1/*
2 * isp.c
3 *
4 * TI OMAP3 ISP - Core
5 *
6 * Copyright (C) 2006-2010 Nokia Corporation
7 * Copyright (C) 2007-2009 Texas Instruments, Inc.
8 *
9 * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 *	     Sakari Ailus <sakari.ailus@iki.fi>
11 *
12 * Contributors:
13 *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
14 *	Sakari Ailus <sakari.ailus@iki.fi>
15 *	David Cohen <dacohen@gmail.com>
16 *	Stanimir Varbanov <svarbanov@mm-sol.com>
17 *	Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
18 *	Tuukka Toivonen <tuukkat76@gmail.com>
19 *	Sergio Aguirre <saaguirre@ti.com>
20 *	Antti Koskipaa <akoskipa@gmail.com>
21 *	Ivan T. Ivanov <iivanov@mm-sol.com>
22 *	RaniSuneela <r-m@ti.com>
23 *	Atanas Filipov <afilipov@mm-sol.com>
24 *	Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
25 *	Hiroshi DOYU <hiroshi.doyu@nokia.com>
26 *	Nayden Kanchev <nkanchev@mm-sol.com>
27 *	Phil Carmody <ext-phil.2.carmody@nokia.com>
28 *	Artem Bityutskiy <artem.bityutskiy@nokia.com>
29 *	Dominic Curran <dcurran@ti.com>
30 *	Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
31 *	Pallavi Kulkarni <p-kulkarni@ti.com>
32 *	Vaibhav Hiremath <hvaibhav@ti.com>
33 *	Mohit Jalori <mjalori@ti.com>
34 *	Sameer Venkatraman <sameerv@ti.com>
35 *	Senthilvadivu Guruswamy <svadivu@ti.com>
36 *	Thara Gopinath <thara@ti.com>
37 *	Toni Leinonen <toni.leinonen@nokia.com>
38 *	Troy Laramy <t-laramy@ti.com>
39 *
40 * This program is free software; you can redistribute it and/or modify
41 * it under the terms of the GNU General Public License version 2 as
42 * published by the Free Software Foundation.
43 */
44
45#include <asm/cacheflush.h>
46
47#include <linux/clk.h>
48#include <linux/clkdev.h>
49#include <linux/delay.h>
50#include <linux/device.h>
51#include <linux/dma-mapping.h>
52#include <linux/i2c.h>
53#include <linux/interrupt.h>
54#include <linux/mfd/syscon.h>
55#include <linux/module.h>
56#include <linux/omap-iommu.h>
57#include <linux/platform_device.h>
58#include <linux/regulator/consumer.h>
59#include <linux/slab.h>
60#include <linux/sched.h>
61#include <linux/vmalloc.h>
62
63#include <asm/dma-iommu.h>
64
65#include <media/v4l2-common.h>
66#include <media/v4l2-device.h>
67#include <media/v4l2-of.h>
68
69#include "isp.h"
70#include "ispreg.h"
71#include "ispccdc.h"
72#include "isppreview.h"
73#include "ispresizer.h"
74#include "ispcsi2.h"
75#include "ispccp2.h"
76#include "isph3a.h"
77#include "isphist.h"
78
79static unsigned int autoidle;
80module_param(autoidle, int, 0444);
81MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
82
83static void isp_save_ctx(struct isp_device *isp);
84
85static void isp_restore_ctx(struct isp_device *isp);
86
87static const struct isp_res_mapping isp_res_maps[] = {
88	{
89		.isp_rev = ISP_REVISION_2_0,
90		.offset = {
91			/* first MMIO area */
92			0x0000, /* base, len 0x0070 */
93			0x0400, /* ccp2, len 0x01f0 */
94			0x0600, /* ccdc, len 0x00a8 */
95			0x0a00, /* hist, len 0x0048 */
96			0x0c00, /* h3a, len 0x0060 */
97			0x0e00, /* preview, len 0x00a0 */
98			0x1000, /* resizer, len 0x00ac */
99			0x1200, /* sbl, len 0x00fc */
100			/* second MMIO area */
101			0x0000, /* csi2a, len 0x0170 */
102			0x0170, /* csiphy2, len 0x000c */
103		},
104		.phy_type = ISP_PHY_TYPE_3430,
105	},
106	{
107		.isp_rev = ISP_REVISION_15_0,
108		.offset = {
109			/* first MMIO area */
110			0x0000, /* base, len 0x0070 */
111			0x0400, /* ccp2, len 0x01f0 */
112			0x0600, /* ccdc, len 0x00a8 */
113			0x0a00, /* hist, len 0x0048 */
114			0x0c00, /* h3a, len 0x0060 */
115			0x0e00, /* preview, len 0x00a0 */
116			0x1000, /* resizer, len 0x00ac */
117			0x1200, /* sbl, len 0x00fc */
118			/* second MMIO area */
119			0x0000, /* csi2a, len 0x0170 (1st area) */
120			0x0170, /* csiphy2, len 0x000c */
121			0x01c0, /* csi2a, len 0x0040 (2nd area) */
122			0x0400, /* csi2c, len 0x0170 (1st area) */
123			0x0570, /* csiphy1, len 0x000c */
124			0x05c0, /* csi2c, len 0x0040 (2nd area) */
125		},
126		.phy_type = ISP_PHY_TYPE_3630,
127	},
128};
129
130/* Structure for saving/restoring ISP module registers */
131static struct isp_reg isp_reg_list[] = {
132	{OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
133	{OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
134	{OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
135	{0, ISP_TOK_TERM, 0}
136};
137
138/*
139 * omap3isp_flush - Post pending L3 bus writes by doing a register readback
140 * @isp: OMAP3 ISP device
141 *
142 * In order to force posting of pending writes, we need to write and
143 * readback the same register, in this case the revision register.
144 *
145 * See this link for reference:
146 *   http://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
147 */
148void omap3isp_flush(struct isp_device *isp)
149{
150	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
151	isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
152}
153
154/* -----------------------------------------------------------------------------
155 * XCLK
156 */
157
158#define to_isp_xclk(_hw)	container_of(_hw, struct isp_xclk, hw)
159
160static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
161{
162	switch (xclk->id) {
163	case ISP_XCLK_A:
164		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
165				ISPTCTRL_CTRL_DIVA_MASK,
166				divider << ISPTCTRL_CTRL_DIVA_SHIFT);
167		break;
168	case ISP_XCLK_B:
169		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
170				ISPTCTRL_CTRL_DIVB_MASK,
171				divider << ISPTCTRL_CTRL_DIVB_SHIFT);
172		break;
173	}
174}
175
176static int isp_xclk_prepare(struct clk_hw *hw)
177{
178	struct isp_xclk *xclk = to_isp_xclk(hw);
179
180	omap3isp_get(xclk->isp);
181
182	return 0;
183}
184
185static void isp_xclk_unprepare(struct clk_hw *hw)
186{
187	struct isp_xclk *xclk = to_isp_xclk(hw);
188
189	omap3isp_put(xclk->isp);
190}
191
192static int isp_xclk_enable(struct clk_hw *hw)
193{
194	struct isp_xclk *xclk = to_isp_xclk(hw);
195	unsigned long flags;
196
197	spin_lock_irqsave(&xclk->lock, flags);
198	isp_xclk_update(xclk, xclk->divider);
199	xclk->enabled = true;
200	spin_unlock_irqrestore(&xclk->lock, flags);
201
202	return 0;
203}
204
205static void isp_xclk_disable(struct clk_hw *hw)
206{
207	struct isp_xclk *xclk = to_isp_xclk(hw);
208	unsigned long flags;
209
210	spin_lock_irqsave(&xclk->lock, flags);
211	isp_xclk_update(xclk, 0);
212	xclk->enabled = false;
213	spin_unlock_irqrestore(&xclk->lock, flags);
214}
215
216static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
217					  unsigned long parent_rate)
218{
219	struct isp_xclk *xclk = to_isp_xclk(hw);
220
221	return parent_rate / xclk->divider;
222}
223
224static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
225{
226	u32 divider;
227
228	if (*rate >= parent_rate) {
229		*rate = parent_rate;
230		return ISPTCTRL_CTRL_DIV_BYPASS;
231	}
232
233	if (*rate == 0)
234		*rate = 1;
235
236	divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
237	if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
238		divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
239
240	*rate = parent_rate / divider;
241	return divider;
242}
243
244static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
245				unsigned long *parent_rate)
246{
247	isp_xclk_calc_divider(&rate, *parent_rate);
248	return rate;
249}
250
251static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
252			     unsigned long parent_rate)
253{
254	struct isp_xclk *xclk = to_isp_xclk(hw);
255	unsigned long flags;
256	u32 divider;
257
258	divider = isp_xclk_calc_divider(&rate, parent_rate);
259
260	spin_lock_irqsave(&xclk->lock, flags);
261
262	xclk->divider = divider;
263	if (xclk->enabled)
264		isp_xclk_update(xclk, divider);
265
266	spin_unlock_irqrestore(&xclk->lock, flags);
267
268	dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
269		__func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
270	return 0;
271}
272
273static const struct clk_ops isp_xclk_ops = {
274	.prepare = isp_xclk_prepare,
275	.unprepare = isp_xclk_unprepare,
276	.enable = isp_xclk_enable,
277	.disable = isp_xclk_disable,
278	.recalc_rate = isp_xclk_recalc_rate,
279	.round_rate = isp_xclk_round_rate,
280	.set_rate = isp_xclk_set_rate,
281};
282
283static const char *isp_xclk_parent_name = "cam_mclk";
284
285static const struct clk_init_data isp_xclk_init_data = {
286	.name = "cam_xclk",
287	.ops = &isp_xclk_ops,
288	.parent_names = &isp_xclk_parent_name,
289	.num_parents = 1,
290};
291
292static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
293{
294	unsigned int idx = clkspec->args[0];
295	struct isp_device *isp = data;
296
297	if (idx >= ARRAY_SIZE(isp->xclks))
298		return ERR_PTR(-ENOENT);
299
300	return isp->xclks[idx].clk;
301}
302
303static int isp_xclk_init(struct isp_device *isp)
304{
305	struct device_node *np = isp->dev->of_node;
306	struct clk_init_data init;
307	unsigned int i;
308
309	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
310		isp->xclks[i].clk = ERR_PTR(-EINVAL);
311
312	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
313		struct isp_xclk *xclk = &isp->xclks[i];
314
315		xclk->isp = isp;
316		xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
317		xclk->divider = 1;
318		spin_lock_init(&xclk->lock);
319
320		init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
321		init.ops = &isp_xclk_ops;
322		init.parent_names = &isp_xclk_parent_name;
323		init.num_parents = 1;
324
325		xclk->hw.init = &init;
326		/*
327		 * The first argument is NULL in order to avoid circular
328		 * reference, as this driver takes reference on the
329		 * sensor subdevice modules and the sensors would take
330		 * reference on this module through clk_get().
331		 */
332		xclk->clk = clk_register(NULL, &xclk->hw);
333		if (IS_ERR(xclk->clk))
334			return PTR_ERR(xclk->clk);
335	}
336
337	if (np)
338		of_clk_add_provider(np, isp_xclk_src_get, isp);
339
340	return 0;
341}
342
343static void isp_xclk_cleanup(struct isp_device *isp)
344{
345	struct device_node *np = isp->dev->of_node;
346	unsigned int i;
347
348	if (np)
349		of_clk_del_provider(np);
350
351	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
352		struct isp_xclk *xclk = &isp->xclks[i];
353
354		if (!IS_ERR(xclk->clk))
355			clk_unregister(xclk->clk);
356	}
357}
358
359/* -----------------------------------------------------------------------------
360 * Interrupts
361 */
362
363/*
364 * isp_enable_interrupts - Enable ISP interrupts.
365 * @isp: OMAP3 ISP device
366 */
367static void isp_enable_interrupts(struct isp_device *isp)
368{
369	static const u32 irq = IRQ0ENABLE_CSIA_IRQ
370			     | IRQ0ENABLE_CSIB_IRQ
371			     | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
372			     | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
373			     | IRQ0ENABLE_CCDC_VD0_IRQ
374			     | IRQ0ENABLE_CCDC_VD1_IRQ
375			     | IRQ0ENABLE_HS_VS_IRQ
376			     | IRQ0ENABLE_HIST_DONE_IRQ
377			     | IRQ0ENABLE_H3A_AWB_DONE_IRQ
378			     | IRQ0ENABLE_H3A_AF_DONE_IRQ
379			     | IRQ0ENABLE_PRV_DONE_IRQ
380			     | IRQ0ENABLE_RSZ_DONE_IRQ;
381
382	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
383	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
384}
385
386/*
387 * isp_disable_interrupts - Disable ISP interrupts.
388 * @isp: OMAP3 ISP device
389 */
390static void isp_disable_interrupts(struct isp_device *isp)
391{
392	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
393}
394
395/*
396 * isp_core_init - ISP core settings
397 * @isp: OMAP3 ISP device
398 * @idle: Consider idle state.
399 *
400 * Set the power settings for the ISP and SBL bus and configure the HS/VS
401 * interrupt source.
402 *
403 * We need to configure the HS/VS interrupt source before interrupts get
404 * enabled, as the sensor might be free-running and the ISP default setting
405 * (HS edge) would put an unnecessary burden on the CPU.
406 */
407static void isp_core_init(struct isp_device *isp, int idle)
408{
409	isp_reg_writel(isp,
410		       ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
411				ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
412			ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
413			((isp->revision == ISP_REVISION_15_0) ?
414			  ISP_SYSCONFIG_AUTOIDLE : 0),
415		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
416
417	isp_reg_writel(isp,
418		       (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
419		       ISPCTRL_SYNC_DETECT_VSRISE,
420		       OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
421}
422
423/*
424 * Configure the bridge and lane shifter. Valid inputs are
425 *
426 * CCDC_INPUT_PARALLEL: Parallel interface
427 * CCDC_INPUT_CSI2A: CSI2a receiver
428 * CCDC_INPUT_CCP2B: CCP2b receiver
429 * CCDC_INPUT_CSI2C: CSI2c receiver
430 *
431 * The bridge and lane shifter are configured according to the selected input
432 * and the ISP platform data.
433 */
434void omap3isp_configure_bridge(struct isp_device *isp,
435			       enum ccdc_input_entity input,
436			       const struct isp_parallel_cfg *parcfg,
437			       unsigned int shift, unsigned int bridge)
438{
439	u32 ispctrl_val;
440
441	ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
442	ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
443	ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
444	ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
445	ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
446	ispctrl_val |= bridge;
447
448	switch (input) {
449	case CCDC_INPUT_PARALLEL:
450		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
451		ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
452		shift += parcfg->data_lane_shift * 2;
453		break;
454
455	case CCDC_INPUT_CSI2A:
456		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
457		break;
458
459	case CCDC_INPUT_CCP2B:
460		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
461		break;
462
463	case CCDC_INPUT_CSI2C:
464		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
465		break;
466
467	default:
468		return;
469	}
470
471	ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
472
473	isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
474}
475
476void omap3isp_hist_dma_done(struct isp_device *isp)
477{
478	if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
479	    omap3isp_stat_pcr_busy(&isp->isp_hist)) {
480		/* Histogram cannot be enabled in this frame anymore */
481		atomic_set(&isp->isp_hist.buf_err, 1);
482		dev_dbg(isp->dev, "hist: Out of synchronization with "
483				  "CCDC. Ignoring next buffer.\n");
484	}
485}
486
487static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
488{
489	static const char *name[] = {
490		"CSIA_IRQ",
491		"res1",
492		"res2",
493		"CSIB_LCM_IRQ",
494		"CSIB_IRQ",
495		"res5",
496		"res6",
497		"res7",
498		"CCDC_VD0_IRQ",
499		"CCDC_VD1_IRQ",
500		"CCDC_VD2_IRQ",
501		"CCDC_ERR_IRQ",
502		"H3A_AF_DONE_IRQ",
503		"H3A_AWB_DONE_IRQ",
504		"res14",
505		"res15",
506		"HIST_DONE_IRQ",
507		"CCDC_LSC_DONE",
508		"CCDC_LSC_PREFETCH_COMPLETED",
509		"CCDC_LSC_PREFETCH_ERROR",
510		"PRV_DONE_IRQ",
511		"CBUFF_IRQ",
512		"res22",
513		"res23",
514		"RSZ_DONE_IRQ",
515		"OVF_IRQ",
516		"res26",
517		"res27",
518		"MMU_ERR_IRQ",
519		"OCP_ERR_IRQ",
520		"SEC_ERR_IRQ",
521		"HS_VS_IRQ",
522	};
523	int i;
524
525	dev_dbg(isp->dev, "ISP IRQ: ");
526
527	for (i = 0; i < ARRAY_SIZE(name); i++) {
528		if ((1 << i) & irqstatus)
529			printk(KERN_CONT "%s ", name[i]);
530	}
531	printk(KERN_CONT "\n");
532}
533
534static void isp_isr_sbl(struct isp_device *isp)
535{
536	struct device *dev = isp->dev;
537	struct isp_pipeline *pipe;
538	u32 sbl_pcr;
539
540	/*
541	 * Handle shared buffer logic overflows for video buffers.
542	 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
543	 */
544	sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
545	isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
546	sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
547
548	if (sbl_pcr)
549		dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
550
551	if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
552		pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
553		if (pipe != NULL)
554			pipe->error = true;
555	}
556
557	if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
558		pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
559		if (pipe != NULL)
560			pipe->error = true;
561	}
562
563	if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
564		pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
565		if (pipe != NULL)
566			pipe->error = true;
567	}
568
569	if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
570		pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
571		if (pipe != NULL)
572			pipe->error = true;
573	}
574
575	if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
576		       | ISPSBL_PCR_RSZ2_WBL_OVF
577		       | ISPSBL_PCR_RSZ3_WBL_OVF
578		       | ISPSBL_PCR_RSZ4_WBL_OVF)) {
579		pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
580		if (pipe != NULL)
581			pipe->error = true;
582	}
583
584	if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
585		omap3isp_stat_sbl_overflow(&isp->isp_af);
586
587	if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
588		omap3isp_stat_sbl_overflow(&isp->isp_aewb);
589}
590
591/*
592 * isp_isr - Interrupt Service Routine for Camera ISP module.
593 * @irq: Not used currently.
594 * @_isp: Pointer to the OMAP3 ISP device
595 *
596 * Handles the corresponding callback if plugged in.
597 */
598static irqreturn_t isp_isr(int irq, void *_isp)
599{
600	static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
601				       IRQ0STATUS_CCDC_LSC_DONE_IRQ |
602				       IRQ0STATUS_CCDC_VD0_IRQ |
603				       IRQ0STATUS_CCDC_VD1_IRQ |
604				       IRQ0STATUS_HS_VS_IRQ;
605	struct isp_device *isp = _isp;
606	u32 irqstatus;
607
608	irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
609	isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
610
611	isp_isr_sbl(isp);
612
613	if (irqstatus & IRQ0STATUS_CSIA_IRQ)
614		omap3isp_csi2_isr(&isp->isp_csi2a);
615
616	if (irqstatus & IRQ0STATUS_CSIB_IRQ)
617		omap3isp_ccp2_isr(&isp->isp_ccp2);
618
619	if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
620		if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
621			omap3isp_preview_isr_frame_sync(&isp->isp_prev);
622		if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
623			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
624		omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
625		omap3isp_stat_isr_frame_sync(&isp->isp_af);
626		omap3isp_stat_isr_frame_sync(&isp->isp_hist);
627	}
628
629	if (irqstatus & ccdc_events)
630		omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
631
632	if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
633		if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
634			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
635		omap3isp_preview_isr(&isp->isp_prev);
636	}
637
638	if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
639		omap3isp_resizer_isr(&isp->isp_res);
640
641	if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
642		omap3isp_stat_isr(&isp->isp_aewb);
643
644	if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
645		omap3isp_stat_isr(&isp->isp_af);
646
647	if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
648		omap3isp_stat_isr(&isp->isp_hist);
649
650	omap3isp_flush(isp);
651
652#if defined(DEBUG) && defined(ISP_ISR_DEBUG)
653	isp_isr_dbg(isp, irqstatus);
654#endif
655
656	return IRQ_HANDLED;
657}
658
659/* -----------------------------------------------------------------------------
660 * Pipeline power management
661 *
662 * Entities must be powered up when part of a pipeline that contains at least
663 * one open video device node.
664 *
665 * To achieve this use the entity use_count field to track the number of users.
666 * For entities corresponding to video device nodes the use_count field stores
667 * the users count of the node. For entities corresponding to subdevs the
668 * use_count field stores the total number of users of all video device nodes
669 * in the pipeline.
670 *
671 * The omap3isp_pipeline_pm_use() function must be called in the open() and
672 * close() handlers of video device nodes. It increments or decrements the use
673 * count of all subdev entities in the pipeline.
674 *
675 * To react to link management on powered pipelines, the link setup notification
676 * callback updates the use count of all entities in the source and sink sides
677 * of the link.
678 */
679
680/*
681 * isp_pipeline_pm_use_count - Count the number of users of a pipeline
682 * @entity: The entity
683 *
684 * Return the total number of users of all video device nodes in the pipeline.
685 */
686static int isp_pipeline_pm_use_count(struct media_entity *entity)
687{
688	struct media_entity_graph graph;
689	int use = 0;
690
691	media_entity_graph_walk_start(&graph, entity);
692
693	while ((entity = media_entity_graph_walk_next(&graph))) {
694		if (media_entity_type(entity) == MEDIA_ENT_T_DEVNODE)
695			use += entity->use_count;
696	}
697
698	return use;
699}
700
701/*
702 * isp_pipeline_pm_power_one - Apply power change to an entity
703 * @entity: The entity
704 * @change: Use count change
705 *
706 * Change the entity use count by @change. If the entity is a subdev update its
707 * power state by calling the core::s_power operation when the use count goes
708 * from 0 to != 0 or from != 0 to 0.
709 *
710 * Return 0 on success or a negative error code on failure.
711 */
712static int isp_pipeline_pm_power_one(struct media_entity *entity, int change)
713{
714	struct v4l2_subdev *subdev;
715	int ret;
716
717	subdev = media_entity_type(entity) == MEDIA_ENT_T_V4L2_SUBDEV
718	       ? media_entity_to_v4l2_subdev(entity) : NULL;
719
720	if (entity->use_count == 0 && change > 0 && subdev != NULL) {
721		ret = v4l2_subdev_call(subdev, core, s_power, 1);
722		if (ret < 0 && ret != -ENOIOCTLCMD)
723			return ret;
724	}
725
726	entity->use_count += change;
727	WARN_ON(entity->use_count < 0);
728
729	if (entity->use_count == 0 && change < 0 && subdev != NULL)
730		v4l2_subdev_call(subdev, core, s_power, 0);
731
732	return 0;
733}
734
735/*
736 * isp_pipeline_pm_power - Apply power change to all entities in a pipeline
737 * @entity: The entity
738 * @change: Use count change
739 *
740 * Walk the pipeline to update the use count and the power state of all non-node
741 * entities.
742 *
743 * Return 0 on success or a negative error code on failure.
744 */
745static int isp_pipeline_pm_power(struct media_entity *entity, int change)
746{
747	struct media_entity_graph graph;
748	struct media_entity *first = entity;
749	int ret = 0;
750
751	if (!change)
752		return 0;
753
754	media_entity_graph_walk_start(&graph, entity);
755
756	while (!ret && (entity = media_entity_graph_walk_next(&graph)))
757		if (media_entity_type(entity) != MEDIA_ENT_T_DEVNODE)
758			ret = isp_pipeline_pm_power_one(entity, change);
759
760	if (!ret)
761		return 0;
762
763	media_entity_graph_walk_start(&graph, first);
764
765	while ((first = media_entity_graph_walk_next(&graph))
766	       && first != entity)
767		if (media_entity_type(first) != MEDIA_ENT_T_DEVNODE)
768			isp_pipeline_pm_power_one(first, -change);
769
770	return ret;
771}
772
773/*
774 * omap3isp_pipeline_pm_use - Update the use count of an entity
775 * @entity: The entity
776 * @use: Use (1) or stop using (0) the entity
777 *
778 * Update the use count of all entities in the pipeline and power entities on or
779 * off accordingly.
780 *
781 * Return 0 on success or a negative error code on failure. Powering entities
782 * off is assumed to never fail. No failure can occur when the use parameter is
783 * set to 0.
784 */
785int omap3isp_pipeline_pm_use(struct media_entity *entity, int use)
786{
787	int change = use ? 1 : -1;
788	int ret;
789
790	mutex_lock(&entity->parent->graph_mutex);
791
792	/* Apply use count to node. */
793	entity->use_count += change;
794	WARN_ON(entity->use_count < 0);
795
796	/* Apply power change to connected non-nodes. */
797	ret = isp_pipeline_pm_power(entity, change);
798	if (ret < 0)
799		entity->use_count -= change;
800
801	mutex_unlock(&entity->parent->graph_mutex);
802
803	return ret;
804}
805
806/*
807 * isp_pipeline_link_notify - Link management notification callback
808 * @link: The link
809 * @flags: New link flags that will be applied
810 * @notification: The link's state change notification type (MEDIA_DEV_NOTIFY_*)
811 *
812 * React to link management on powered pipelines by updating the use count of
813 * all entities in the source and sink sides of the link. Entities are powered
814 * on or off accordingly.
815 *
816 * Return 0 on success or a negative error code on failure. Powering entities
817 * off is assumed to never fail. This function will not fail for disconnection
818 * events.
819 */
820static int isp_pipeline_link_notify(struct media_link *link, u32 flags,
821				    unsigned int notification)
822{
823	struct media_entity *source = link->source->entity;
824	struct media_entity *sink = link->sink->entity;
825	int source_use = isp_pipeline_pm_use_count(source);
826	int sink_use = isp_pipeline_pm_use_count(sink);
827	int ret;
828
829	if (notification == MEDIA_DEV_NOTIFY_POST_LINK_CH &&
830	    !(flags & MEDIA_LNK_FL_ENABLED)) {
831		/* Powering off entities is assumed to never fail. */
832		isp_pipeline_pm_power(source, -sink_use);
833		isp_pipeline_pm_power(sink, -source_use);
834		return 0;
835	}
836
837	if (notification == MEDIA_DEV_NOTIFY_PRE_LINK_CH &&
838		(flags & MEDIA_LNK_FL_ENABLED)) {
839
840		ret = isp_pipeline_pm_power(source, sink_use);
841		if (ret < 0)
842			return ret;
843
844		ret = isp_pipeline_pm_power(sink, source_use);
845		if (ret < 0)
846			isp_pipeline_pm_power(source, -sink_use);
847
848		return ret;
849	}
850
851	return 0;
852}
853
854/* -----------------------------------------------------------------------------
855 * Pipeline stream management
856 */
857
858/*
859 * isp_pipeline_enable - Enable streaming on a pipeline
860 * @pipe: ISP pipeline
861 * @mode: Stream mode (single shot or continuous)
862 *
863 * Walk the entities chain starting at the pipeline output video node and start
864 * all modules in the chain in the given mode.
865 *
866 * Return 0 if successful, or the return value of the failed video::s_stream
867 * operation otherwise.
868 */
869static int isp_pipeline_enable(struct isp_pipeline *pipe,
870			       enum isp_pipeline_stream_state mode)
871{
872	struct isp_device *isp = pipe->output->isp;
873	struct media_entity *entity;
874	struct media_pad *pad;
875	struct v4l2_subdev *subdev;
876	unsigned long flags;
877	int ret;
878
879	/* Refuse to start streaming if an entity included in the pipeline has
880	 * crashed. This check must be performed before the loop below to avoid
881	 * starting entities if the pipeline won't start anyway (those entities
882	 * would then likely fail to stop, making the problem worse).
883	 */
884	if (pipe->entities & isp->crashed)
885		return -EIO;
886
887	spin_lock_irqsave(&pipe->lock, flags);
888	pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
889	spin_unlock_irqrestore(&pipe->lock, flags);
890
891	pipe->do_propagation = false;
892
893	entity = &pipe->output->video.entity;
894	while (1) {
895		pad = &entity->pads[0];
896		if (!(pad->flags & MEDIA_PAD_FL_SINK))
897			break;
898
899		pad = media_entity_remote_pad(pad);
900		if (pad == NULL ||
901		    media_entity_type(pad->entity) != MEDIA_ENT_T_V4L2_SUBDEV)
902			break;
903
904		entity = pad->entity;
905		subdev = media_entity_to_v4l2_subdev(entity);
906
907		ret = v4l2_subdev_call(subdev, video, s_stream, mode);
908		if (ret < 0 && ret != -ENOIOCTLCMD)
909			return ret;
910
911		if (subdev == &isp->isp_ccdc.subdev) {
912			v4l2_subdev_call(&isp->isp_aewb.subdev, video,
913					s_stream, mode);
914			v4l2_subdev_call(&isp->isp_af.subdev, video,
915					s_stream, mode);
916			v4l2_subdev_call(&isp->isp_hist.subdev, video,
917					s_stream, mode);
918			pipe->do_propagation = true;
919		}
920	}
921
922	return 0;
923}
924
925static int isp_pipeline_wait_resizer(struct isp_device *isp)
926{
927	return omap3isp_resizer_busy(&isp->isp_res);
928}
929
930static int isp_pipeline_wait_preview(struct isp_device *isp)
931{
932	return omap3isp_preview_busy(&isp->isp_prev);
933}
934
935static int isp_pipeline_wait_ccdc(struct isp_device *isp)
936{
937	return omap3isp_stat_busy(&isp->isp_af)
938	    || omap3isp_stat_busy(&isp->isp_aewb)
939	    || omap3isp_stat_busy(&isp->isp_hist)
940	    || omap3isp_ccdc_busy(&isp->isp_ccdc);
941}
942
943#define ISP_STOP_TIMEOUT	msecs_to_jiffies(1000)
944
945static int isp_pipeline_wait(struct isp_device *isp,
946			     int(*busy)(struct isp_device *isp))
947{
948	unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
949
950	while (!time_after(jiffies, timeout)) {
951		if (!busy(isp))
952			return 0;
953	}
954
955	return 1;
956}
957
958/*
959 * isp_pipeline_disable - Disable streaming on a pipeline
960 * @pipe: ISP pipeline
961 *
962 * Walk the entities chain starting at the pipeline output video node and stop
963 * all modules in the chain. Wait synchronously for the modules to be stopped if
964 * necessary.
965 *
966 * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
967 * can't be stopped (in which case a software reset of the ISP is probably
968 * necessary).
969 */
970static int isp_pipeline_disable(struct isp_pipeline *pipe)
971{
972	struct isp_device *isp = pipe->output->isp;
973	struct media_entity *entity;
974	struct media_pad *pad;
975	struct v4l2_subdev *subdev;
976	int failure = 0;
977	int ret;
978
979	/*
980	 * We need to stop all the modules after CCDC first or they'll
981	 * never stop since they may not get a full frame from CCDC.
982	 */
983	entity = &pipe->output->video.entity;
984	while (1) {
985		pad = &entity->pads[0];
986		if (!(pad->flags & MEDIA_PAD_FL_SINK))
987			break;
988
989		pad = media_entity_remote_pad(pad);
990		if (pad == NULL ||
991		    media_entity_type(pad->entity) != MEDIA_ENT_T_V4L2_SUBDEV)
992			break;
993
994		entity = pad->entity;
995		subdev = media_entity_to_v4l2_subdev(entity);
996
997		if (subdev == &isp->isp_ccdc.subdev) {
998			v4l2_subdev_call(&isp->isp_aewb.subdev,
999					 video, s_stream, 0);
1000			v4l2_subdev_call(&isp->isp_af.subdev,
1001					 video, s_stream, 0);
1002			v4l2_subdev_call(&isp->isp_hist.subdev,
1003					 video, s_stream, 0);
1004		}
1005
1006		ret = v4l2_subdev_call(subdev, video, s_stream, 0);
1007
1008		if (subdev == &isp->isp_res.subdev)
1009			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
1010		else if (subdev == &isp->isp_prev.subdev)
1011			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
1012		else if (subdev == &isp->isp_ccdc.subdev)
1013			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
1014
1015		/* Handle stop failures. An entity that fails to stop can
1016		 * usually just be restarted. Flag the stop failure nonetheless
1017		 * to trigger an ISP reset the next time the device is released,
1018		 * just in case.
1019		 *
1020		 * The preview engine is a special case. A failure to stop can
1021		 * mean a hardware crash. When that happens the preview engine
1022		 * won't respond to read/write operations on the L4 bus anymore,
1023		 * resulting in a bus fault and a kernel oops next time it gets
1024		 * accessed. Mark it as crashed to prevent pipelines including
1025		 * it from being started.
1026		 */
1027		if (ret) {
1028			dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
1029			isp->stop_failure = true;
1030			if (subdev == &isp->isp_prev.subdev)
1031				isp->crashed |= 1U << subdev->entity.id;
1032			failure = -ETIMEDOUT;
1033		}
1034	}
1035
1036	return failure;
1037}
1038
1039/*
1040 * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
1041 * @pipe: ISP pipeline
1042 * @state: Stream state (stopped, single shot or continuous)
1043 *
1044 * Set the pipeline to the given stream state. Pipelines can be started in
1045 * single-shot or continuous mode.
1046 *
1047 * Return 0 if successful, or the return value of the failed video::s_stream
1048 * operation otherwise. The pipeline state is not updated when the operation
1049 * fails, except when stopping the pipeline.
1050 */
1051int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
1052				 enum isp_pipeline_stream_state state)
1053{
1054	int ret;
1055
1056	if (state == ISP_PIPELINE_STREAM_STOPPED)
1057		ret = isp_pipeline_disable(pipe);
1058	else
1059		ret = isp_pipeline_enable(pipe, state);
1060
1061	if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
1062		pipe->stream_state = state;
1063
1064	return ret;
1065}
1066
1067/*
1068 * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
1069 * @pipe: ISP pipeline
1070 *
1071 * Cancelling a stream mark all buffers on all video nodes in the pipeline as
1072 * erroneous and makes sure no new buffer can be queued. This function is called
1073 * when a fatal error that prevents any further operation on the pipeline
1074 * occurs.
1075 */
1076void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
1077{
1078	if (pipe->input)
1079		omap3isp_video_cancel_stream(pipe->input);
1080	if (pipe->output)
1081		omap3isp_video_cancel_stream(pipe->output);
1082}
1083
1084/*
1085 * isp_pipeline_resume - Resume streaming on a pipeline
1086 * @pipe: ISP pipeline
1087 *
1088 * Resume video output and input and re-enable pipeline.
1089 */
1090static void isp_pipeline_resume(struct isp_pipeline *pipe)
1091{
1092	int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
1093
1094	omap3isp_video_resume(pipe->output, !singleshot);
1095	if (singleshot)
1096		omap3isp_video_resume(pipe->input, 0);
1097	isp_pipeline_enable(pipe, pipe->stream_state);
1098}
1099
1100/*
1101 * isp_pipeline_suspend - Suspend streaming on a pipeline
1102 * @pipe: ISP pipeline
1103 *
1104 * Suspend pipeline.
1105 */
1106static void isp_pipeline_suspend(struct isp_pipeline *pipe)
1107{
1108	isp_pipeline_disable(pipe);
1109}
1110
1111/*
1112 * isp_pipeline_is_last - Verify if entity has an enabled link to the output
1113 * 			  video node
1114 * @me: ISP module's media entity
1115 *
1116 * Returns 1 if the entity has an enabled link to the output video node or 0
1117 * otherwise. It's true only while pipeline can have no more than one output
1118 * node.
1119 */
1120static int isp_pipeline_is_last(struct media_entity *me)
1121{
1122	struct isp_pipeline *pipe;
1123	struct media_pad *pad;
1124
1125	if (!me->pipe)
1126		return 0;
1127	pipe = to_isp_pipeline(me);
1128	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
1129		return 0;
1130	pad = media_entity_remote_pad(&pipe->output->pad);
1131	return pad->entity == me;
1132}
1133
1134/*
1135 * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
1136 * @me: ISP module's media entity
1137 *
1138 * Suspend the whole pipeline if module's entity has an enabled link to the
1139 * output video node. It works only while pipeline can have no more than one
1140 * output node.
1141 */
1142static void isp_suspend_module_pipeline(struct media_entity *me)
1143{
1144	if (isp_pipeline_is_last(me))
1145		isp_pipeline_suspend(to_isp_pipeline(me));
1146}
1147
1148/*
1149 * isp_resume_module_pipeline - Resume pipeline to which belongs the module
1150 * @me: ISP module's media entity
1151 *
1152 * Resume the whole pipeline if module's entity has an enabled link to the
1153 * output video node. It works only while pipeline can have no more than one
1154 * output node.
1155 */
1156static void isp_resume_module_pipeline(struct media_entity *me)
1157{
1158	if (isp_pipeline_is_last(me))
1159		isp_pipeline_resume(to_isp_pipeline(me));
1160}
1161
1162/*
1163 * isp_suspend_modules - Suspend ISP submodules.
1164 * @isp: OMAP3 ISP device
1165 *
1166 * Returns 0 if suspend left in idle state all the submodules properly,
1167 * or returns 1 if a general Reset is required to suspend the submodules.
1168 */
1169static int isp_suspend_modules(struct isp_device *isp)
1170{
1171	unsigned long timeout;
1172
1173	omap3isp_stat_suspend(&isp->isp_aewb);
1174	omap3isp_stat_suspend(&isp->isp_af);
1175	omap3isp_stat_suspend(&isp->isp_hist);
1176	isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
1177	isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
1178	isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
1179	isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
1180	isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
1181
1182	timeout = jiffies + ISP_STOP_TIMEOUT;
1183	while (omap3isp_stat_busy(&isp->isp_af)
1184	    || omap3isp_stat_busy(&isp->isp_aewb)
1185	    || omap3isp_stat_busy(&isp->isp_hist)
1186	    || omap3isp_preview_busy(&isp->isp_prev)
1187	    || omap3isp_resizer_busy(&isp->isp_res)
1188	    || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
1189		if (time_after(jiffies, timeout)) {
1190			dev_info(isp->dev, "can't stop modules.\n");
1191			return 1;
1192		}
1193		msleep(1);
1194	}
1195
1196	return 0;
1197}
1198
1199/*
1200 * isp_resume_modules - Resume ISP submodules.
1201 * @isp: OMAP3 ISP device
1202 */
1203static void isp_resume_modules(struct isp_device *isp)
1204{
1205	omap3isp_stat_resume(&isp->isp_aewb);
1206	omap3isp_stat_resume(&isp->isp_af);
1207	omap3isp_stat_resume(&isp->isp_hist);
1208	isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1209	isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1210	isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1211	isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1212	isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1213}
1214
1215/*
1216 * isp_reset - Reset ISP with a timeout wait for idle.
1217 * @isp: OMAP3 ISP device
1218 */
1219static int isp_reset(struct isp_device *isp)
1220{
1221	unsigned long timeout = 0;
1222
1223	isp_reg_writel(isp,
1224		       isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1225		       | ISP_SYSCONFIG_SOFTRESET,
1226		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1227	while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1228			       ISP_SYSSTATUS) & 0x1)) {
1229		if (timeout++ > 10000) {
1230			dev_alert(isp->dev, "cannot reset ISP\n");
1231			return -ETIMEDOUT;
1232		}
1233		udelay(1);
1234	}
1235
1236	isp->stop_failure = false;
1237	isp->crashed = 0;
1238	return 0;
1239}
1240
1241/*
1242 * isp_save_context - Saves the values of the ISP module registers.
1243 * @isp: OMAP3 ISP device
1244 * @reg_list: Structure containing pairs of register address and value to
1245 *            modify on OMAP.
1246 */
1247static void
1248isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1249{
1250	struct isp_reg *next = reg_list;
1251
1252	for (; next->reg != ISP_TOK_TERM; next++)
1253		next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1254}
1255
1256/*
1257 * isp_restore_context - Restores the values of the ISP module registers.
1258 * @isp: OMAP3 ISP device
1259 * @reg_list: Structure containing pairs of register address and value to
1260 *            modify on OMAP.
1261 */
1262static void
1263isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1264{
1265	struct isp_reg *next = reg_list;
1266
1267	for (; next->reg != ISP_TOK_TERM; next++)
1268		isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1269}
1270
1271/*
1272 * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1273 * @isp: OMAP3 ISP device
1274 *
1275 * Routine for saving the context of each module in the ISP.
1276 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1277 */
1278static void isp_save_ctx(struct isp_device *isp)
1279{
1280	isp_save_context(isp, isp_reg_list);
1281	omap_iommu_save_ctx(isp->dev);
1282}
1283
1284/*
1285 * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1286 * @isp: OMAP3 ISP device
1287 *
1288 * Routine for restoring the context of each module in the ISP.
1289 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1290 */
1291static void isp_restore_ctx(struct isp_device *isp)
1292{
1293	isp_restore_context(isp, isp_reg_list);
1294	omap_iommu_restore_ctx(isp->dev);
1295	omap3isp_ccdc_restore_context(isp);
1296	omap3isp_preview_restore_context(isp);
1297}
1298
1299/* -----------------------------------------------------------------------------
1300 * SBL resources management
1301 */
1302#define OMAP3_ISP_SBL_READ	(OMAP3_ISP_SBL_CSI1_READ | \
1303				 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1304				 OMAP3_ISP_SBL_PREVIEW_READ | \
1305				 OMAP3_ISP_SBL_RESIZER_READ)
1306#define OMAP3_ISP_SBL_WRITE	(OMAP3_ISP_SBL_CSI1_WRITE | \
1307				 OMAP3_ISP_SBL_CSI2A_WRITE | \
1308				 OMAP3_ISP_SBL_CSI2C_WRITE | \
1309				 OMAP3_ISP_SBL_CCDC_WRITE | \
1310				 OMAP3_ISP_SBL_PREVIEW_WRITE)
1311
1312void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1313{
1314	u32 sbl = 0;
1315
1316	isp->sbl_resources |= res;
1317
1318	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1319		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1320
1321	if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1322		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1323
1324	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1325		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1326
1327	if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1328		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1329
1330	if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1331		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1332
1333	if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1334		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1335
1336	isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1337}
1338
1339void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1340{
1341	u32 sbl = 0;
1342
1343	isp->sbl_resources &= ~res;
1344
1345	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1346		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1347
1348	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1349		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1350
1351	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1352		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1353
1354	if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1355		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1356
1357	if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1358		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1359
1360	if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1361		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1362
1363	isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1364}
1365
1366/*
1367 * isp_module_sync_idle - Helper to sync module with its idle state
1368 * @me: ISP submodule's media entity
1369 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1370 * @stopping: flag which tells module wants to stop
1371 *
1372 * This function checks if ISP submodule needs to wait for next interrupt. If
1373 * yes, makes the caller to sleep while waiting for such event.
1374 */
1375int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1376			      atomic_t *stopping)
1377{
1378	struct isp_pipeline *pipe = to_isp_pipeline(me);
1379
1380	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1381	    (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1382	     !isp_pipeline_ready(pipe)))
1383		return 0;
1384
1385	/*
1386	 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1387	 * scenario. We'll call it here to avoid race conditions.
1388	 */
1389	atomic_set(stopping, 1);
1390	smp_mb();
1391
1392	/*
1393	 * If module is the last one, it's writing to memory. In this case,
1394	 * it's necessary to check if the module is already paused due to
1395	 * DMA queue underrun or if it has to wait for next interrupt to be
1396	 * idle.
1397	 * If it isn't the last one, the function won't sleep but *stopping
1398	 * will still be set to warn next submodule caller's interrupt the
1399	 * module wants to be idle.
1400	 */
1401	if (isp_pipeline_is_last(me)) {
1402		struct isp_video *video = pipe->output;
1403		unsigned long flags;
1404		spin_lock_irqsave(&video->irqlock, flags);
1405		if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1406			spin_unlock_irqrestore(&video->irqlock, flags);
1407			atomic_set(stopping, 0);
1408			smp_mb();
1409			return 0;
1410		}
1411		spin_unlock_irqrestore(&video->irqlock, flags);
1412		if (!wait_event_timeout(*wait, !atomic_read(stopping),
1413					msecs_to_jiffies(1000))) {
1414			atomic_set(stopping, 0);
1415			smp_mb();
1416			return -ETIMEDOUT;
1417		}
1418	}
1419
1420	return 0;
1421}
1422
1423/*
1424 * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1425 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1426 * @stopping: flag which tells module wants to stop
1427 *
1428 * This function checks if ISP submodule was stopping. In case of yes, it
1429 * notices the caller by setting stopping to 0 and waking up the wait queue.
1430 * Returns 1 if it was stopping or 0 otherwise.
1431 */
1432int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1433				     atomic_t *stopping)
1434{
1435	if (atomic_cmpxchg(stopping, 1, 0)) {
1436		wake_up(wait);
1437		return 1;
1438	}
1439
1440	return 0;
1441}
1442
1443/* --------------------------------------------------------------------------
1444 * Clock management
1445 */
1446
1447#define ISPCTRL_CLKS_MASK	(ISPCTRL_H3A_CLK_EN | \
1448				 ISPCTRL_HIST_CLK_EN | \
1449				 ISPCTRL_RSZ_CLK_EN | \
1450				 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1451				 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1452
1453static void __isp_subclk_update(struct isp_device *isp)
1454{
1455	u32 clk = 0;
1456
1457	/* AEWB and AF share the same clock. */
1458	if (isp->subclk_resources &
1459	    (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1460		clk |= ISPCTRL_H3A_CLK_EN;
1461
1462	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1463		clk |= ISPCTRL_HIST_CLK_EN;
1464
1465	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1466		clk |= ISPCTRL_RSZ_CLK_EN;
1467
1468	/* NOTE: For CCDC & Preview submodules, we need to affect internal
1469	 *       RAM as well.
1470	 */
1471	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1472		clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1473
1474	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1475		clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1476
1477	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1478			ISPCTRL_CLKS_MASK, clk);
1479}
1480
1481void omap3isp_subclk_enable(struct isp_device *isp,
1482			    enum isp_subclk_resource res)
1483{
1484	isp->subclk_resources |= res;
1485
1486	__isp_subclk_update(isp);
1487}
1488
1489void omap3isp_subclk_disable(struct isp_device *isp,
1490			     enum isp_subclk_resource res)
1491{
1492	isp->subclk_resources &= ~res;
1493
1494	__isp_subclk_update(isp);
1495}
1496
1497/*
1498 * isp_enable_clocks - Enable ISP clocks
1499 * @isp: OMAP3 ISP device
1500 *
1501 * Return 0 if successful, or clk_prepare_enable return value if any of them
1502 * fails.
1503 */
1504static int isp_enable_clocks(struct isp_device *isp)
1505{
1506	int r;
1507	unsigned long rate;
1508
1509	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1510	if (r) {
1511		dev_err(isp->dev, "failed to enable cam_ick clock\n");
1512		goto out_clk_enable_ick;
1513	}
1514	r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1515	if (r) {
1516		dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1517		goto out_clk_enable_mclk;
1518	}
1519	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1520	if (r) {
1521		dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1522		goto out_clk_enable_mclk;
1523	}
1524	rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1525	if (rate != CM_CAM_MCLK_HZ)
1526		dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1527				   " expected : %d\n"
1528				   " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
1529	r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1530	if (r) {
1531		dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1532		goto out_clk_enable_csi2_fclk;
1533	}
1534	return 0;
1535
1536out_clk_enable_csi2_fclk:
1537	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1538out_clk_enable_mclk:
1539	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1540out_clk_enable_ick:
1541	return r;
1542}
1543
1544/*
1545 * isp_disable_clocks - Disable ISP clocks
1546 * @isp: OMAP3 ISP device
1547 */
1548static void isp_disable_clocks(struct isp_device *isp)
1549{
1550	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1551	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1552	clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1553}
1554
1555static const char *isp_clocks[] = {
1556	"cam_ick",
1557	"cam_mclk",
1558	"csi2_96m_fck",
1559	"l3_ick",
1560};
1561
1562static int isp_get_clocks(struct isp_device *isp)
1563{
1564	struct clk *clk;
1565	unsigned int i;
1566
1567	for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1568		clk = devm_clk_get(isp->dev, isp_clocks[i]);
1569		if (IS_ERR(clk)) {
1570			dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1571			return PTR_ERR(clk);
1572		}
1573
1574		isp->clock[i] = clk;
1575	}
1576
1577	return 0;
1578}
1579
1580/*
1581 * omap3isp_get - Acquire the ISP resource.
1582 *
1583 * Initializes the clocks for the first acquire.
1584 *
1585 * Increment the reference count on the ISP. If the first reference is taken,
1586 * enable clocks and power-up all submodules.
1587 *
1588 * Return a pointer to the ISP device structure, or NULL if an error occurred.
1589 */
1590static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1591{
1592	struct isp_device *__isp = isp;
1593
1594	if (isp == NULL)
1595		return NULL;
1596
1597	mutex_lock(&isp->isp_mutex);
1598	if (isp->ref_count > 0)
1599		goto out;
1600
1601	if (isp_enable_clocks(isp) < 0) {
1602		__isp = NULL;
1603		goto out;
1604	}
1605
1606	/* We don't want to restore context before saving it! */
1607	if (isp->has_context)
1608		isp_restore_ctx(isp);
1609
1610	if (irq)
1611		isp_enable_interrupts(isp);
1612
1613out:
1614	if (__isp != NULL)
1615		isp->ref_count++;
1616	mutex_unlock(&isp->isp_mutex);
1617
1618	return __isp;
1619}
1620
1621struct isp_device *omap3isp_get(struct isp_device *isp)
1622{
1623	return __omap3isp_get(isp, true);
1624}
1625
1626/*
1627 * omap3isp_put - Release the ISP
1628 *
1629 * Decrement the reference count on the ISP. If the last reference is released,
1630 * power-down all submodules, disable clocks and free temporary buffers.
1631 */
1632static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1633{
1634	if (isp == NULL)
1635		return;
1636
1637	mutex_lock(&isp->isp_mutex);
1638	BUG_ON(isp->ref_count == 0);
1639	if (--isp->ref_count == 0) {
1640		isp_disable_interrupts(isp);
1641		if (save_ctx) {
1642			isp_save_ctx(isp);
1643			isp->has_context = 1;
1644		}
1645		/* Reset the ISP if an entity has failed to stop. This is the
1646		 * only way to recover from such conditions.
1647		 */
1648		if (isp->crashed || isp->stop_failure)
1649			isp_reset(isp);
1650		isp_disable_clocks(isp);
1651	}
1652	mutex_unlock(&isp->isp_mutex);
1653}
1654
1655void omap3isp_put(struct isp_device *isp)
1656{
1657	__omap3isp_put(isp, true);
1658}
1659
1660/* --------------------------------------------------------------------------
1661 * Platform device driver
1662 */
1663
1664/*
1665 * omap3isp_print_status - Prints the values of the ISP Control Module registers
1666 * @isp: OMAP3 ISP device
1667 */
1668#define ISP_PRINT_REGISTER(isp, name)\
1669	dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1670		isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1671#define SBL_PRINT_REGISTER(isp, name)\
1672	dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1673		isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1674
1675void omap3isp_print_status(struct isp_device *isp)
1676{
1677	dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1678
1679	ISP_PRINT_REGISTER(isp, SYSCONFIG);
1680	ISP_PRINT_REGISTER(isp, SYSSTATUS);
1681	ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1682	ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1683	ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1684	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1685	ISP_PRINT_REGISTER(isp, CTRL);
1686	ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1687	ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1688	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1689	ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1690	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1691	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1692	ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1693	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1694
1695	SBL_PRINT_REGISTER(isp, PCR);
1696	SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1697
1698	dev_dbg(isp->dev, "--------------------------------------------\n");
1699}
1700
1701#ifdef CONFIG_PM
1702
1703/*
1704 * Power management support.
1705 *
1706 * As the ISP can't properly handle an input video stream interruption on a non
1707 * frame boundary, the ISP pipelines need to be stopped before sensors get
1708 * suspended. However, as suspending the sensors can require a running clock,
1709 * which can be provided by the ISP, the ISP can't be completely suspended
1710 * before the sensor.
1711 *
1712 * To solve this problem power management support is split into prepare/complete
1713 * and suspend/resume operations. The pipelines are stopped in prepare() and the
1714 * ISP clocks get disabled in suspend(). Similarly, the clocks are reenabled in
1715 * resume(), and the the pipelines are restarted in complete().
1716 *
1717 * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1718 * yet.
1719 */
1720static int isp_pm_prepare(struct device *dev)
1721{
1722	struct isp_device *isp = dev_get_drvdata(dev);
1723	int reset;
1724
1725	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1726
1727	if (isp->ref_count == 0)
1728		return 0;
1729
1730	reset = isp_suspend_modules(isp);
1731	isp_disable_interrupts(isp);
1732	isp_save_ctx(isp);
1733	if (reset)
1734		isp_reset(isp);
1735
1736	return 0;
1737}
1738
1739static int isp_pm_suspend(struct device *dev)
1740{
1741	struct isp_device *isp = dev_get_drvdata(dev);
1742
1743	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1744
1745	if (isp->ref_count)
1746		isp_disable_clocks(isp);
1747
1748	return 0;
1749}
1750
1751static int isp_pm_resume(struct device *dev)
1752{
1753	struct isp_device *isp = dev_get_drvdata(dev);
1754
1755	if (isp->ref_count == 0)
1756		return 0;
1757
1758	return isp_enable_clocks(isp);
1759}
1760
1761static void isp_pm_complete(struct device *dev)
1762{
1763	struct isp_device *isp = dev_get_drvdata(dev);
1764
1765	if (isp->ref_count == 0)
1766		return;
1767
1768	isp_restore_ctx(isp);
1769	isp_enable_interrupts(isp);
1770	isp_resume_modules(isp);
1771}
1772
1773#else
1774
1775#define isp_pm_prepare	NULL
1776#define isp_pm_suspend	NULL
1777#define isp_pm_resume	NULL
1778#define isp_pm_complete	NULL
1779
1780#endif /* CONFIG_PM */
1781
1782static void isp_unregister_entities(struct isp_device *isp)
1783{
1784	omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1785	omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1786	omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1787	omap3isp_preview_unregister_entities(&isp->isp_prev);
1788	omap3isp_resizer_unregister_entities(&isp->isp_res);
1789	omap3isp_stat_unregister_entities(&isp->isp_aewb);
1790	omap3isp_stat_unregister_entities(&isp->isp_af);
1791	omap3isp_stat_unregister_entities(&isp->isp_hist);
1792
1793	v4l2_device_unregister(&isp->v4l2_dev);
1794	media_device_unregister(&isp->media_dev);
1795}
1796
1797static int isp_link_entity(
1798	struct isp_device *isp, struct media_entity *entity,
1799	enum isp_interface_type interface)
1800{
1801	struct media_entity *input;
1802	unsigned int flags;
1803	unsigned int pad;
1804	unsigned int i;
1805
1806	/* Connect the sensor to the correct interface module.
1807	 * Parallel sensors are connected directly to the CCDC, while
1808	 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1809	 * receiver through CSIPHY1 or CSIPHY2.
1810	 */
1811	switch (interface) {
1812	case ISP_INTERFACE_PARALLEL:
1813		input = &isp->isp_ccdc.subdev.entity;
1814		pad = CCDC_PAD_SINK;
1815		flags = 0;
1816		break;
1817
1818	case ISP_INTERFACE_CSI2A_PHY2:
1819		input = &isp->isp_csi2a.subdev.entity;
1820		pad = CSI2_PAD_SINK;
1821		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1822		break;
1823
1824	case ISP_INTERFACE_CCP2B_PHY1:
1825	case ISP_INTERFACE_CCP2B_PHY2:
1826		input = &isp->isp_ccp2.subdev.entity;
1827		pad = CCP2_PAD_SINK;
1828		flags = 0;
1829		break;
1830
1831	case ISP_INTERFACE_CSI2C_PHY1:
1832		input = &isp->isp_csi2c.subdev.entity;
1833		pad = CSI2_PAD_SINK;
1834		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1835		break;
1836
1837	default:
1838		dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1839			interface);
1840		return -EINVAL;
1841	}
1842
1843	/*
1844	 * Not all interfaces are available on all revisions of the
1845	 * ISP. The sub-devices of those interfaces aren't initialised
1846	 * in such a case. Check this by ensuring the num_pads is
1847	 * non-zero.
1848	 */
1849	if (!input->num_pads) {
1850		dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1851			interface);
1852		return -EINVAL;
1853	}
1854
1855	for (i = 0; i < entity->num_pads; i++) {
1856		if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1857			break;
1858	}
1859	if (i == entity->num_pads) {
1860		dev_err(isp->dev, "%s: no source pad in external entity\n",
1861			__func__);
1862		return -EINVAL;
1863	}
1864
1865	return media_entity_create_link(entity, i, input, pad, flags);
1866}
1867
1868static int isp_register_entities(struct isp_device *isp)
1869{
1870	int ret;
1871
1872	isp->media_dev.dev = isp->dev;
1873	strlcpy(isp->media_dev.model, "TI OMAP3 ISP",
1874		sizeof(isp->media_dev.model));
1875	isp->media_dev.hw_revision = isp->revision;
1876	isp->media_dev.link_notify = isp_pipeline_link_notify;
1877	ret = media_device_register(&isp->media_dev);
1878	if (ret < 0) {
1879		dev_err(isp->dev, "%s: Media device registration failed (%d)\n",
1880			__func__, ret);
1881		return ret;
1882	}
1883
1884	isp->v4l2_dev.mdev = &isp->media_dev;
1885	ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1886	if (ret < 0) {
1887		dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1888			__func__, ret);
1889		goto done;
1890	}
1891
1892	/* Register internal entities */
1893	ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1894	if (ret < 0)
1895		goto done;
1896
1897	ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1898	if (ret < 0)
1899		goto done;
1900
1901	ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1902	if (ret < 0)
1903		goto done;
1904
1905	ret = omap3isp_preview_register_entities(&isp->isp_prev,
1906						 &isp->v4l2_dev);
1907	if (ret < 0)
1908		goto done;
1909
1910	ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1911	if (ret < 0)
1912		goto done;
1913
1914	ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1915	if (ret < 0)
1916		goto done;
1917
1918	ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1919	if (ret < 0)
1920		goto done;
1921
1922	ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1923	if (ret < 0)
1924		goto done;
1925
1926done:
1927	if (ret < 0)
1928		isp_unregister_entities(isp);
1929
1930	return ret;
1931}
1932
1933static void isp_cleanup_modules(struct isp_device *isp)
1934{
1935	omap3isp_h3a_aewb_cleanup(isp);
1936	omap3isp_h3a_af_cleanup(isp);
1937	omap3isp_hist_cleanup(isp);
1938	omap3isp_resizer_cleanup(isp);
1939	omap3isp_preview_cleanup(isp);
1940	omap3isp_ccdc_cleanup(isp);
1941	omap3isp_ccp2_cleanup(isp);
1942	omap3isp_csi2_cleanup(isp);
1943}
1944
1945static int isp_initialize_modules(struct isp_device *isp)
1946{
1947	int ret;
1948
1949	ret = omap3isp_csiphy_init(isp);
1950	if (ret < 0) {
1951		dev_err(isp->dev, "CSI PHY initialization failed\n");
1952		goto error_csiphy;
1953	}
1954
1955	ret = omap3isp_csi2_init(isp);
1956	if (ret < 0) {
1957		dev_err(isp->dev, "CSI2 initialization failed\n");
1958		goto error_csi2;
1959	}
1960
1961	ret = omap3isp_ccp2_init(isp);
1962	if (ret < 0) {
1963		dev_err(isp->dev, "CCP2 initialization failed\n");
1964		goto error_ccp2;
1965	}
1966
1967	ret = omap3isp_ccdc_init(isp);
1968	if (ret < 0) {
1969		dev_err(isp->dev, "CCDC initialization failed\n");
1970		goto error_ccdc;
1971	}
1972
1973	ret = omap3isp_preview_init(isp);
1974	if (ret < 0) {
1975		dev_err(isp->dev, "Preview initialization failed\n");
1976		goto error_preview;
1977	}
1978
1979	ret = omap3isp_resizer_init(isp);
1980	if (ret < 0) {
1981		dev_err(isp->dev, "Resizer initialization failed\n");
1982		goto error_resizer;
1983	}
1984
1985	ret = omap3isp_hist_init(isp);
1986	if (ret < 0) {
1987		dev_err(isp->dev, "Histogram initialization failed\n");
1988		goto error_hist;
1989	}
1990
1991	ret = omap3isp_h3a_aewb_init(isp);
1992	if (ret < 0) {
1993		dev_err(isp->dev, "H3A AEWB initialization failed\n");
1994		goto error_h3a_aewb;
1995	}
1996
1997	ret = omap3isp_h3a_af_init(isp);
1998	if (ret < 0) {
1999		dev_err(isp->dev, "H3A AF initialization failed\n");
2000		goto error_h3a_af;
2001	}
2002
2003	/* Connect the submodules. */
2004	ret = media_entity_create_link(
2005			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
2006			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
2007	if (ret < 0)
2008		goto error_link;
2009
2010	ret = media_entity_create_link(
2011			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
2012			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
2013	if (ret < 0)
2014		goto error_link;
2015
2016	ret = media_entity_create_link(
2017			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2018			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
2019	if (ret < 0)
2020		goto error_link;
2021
2022	ret = media_entity_create_link(
2023			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
2024			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
2025	if (ret < 0)
2026		goto error_link;
2027
2028	ret = media_entity_create_link(
2029			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
2030			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
2031	if (ret < 0)
2032		goto error_link;
2033
2034	ret = media_entity_create_link(
2035			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2036			&isp->isp_aewb.subdev.entity, 0,
2037			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2038	if (ret < 0)
2039		goto error_link;
2040
2041	ret = media_entity_create_link(
2042			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2043			&isp->isp_af.subdev.entity, 0,
2044			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2045	if (ret < 0)
2046		goto error_link;
2047
2048	ret = media_entity_create_link(
2049			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2050			&isp->isp_hist.subdev.entity, 0,
2051			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2052	if (ret < 0)
2053		goto error_link;
2054
2055	return 0;
2056
2057error_link:
2058	omap3isp_h3a_af_cleanup(isp);
2059error_h3a_af:
2060	omap3isp_h3a_aewb_cleanup(isp);
2061error_h3a_aewb:
2062	omap3isp_hist_cleanup(isp);
2063error_hist:
2064	omap3isp_resizer_cleanup(isp);
2065error_resizer:
2066	omap3isp_preview_cleanup(isp);
2067error_preview:
2068	omap3isp_ccdc_cleanup(isp);
2069error_ccdc:
2070	omap3isp_ccp2_cleanup(isp);
2071error_ccp2:
2072	omap3isp_csi2_cleanup(isp);
2073error_csi2:
2074error_csiphy:
2075	return ret;
2076}
2077
2078static void isp_detach_iommu(struct isp_device *isp)
2079{
2080	arm_iommu_release_mapping(isp->mapping);
2081	isp->mapping = NULL;
2082	iommu_group_remove_device(isp->dev);
2083}
2084
2085static int isp_attach_iommu(struct isp_device *isp)
2086{
2087	struct dma_iommu_mapping *mapping;
2088	struct iommu_group *group;
2089	int ret;
2090
2091	/* Create a device group and add the device to it. */
2092	group = iommu_group_alloc();
2093	if (IS_ERR(group)) {
2094		dev_err(isp->dev, "failed to allocate IOMMU group\n");
2095		return PTR_ERR(group);
2096	}
2097
2098	ret = iommu_group_add_device(group, isp->dev);
2099	iommu_group_put(group);
2100
2101	if (ret < 0) {
2102		dev_err(isp->dev, "failed to add device to IPMMU group\n");
2103		return ret;
2104	}
2105
2106	/*
2107	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
2108	 * VAs. This will allocate a corresponding IOMMU domain.
2109	 */
2110	mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
2111	if (IS_ERR(mapping)) {
2112		dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
2113		ret = PTR_ERR(mapping);
2114		goto error;
2115	}
2116
2117	isp->mapping = mapping;
2118
2119	/* Attach the ARM VA mapping to the device. */
2120	ret = arm_iommu_attach_device(isp->dev, mapping);
2121	if (ret < 0) {
2122		dev_err(isp->dev, "failed to attach device to VA mapping\n");
2123		goto error;
2124	}
2125
2126	return 0;
2127
2128error:
2129	isp_detach_iommu(isp);
2130	return ret;
2131}
2132
2133/*
2134 * isp_remove - Remove ISP platform device
2135 * @pdev: Pointer to ISP platform device
2136 *
2137 * Always returns 0.
2138 */
2139static int isp_remove(struct platform_device *pdev)
2140{
2141	struct isp_device *isp = platform_get_drvdata(pdev);
2142
2143	v4l2_async_notifier_unregister(&isp->notifier);
2144	isp_unregister_entities(isp);
2145	isp_cleanup_modules(isp);
2146	isp_xclk_cleanup(isp);
2147
2148	__omap3isp_get(isp, false);
2149	isp_detach_iommu(isp);
2150	__omap3isp_put(isp, false);
2151
2152	return 0;
2153}
2154
2155enum isp_of_phy {
2156	ISP_OF_PHY_PARALLEL = 0,
2157	ISP_OF_PHY_CSIPHY1,
2158	ISP_OF_PHY_CSIPHY2,
2159};
2160
2161static int isp_of_parse_node(struct device *dev, struct device_node *node,
2162			     struct isp_async_subdev *isd)
2163{
2164	struct isp_bus_cfg *buscfg = &isd->bus;
2165	struct v4l2_of_endpoint vep;
2166	unsigned int i;
2167
2168	v4l2_of_parse_endpoint(node, &vep);
2169
2170	dev_dbg(dev, "parsing endpoint %s, interface %u\n", node->full_name,
2171		vep.base.port);
2172
2173	switch (vep.base.port) {
2174	case ISP_OF_PHY_PARALLEL:
2175		buscfg->interface = ISP_INTERFACE_PARALLEL;
2176		buscfg->bus.parallel.data_lane_shift =
2177			vep.bus.parallel.data_shift;
2178		buscfg->bus.parallel.clk_pol =
2179			!!(vep.bus.parallel.flags
2180			   & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2181		buscfg->bus.parallel.hs_pol =
2182			!!(vep.bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2183		buscfg->bus.parallel.vs_pol =
2184			!!(vep.bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2185		buscfg->bus.parallel.fld_pol =
2186			!!(vep.bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2187		buscfg->bus.parallel.data_pol =
2188			!!(vep.bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2189		break;
2190
2191	case ISP_OF_PHY_CSIPHY1:
2192	case ISP_OF_PHY_CSIPHY2:
2193		/* FIXME: always assume CSI-2 for now. */
2194		switch (vep.base.port) {
2195		case ISP_OF_PHY_CSIPHY1:
2196			buscfg->interface = ISP_INTERFACE_CSI2C_PHY1;
2197			break;
2198		case ISP_OF_PHY_CSIPHY2:
2199			buscfg->interface = ISP_INTERFACE_CSI2A_PHY2;
2200			break;
2201		}
2202		buscfg->bus.csi2.lanecfg.clk.pos = vep.bus.mipi_csi2.clock_lane;
2203		buscfg->bus.csi2.lanecfg.clk.pol =
2204			vep.bus.mipi_csi2.lane_polarities[0];
2205		dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2206			buscfg->bus.csi2.lanecfg.clk.pol,
2207			buscfg->bus.csi2.lanecfg.clk.pos);
2208
2209		for (i = 0; i < ISP_CSIPHY2_NUM_DATA_LANES; i++) {
2210			buscfg->bus.csi2.lanecfg.data[i].pos =
2211				vep.bus.mipi_csi2.data_lanes[i];
2212			buscfg->bus.csi2.lanecfg.data[i].pol =
2213				vep.bus.mipi_csi2.lane_polarities[i + 1];
2214			dev_dbg(dev, "data lane %u polarity %u, pos %u\n", i,
2215				buscfg->bus.csi2.lanecfg.data[i].pol,
2216				buscfg->bus.csi2.lanecfg.data[i].pos);
2217		}
2218
2219		/*
2220		 * FIXME: now we assume the CRC is always there.
2221		 * Implement a way to obtain this information from the
2222		 * sensor. Frame descriptors, perhaps?
2223		 */
2224		buscfg->bus.csi2.crc = 1;
2225		break;
2226
2227	default:
2228		dev_warn(dev, "%s: invalid interface %u\n", node->full_name,
2229			 vep.base.port);
2230		break;
2231	}
2232
2233	return 0;
2234}
2235
2236static int isp_of_parse_nodes(struct device *dev,
2237			      struct v4l2_async_notifier *notifier)
2238{
2239	struct device_node *node = NULL;
2240
2241	notifier->subdevs = devm_kcalloc(
2242		dev, ISP_MAX_SUBDEVS, sizeof(*notifier->subdevs), GFP_KERNEL);
2243	if (!notifier->subdevs)
2244		return -ENOMEM;
2245
2246	while (notifier->num_subdevs < ISP_MAX_SUBDEVS &&
2247	       (node = of_graph_get_next_endpoint(dev->of_node, node))) {
2248		struct isp_async_subdev *isd;
2249
2250		isd = devm_kzalloc(dev, sizeof(*isd), GFP_KERNEL);
2251		if (!isd) {
2252			of_node_put(node);
2253			return -ENOMEM;
2254		}
2255
2256		notifier->subdevs[notifier->num_subdevs] = &isd->asd;
2257
2258		if (isp_of_parse_node(dev, node, isd)) {
2259			of_node_put(node);
2260			return -EINVAL;
2261		}
2262
2263		isd->asd.match.of.node = of_graph_get_remote_port_parent(node);
2264		of_node_put(node);
2265		if (!isd->asd.match.of.node) {
2266			dev_warn(dev, "bad remote port parent\n");
2267			return -EINVAL;
2268		}
2269
2270		isd->asd.match_type = V4L2_ASYNC_MATCH_OF;
2271		notifier->num_subdevs++;
2272	}
2273
2274	return notifier->num_subdevs;
2275}
2276
2277static int isp_subdev_notifier_bound(struct v4l2_async_notifier *async,
2278				     struct v4l2_subdev *subdev,
2279				     struct v4l2_async_subdev *asd)
2280{
2281	struct isp_device *isp = container_of(async, struct isp_device,
2282					      notifier);
2283	struct isp_async_subdev *isd =
2284		container_of(asd, struct isp_async_subdev, asd);
2285	int ret;
2286
2287	ret = isp_link_entity(isp, &subdev->entity, isd->bus.interface);
2288	if (ret < 0)
2289		return ret;
2290
2291	isd->sd = subdev;
2292	isd->sd->host_priv = &isd->bus;
2293
2294	return ret;
2295}
2296
2297static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2298{
2299	struct isp_device *isp = container_of(async, struct isp_device,
2300					      notifier);
2301
2302	return v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2303}
2304
2305/*
2306 * isp_probe - Probe ISP platform device
2307 * @pdev: Pointer to ISP platform device
2308 *
2309 * Returns 0 if successful,
2310 *   -ENOMEM if no memory available,
2311 *   -ENODEV if no platform device resources found
2312 *     or no space for remapping registers,
2313 *   -EINVAL if couldn't install ISR,
2314 *   or clk_get return error value.
2315 */
2316static int isp_probe(struct platform_device *pdev)
2317{
2318	struct isp_device *isp;
2319	struct resource *mem;
2320	int ret;
2321	int i, m;
2322
2323	isp = devm_kzalloc(&pdev->dev, sizeof(*isp), GFP_KERNEL);
2324	if (!isp) {
2325		dev_err(&pdev->dev, "could not allocate memory\n");
2326		return -ENOMEM;
2327	}
2328
2329	ret = of_property_read_u32(pdev->dev.of_node, "ti,phy-type",
2330				   &isp->phy_type);
2331	if (ret)
2332		return ret;
2333
2334	isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2335						      "syscon");
2336	if (IS_ERR(isp->syscon))
2337		return PTR_ERR(isp->syscon);
2338
2339	ret = of_property_read_u32_index(pdev->dev.of_node, "syscon", 1,
2340					 &isp->syscon_offset);
2341	if (ret)
2342		return ret;
2343
2344	ret = isp_of_parse_nodes(&pdev->dev, &isp->notifier);
2345	if (ret < 0)
2346		return ret;
2347
2348	isp->autoidle = autoidle;
2349
2350	mutex_init(&isp->isp_mutex);
2351	spin_lock_init(&isp->stat_lock);
2352
2353	isp->dev = &pdev->dev;
2354	isp->ref_count = 0;
2355
2356	ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2357	if (ret)
2358		goto error;
2359
2360	platform_set_drvdata(pdev, isp);
2361
2362	/* Regulators */
2363	isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2364	isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2365
2366	/* Clocks
2367	 *
2368	 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2369	 * manually to read the revision before calling __omap3isp_get().
2370	 *
2371	 * Start by mapping the ISP MMIO area, which is in two pieces.
2372	 * The ISP IOMMU is in between. Map both now, and fill in the
2373	 * ISP revision specific portions a little later in the
2374	 * function.
2375	 */
2376	for (i = 0; i < 2; i++) {
2377		unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2378
2379		mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2380		isp->mmio_base[map_idx] =
2381			devm_ioremap_resource(isp->dev, mem);
2382		if (IS_ERR(isp->mmio_base[map_idx]))
2383			return PTR_ERR(isp->mmio_base[map_idx]);
2384	}
2385
2386	ret = isp_get_clocks(isp);
2387	if (ret < 0)
2388		goto error;
2389
2390	ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2391	if (ret < 0)
2392		goto error;
2393
2394	isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2395	dev_info(isp->dev, "Revision %d.%d found\n",
2396		 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2397
2398	clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2399
2400	if (__omap3isp_get(isp, false) == NULL) {
2401		ret = -ENODEV;
2402		goto error;
2403	}
2404
2405	ret = isp_reset(isp);
2406	if (ret < 0)
2407		goto error_isp;
2408
2409	ret = isp_xclk_init(isp);
2410	if (ret < 0)
2411		goto error_isp;
2412
2413	/* Memory resources */
2414	for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2415		if (isp->revision == isp_res_maps[m].isp_rev)
2416			break;
2417
2418	if (m == ARRAY_SIZE(isp_res_maps)) {
2419		dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2420			(isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2421		ret = -ENODEV;
2422		goto error_isp;
2423	}
2424
2425	for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2426		isp->mmio_base[i] =
2427			isp->mmio_base[0] + isp_res_maps[m].offset[i];
2428
2429	for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2430		isp->mmio_base[i] =
2431			isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2432			+ isp_res_maps[m].offset[i];
2433
2434	isp->mmio_hist_base_phys =
2435		mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2436
2437	/* IOMMU */
2438	ret = isp_attach_iommu(isp);
2439	if (ret < 0) {
2440		dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2441		goto error_isp;
2442	}
2443
2444	/* Interrupt */
2445	isp->irq_num = platform_get_irq(pdev, 0);
2446	if (isp->irq_num <= 0) {
2447		dev_err(isp->dev, "No IRQ resource\n");
2448		ret = -ENODEV;
2449		goto error_iommu;
2450	}
2451
2452	if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2453			     "OMAP3 ISP", isp)) {
2454		dev_err(isp->dev, "Unable to request IRQ\n");
2455		ret = -EINVAL;
2456		goto error_iommu;
2457	}
2458
2459	/* Entities */
2460	ret = isp_initialize_modules(isp);
2461	if (ret < 0)
2462		goto error_iommu;
2463
2464	ret = isp_register_entities(isp);
2465	if (ret < 0)
2466		goto error_modules;
2467
2468	isp->notifier.bound = isp_subdev_notifier_bound;
2469	isp->notifier.complete = isp_subdev_notifier_complete;
2470
2471	ret = v4l2_async_notifier_register(&isp->v4l2_dev, &isp->notifier);
2472	if (ret)
2473		goto error_register_entities;
2474
2475	isp_core_init(isp, 1);
2476	omap3isp_put(isp);
2477
2478	return 0;
2479
2480error_register_entities:
2481	isp_unregister_entities(isp);
2482error_modules:
2483	isp_cleanup_modules(isp);
2484error_iommu:
2485	isp_detach_iommu(isp);
2486error_isp:
2487	isp_xclk_cleanup(isp);
2488	__omap3isp_put(isp, false);
2489error:
2490	mutex_destroy(&isp->isp_mutex);
2491
2492	return ret;
2493}
2494
2495static const struct dev_pm_ops omap3isp_pm_ops = {
2496	.prepare = isp_pm_prepare,
2497	.suspend = isp_pm_suspend,
2498	.resume = isp_pm_resume,
2499	.complete = isp_pm_complete,
2500};
2501
2502static struct platform_device_id omap3isp_id_table[] = {
2503	{ "omap3isp", 0 },
2504	{ },
2505};
2506MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2507
2508static const struct of_device_id omap3isp_of_table[] = {
2509	{ .compatible = "ti,omap3-isp" },
2510	{ },
2511};
2512
2513static struct platform_driver omap3isp_driver = {
2514	.probe = isp_probe,
2515	.remove = isp_remove,
2516	.id_table = omap3isp_id_table,
2517	.driver = {
2518		.name = "omap3isp",
2519		.pm	= &omap3isp_pm_ops,
2520		.of_match_table = omap3isp_of_table,
2521	},
2522};
2523
2524module_platform_driver(omap3isp_driver);
2525
2526MODULE_AUTHOR("Nokia Corporation");
2527MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2528MODULE_LICENSE("GPL");
2529MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
2530