMI_CTRL0_WORD_LENGTH
1206		| BF_GPMI_CTRL0_CS(chip, this)
1207		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1208		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
1209		| BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1210	pio[1] = 0;
1211	desc = dmaengine_prep_slave_sg(channel,
1212					(struct scatterlist *)pio,
1213					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1214	if (!desc)
1215		return -EINVAL;
1216
1217	/* [2] : send DMA request */
1218	prepare_data_dma(this, DMA_FROM_DEVICE);
1219	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1220					1, DMA_DEV_TO_MEM,
1221					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1222	if (!desc)
1223		return -EINVAL;
1224
1225	/* [3] : submit the DMA */
1226	set_dma_type(this, DMA_FOR_READ_DATA);
1227	return start_dma_without_bch_irq(this, desc);
1228}
1229
1230int gpmi_send_page(struct gpmi_nand_data *this,
1231			dma_addr_t payload, dma_addr_t auxiliary)
1232{
1233	struct bch_geometry *geo = &this->bch_geometry;
1234	uint32_t command_mode;
1235	uint32_t address;
1236	uint32_t ecc_command;
1237	uint32_t buffer_mask;
1238	struct dma_async_tx_descriptor *desc;
1239	struct dma_chan *channel = get_dma_chan(this);
1240	int chip = this->current_chip;
1241	u32 pio[6];
1242
1243	/* A DMA descriptor that does an ECC page read. */
1244	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1245	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1246	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
1247	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
1248				BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1249
1250	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1251		| BM_GPMI_CTRL0_WORD_LENGTH
1252		| BF_GPMI_CTRL0_CS(chip, this)
1253		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1254		| BF_GPMI_CTRL0_ADDRESS(address)
1255		| BF_GPMI_CTRL0_XFER_COUNT(0);
1256	pio[1] = 0;
1257	pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1258		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1259		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1260	pio[3] = geo->page_size;
1261	pio[4] = payload;
1262	pio[5] = auxiliary;
1263
1264	desc = dmaengine_prep_slave_sg(channel,
1265					(struct scatterlist *)pio,
1266					ARRAY_SIZE(pio), DMA_TRANS_NONE,
1267					DMA_CTRL_ACK);
1268	if (!desc)
1269		return -EINVAL;
1270
1271	set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
1272	return start_dma_with_bch_irq(this, desc);
1273}
1274
1275int gpmi_read_page(struct gpmi_nand_data *this,
1276				dma_addr_t payload, dma_addr_t auxiliary)
1277{
1278	struct bch_geometry *geo = &this->bch_geometry;
1279	uint32_t command_mode;
1280	uint32_t address;
1281	uint32_t ecc_command;
1282	uint32_t buffer_mask;
1283	struct dma_async_tx_descriptor *desc;
1284	struct dma_chan *channel = get_dma_chan(this);
1285	int chip = this->current_chip;
1286	u32 pio[6];
1287
1288	/* [1] Wait for the chip to report ready. */
1289	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1290	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1291
1292	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1293		| BM_GPMI_CTRL0_WORD_LENGTH
1294		| BF_GPMI_CTRL0_CS(chip, this)
1295		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1296		| BF_GPMI_CTRL0_ADDRESS(address)
1297		| BF_GPMI_CTRL0_XFER_COUNT(0);
1298	pio[1] = 0;
1299	desc = dmaengine_prep_slave_sg(channel,
1300				(struct scatterlist *)pio, 2,
1301				DMA_TRANS_NONE, 0);
1302	if (!desc)
1303		return -EINVAL;
1304
1305	/* [2] Enable the BCH block and read. */
1306	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1307	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1308	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1309	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1310			| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1311
1312	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1313		| BM_GPMI_CTRL0_WORD_LENGTH
1314		| BF_GPMI_CTRL0_CS(chip, this)
1315		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1316		| BF_GPMI_CTRL0_ADDRESS(address)
1317		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1318
1319	pio[1] = 0;
1320	pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
1321		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1322		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1323	pio[3] = geo->page_size;
1324	pio[4] = payload;
1325	pio[5] = auxiliary;
1326	desc = dmaengine_prep_slave_sg(channel,
1327					(struct scatterlist *)pio,
1328					ARRAY_SIZE(pio), DMA_TRANS_NONE,
1329					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1330	if (!desc)
1331		return -EINVAL;
1332
1333	/* [3] Disable the BCH block */
1334	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1335	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1336
1337	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1338		| BM_GPMI_CTRL0_WORD_LENGTH
1339		| BF_GPMI_CTRL0_CS(chip, this)
1340		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1341		| BF_GPMI_CTRL0_ADDRESS(address)
1342		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1343	pio[1] = 0;
1344	pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1345	desc = dmaengine_prep_slave_sg(channel,
1346				(struct scatterlist *)pio, 3,
1347				DMA_TRANS_NONE,
1348				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1349	if (!desc)
1350		return -EINVAL;
1351
1352	/* [4] submit the DMA */
1353	set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1354	return start_dma_with_bch_irq(this, desc);
1355}
1356
1357/**
1358 * gpmi_copy_bits - copy bits from one memory region to another
1359 * @dst: destination buffer
1360 * @dst_bit_off: bit offset we're starting to write at
1361 * @src: source buffer
1362 * @src_bit_off: bit offset we're starting to read from
1363 * @nbits: number of bits to copy
1364 *
1365 * This functions copies bits from one memory region to another, and is used by
1366 * the GPMI driver to copy ECC sections which are not guaranteed to be byte
1367 * aligned.
1368 *
1369 * src and dst should not overlap.
1370 *
1371 */
1372void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
1373		    const u8 *src, size_t src_bit_off,
1374		    size_t nbits)
1375{
1376	size_t i;
1377	size_t nbytes;
1378	u32 src_buffer = 0;
1379	size_t bits_in_src_buffer = 0;
1380
1381	if (!nbits)
1382		return;
1383
1384	/*
1385	 * Move src and dst pointers to the closest byte pointer and store bit
1386	 * offsets within a byte.
1387	 */
1388	src += src_bit_off / 8;
1389	src_bit_off %= 8;
1390
1391	dst += dst_bit_off / 8;
1392	dst_bit_off %= 8;
1393
1394	/*
1395	 * Initialize the src_buffer value with bits available in the first
1396	 * byte of data so that we end up with a byte aligned src pointer.
1397	 */
1398	if (src_bit_off) {
1399		src_buffer = src[0] >> src_bit_off;
1400		if (nbits >= (8 - src_bit_off)) {
1401			bits_in_src_buffer += 8 - src_bit_off;
1402		} else {
1403			src_buffer &= GENMASK(nbits - 1, 0);
1404			bits_in_src_buffer += nbits;
1405		}
1406		nbits -= bits_in_src_buffer;
1407		src++;
1408	}
1409
1410	/* Calculate the number of bytes that can be copied from src to dst. */
1411	nbytes = nbits / 8;
1412
1413	/* Try to align dst to a byte boundary. */
1414	if (dst_bit_off) {
1415		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
1416			src_buffer |= src[0] << bits_in_src_buffer;
1417			bits_in_src_buffer += 8;
1418			src++;
1419			nbytes--;
1420		}
1421
1422		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
1423			dst[0] &= GENMASK(dst_bit_off - 1, 0);
1424			dst[0] |= src_buffer << dst_bit_off;
1425			src_buffer >>= (8 - dst_bit_off);
1426			bits_in_src_buffer -= (8 - dst_bit_off);
1427			dst_bit_off = 0;
1428			dst++;
1429			if (bits_in_src_buffer > 7) {
1430				bits_in_src_buffer -= 8;
1431				dst[0] = src_buffer;
1432				dst++;
1433				src_buffer >>= 8;
1434			}
1435		}
1436	}
1437
1438	if (!bits_in_src_buffer && !dst_bit_off) {
1439		/*
1440		 * Both src and dst pointers are byte aligned, thus we can
1441		 * just use the optimized memcpy function.
1442		 */
1443		if (nbytes)
1444			memcpy(dst, src, nbytes);
1445	} else {
1446		/*
1447		 * src buffer is not byte aligned, hence we have to copy each
1448		 * src byte to the src_buffer variable before extracting a byte
1449		 * to store in dst.
1450		 */
1451		for (i = 0; i < nbytes; i++) {
1452			src_buffer |= src[i] << bits_in_src_buffer;
1453			dst[i] = src_buffer;
1454			src_buffer >>= 8;
1455		}
1456	}
1457	/* Update dst and src pointers */
1458	dst += nbytes;
1459	src += nbytes;
1460
1461	/*
1462	 * nbits is the number of remaining bits. It should not exceed 8 as
1463	 * we've already copied as much bytes as possible.
1464	 */
1465	nbits %= 8;
1466
1467	/*
1468	 * If there's no more bits to copy to the destination and src buffer
1469	 * was already byte aligned, then we're done.
1470	 */
1471	if (!nbits && !bits_in_src_buffer)
1472		return;
1473
1474	/* Copy the remaining bits to src_buffer */
1475	if (nbits)
1476		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
1477			      bits_in_src_buffer;
1478	bits_in_src_buffer += nbits;
1479
1480	/*
1481	 * In case there were not enough bits to get a byte aligned dst buffer
1482	 * prepare the src_buffer variable to match the dst organization (shift
1483	 * src_buffer by dst_bit_off and retrieve the least significant bits
1484	 * from dst).
1485	 */
1486	if (dst_bit_off)
1487		src_buffer = (src_buffer << dst_bit_off) |
1488			     (*dst & GENMASK(dst_bit_off - 1, 0));
1489	bits_in_src_buffer += dst_bit_off;
1490
1491	/*
1492	 * Keep most significant bits from dst if we end up with an unaligned
1493	 * number of bits.
1494	 */
1495	nbytes = bits_in_src_buffer / 8;
1496	if (bits_in_src_buffer % 8) {
1497		src_buffer |= (dst[nbytes] &
1498			       GENMASK(7, bits_in_src_buffer % 8)) <<
1499			      (nbytes * 8);
1500		nbytes++;
1501	}
1502
1503	/* Copy the remaining bytes to dst */
1504	for (i = 0; i < nbytes; i++) {
1505		dst[i] = src_buffer;
1506		src_buffer >>= 8;
1507	}
1508}
1509