1/* rc-main.c - Remote Controller core module
2 *
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 *
5 * This program is free software; you can redistribute it and/or modify
6 *  it under the terms of the GNU General Public License as published by
7 *  the Free Software Foundation version 2 of the License.
8 *
9 *  This program is distributed in the hope that it will be useful,
10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 *  GNU General Public License for more details.
13 */
14
15#include <media/rc-core.h>
16#include <linux/spinlock.h>
17#include <linux/delay.h>
18#include <linux/input.h>
19#include <linux/leds.h>
20#include <linux/slab.h>
21#include <linux/idr.h>
22#include <linux/device.h>
23#include <linux/module.h>
24#include "rc-core-priv.h"
25
26/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
27#define IR_TAB_MIN_SIZE	256
28#define IR_TAB_MAX_SIZE	8192
29#define RC_DEV_MAX	256
30
31/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
32#define IR_KEYPRESS_TIMEOUT 250
33
34/* Used to keep track of known keymaps */
35static LIST_HEAD(rc_map_list);
36static DEFINE_SPINLOCK(rc_map_lock);
37static struct led_trigger *led_feedback;
38
39/* Used to keep track of rc devices */
40static DEFINE_IDA(rc_ida);
41
42static struct rc_map_list *seek_rc_map(const char *name)
43{
44	struct rc_map_list *map = NULL;
45
46	spin_lock(&rc_map_lock);
47	list_for_each_entry(map, &rc_map_list, list) {
48		if (!strcmp(name, map->map.name)) {
49			spin_unlock(&rc_map_lock);
50			return map;
51		}
52	}
53	spin_unlock(&rc_map_lock);
54
55	return NULL;
56}
57
58struct rc_map *rc_map_get(const char *name)
59{
60
61	struct rc_map_list *map;
62
63	map = seek_rc_map(name);
64#ifdef MODULE
65	if (!map) {
66		int rc = request_module("%s", name);
67		if (rc < 0) {
68			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
69			return NULL;
70		}
71		msleep(20);	/* Give some time for IR to register */
72
73		map = seek_rc_map(name);
74	}
75#endif
76	if (!map) {
77		printk(KERN_ERR "IR keymap %s not found\n", name);
78		return NULL;
79	}
80
81	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
82
83	return &map->map;
84}
85EXPORT_SYMBOL_GPL(rc_map_get);
86
87int rc_map_register(struct rc_map_list *map)
88{
89	spin_lock(&rc_map_lock);
90	list_add_tail(&map->list, &rc_map_list);
91	spin_unlock(&rc_map_lock);
92	return 0;
93}
94EXPORT_SYMBOL_GPL(rc_map_register);
95
96void rc_map_unregister(struct rc_map_list *map)
97{
98	spin_lock(&rc_map_lock);
99	list_del(&map->list);
100	spin_unlock(&rc_map_lock);
101}
102EXPORT_SYMBOL_GPL(rc_map_unregister);
103
104
105static struct rc_map_table empty[] = {
106	{ 0x2a, KEY_COFFEE },
107};
108
109static struct rc_map_list empty_map = {
110	.map = {
111		.scan    = empty,
112		.size    = ARRAY_SIZE(empty),
113		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
114		.name    = RC_MAP_EMPTY,
115	}
116};
117
118/**
119 * ir_create_table() - initializes a scancode table
120 * @rc_map:	the rc_map to initialize
121 * @name:	name to assign to the table
122 * @rc_type:	ir type to assign to the new table
123 * @size:	initial size of the table
124 * @return:	zero on success or a negative error code
125 *
126 * This routine will initialize the rc_map and will allocate
127 * memory to hold at least the specified number of elements.
128 */
129static int ir_create_table(struct rc_map *rc_map,
130			   const char *name, u64 rc_type, size_t size)
131{
132	rc_map->name = name;
133	rc_map->rc_type = rc_type;
134	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
135	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
136	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
137	if (!rc_map->scan)
138		return -ENOMEM;
139
140	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
141		   rc_map->size, rc_map->alloc);
142	return 0;
143}
144
145/**
146 * ir_free_table() - frees memory allocated by a scancode table
147 * @rc_map:	the table whose mappings need to be freed
148 *
149 * This routine will free memory alloctaed for key mappings used by given
150 * scancode table.
151 */
152static void ir_free_table(struct rc_map *rc_map)
153{
154	rc_map->size = 0;
155	kfree(rc_map->scan);
156	rc_map->scan = NULL;
157}
158
159/**
160 * ir_resize_table() - resizes a scancode table if necessary
161 * @rc_map:	the rc_map to resize
162 * @gfp_flags:	gfp flags to use when allocating memory
163 * @return:	zero on success or a negative error code
164 *
165 * This routine will shrink the rc_map if it has lots of
166 * unused entries and grow it if it is full.
167 */
168static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
169{
170	unsigned int oldalloc = rc_map->alloc;
171	unsigned int newalloc = oldalloc;
172	struct rc_map_table *oldscan = rc_map->scan;
173	struct rc_map_table *newscan;
174
175	if (rc_map->size == rc_map->len) {
176		/* All entries in use -> grow keytable */
177		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
178			return -ENOMEM;
179
180		newalloc *= 2;
181		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
182	}
183
184	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
185		/* Less than 1/3 of entries in use -> shrink keytable */
186		newalloc /= 2;
187		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
188	}
189
190	if (newalloc == oldalloc)
191		return 0;
192
193	newscan = kmalloc(newalloc, gfp_flags);
194	if (!newscan) {
195		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
196		return -ENOMEM;
197	}
198
199	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
200	rc_map->scan = newscan;
201	rc_map->alloc = newalloc;
202	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
203	kfree(oldscan);
204	return 0;
205}
206
207/**
208 * ir_update_mapping() - set a keycode in the scancode->keycode table
209 * @dev:	the struct rc_dev device descriptor
210 * @rc_map:	scancode table to be adjusted
211 * @index:	index of the mapping that needs to be updated
212 * @keycode:	the desired keycode
213 * @return:	previous keycode assigned to the mapping
214 *
215 * This routine is used to update scancode->keycode mapping at given
216 * position.
217 */
218static unsigned int ir_update_mapping(struct rc_dev *dev,
219				      struct rc_map *rc_map,
220				      unsigned int index,
221				      unsigned int new_keycode)
222{
223	int old_keycode = rc_map->scan[index].keycode;
224	int i;
225
226	/* Did the user wish to remove the mapping? */
227	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
228		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
229			   index, rc_map->scan[index].scancode);
230		rc_map->len--;
231		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
232			(rc_map->len - index) * sizeof(struct rc_map_table));
233	} else {
234		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
235			   index,
236			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
237			   rc_map->scan[index].scancode, new_keycode);
238		rc_map->scan[index].keycode = new_keycode;
239		__set_bit(new_keycode, dev->input_dev->keybit);
240	}
241
242	if (old_keycode != KEY_RESERVED) {
243		/* A previous mapping was updated... */
244		__clear_bit(old_keycode, dev->input_dev->keybit);
245		/* ... but another scancode might use the same keycode */
246		for (i = 0; i < rc_map->len; i++) {
247			if (rc_map->scan[i].keycode == old_keycode) {
248				__set_bit(old_keycode, dev->input_dev->keybit);
249				break;
250			}
251		}
252
253		/* Possibly shrink the keytable, failure is not a problem */
254		ir_resize_table(rc_map, GFP_ATOMIC);
255	}
256
257	return old_keycode;
258}
259
260/**
261 * ir_establish_scancode() - set a keycode in the scancode->keycode table
262 * @dev:	the struct rc_dev device descriptor
263 * @rc_map:	scancode table to be searched
264 * @scancode:	the desired scancode
265 * @resize:	controls whether we allowed to resize the table to
266 *		accommodate not yet present scancodes
267 * @return:	index of the mapping containing scancode in question
268 *		or -1U in case of failure.
269 *
270 * This routine is used to locate given scancode in rc_map.
271 * If scancode is not yet present the routine will allocate a new slot
272 * for it.
273 */
274static unsigned int ir_establish_scancode(struct rc_dev *dev,
275					  struct rc_map *rc_map,
276					  unsigned int scancode,
277					  bool resize)
278{
279	unsigned int i;
280
281	/*
282	 * Unfortunately, some hardware-based IR decoders don't provide
283	 * all bits for the complete IR code. In general, they provide only
284	 * the command part of the IR code. Yet, as it is possible to replace
285	 * the provided IR with another one, it is needed to allow loading
286	 * IR tables from other remotes. So, we support specifying a mask to
287	 * indicate the valid bits of the scancodes.
288	 */
289	if (dev->scancode_mask)
290		scancode &= dev->scancode_mask;
291
292	/* First check if we already have a mapping for this ir command */
293	for (i = 0; i < rc_map->len; i++) {
294		if (rc_map->scan[i].scancode == scancode)
295			return i;
296
297		/* Keytable is sorted from lowest to highest scancode */
298		if (rc_map->scan[i].scancode >= scancode)
299			break;
300	}
301
302	/* No previous mapping found, we might need to grow the table */
303	if (rc_map->size == rc_map->len) {
304		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
305			return -1U;
306	}
307
308	/* i is the proper index to insert our new keycode */
309	if (i < rc_map->len)
310		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
311			(rc_map->len - i) * sizeof(struct rc_map_table));
312	rc_map->scan[i].scancode = scancode;
313	rc_map->scan[i].keycode = KEY_RESERVED;
314	rc_map->len++;
315
316	return i;
317}
318
319/**
320 * ir_setkeycode() - set a keycode in the scancode->keycode table
321 * @idev:	the struct input_dev device descriptor
322 * @scancode:	the desired scancode
323 * @keycode:	result
324 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
325 *
326 * This routine is used to handle evdev EVIOCSKEY ioctl.
327 */
328static int ir_setkeycode(struct input_dev *idev,
329			 const struct input_keymap_entry *ke,
330			 unsigned int *old_keycode)
331{
332	struct rc_dev *rdev = input_get_drvdata(idev);
333	struct rc_map *rc_map = &rdev->rc_map;
334	unsigned int index;
335	unsigned int scancode;
336	int retval = 0;
337	unsigned long flags;
338
339	spin_lock_irqsave(&rc_map->lock, flags);
340
341	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
342		index = ke->index;
343		if (index >= rc_map->len) {
344			retval = -EINVAL;
345			goto out;
346		}
347	} else {
348		retval = input_scancode_to_scalar(ke, &scancode);
349		if (retval)
350			goto out;
351
352		index = ir_establish_scancode(rdev, rc_map, scancode, true);
353		if (index >= rc_map->len) {
354			retval = -ENOMEM;
355			goto out;
356		}
357	}
358
359	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
360
361out:
362	spin_unlock_irqrestore(&rc_map->lock, flags);
363	return retval;
364}
365
366/**
367 * ir_setkeytable() - sets several entries in the scancode->keycode table
368 * @dev:	the struct rc_dev device descriptor
369 * @to:		the struct rc_map to copy entries to
370 * @from:	the struct rc_map to copy entries from
371 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
372 *
373 * This routine is used to handle table initialization.
374 */
375static int ir_setkeytable(struct rc_dev *dev,
376			  const struct rc_map *from)
377{
378	struct rc_map *rc_map = &dev->rc_map;
379	unsigned int i, index;
380	int rc;
381
382	rc = ir_create_table(rc_map, from->name,
383			     from->rc_type, from->size);
384	if (rc)
385		return rc;
386
387	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
388		   rc_map->size, rc_map->alloc);
389
390	for (i = 0; i < from->size; i++) {
391		index = ir_establish_scancode(dev, rc_map,
392					      from->scan[i].scancode, false);
393		if (index >= rc_map->len) {
394			rc = -ENOMEM;
395			break;
396		}
397
398		ir_update_mapping(dev, rc_map, index,
399				  from->scan[i].keycode);
400	}
401
402	if (rc)
403		ir_free_table(rc_map);
404
405	return rc;
406}
407
408/**
409 * ir_lookup_by_scancode() - locate mapping by scancode
410 * @rc_map:	the struct rc_map to search
411 * @scancode:	scancode to look for in the table
412 * @return:	index in the table, -1U if not found
413 *
414 * This routine performs binary search in RC keykeymap table for
415 * given scancode.
416 */
417static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
418					  unsigned int scancode)
419{
420	int start = 0;
421	int end = rc_map->len - 1;
422	int mid;
423
424	while (start <= end) {
425		mid = (start + end) / 2;
426		if (rc_map->scan[mid].scancode < scancode)
427			start = mid + 1;
428		else if (rc_map->scan[mid].scancode > scancode)
429			end = mid - 1;
430		else
431			return mid;
432	}
433
434	return -1U;
435}
436
437/**
438 * ir_getkeycode() - get a keycode from the scancode->keycode table
439 * @idev:	the struct input_dev device descriptor
440 * @scancode:	the desired scancode
441 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
442 * @return:	always returns zero.
443 *
444 * This routine is used to handle evdev EVIOCGKEY ioctl.
445 */
446static int ir_getkeycode(struct input_dev *idev,
447			 struct input_keymap_entry *ke)
448{
449	struct rc_dev *rdev = input_get_drvdata(idev);
450	struct rc_map *rc_map = &rdev->rc_map;
451	struct rc_map_table *entry;
452	unsigned long flags;
453	unsigned int index;
454	unsigned int scancode;
455	int retval;
456
457	spin_lock_irqsave(&rc_map->lock, flags);
458
459	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
460		index = ke->index;
461	} else {
462		retval = input_scancode_to_scalar(ke, &scancode);
463		if (retval)
464			goto out;
465
466		index = ir_lookup_by_scancode(rc_map, scancode);
467	}
468
469	if (index < rc_map->len) {
470		entry = &rc_map->scan[index];
471
472		ke->index = index;
473		ke->keycode = entry->keycode;
474		ke->len = sizeof(entry->scancode);
475		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
476
477	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
478		/*
479		 * We do not really know the valid range of scancodes
480		 * so let's respond with KEY_RESERVED to anything we
481		 * do not have mapping for [yet].
482		 */
483		ke->index = index;
484		ke->keycode = KEY_RESERVED;
485	} else {
486		retval = -EINVAL;
487		goto out;
488	}
489
490	retval = 0;
491
492out:
493	spin_unlock_irqrestore(&rc_map->lock, flags);
494	return retval;
495}
496
497/**
498 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
499 * @dev:	the struct rc_dev descriptor of the device
500 * @scancode:	the scancode to look for
501 * @return:	the corresponding keycode, or KEY_RESERVED
502 *
503 * This routine is used by drivers which need to convert a scancode to a
504 * keycode. Normally it should not be used since drivers should have no
505 * interest in keycodes.
506 */
507u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
508{
509	struct rc_map *rc_map = &dev->rc_map;
510	unsigned int keycode;
511	unsigned int index;
512	unsigned long flags;
513
514	spin_lock_irqsave(&rc_map->lock, flags);
515
516	index = ir_lookup_by_scancode(rc_map, scancode);
517	keycode = index < rc_map->len ?
518			rc_map->scan[index].keycode : KEY_RESERVED;
519
520	spin_unlock_irqrestore(&rc_map->lock, flags);
521
522	if (keycode != KEY_RESERVED)
523		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
524			   dev->input_name, scancode, keycode);
525
526	return keycode;
527}
528EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
529
530/**
531 * ir_do_keyup() - internal function to signal the release of a keypress
532 * @dev:	the struct rc_dev descriptor of the device
533 * @sync:	whether or not to call input_sync
534 *
535 * This function is used internally to release a keypress, it must be
536 * called with keylock held.
537 */
538static void ir_do_keyup(struct rc_dev *dev, bool sync)
539{
540	if (!dev->keypressed)
541		return;
542
543	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
544	input_report_key(dev->input_dev, dev->last_keycode, 0);
545	led_trigger_event(led_feedback, LED_OFF);
546	if (sync)
547		input_sync(dev->input_dev);
548	dev->keypressed = false;
549}
550
551/**
552 * rc_keyup() - signals the release of a keypress
553 * @dev:	the struct rc_dev descriptor of the device
554 *
555 * This routine is used to signal that a key has been released on the
556 * remote control.
557 */
558void rc_keyup(struct rc_dev *dev)
559{
560	unsigned long flags;
561
562	spin_lock_irqsave(&dev->keylock, flags);
563	ir_do_keyup(dev, true);
564	spin_unlock_irqrestore(&dev->keylock, flags);
565}
566EXPORT_SYMBOL_GPL(rc_keyup);
567
568/**
569 * ir_timer_keyup() - generates a keyup event after a timeout
570 * @cookie:	a pointer to the struct rc_dev for the device
571 *
572 * This routine will generate a keyup event some time after a keydown event
573 * is generated when no further activity has been detected.
574 */
575static void ir_timer_keyup(unsigned long cookie)
576{
577	struct rc_dev *dev = (struct rc_dev *)cookie;
578	unsigned long flags;
579
580	/*
581	 * ir->keyup_jiffies is used to prevent a race condition if a
582	 * hardware interrupt occurs at this point and the keyup timer
583	 * event is moved further into the future as a result.
584	 *
585	 * The timer will then be reactivated and this function called
586	 * again in the future. We need to exit gracefully in that case
587	 * to allow the input subsystem to do its auto-repeat magic or
588	 * a keyup event might follow immediately after the keydown.
589	 */
590	spin_lock_irqsave(&dev->keylock, flags);
591	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
592		ir_do_keyup(dev, true);
593	spin_unlock_irqrestore(&dev->keylock, flags);
594}
595
596/**
597 * rc_repeat() - signals that a key is still pressed
598 * @dev:	the struct rc_dev descriptor of the device
599 *
600 * This routine is used by IR decoders when a repeat message which does
601 * not include the necessary bits to reproduce the scancode has been
602 * received.
603 */
604void rc_repeat(struct rc_dev *dev)
605{
606	unsigned long flags;
607
608	spin_lock_irqsave(&dev->keylock, flags);
609
610	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
611	input_sync(dev->input_dev);
612
613	if (!dev->keypressed)
614		goto out;
615
616	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
617	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
618
619out:
620	spin_unlock_irqrestore(&dev->keylock, flags);
621}
622EXPORT_SYMBOL_GPL(rc_repeat);
623
624/**
625 * ir_do_keydown() - internal function to process a keypress
626 * @dev:	the struct rc_dev descriptor of the device
627 * @protocol:	the protocol of the keypress
628 * @scancode:   the scancode of the keypress
629 * @keycode:    the keycode of the keypress
630 * @toggle:     the toggle value of the keypress
631 *
632 * This function is used internally to register a keypress, it must be
633 * called with keylock held.
634 */
635static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
636			  u32 scancode, u32 keycode, u8 toggle)
637{
638	bool new_event = (!dev->keypressed		 ||
639			  dev->last_protocol != protocol ||
640			  dev->last_scancode != scancode ||
641			  dev->last_toggle   != toggle);
642
643	if (new_event && dev->keypressed)
644		ir_do_keyup(dev, false);
645
646	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
647
648	if (new_event && keycode != KEY_RESERVED) {
649		/* Register a keypress */
650		dev->keypressed = true;
651		dev->last_protocol = protocol;
652		dev->last_scancode = scancode;
653		dev->last_toggle = toggle;
654		dev->last_keycode = keycode;
655
656		IR_dprintk(1, "%s: key down event, "
657			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
658			   dev->input_name, keycode, protocol, scancode);
659		input_report_key(dev->input_dev, keycode, 1);
660
661		led_trigger_event(led_feedback, LED_FULL);
662	}
663
664	input_sync(dev->input_dev);
665}
666
667/**
668 * rc_keydown() - generates input event for a key press
669 * @dev:	the struct rc_dev descriptor of the device
670 * @protocol:	the protocol for the keypress
671 * @scancode:	the scancode for the keypress
672 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
673 *              support toggle values, this should be set to zero)
674 *
675 * This routine is used to signal that a key has been pressed on the
676 * remote control.
677 */
678void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
679{
680	unsigned long flags;
681	u32 keycode = rc_g_keycode_from_table(dev, scancode);
682
683	spin_lock_irqsave(&dev->keylock, flags);
684	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
685
686	if (dev->keypressed) {
687		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
688		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
689	}
690	spin_unlock_irqrestore(&dev->keylock, flags);
691}
692EXPORT_SYMBOL_GPL(rc_keydown);
693
694/**
695 * rc_keydown_notimeout() - generates input event for a key press without
696 *                          an automatic keyup event at a later time
697 * @dev:	the struct rc_dev descriptor of the device
698 * @protocol:	the protocol for the keypress
699 * @scancode:	the scancode for the keypress
700 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
701 *              support toggle values, this should be set to zero)
702 *
703 * This routine is used to signal that a key has been pressed on the
704 * remote control. The driver must manually call rc_keyup() at a later stage.
705 */
706void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
707			  u32 scancode, u8 toggle)
708{
709	unsigned long flags;
710	u32 keycode = rc_g_keycode_from_table(dev, scancode);
711
712	spin_lock_irqsave(&dev->keylock, flags);
713	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
714	spin_unlock_irqrestore(&dev->keylock, flags);
715}
716EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
717
718int rc_open(struct rc_dev *rdev)
719{
720	int rval = 0;
721
722	if (!rdev)
723		return -EINVAL;
724
725	mutex_lock(&rdev->lock);
726	if (!rdev->users++ && rdev->open != NULL)
727		rval = rdev->open(rdev);
728
729	if (rval)
730		rdev->users--;
731
732	mutex_unlock(&rdev->lock);
733
734	return rval;
735}
736EXPORT_SYMBOL_GPL(rc_open);
737
738static int ir_open(struct input_dev *idev)
739{
740	struct rc_dev *rdev = input_get_drvdata(idev);
741
742	return rc_open(rdev);
743}
744
745void rc_close(struct rc_dev *rdev)
746{
747	if (rdev) {
748		mutex_lock(&rdev->lock);
749
750		if (!--rdev->users && rdev->close != NULL)
751			rdev->close(rdev);
752
753		mutex_unlock(&rdev->lock);
754	}
755}
756EXPORT_SYMBOL_GPL(rc_close);
757
758static void ir_close(struct input_dev *idev)
759{
760	struct rc_dev *rdev = input_get_drvdata(idev);
761	rc_close(rdev);
762}
763
764/* class for /sys/class/rc */
765static char *rc_devnode(struct device *dev, umode_t *mode)
766{
767	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
768}
769
770static struct class rc_class = {
771	.name		= "rc",
772	.devnode	= rc_devnode,
773};
774
775/*
776 * These are the protocol textual descriptions that are
777 * used by the sysfs protocols file. Note that the order
778 * of the entries is relevant.
779 */
780static struct {
781	u64	type;
782	char	*name;
783} proto_names[] = {
784	{ RC_BIT_NONE,		"none"		},
785	{ RC_BIT_OTHER,		"other"		},
786	{ RC_BIT_UNKNOWN,	"unknown"	},
787	{ RC_BIT_RC5 |
788	  RC_BIT_RC5X,		"rc-5"		},
789	{ RC_BIT_NEC,		"nec"		},
790	{ RC_BIT_RC6_0 |
791	  RC_BIT_RC6_6A_20 |
792	  RC_BIT_RC6_6A_24 |
793	  RC_BIT_RC6_6A_32 |
794	  RC_BIT_RC6_MCE,	"rc-6"		},
795	{ RC_BIT_JVC,		"jvc"		},
796	{ RC_BIT_SONY12 |
797	  RC_BIT_SONY15 |
798	  RC_BIT_SONY20,	"sony"		},
799	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
800	{ RC_BIT_SANYO,		"sanyo"		},
801	{ RC_BIT_SHARP,		"sharp"		},
802	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
803	{ RC_BIT_XMP,		"xmp"		},
804};
805
806/**
807 * struct rc_filter_attribute - Device attribute relating to a filter type.
808 * @attr:	Device attribute.
809 * @type:	Filter type.
810 * @mask:	false for filter value, true for filter mask.
811 */
812struct rc_filter_attribute {
813	struct device_attribute		attr;
814	enum rc_filter_type		type;
815	bool				mask;
816};
817#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
818
819#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
820	struct rc_filter_attribute dev_attr_##_name = {			\
821		.attr = __ATTR(_name, _mode, _show, _store),		\
822		.type = (_type),					\
823	}
824#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
825	struct rc_filter_attribute dev_attr_##_name = {			\
826		.attr = __ATTR(_name, _mode, _show, _store),		\
827		.type = (_type),					\
828		.mask = (_mask),					\
829	}
830
831static bool lirc_is_present(void)
832{
833#if defined(CONFIG_LIRC_MODULE)
834	struct module *lirc;
835
836	mutex_lock(&module_mutex);
837	lirc = find_module("lirc_dev");
838	mutex_unlock(&module_mutex);
839
840	return lirc ? true : false;
841#elif defined(CONFIG_LIRC)
842	return true;
843#else
844	return false;
845#endif
846}
847
848/**
849 * show_protocols() - shows the current/wakeup IR protocol(s)
850 * @device:	the device descriptor
851 * @mattr:	the device attribute struct
852 * @buf:	a pointer to the output buffer
853 *
854 * This routine is a callback routine for input read the IR protocol type(s).
855 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
856 * It returns the protocol names of supported protocols.
857 * Enabled protocols are printed in brackets.
858 *
859 * dev->lock is taken to guard against races between device
860 * registration, store_protocols and show_protocols.
861 */
862static ssize_t show_protocols(struct device *device,
863			      struct device_attribute *mattr, char *buf)
864{
865	struct rc_dev *dev = to_rc_dev(device);
866	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
867	u64 allowed, enabled;
868	char *tmp = buf;
869	int i;
870
871	/* Device is being removed */
872	if (!dev)
873		return -EINVAL;
874
875	mutex_lock(&dev->lock);
876
877	if (fattr->type == RC_FILTER_NORMAL) {
878		enabled = dev->enabled_protocols;
879		allowed = dev->allowed_protocols;
880		if (dev->raw && !allowed)
881			allowed = ir_raw_get_allowed_protocols();
882	} else {
883		enabled = dev->enabled_wakeup_protocols;
884		allowed = dev->allowed_wakeup_protocols;
885	}
886
887	mutex_unlock(&dev->lock);
888
889	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
890		   __func__, (long long)allowed, (long long)enabled);
891
892	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
893		if (allowed & enabled & proto_names[i].type)
894			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
895		else if (allowed & proto_names[i].type)
896			tmp += sprintf(tmp, "%s ", proto_names[i].name);
897
898		if (allowed & proto_names[i].type)
899			allowed &= ~proto_names[i].type;
900	}
901
902	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
903		tmp += sprintf(tmp, "[lirc] ");
904
905	if (tmp != buf)
906		tmp--;
907	*tmp = '\n';
908
909	return tmp + 1 - buf;
910}
911
912/**
913 * parse_protocol_change() - parses a protocol change request
914 * @protocols:	pointer to the bitmask of current protocols
915 * @buf:	pointer to the buffer with a list of changes
916 *
917 * Writing "+proto" will add a protocol to the protocol mask.
918 * Writing "-proto" will remove a protocol from protocol mask.
919 * Writing "proto" will enable only "proto".
920 * Writing "none" will disable all protocols.
921 * Returns the number of changes performed or a negative error code.
922 */
923static int parse_protocol_change(u64 *protocols, const char *buf)
924{
925	const char *tmp;
926	unsigned count = 0;
927	bool enable, disable;
928	u64 mask;
929	int i;
930
931	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
932		if (!*tmp)
933			break;
934
935		if (*tmp == '+') {
936			enable = true;
937			disable = false;
938			tmp++;
939		} else if (*tmp == '-') {
940			enable = false;
941			disable = true;
942			tmp++;
943		} else {
944			enable = false;
945			disable = false;
946		}
947
948		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
949			if (!strcasecmp(tmp, proto_names[i].name)) {
950				mask = proto_names[i].type;
951				break;
952			}
953		}
954
955		if (i == ARRAY_SIZE(proto_names)) {
956			if (!strcasecmp(tmp, "lirc"))
957				mask = 0;
958			else {
959				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
960				return -EINVAL;
961			}
962		}
963
964		count++;
965
966		if (enable)
967			*protocols |= mask;
968		else if (disable)
969			*protocols &= ~mask;
970		else
971			*protocols = mask;
972	}
973
974	if (!count) {
975		IR_dprintk(1, "Protocol not specified\n");
976		return -EINVAL;
977	}
978
979	return count;
980}
981
982/**
983 * store_protocols() - changes the current/wakeup IR protocol(s)
984 * @device:	the device descriptor
985 * @mattr:	the device attribute struct
986 * @buf:	a pointer to the input buffer
987 * @len:	length of the input buffer
988 *
989 * This routine is for changing the IR protocol type.
990 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
991 * See parse_protocol_change() for the valid commands.
992 * Returns @len on success or a negative error code.
993 *
994 * dev->lock is taken to guard against races between device
995 * registration, store_protocols and show_protocols.
996 */
997static ssize_t store_protocols(struct device *device,
998			       struct device_attribute *mattr,
999			       const char *buf, size_t len)
1000{
1001	struct rc_dev *dev = to_rc_dev(device);
1002	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1003	u64 *current_protocols;
1004	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1005	struct rc_scancode_filter *filter;
1006	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1007	u64 old_protocols, new_protocols;
1008	ssize_t rc;
1009
1010	/* Device is being removed */
1011	if (!dev)
1012		return -EINVAL;
1013
1014	if (fattr->type == RC_FILTER_NORMAL) {
1015		IR_dprintk(1, "Normal protocol change requested\n");
1016		current_protocols = &dev->enabled_protocols;
1017		change_protocol = dev->change_protocol;
1018		filter = &dev->scancode_filter;
1019		set_filter = dev->s_filter;
1020	} else {
1021		IR_dprintk(1, "Wakeup protocol change requested\n");
1022		current_protocols = &dev->enabled_wakeup_protocols;
1023		change_protocol = dev->change_wakeup_protocol;
1024		filter = &dev->scancode_wakeup_filter;
1025		set_filter = dev->s_wakeup_filter;
1026	}
1027
1028	if (!change_protocol) {
1029		IR_dprintk(1, "Protocol switching not supported\n");
1030		return -EINVAL;
1031	}
1032
1033	mutex_lock(&dev->lock);
1034
1035	old_protocols = *current_protocols;
1036	new_protocols = old_protocols;
1037	rc = parse_protocol_change(&new_protocols, buf);
1038	if (rc < 0)
1039		goto out;
1040
1041	rc = change_protocol(dev, &new_protocols);
1042	if (rc < 0) {
1043		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1044			   (long long)new_protocols);
1045		goto out;
1046	}
1047
1048	if (new_protocols != old_protocols) {
1049		*current_protocols = new_protocols;
1050		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1051			   (long long)new_protocols);
1052	}
1053
1054	/*
1055	 * If a protocol change was attempted the filter may need updating, even
1056	 * if the actual protocol mask hasn't changed (since the driver may have
1057	 * cleared the filter).
1058	 * Try setting the same filter with the new protocol (if any).
1059	 * Fall back to clearing the filter.
1060	 */
1061	if (set_filter && filter->mask) {
1062		if (new_protocols)
1063			rc = set_filter(dev, filter);
1064		else
1065			rc = -1;
1066
1067		if (rc < 0) {
1068			filter->data = 0;
1069			filter->mask = 0;
1070			set_filter(dev, filter);
1071		}
1072	}
1073
1074	rc = len;
1075
1076out:
1077	mutex_unlock(&dev->lock);
1078	return rc;
1079}
1080
1081/**
1082 * show_filter() - shows the current scancode filter value or mask
1083 * @device:	the device descriptor
1084 * @attr:	the device attribute struct
1085 * @buf:	a pointer to the output buffer
1086 *
1087 * This routine is a callback routine to read a scancode filter value or mask.
1088 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1089 * It prints the current scancode filter value or mask of the appropriate filter
1090 * type in hexadecimal into @buf and returns the size of the buffer.
1091 *
1092 * Bits of the filter value corresponding to set bits in the filter mask are
1093 * compared against input scancodes and non-matching scancodes are discarded.
1094 *
1095 * dev->lock is taken to guard against races between device registration,
1096 * store_filter and show_filter.
1097 */
1098static ssize_t show_filter(struct device *device,
1099			   struct device_attribute *attr,
1100			   char *buf)
1101{
1102	struct rc_dev *dev = to_rc_dev(device);
1103	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1104	struct rc_scancode_filter *filter;
1105	u32 val;
1106
1107	/* Device is being removed */
1108	if (!dev)
1109		return -EINVAL;
1110
1111	if (fattr->type == RC_FILTER_NORMAL)
1112		filter = &dev->scancode_filter;
1113	else
1114		filter = &dev->scancode_wakeup_filter;
1115
1116	mutex_lock(&dev->lock);
1117	if (fattr->mask)
1118		val = filter->mask;
1119	else
1120		val = filter->data;
1121	mutex_unlock(&dev->lock);
1122
1123	return sprintf(buf, "%#x\n", val);
1124}
1125
1126/**
1127 * store_filter() - changes the scancode filter value
1128 * @device:	the device descriptor
1129 * @attr:	the device attribute struct
1130 * @buf:	a pointer to the input buffer
1131 * @len:	length of the input buffer
1132 *
1133 * This routine is for changing a scancode filter value or mask.
1134 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1135 * Returns -EINVAL if an invalid filter value for the current protocol was
1136 * specified or if scancode filtering is not supported by the driver, otherwise
1137 * returns @len.
1138 *
1139 * Bits of the filter value corresponding to set bits in the filter mask are
1140 * compared against input scancodes and non-matching scancodes are discarded.
1141 *
1142 * dev->lock is taken to guard against races between device registration,
1143 * store_filter and show_filter.
1144 */
1145static ssize_t store_filter(struct device *device,
1146			    struct device_attribute *attr,
1147			    const char *buf, size_t len)
1148{
1149	struct rc_dev *dev = to_rc_dev(device);
1150	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1151	struct rc_scancode_filter new_filter, *filter;
1152	int ret;
1153	unsigned long val;
1154	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1155	u64 *enabled_protocols;
1156
1157	/* Device is being removed */
1158	if (!dev)
1159		return -EINVAL;
1160
1161	ret = kstrtoul(buf, 0, &val);
1162	if (ret < 0)
1163		return ret;
1164
1165	if (fattr->type == RC_FILTER_NORMAL) {
1166		set_filter = dev->s_filter;
1167		enabled_protocols = &dev->enabled_protocols;
1168		filter = &dev->scancode_filter;
1169	} else {
1170		set_filter = dev->s_wakeup_filter;
1171		enabled_protocols = &dev->enabled_wakeup_protocols;
1172		filter = &dev->scancode_wakeup_filter;
1173	}
1174
1175	if (!set_filter)
1176		return -EINVAL;
1177
1178	mutex_lock(&dev->lock);
1179
1180	new_filter = *filter;
1181	if (fattr->mask)
1182		new_filter.mask = val;
1183	else
1184		new_filter.data = val;
1185
1186	if (!*enabled_protocols && val) {
1187		/* refuse to set a filter unless a protocol is enabled */
1188		ret = -EINVAL;
1189		goto unlock;
1190	}
1191
1192	ret = set_filter(dev, &new_filter);
1193	if (ret < 0)
1194		goto unlock;
1195
1196	*filter = new_filter;
1197
1198unlock:
1199	mutex_unlock(&dev->lock);
1200	return (ret < 0) ? ret : len;
1201}
1202
1203static void rc_dev_release(struct device *device)
1204{
1205}
1206
1207#define ADD_HOTPLUG_VAR(fmt, val...)					\
1208	do {								\
1209		int err = add_uevent_var(env, fmt, val);		\
1210		if (err)						\
1211			return err;					\
1212	} while (0)
1213
1214static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1215{
1216	struct rc_dev *dev = to_rc_dev(device);
1217
1218	if (dev->rc_map.name)
1219		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1220	if (dev->driver_name)
1221		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1222
1223	return 0;
1224}
1225
1226/*
1227 * Static device attribute struct with the sysfs attributes for IR's
1228 */
1229static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1230		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1231static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1232		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1233static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1234		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1235static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1236		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1237static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1238		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1239static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1240		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1241
1242static struct attribute *rc_dev_protocol_attrs[] = {
1243	&dev_attr_protocols.attr.attr,
1244	NULL,
1245};
1246
1247static struct attribute_group rc_dev_protocol_attr_grp = {
1248	.attrs	= rc_dev_protocol_attrs,
1249};
1250
1251static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1252	&dev_attr_wakeup_protocols.attr.attr,
1253	NULL,
1254};
1255
1256static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1257	.attrs	= rc_dev_wakeup_protocol_attrs,
1258};
1259
1260static struct attribute *rc_dev_filter_attrs[] = {
1261	&dev_attr_filter.attr.attr,
1262	&dev_attr_filter_mask.attr.attr,
1263	NULL,
1264};
1265
1266static struct attribute_group rc_dev_filter_attr_grp = {
1267	.attrs	= rc_dev_filter_attrs,
1268};
1269
1270static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1271	&dev_attr_wakeup_filter.attr.attr,
1272	&dev_attr_wakeup_filter_mask.attr.attr,
1273	NULL,
1274};
1275
1276static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1277	.attrs	= rc_dev_wakeup_filter_attrs,
1278};
1279
1280static struct device_type rc_dev_type = {
1281	.release	= rc_dev_release,
1282	.uevent		= rc_dev_uevent,
1283};
1284
1285struct rc_dev *rc_allocate_device(void)
1286{
1287	struct rc_dev *dev;
1288
1289	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1290	if (!dev)
1291		return NULL;
1292
1293	dev->input_dev = input_allocate_device();
1294	if (!dev->input_dev) {
1295		kfree(dev);
1296		return NULL;
1297	}
1298
1299	dev->input_dev->getkeycode = ir_getkeycode;
1300	dev->input_dev->setkeycode = ir_setkeycode;
1301	input_set_drvdata(dev->input_dev, dev);
1302
1303	spin_lock_init(&dev->rc_map.lock);
1304	spin_lock_init(&dev->keylock);
1305	mutex_init(&dev->lock);
1306	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1307
1308	dev->dev.type = &rc_dev_type;
1309	dev->dev.class = &rc_class;
1310	device_initialize(&dev->dev);
1311
1312	__module_get(THIS_MODULE);
1313	return dev;
1314}
1315EXPORT_SYMBOL_GPL(rc_allocate_device);
1316
1317void rc_free_device(struct rc_dev *dev)
1318{
1319	if (!dev)
1320		return;
1321
1322	input_free_device(dev->input_dev);
1323
1324	put_device(&dev->dev);
1325
1326	kfree(dev);
1327	module_put(THIS_MODULE);
1328}
1329EXPORT_SYMBOL_GPL(rc_free_device);
1330
1331int rc_register_device(struct rc_dev *dev)
1332{
1333	static bool raw_init = false; /* raw decoders loaded? */
1334	struct rc_map *rc_map;
1335	const char *path;
1336	int attr = 0;
1337	int minor;
1338	int rc;
1339
1340	if (!dev || !dev->map_name)
1341		return -EINVAL;
1342
1343	rc_map = rc_map_get(dev->map_name);
1344	if (!rc_map)
1345		rc_map = rc_map_get(RC_MAP_EMPTY);
1346	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1347		return -EINVAL;
1348
1349	set_bit(EV_KEY, dev->input_dev->evbit);
1350	set_bit(EV_REP, dev->input_dev->evbit);
1351	set_bit(EV_MSC, dev->input_dev->evbit);
1352	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1353	if (dev->open)
1354		dev->input_dev->open = ir_open;
1355	if (dev->close)
1356		dev->input_dev->close = ir_close;
1357
1358	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1359	if (minor < 0)
1360		return minor;
1361
1362	dev->minor = minor;
1363	dev_set_name(&dev->dev, "rc%u", dev->minor);
1364	dev_set_drvdata(&dev->dev, dev);
1365
1366	dev->dev.groups = dev->sysfs_groups;
1367	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1368	if (dev->s_filter)
1369		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1370	if (dev->s_wakeup_filter)
1371		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1372	if (dev->change_wakeup_protocol)
1373		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1374	dev->sysfs_groups[attr++] = NULL;
1375
1376	/*
1377	 * Take the lock here, as the device sysfs node will appear
1378	 * when device_add() is called, which may trigger an ir-keytable udev
1379	 * rule, which will in turn call show_protocols and access
1380	 * dev->enabled_protocols before it has been initialized.
1381	 */
1382	mutex_lock(&dev->lock);
1383
1384	rc = device_add(&dev->dev);
1385	if (rc)
1386		goto out_unlock;
1387
1388	rc = ir_setkeytable(dev, rc_map);
1389	if (rc)
1390		goto out_dev;
1391
1392	dev->input_dev->dev.parent = &dev->dev;
1393	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1394	dev->input_dev->phys = dev->input_phys;
1395	dev->input_dev->name = dev->input_name;
1396
1397	/* input_register_device can call ir_open, so unlock mutex here */
1398	mutex_unlock(&dev->lock);
1399
1400	rc = input_register_device(dev->input_dev);
1401
1402	mutex_lock(&dev->lock);
1403
1404	if (rc)
1405		goto out_table;
1406
1407	/*
1408	 * Default delay of 250ms is too short for some protocols, especially
1409	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1410	 * to avoid wrong repetition of the keycodes. Note that this must be
1411	 * set after the call to input_register_device().
1412	 */
1413	dev->input_dev->rep[REP_DELAY] = 500;
1414
1415	/*
1416	 * As a repeat event on protocols like RC-5 and NEC take as long as
1417	 * 110/114ms, using 33ms as a repeat period is not the right thing
1418	 * to do.
1419	 */
1420	dev->input_dev->rep[REP_PERIOD] = 125;
1421
1422	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1423	printk(KERN_INFO "%s: %s as %s\n",
1424		dev_name(&dev->dev),
1425		dev->input_name ? dev->input_name : "Unspecified device",
1426		path ? path : "N/A");
1427	kfree(path);
1428
1429	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1430		/* Load raw decoders, if they aren't already */
1431		if (!raw_init) {
1432			IR_dprintk(1, "Loading raw decoders\n");
1433			ir_raw_init();
1434			raw_init = true;
1435		}
1436		/* calls ir_register_device so unlock mutex here*/
1437		mutex_unlock(&dev->lock);
1438		rc = ir_raw_event_register(dev);
1439		mutex_lock(&dev->lock);
1440		if (rc < 0)
1441			goto out_input;
1442	}
1443
1444	if (dev->change_protocol) {
1445		u64 rc_type = (1ll << rc_map->rc_type);
1446		rc = dev->change_protocol(dev, &rc_type);
1447		if (rc < 0)
1448			goto out_raw;
1449		dev->enabled_protocols = rc_type;
1450	}
1451
1452	mutex_unlock(&dev->lock);
1453
1454	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1455		   dev->minor,
1456		   dev->driver_name ? dev->driver_name : "unknown",
1457		   rc_map->name ? rc_map->name : "unknown",
1458		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1459
1460	return 0;
1461
1462out_raw:
1463	if (dev->driver_type == RC_DRIVER_IR_RAW)
1464		ir_raw_event_unregister(dev);
1465out_input:
1466	input_unregister_device(dev->input_dev);
1467	dev->input_dev = NULL;
1468out_table:
1469	ir_free_table(&dev->rc_map);
1470out_dev:
1471	device_del(&dev->dev);
1472out_unlock:
1473	mutex_unlock(&dev->lock);
1474	ida_simple_remove(&rc_ida, minor);
1475	return rc;
1476}
1477EXPORT_SYMBOL_GPL(rc_register_device);
1478
1479void rc_unregister_device(struct rc_dev *dev)
1480{
1481	if (!dev)
1482		return;
1483
1484	del_timer_sync(&dev->timer_keyup);
1485
1486	if (dev->driver_type == RC_DRIVER_IR_RAW)
1487		ir_raw_event_unregister(dev);
1488
1489	/* Freeing the table should also call the stop callback */
1490	ir_free_table(&dev->rc_map);
1491	IR_dprintk(1, "Freed keycode table\n");
1492
1493	input_unregister_device(dev->input_dev);
1494	dev->input_dev = NULL;
1495
1496	device_del(&dev->dev);
1497
1498	ida_simple_remove(&rc_ida, dev->minor);
1499
1500	rc_free_device(dev);
1501}
1502
1503EXPORT_SYMBOL_GPL(rc_unregister_device);
1504
1505/*
1506 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1507 */
1508
1509static int __init rc_core_init(void)
1510{
1511	int rc = class_register(&rc_class);
1512	if (rc) {
1513		printk(KERN_ERR "rc_core: unable to register rc class\n");
1514		return rc;
1515	}
1516
1517	led_trigger_register_simple("rc-feedback", &led_feedback);
1518	rc_map_register(&empty_map);
1519
1520	return 0;
1521}
1522
1523static void __exit rc_core_exit(void)
1524{
1525	class_unregister(&rc_class);
1526	led_trigger_unregister_simple(led_feedback);
1527	rc_map_unregister(&empty_map);
1528}
1529
1530subsys_initcall(rc_core_init);
1531module_exit(rc_core_exit);
1532
1533int rc_core_debug;    /* ir_debug level (0,1,2) */
1534EXPORT_SYMBOL_GPL(rc_core_debug);
1535module_param_named(debug, rc_core_debug, int, 0644);
1536
1537MODULE_AUTHOR("Mauro Carvalho Chehab");
1538MODULE_LICENSE("GPL");
1539