1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
stripe_hash(struct r5conf * conf,sector_t sect)87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
stripe_hash_locks_hash(sector_t sect)93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
lock_device_hash_lock(struct r5conf * conf,int hash)98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
unlock_device_hash_lock(struct r5conf * conf,int hash)104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
lock_all_device_hash_locks_irq(struct r5conf * conf)110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
unlock_all_device_hash_locks_irq(struct r5conf * conf)120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
r5_next_bio(struct bio * bio,sector_t sector)138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
raid5_bi_processed_stripes(struct bio * bio)151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
raid5_dec_bi_active_stripes(struct bio * bio)157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
raid5_inc_bi_active_stripes(struct bio * bio)163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
raid5_set_bi_processed_stripes(struct bio * bio,unsigned int cnt)169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
raid5_set_bi_stripes(struct bio * bio,unsigned int cnt)181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
raid6_next_disk(int disk,int raid_disks)199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
return_io(struct bio_list * return_bi)226 static void return_io(struct bio_list *return_bi)
227 {
228 	struct bio *bi;
229 	while ((bi = bio_list_pop(return_bi)) != NULL) {
230 		bi->bi_iter.bi_size = 0;
231 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 					 bi, 0);
233 		bio_endio(bi);
234 	}
235 }
236 
237 static void print_raid5_conf (struct r5conf *conf);
238 
stripe_operations_active(struct stripe_head * sh)239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 	return sh->check_state || sh->reconstruct_state ||
242 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245 
raid5_wakeup_stripe_thread(struct stripe_head * sh)246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 	struct r5conf *conf = sh->raid_conf;
249 	struct r5worker_group *group;
250 	int thread_cnt;
251 	int i, cpu = sh->cpu;
252 
253 	if (!cpu_online(cpu)) {
254 		cpu = cpumask_any(cpu_online_mask);
255 		sh->cpu = cpu;
256 	}
257 
258 	if (list_empty(&sh->lru)) {
259 		struct r5worker_group *group;
260 		group = conf->worker_groups + cpu_to_group(cpu);
261 		list_add_tail(&sh->lru, &group->handle_list);
262 		group->stripes_cnt++;
263 		sh->group = group;
264 	}
265 
266 	if (conf->worker_cnt_per_group == 0) {
267 		md_wakeup_thread(conf->mddev->thread);
268 		return;
269 	}
270 
271 	group = conf->worker_groups + cpu_to_group(sh->cpu);
272 
273 	group->workers[0].working = true;
274 	/* at least one worker should run to avoid race */
275 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276 
277 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 	/* wakeup more workers */
279 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 		if (group->workers[i].working == false) {
281 			group->workers[i].working = true;
282 			queue_work_on(sh->cpu, raid5_wq,
283 				      &group->workers[i].work);
284 			thread_cnt--;
285 		}
286 	}
287 }
288 
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 			      struct list_head *temp_inactive_list)
291 {
292 	BUG_ON(!list_empty(&sh->lru));
293 	BUG_ON(atomic_read(&conf->active_stripes)==0);
294 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 			list_add_tail(&sh->lru, &conf->delayed_list);
298 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 			   sh->bm_seq - conf->seq_write > 0)
300 			list_add_tail(&sh->lru, &conf->bitmap_list);
301 		else {
302 			clear_bit(STRIPE_DELAYED, &sh->state);
303 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 			if (conf->worker_cnt_per_group == 0) {
305 				list_add_tail(&sh->lru, &conf->handle_list);
306 			} else {
307 				raid5_wakeup_stripe_thread(sh);
308 				return;
309 			}
310 		}
311 		md_wakeup_thread(conf->mddev->thread);
312 	} else {
313 		BUG_ON(stripe_operations_active(sh));
314 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 			if (atomic_dec_return(&conf->preread_active_stripes)
316 			    < IO_THRESHOLD)
317 				md_wakeup_thread(conf->mddev->thread);
318 		atomic_dec(&conf->active_stripes);
319 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 			list_add_tail(&sh->lru, temp_inactive_list);
321 	}
322 }
323 
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 			     struct list_head *temp_inactive_list)
326 {
327 	if (atomic_dec_and_test(&sh->count))
328 		do_release_stripe(conf, sh, temp_inactive_list);
329 }
330 
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)338 static void release_inactive_stripe_list(struct r5conf *conf,
339 					 struct list_head *temp_inactive_list,
340 					 int hash)
341 {
342 	int size;
343 	bool do_wakeup = false;
344 	unsigned long flags;
345 
346 	if (hash == NR_STRIPE_HASH_LOCKS) {
347 		size = NR_STRIPE_HASH_LOCKS;
348 		hash = NR_STRIPE_HASH_LOCKS - 1;
349 	} else
350 		size = 1;
351 	while (size) {
352 		struct list_head *list = &temp_inactive_list[size - 1];
353 
354 		/*
355 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
356 		 * remove stripes from the list
357 		 */
358 		if (!list_empty_careful(list)) {
359 			spin_lock_irqsave(conf->hash_locks + hash, flags);
360 			if (list_empty(conf->inactive_list + hash) &&
361 			    !list_empty(list))
362 				atomic_dec(&conf->empty_inactive_list_nr);
363 			list_splice_tail_init(list, conf->inactive_list + hash);
364 			do_wakeup = true;
365 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366 		}
367 		size--;
368 		hash--;
369 	}
370 
371 	if (do_wakeup) {
372 		wake_up(&conf->wait_for_stripe);
373 		if (atomic_read(&conf->active_stripes) == 0)
374 			wake_up(&conf->wait_for_quiescent);
375 		if (conf->retry_read_aligned)
376 			md_wakeup_thread(conf->mddev->thread);
377 	}
378 }
379 
380 /* should hold conf->device_lock already */
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)381 static int release_stripe_list(struct r5conf *conf,
382 			       struct list_head *temp_inactive_list)
383 {
384 	struct stripe_head *sh;
385 	int count = 0;
386 	struct llist_node *head;
387 
388 	head = llist_del_all(&conf->released_stripes);
389 	head = llist_reverse_order(head);
390 	while (head) {
391 		int hash;
392 
393 		sh = llist_entry(head, struct stripe_head, release_list);
394 		head = llist_next(head);
395 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 		smp_mb();
397 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 		/*
399 		 * Don't worry the bit is set here, because if the bit is set
400 		 * again, the count is always > 1. This is true for
401 		 * STRIPE_ON_UNPLUG_LIST bit too.
402 		 */
403 		hash = sh->hash_lock_index;
404 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
405 		count++;
406 	}
407 
408 	return count;
409 }
410 
raid5_release_stripe(struct stripe_head * sh)411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413 	struct r5conf *conf = sh->raid_conf;
414 	unsigned long flags;
415 	struct list_head list;
416 	int hash;
417 	bool wakeup;
418 
419 	/* Avoid release_list until the last reference.
420 	 */
421 	if (atomic_add_unless(&sh->count, -1, 1))
422 		return;
423 
424 	if (unlikely(!conf->mddev->thread) ||
425 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426 		goto slow_path;
427 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 	if (wakeup)
429 		md_wakeup_thread(conf->mddev->thread);
430 	return;
431 slow_path:
432 	local_irq_save(flags);
433 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435 		INIT_LIST_HEAD(&list);
436 		hash = sh->hash_lock_index;
437 		do_release_stripe(conf, sh, &list);
438 		spin_unlock(&conf->device_lock);
439 		release_inactive_stripe_list(conf, &list, hash);
440 	}
441 	local_irq_restore(flags);
442 }
443 
remove_hash(struct stripe_head * sh)444 static inline void remove_hash(struct stripe_head *sh)
445 {
446 	pr_debug("remove_hash(), stripe %llu\n",
447 		(unsigned long long)sh->sector);
448 
449 	hlist_del_init(&sh->hash);
450 }
451 
insert_hash(struct r5conf * conf,struct stripe_head * sh)452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
455 
456 	pr_debug("insert_hash(), stripe %llu\n",
457 		(unsigned long long)sh->sector);
458 
459 	hlist_add_head(&sh->hash, hp);
460 }
461 
462 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465 	struct stripe_head *sh = NULL;
466 	struct list_head *first;
467 
468 	if (list_empty(conf->inactive_list + hash))
469 		goto out;
470 	first = (conf->inactive_list + hash)->next;
471 	sh = list_entry(first, struct stripe_head, lru);
472 	list_del_init(first);
473 	remove_hash(sh);
474 	atomic_inc(&conf->active_stripes);
475 	BUG_ON(hash != sh->hash_lock_index);
476 	if (list_empty(conf->inactive_list + hash))
477 		atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479 	return sh;
480 }
481 
shrink_buffers(struct stripe_head * sh)482 static void shrink_buffers(struct stripe_head *sh)
483 {
484 	struct page *p;
485 	int i;
486 	int num = sh->raid_conf->pool_size;
487 
488 	for (i = 0; i < num ; i++) {
489 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490 		p = sh->dev[i].page;
491 		if (!p)
492 			continue;
493 		sh->dev[i].page = NULL;
494 		put_page(p);
495 	}
496 }
497 
grow_buffers(struct stripe_head * sh,gfp_t gfp)498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500 	int i;
501 	int num = sh->raid_conf->pool_size;
502 
503 	for (i = 0; i < num; i++) {
504 		struct page *page;
505 
506 		if (!(page = alloc_page(gfp))) {
507 			return 1;
508 		}
509 		sh->dev[i].page = page;
510 		sh->dev[i].orig_page = page;
511 	}
512 	return 0;
513 }
514 
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517 			    struct stripe_head *sh);
518 
init_stripe(struct stripe_head * sh,sector_t sector,int previous)519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521 	struct r5conf *conf = sh->raid_conf;
522 	int i, seq;
523 
524 	BUG_ON(atomic_read(&sh->count) != 0);
525 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526 	BUG_ON(stripe_operations_active(sh));
527 	BUG_ON(sh->batch_head);
528 
529 	pr_debug("init_stripe called, stripe %llu\n",
530 		(unsigned long long)sector);
531 retry:
532 	seq = read_seqcount_begin(&conf->gen_lock);
533 	sh->generation = conf->generation - previous;
534 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535 	sh->sector = sector;
536 	stripe_set_idx(sector, conf, previous, sh);
537 	sh->state = 0;
538 
539 	for (i = sh->disks; i--; ) {
540 		struct r5dev *dev = &sh->dev[i];
541 
542 		if (dev->toread || dev->read || dev->towrite || dev->written ||
543 		    test_bit(R5_LOCKED, &dev->flags)) {
544 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545 			       (unsigned long long)sh->sector, i, dev->toread,
546 			       dev->read, dev->towrite, dev->written,
547 			       test_bit(R5_LOCKED, &dev->flags));
548 			WARN_ON(1);
549 		}
550 		dev->flags = 0;
551 		raid5_build_block(sh, i, previous);
552 	}
553 	if (read_seqcount_retry(&conf->gen_lock, seq))
554 		goto retry;
555 	sh->overwrite_disks = 0;
556 	insert_hash(conf, sh);
557 	sh->cpu = smp_processor_id();
558 	set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560 
__find_stripe(struct r5conf * conf,sector_t sector,short generation)561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562 					 short generation)
563 {
564 	struct stripe_head *sh;
565 
566 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568 		if (sh->sector == sector && sh->generation == generation)
569 			return sh;
570 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571 	return NULL;
572 }
573 
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
calc_degraded(struct r5conf * conf)587 static int calc_degraded(struct r5conf *conf)
588 {
589 	int degraded, degraded2;
590 	int i;
591 
592 	rcu_read_lock();
593 	degraded = 0;
594 	for (i = 0; i < conf->previous_raid_disks; i++) {
595 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596 		if (rdev && test_bit(Faulty, &rdev->flags))
597 			rdev = rcu_dereference(conf->disks[i].replacement);
598 		if (!rdev || test_bit(Faulty, &rdev->flags))
599 			degraded++;
600 		else if (test_bit(In_sync, &rdev->flags))
601 			;
602 		else
603 			/* not in-sync or faulty.
604 			 * If the reshape increases the number of devices,
605 			 * this is being recovered by the reshape, so
606 			 * this 'previous' section is not in_sync.
607 			 * If the number of devices is being reduced however,
608 			 * the device can only be part of the array if
609 			 * we are reverting a reshape, so this section will
610 			 * be in-sync.
611 			 */
612 			if (conf->raid_disks >= conf->previous_raid_disks)
613 				degraded++;
614 	}
615 	rcu_read_unlock();
616 	if (conf->raid_disks == conf->previous_raid_disks)
617 		return degraded;
618 	rcu_read_lock();
619 	degraded2 = 0;
620 	for (i = 0; i < conf->raid_disks; i++) {
621 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622 		if (rdev && test_bit(Faulty, &rdev->flags))
623 			rdev = rcu_dereference(conf->disks[i].replacement);
624 		if (!rdev || test_bit(Faulty, &rdev->flags))
625 			degraded2++;
626 		else if (test_bit(In_sync, &rdev->flags))
627 			;
628 		else
629 			/* not in-sync or faulty.
630 			 * If reshape increases the number of devices, this
631 			 * section has already been recovered, else it
632 			 * almost certainly hasn't.
633 			 */
634 			if (conf->raid_disks <= conf->previous_raid_disks)
635 				degraded2++;
636 	}
637 	rcu_read_unlock();
638 	if (degraded2 > degraded)
639 		return degraded2;
640 	return degraded;
641 }
642 
has_failed(struct r5conf * conf)643 static int has_failed(struct r5conf *conf)
644 {
645 	int degraded;
646 
647 	if (conf->mddev->reshape_position == MaxSector)
648 		return conf->mddev->degraded > conf->max_degraded;
649 
650 	degraded = calc_degraded(conf);
651 	if (degraded > conf->max_degraded)
652 		return 1;
653 	return 0;
654 }
655 
656 struct stripe_head *
raid5_get_active_stripe(struct r5conf * conf,sector_t sector,int previous,int noblock,int noquiesce)657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658 			int previous, int noblock, int noquiesce)
659 {
660 	struct stripe_head *sh;
661 	int hash = stripe_hash_locks_hash(sector);
662 
663 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
664 
665 	spin_lock_irq(conf->hash_locks + hash);
666 
667 	do {
668 		wait_event_lock_irq(conf->wait_for_quiescent,
669 				    conf->quiesce == 0 || noquiesce,
670 				    *(conf->hash_locks + hash));
671 		sh = __find_stripe(conf, sector, conf->generation - previous);
672 		if (!sh) {
673 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
674 				sh = get_free_stripe(conf, hash);
675 				if (!sh && !test_bit(R5_DID_ALLOC,
676 						     &conf->cache_state))
677 					set_bit(R5_ALLOC_MORE,
678 						&conf->cache_state);
679 			}
680 			if (noblock && sh == NULL)
681 				break;
682 			if (!sh) {
683 				set_bit(R5_INACTIVE_BLOCKED,
684 					&conf->cache_state);
685 				wait_event_lock_irq(
686 					conf->wait_for_stripe,
687 					!list_empty(conf->inactive_list + hash) &&
688 					(atomic_read(&conf->active_stripes)
689 					 < (conf->max_nr_stripes * 3 / 4)
690 					 || !test_bit(R5_INACTIVE_BLOCKED,
691 						      &conf->cache_state)),
692 					*(conf->hash_locks + hash));
693 				clear_bit(R5_INACTIVE_BLOCKED,
694 					  &conf->cache_state);
695 			} else {
696 				init_stripe(sh, sector, previous);
697 				atomic_inc(&sh->count);
698 			}
699 		} else if (!atomic_inc_not_zero(&sh->count)) {
700 			spin_lock(&conf->device_lock);
701 			if (!atomic_read(&sh->count)) {
702 				if (!test_bit(STRIPE_HANDLE, &sh->state))
703 					atomic_inc(&conf->active_stripes);
704 				BUG_ON(list_empty(&sh->lru) &&
705 				       !test_bit(STRIPE_EXPANDING, &sh->state));
706 				list_del_init(&sh->lru);
707 				if (sh->group) {
708 					sh->group->stripes_cnt--;
709 					sh->group = NULL;
710 				}
711 			}
712 			atomic_inc(&sh->count);
713 			spin_unlock(&conf->device_lock);
714 		}
715 	} while (sh == NULL);
716 
717 	spin_unlock_irq(conf->hash_locks + hash);
718 	return sh;
719 }
720 
is_full_stripe_write(struct stripe_head * sh)721 static bool is_full_stripe_write(struct stripe_head *sh)
722 {
723 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
724 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
725 }
726 
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 	local_irq_disable();
730 	if (sh1 > sh2) {
731 		spin_lock(&sh2->stripe_lock);
732 		spin_lock_nested(&sh1->stripe_lock, 1);
733 	} else {
734 		spin_lock(&sh1->stripe_lock);
735 		spin_lock_nested(&sh2->stripe_lock, 1);
736 	}
737 }
738 
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
740 {
741 	spin_unlock(&sh1->stripe_lock);
742 	spin_unlock(&sh2->stripe_lock);
743 	local_irq_enable();
744 }
745 
746 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)747 static bool stripe_can_batch(struct stripe_head *sh)
748 {
749 	struct r5conf *conf = sh->raid_conf;
750 
751 	if (conf->log)
752 		return false;
753 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
754 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
755 		is_full_stripe_write(sh);
756 }
757 
758 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh)759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
760 {
761 	struct stripe_head *head;
762 	sector_t head_sector, tmp_sec;
763 	int hash;
764 	int dd_idx;
765 
766 	if (!stripe_can_batch(sh))
767 		return;
768 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
769 	tmp_sec = sh->sector;
770 	if (!sector_div(tmp_sec, conf->chunk_sectors))
771 		return;
772 	head_sector = sh->sector - STRIPE_SECTORS;
773 
774 	hash = stripe_hash_locks_hash(head_sector);
775 	spin_lock_irq(conf->hash_locks + hash);
776 	head = __find_stripe(conf, head_sector, conf->generation);
777 	if (head && !atomic_inc_not_zero(&head->count)) {
778 		spin_lock(&conf->device_lock);
779 		if (!atomic_read(&head->count)) {
780 			if (!test_bit(STRIPE_HANDLE, &head->state))
781 				atomic_inc(&conf->active_stripes);
782 			BUG_ON(list_empty(&head->lru) &&
783 			       !test_bit(STRIPE_EXPANDING, &head->state));
784 			list_del_init(&head->lru);
785 			if (head->group) {
786 				head->group->stripes_cnt--;
787 				head->group = NULL;
788 			}
789 		}
790 		atomic_inc(&head->count);
791 		spin_unlock(&conf->device_lock);
792 	}
793 	spin_unlock_irq(conf->hash_locks + hash);
794 
795 	if (!head)
796 		return;
797 	if (!stripe_can_batch(head))
798 		goto out;
799 
800 	lock_two_stripes(head, sh);
801 	/* clear_batch_ready clear the flag */
802 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
803 		goto unlock_out;
804 
805 	if (sh->batch_head)
806 		goto unlock_out;
807 
808 	dd_idx = 0;
809 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
810 		dd_idx++;
811 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
812 		goto unlock_out;
813 
814 	if (head->batch_head) {
815 		spin_lock(&head->batch_head->batch_lock);
816 		/* This batch list is already running */
817 		if (!stripe_can_batch(head)) {
818 			spin_unlock(&head->batch_head->batch_lock);
819 			goto unlock_out;
820 		}
821 
822 		/*
823 		 * at this point, head's BATCH_READY could be cleared, but we
824 		 * can still add the stripe to batch list
825 		 */
826 		list_add(&sh->batch_list, &head->batch_list);
827 		spin_unlock(&head->batch_head->batch_lock);
828 
829 		sh->batch_head = head->batch_head;
830 	} else {
831 		head->batch_head = head;
832 		sh->batch_head = head->batch_head;
833 		spin_lock(&head->batch_lock);
834 		list_add_tail(&sh->batch_list, &head->batch_list);
835 		spin_unlock(&head->batch_lock);
836 	}
837 
838 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
839 		if (atomic_dec_return(&conf->preread_active_stripes)
840 		    < IO_THRESHOLD)
841 			md_wakeup_thread(conf->mddev->thread);
842 
843 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
844 		int seq = sh->bm_seq;
845 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
846 		    sh->batch_head->bm_seq > seq)
847 			seq = sh->batch_head->bm_seq;
848 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
849 		sh->batch_head->bm_seq = seq;
850 	}
851 
852 	atomic_inc(&sh->count);
853 unlock_out:
854 	unlock_two_stripes(head, sh);
855 out:
856 	raid5_release_stripe(head);
857 }
858 
859 /* Determine if 'data_offset' or 'new_data_offset' should be used
860  * in this stripe_head.
861  */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)862 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
863 {
864 	sector_t progress = conf->reshape_progress;
865 	/* Need a memory barrier to make sure we see the value
866 	 * of conf->generation, or ->data_offset that was set before
867 	 * reshape_progress was updated.
868 	 */
869 	smp_rmb();
870 	if (progress == MaxSector)
871 		return 0;
872 	if (sh->generation == conf->generation - 1)
873 		return 0;
874 	/* We are in a reshape, and this is a new-generation stripe,
875 	 * so use new_data_offset.
876 	 */
877 	return 1;
878 }
879 
880 static void
881 raid5_end_read_request(struct bio *bi);
882 static void
883 raid5_end_write_request(struct bio *bi);
884 
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)885 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
886 {
887 	struct r5conf *conf = sh->raid_conf;
888 	int i, disks = sh->disks;
889 	struct stripe_head *head_sh = sh;
890 
891 	might_sleep();
892 
893 	if (r5l_write_stripe(conf->log, sh) == 0)
894 		return;
895 	for (i = disks; i--; ) {
896 		int rw;
897 		int replace_only = 0;
898 		struct bio *bi, *rbi;
899 		struct md_rdev *rdev, *rrdev = NULL;
900 
901 		sh = head_sh;
902 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
903 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
904 				rw = WRITE_FUA;
905 			else
906 				rw = WRITE;
907 			if (test_bit(R5_Discard, &sh->dev[i].flags))
908 				rw |= REQ_DISCARD;
909 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
910 			rw = READ;
911 		else if (test_and_clear_bit(R5_WantReplace,
912 					    &sh->dev[i].flags)) {
913 			rw = WRITE;
914 			replace_only = 1;
915 		} else
916 			continue;
917 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
918 			rw |= REQ_SYNC;
919 
920 again:
921 		bi = &sh->dev[i].req;
922 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
923 
924 		rcu_read_lock();
925 		rrdev = rcu_dereference(conf->disks[i].replacement);
926 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
927 		rdev = rcu_dereference(conf->disks[i].rdev);
928 		if (!rdev) {
929 			rdev = rrdev;
930 			rrdev = NULL;
931 		}
932 		if (rw & WRITE) {
933 			if (replace_only)
934 				rdev = NULL;
935 			if (rdev == rrdev)
936 				/* We raced and saw duplicates */
937 				rrdev = NULL;
938 		} else {
939 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
940 				rdev = rrdev;
941 			rrdev = NULL;
942 		}
943 
944 		if (rdev && test_bit(Faulty, &rdev->flags))
945 			rdev = NULL;
946 		if (rdev)
947 			atomic_inc(&rdev->nr_pending);
948 		if (rrdev && test_bit(Faulty, &rrdev->flags))
949 			rrdev = NULL;
950 		if (rrdev)
951 			atomic_inc(&rrdev->nr_pending);
952 		rcu_read_unlock();
953 
954 		/* We have already checked bad blocks for reads.  Now
955 		 * need to check for writes.  We never accept write errors
956 		 * on the replacement, so we don't to check rrdev.
957 		 */
958 		while ((rw & WRITE) && rdev &&
959 		       test_bit(WriteErrorSeen, &rdev->flags)) {
960 			sector_t first_bad;
961 			int bad_sectors;
962 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
963 					      &first_bad, &bad_sectors);
964 			if (!bad)
965 				break;
966 
967 			if (bad < 0) {
968 				set_bit(BlockedBadBlocks, &rdev->flags);
969 				if (!conf->mddev->external &&
970 				    conf->mddev->flags) {
971 					/* It is very unlikely, but we might
972 					 * still need to write out the
973 					 * bad block log - better give it
974 					 * a chance*/
975 					md_check_recovery(conf->mddev);
976 				}
977 				/*
978 				 * Because md_wait_for_blocked_rdev
979 				 * will dec nr_pending, we must
980 				 * increment it first.
981 				 */
982 				atomic_inc(&rdev->nr_pending);
983 				md_wait_for_blocked_rdev(rdev, conf->mddev);
984 			} else {
985 				/* Acknowledged bad block - skip the write */
986 				rdev_dec_pending(rdev, conf->mddev);
987 				rdev = NULL;
988 			}
989 		}
990 
991 		if (rdev) {
992 			if (s->syncing || s->expanding || s->expanded
993 			    || s->replacing)
994 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
995 
996 			set_bit(STRIPE_IO_STARTED, &sh->state);
997 
998 			bio_reset(bi);
999 			bi->bi_bdev = rdev->bdev;
1000 			bi->bi_rw = rw;
1001 			bi->bi_end_io = (rw & WRITE)
1002 				? raid5_end_write_request
1003 				: raid5_end_read_request;
1004 			bi->bi_private = sh;
1005 
1006 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1007 				__func__, (unsigned long long)sh->sector,
1008 				bi->bi_rw, i);
1009 			atomic_inc(&sh->count);
1010 			if (sh != head_sh)
1011 				atomic_inc(&head_sh->count);
1012 			if (use_new_offset(conf, sh))
1013 				bi->bi_iter.bi_sector = (sh->sector
1014 						 + rdev->new_data_offset);
1015 			else
1016 				bi->bi_iter.bi_sector = (sh->sector
1017 						 + rdev->data_offset);
1018 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1019 				bi->bi_rw |= REQ_NOMERGE;
1020 
1021 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1022 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1023 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1024 			bi->bi_vcnt = 1;
1025 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1026 			bi->bi_io_vec[0].bv_offset = 0;
1027 			bi->bi_iter.bi_size = STRIPE_SIZE;
1028 			/*
1029 			 * If this is discard request, set bi_vcnt 0. We don't
1030 			 * want to confuse SCSI because SCSI will replace payload
1031 			 */
1032 			if (rw & REQ_DISCARD)
1033 				bi->bi_vcnt = 0;
1034 			if (rrdev)
1035 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1036 
1037 			if (conf->mddev->gendisk)
1038 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1039 						      bi, disk_devt(conf->mddev->gendisk),
1040 						      sh->dev[i].sector);
1041 			generic_make_request(bi);
1042 		}
1043 		if (rrdev) {
1044 			if (s->syncing || s->expanding || s->expanded
1045 			    || s->replacing)
1046 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1047 
1048 			set_bit(STRIPE_IO_STARTED, &sh->state);
1049 
1050 			bio_reset(rbi);
1051 			rbi->bi_bdev = rrdev->bdev;
1052 			rbi->bi_rw = rw;
1053 			BUG_ON(!(rw & WRITE));
1054 			rbi->bi_end_io = raid5_end_write_request;
1055 			rbi->bi_private = sh;
1056 
1057 			pr_debug("%s: for %llu schedule op %ld on "
1058 				 "replacement disc %d\n",
1059 				__func__, (unsigned long long)sh->sector,
1060 				rbi->bi_rw, i);
1061 			atomic_inc(&sh->count);
1062 			if (sh != head_sh)
1063 				atomic_inc(&head_sh->count);
1064 			if (use_new_offset(conf, sh))
1065 				rbi->bi_iter.bi_sector = (sh->sector
1066 						  + rrdev->new_data_offset);
1067 			else
1068 				rbi->bi_iter.bi_sector = (sh->sector
1069 						  + rrdev->data_offset);
1070 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1071 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1072 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1073 			rbi->bi_vcnt = 1;
1074 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1075 			rbi->bi_io_vec[0].bv_offset = 0;
1076 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1077 			/*
1078 			 * If this is discard request, set bi_vcnt 0. We don't
1079 			 * want to confuse SCSI because SCSI will replace payload
1080 			 */
1081 			if (rw & REQ_DISCARD)
1082 				rbi->bi_vcnt = 0;
1083 			if (conf->mddev->gendisk)
1084 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1085 						      rbi, disk_devt(conf->mddev->gendisk),
1086 						      sh->dev[i].sector);
1087 			generic_make_request(rbi);
1088 		}
1089 		if (!rdev && !rrdev) {
1090 			if (rw & WRITE)
1091 				set_bit(STRIPE_DEGRADED, &sh->state);
1092 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1093 				bi->bi_rw, i, (unsigned long long)sh->sector);
1094 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1095 			set_bit(STRIPE_HANDLE, &sh->state);
1096 		}
1097 
1098 		if (!head_sh->batch_head)
1099 			continue;
1100 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1101 				      batch_list);
1102 		if (sh != head_sh)
1103 			goto again;
1104 	}
1105 }
1106 
1107 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh)1108 async_copy_data(int frombio, struct bio *bio, struct page **page,
1109 	sector_t sector, struct dma_async_tx_descriptor *tx,
1110 	struct stripe_head *sh)
1111 {
1112 	struct bio_vec bvl;
1113 	struct bvec_iter iter;
1114 	struct page *bio_page;
1115 	int page_offset;
1116 	struct async_submit_ctl submit;
1117 	enum async_tx_flags flags = 0;
1118 
1119 	if (bio->bi_iter.bi_sector >= sector)
1120 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1121 	else
1122 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1123 
1124 	if (frombio)
1125 		flags |= ASYNC_TX_FENCE;
1126 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1127 
1128 	bio_for_each_segment(bvl, bio, iter) {
1129 		int len = bvl.bv_len;
1130 		int clen;
1131 		int b_offset = 0;
1132 
1133 		if (page_offset < 0) {
1134 			b_offset = -page_offset;
1135 			page_offset += b_offset;
1136 			len -= b_offset;
1137 		}
1138 
1139 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1140 			clen = STRIPE_SIZE - page_offset;
1141 		else
1142 			clen = len;
1143 
1144 		if (clen > 0) {
1145 			b_offset += bvl.bv_offset;
1146 			bio_page = bvl.bv_page;
1147 			if (frombio) {
1148 				if (sh->raid_conf->skip_copy &&
1149 				    b_offset == 0 && page_offset == 0 &&
1150 				    clen == STRIPE_SIZE)
1151 					*page = bio_page;
1152 				else
1153 					tx = async_memcpy(*page, bio_page, page_offset,
1154 						  b_offset, clen, &submit);
1155 			} else
1156 				tx = async_memcpy(bio_page, *page, b_offset,
1157 						  page_offset, clen, &submit);
1158 		}
1159 		/* chain the operations */
1160 		submit.depend_tx = tx;
1161 
1162 		if (clen < len) /* hit end of page */
1163 			break;
1164 		page_offset +=  len;
1165 	}
1166 
1167 	return tx;
1168 }
1169 
ops_complete_biofill(void * stripe_head_ref)1170 static void ops_complete_biofill(void *stripe_head_ref)
1171 {
1172 	struct stripe_head *sh = stripe_head_ref;
1173 	struct bio_list return_bi = BIO_EMPTY_LIST;
1174 	int i;
1175 
1176 	pr_debug("%s: stripe %llu\n", __func__,
1177 		(unsigned long long)sh->sector);
1178 
1179 	/* clear completed biofills */
1180 	for (i = sh->disks; i--; ) {
1181 		struct r5dev *dev = &sh->dev[i];
1182 
1183 		/* acknowledge completion of a biofill operation */
1184 		/* and check if we need to reply to a read request,
1185 		 * new R5_Wantfill requests are held off until
1186 		 * !STRIPE_BIOFILL_RUN
1187 		 */
1188 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1189 			struct bio *rbi, *rbi2;
1190 
1191 			BUG_ON(!dev->read);
1192 			rbi = dev->read;
1193 			dev->read = NULL;
1194 			while (rbi && rbi->bi_iter.bi_sector <
1195 				dev->sector + STRIPE_SECTORS) {
1196 				rbi2 = r5_next_bio(rbi, dev->sector);
1197 				if (!raid5_dec_bi_active_stripes(rbi))
1198 					bio_list_add(&return_bi, rbi);
1199 				rbi = rbi2;
1200 			}
1201 		}
1202 	}
1203 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1204 
1205 	return_io(&return_bi);
1206 
1207 	set_bit(STRIPE_HANDLE, &sh->state);
1208 	raid5_release_stripe(sh);
1209 }
1210 
ops_run_biofill(struct stripe_head * sh)1211 static void ops_run_biofill(struct stripe_head *sh)
1212 {
1213 	struct dma_async_tx_descriptor *tx = NULL;
1214 	struct async_submit_ctl submit;
1215 	int i;
1216 
1217 	BUG_ON(sh->batch_head);
1218 	pr_debug("%s: stripe %llu\n", __func__,
1219 		(unsigned long long)sh->sector);
1220 
1221 	for (i = sh->disks; i--; ) {
1222 		struct r5dev *dev = &sh->dev[i];
1223 		if (test_bit(R5_Wantfill, &dev->flags)) {
1224 			struct bio *rbi;
1225 			spin_lock_irq(&sh->stripe_lock);
1226 			dev->read = rbi = dev->toread;
1227 			dev->toread = NULL;
1228 			spin_unlock_irq(&sh->stripe_lock);
1229 			while (rbi && rbi->bi_iter.bi_sector <
1230 				dev->sector + STRIPE_SECTORS) {
1231 				tx = async_copy_data(0, rbi, &dev->page,
1232 					dev->sector, tx, sh);
1233 				rbi = r5_next_bio(rbi, dev->sector);
1234 			}
1235 		}
1236 	}
1237 
1238 	atomic_inc(&sh->count);
1239 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1240 	async_trigger_callback(&submit);
1241 }
1242 
mark_target_uptodate(struct stripe_head * sh,int target)1243 static void mark_target_uptodate(struct stripe_head *sh, int target)
1244 {
1245 	struct r5dev *tgt;
1246 
1247 	if (target < 0)
1248 		return;
1249 
1250 	tgt = &sh->dev[target];
1251 	set_bit(R5_UPTODATE, &tgt->flags);
1252 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1253 	clear_bit(R5_Wantcompute, &tgt->flags);
1254 }
1255 
ops_complete_compute(void * stripe_head_ref)1256 static void ops_complete_compute(void *stripe_head_ref)
1257 {
1258 	struct stripe_head *sh = stripe_head_ref;
1259 
1260 	pr_debug("%s: stripe %llu\n", __func__,
1261 		(unsigned long long)sh->sector);
1262 
1263 	/* mark the computed target(s) as uptodate */
1264 	mark_target_uptodate(sh, sh->ops.target);
1265 	mark_target_uptodate(sh, sh->ops.target2);
1266 
1267 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1268 	if (sh->check_state == check_state_compute_run)
1269 		sh->check_state = check_state_compute_result;
1270 	set_bit(STRIPE_HANDLE, &sh->state);
1271 	raid5_release_stripe(sh);
1272 }
1273 
1274 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1275 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1276 				 struct raid5_percpu *percpu, int i)
1277 {
1278 	void *addr;
1279 
1280 	addr = flex_array_get(percpu->scribble, i);
1281 	return addr + sizeof(struct page *) * (sh->disks + 2);
1282 }
1283 
1284 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1285 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1286 {
1287 	void *addr;
1288 
1289 	addr = flex_array_get(percpu->scribble, i);
1290 	return addr;
1291 }
1292 
1293 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1294 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1295 {
1296 	int disks = sh->disks;
1297 	struct page **xor_srcs = to_addr_page(percpu, 0);
1298 	int target = sh->ops.target;
1299 	struct r5dev *tgt = &sh->dev[target];
1300 	struct page *xor_dest = tgt->page;
1301 	int count = 0;
1302 	struct dma_async_tx_descriptor *tx;
1303 	struct async_submit_ctl submit;
1304 	int i;
1305 
1306 	BUG_ON(sh->batch_head);
1307 
1308 	pr_debug("%s: stripe %llu block: %d\n",
1309 		__func__, (unsigned long long)sh->sector, target);
1310 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1311 
1312 	for (i = disks; i--; )
1313 		if (i != target)
1314 			xor_srcs[count++] = sh->dev[i].page;
1315 
1316 	atomic_inc(&sh->count);
1317 
1318 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1319 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1320 	if (unlikely(count == 1))
1321 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1322 	else
1323 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1324 
1325 	return tx;
1326 }
1327 
1328 /* set_syndrome_sources - populate source buffers for gen_syndrome
1329  * @srcs - (struct page *) array of size sh->disks
1330  * @sh - stripe_head to parse
1331  *
1332  * Populates srcs in proper layout order for the stripe and returns the
1333  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1334  * destination buffer is recorded in srcs[count] and the Q destination
1335  * is recorded in srcs[count+1]].
1336  */
set_syndrome_sources(struct page ** srcs,struct stripe_head * sh,int srctype)1337 static int set_syndrome_sources(struct page **srcs,
1338 				struct stripe_head *sh,
1339 				int srctype)
1340 {
1341 	int disks = sh->disks;
1342 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1343 	int d0_idx = raid6_d0(sh);
1344 	int count;
1345 	int i;
1346 
1347 	for (i = 0; i < disks; i++)
1348 		srcs[i] = NULL;
1349 
1350 	count = 0;
1351 	i = d0_idx;
1352 	do {
1353 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1354 		struct r5dev *dev = &sh->dev[i];
1355 
1356 		if (i == sh->qd_idx || i == sh->pd_idx ||
1357 		    (srctype == SYNDROME_SRC_ALL) ||
1358 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1359 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1360 		    (srctype == SYNDROME_SRC_WRITTEN &&
1361 		     dev->written))
1362 			srcs[slot] = sh->dev[i].page;
1363 		i = raid6_next_disk(i, disks);
1364 	} while (i != d0_idx);
1365 
1366 	return syndrome_disks;
1367 }
1368 
1369 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1370 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1371 {
1372 	int disks = sh->disks;
1373 	struct page **blocks = to_addr_page(percpu, 0);
1374 	int target;
1375 	int qd_idx = sh->qd_idx;
1376 	struct dma_async_tx_descriptor *tx;
1377 	struct async_submit_ctl submit;
1378 	struct r5dev *tgt;
1379 	struct page *dest;
1380 	int i;
1381 	int count;
1382 
1383 	BUG_ON(sh->batch_head);
1384 	if (sh->ops.target < 0)
1385 		target = sh->ops.target2;
1386 	else if (sh->ops.target2 < 0)
1387 		target = sh->ops.target;
1388 	else
1389 		/* we should only have one valid target */
1390 		BUG();
1391 	BUG_ON(target < 0);
1392 	pr_debug("%s: stripe %llu block: %d\n",
1393 		__func__, (unsigned long long)sh->sector, target);
1394 
1395 	tgt = &sh->dev[target];
1396 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1397 	dest = tgt->page;
1398 
1399 	atomic_inc(&sh->count);
1400 
1401 	if (target == qd_idx) {
1402 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1403 		blocks[count] = NULL; /* regenerating p is not necessary */
1404 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1405 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1406 				  ops_complete_compute, sh,
1407 				  to_addr_conv(sh, percpu, 0));
1408 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1409 	} else {
1410 		/* Compute any data- or p-drive using XOR */
1411 		count = 0;
1412 		for (i = disks; i-- ; ) {
1413 			if (i == target || i == qd_idx)
1414 				continue;
1415 			blocks[count++] = sh->dev[i].page;
1416 		}
1417 
1418 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1419 				  NULL, ops_complete_compute, sh,
1420 				  to_addr_conv(sh, percpu, 0));
1421 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1422 	}
1423 
1424 	return tx;
1425 }
1426 
1427 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1428 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1429 {
1430 	int i, count, disks = sh->disks;
1431 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1432 	int d0_idx = raid6_d0(sh);
1433 	int faila = -1, failb = -1;
1434 	int target = sh->ops.target;
1435 	int target2 = sh->ops.target2;
1436 	struct r5dev *tgt = &sh->dev[target];
1437 	struct r5dev *tgt2 = &sh->dev[target2];
1438 	struct dma_async_tx_descriptor *tx;
1439 	struct page **blocks = to_addr_page(percpu, 0);
1440 	struct async_submit_ctl submit;
1441 
1442 	BUG_ON(sh->batch_head);
1443 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1444 		 __func__, (unsigned long long)sh->sector, target, target2);
1445 	BUG_ON(target < 0 || target2 < 0);
1446 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1447 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1448 
1449 	/* we need to open-code set_syndrome_sources to handle the
1450 	 * slot number conversion for 'faila' and 'failb'
1451 	 */
1452 	for (i = 0; i < disks ; i++)
1453 		blocks[i] = NULL;
1454 	count = 0;
1455 	i = d0_idx;
1456 	do {
1457 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1458 
1459 		blocks[slot] = sh->dev[i].page;
1460 
1461 		if (i == target)
1462 			faila = slot;
1463 		if (i == target2)
1464 			failb = slot;
1465 		i = raid6_next_disk(i, disks);
1466 	} while (i != d0_idx);
1467 
1468 	BUG_ON(faila == failb);
1469 	if (failb < faila)
1470 		swap(faila, failb);
1471 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1472 		 __func__, (unsigned long long)sh->sector, faila, failb);
1473 
1474 	atomic_inc(&sh->count);
1475 
1476 	if (failb == syndrome_disks+1) {
1477 		/* Q disk is one of the missing disks */
1478 		if (faila == syndrome_disks) {
1479 			/* Missing P+Q, just recompute */
1480 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1481 					  ops_complete_compute, sh,
1482 					  to_addr_conv(sh, percpu, 0));
1483 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1484 						  STRIPE_SIZE, &submit);
1485 		} else {
1486 			struct page *dest;
1487 			int data_target;
1488 			int qd_idx = sh->qd_idx;
1489 
1490 			/* Missing D+Q: recompute D from P, then recompute Q */
1491 			if (target == qd_idx)
1492 				data_target = target2;
1493 			else
1494 				data_target = target;
1495 
1496 			count = 0;
1497 			for (i = disks; i-- ; ) {
1498 				if (i == data_target || i == qd_idx)
1499 					continue;
1500 				blocks[count++] = sh->dev[i].page;
1501 			}
1502 			dest = sh->dev[data_target].page;
1503 			init_async_submit(&submit,
1504 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1505 					  NULL, NULL, NULL,
1506 					  to_addr_conv(sh, percpu, 0));
1507 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1508 				       &submit);
1509 
1510 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1511 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1512 					  ops_complete_compute, sh,
1513 					  to_addr_conv(sh, percpu, 0));
1514 			return async_gen_syndrome(blocks, 0, count+2,
1515 						  STRIPE_SIZE, &submit);
1516 		}
1517 	} else {
1518 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1519 				  ops_complete_compute, sh,
1520 				  to_addr_conv(sh, percpu, 0));
1521 		if (failb == syndrome_disks) {
1522 			/* We're missing D+P. */
1523 			return async_raid6_datap_recov(syndrome_disks+2,
1524 						       STRIPE_SIZE, faila,
1525 						       blocks, &submit);
1526 		} else {
1527 			/* We're missing D+D. */
1528 			return async_raid6_2data_recov(syndrome_disks+2,
1529 						       STRIPE_SIZE, faila, failb,
1530 						       blocks, &submit);
1531 		}
1532 	}
1533 }
1534 
ops_complete_prexor(void * stripe_head_ref)1535 static void ops_complete_prexor(void *stripe_head_ref)
1536 {
1537 	struct stripe_head *sh = stripe_head_ref;
1538 
1539 	pr_debug("%s: stripe %llu\n", __func__,
1540 		(unsigned long long)sh->sector);
1541 }
1542 
1543 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1544 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1545 		struct dma_async_tx_descriptor *tx)
1546 {
1547 	int disks = sh->disks;
1548 	struct page **xor_srcs = to_addr_page(percpu, 0);
1549 	int count = 0, pd_idx = sh->pd_idx, i;
1550 	struct async_submit_ctl submit;
1551 
1552 	/* existing parity data subtracted */
1553 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1554 
1555 	BUG_ON(sh->batch_head);
1556 	pr_debug("%s: stripe %llu\n", __func__,
1557 		(unsigned long long)sh->sector);
1558 
1559 	for (i = disks; i--; ) {
1560 		struct r5dev *dev = &sh->dev[i];
1561 		/* Only process blocks that are known to be uptodate */
1562 		if (test_bit(R5_Wantdrain, &dev->flags))
1563 			xor_srcs[count++] = dev->page;
1564 	}
1565 
1566 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1567 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1568 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1569 
1570 	return tx;
1571 }
1572 
1573 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1574 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1575 		struct dma_async_tx_descriptor *tx)
1576 {
1577 	struct page **blocks = to_addr_page(percpu, 0);
1578 	int count;
1579 	struct async_submit_ctl submit;
1580 
1581 	pr_debug("%s: stripe %llu\n", __func__,
1582 		(unsigned long long)sh->sector);
1583 
1584 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1585 
1586 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1587 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1588 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1589 
1590 	return tx;
1591 }
1592 
1593 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1594 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1595 {
1596 	int disks = sh->disks;
1597 	int i;
1598 	struct stripe_head *head_sh = sh;
1599 
1600 	pr_debug("%s: stripe %llu\n", __func__,
1601 		(unsigned long long)sh->sector);
1602 
1603 	for (i = disks; i--; ) {
1604 		struct r5dev *dev;
1605 		struct bio *chosen;
1606 
1607 		sh = head_sh;
1608 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1609 			struct bio *wbi;
1610 
1611 again:
1612 			dev = &sh->dev[i];
1613 			spin_lock_irq(&sh->stripe_lock);
1614 			chosen = dev->towrite;
1615 			dev->towrite = NULL;
1616 			sh->overwrite_disks = 0;
1617 			BUG_ON(dev->written);
1618 			wbi = dev->written = chosen;
1619 			spin_unlock_irq(&sh->stripe_lock);
1620 			WARN_ON(dev->page != dev->orig_page);
1621 
1622 			while (wbi && wbi->bi_iter.bi_sector <
1623 				dev->sector + STRIPE_SECTORS) {
1624 				if (wbi->bi_rw & REQ_FUA)
1625 					set_bit(R5_WantFUA, &dev->flags);
1626 				if (wbi->bi_rw & REQ_SYNC)
1627 					set_bit(R5_SyncIO, &dev->flags);
1628 				if (wbi->bi_rw & REQ_DISCARD)
1629 					set_bit(R5_Discard, &dev->flags);
1630 				else {
1631 					tx = async_copy_data(1, wbi, &dev->page,
1632 						dev->sector, tx, sh);
1633 					if (dev->page != dev->orig_page) {
1634 						set_bit(R5_SkipCopy, &dev->flags);
1635 						clear_bit(R5_UPTODATE, &dev->flags);
1636 						clear_bit(R5_OVERWRITE, &dev->flags);
1637 					}
1638 				}
1639 				wbi = r5_next_bio(wbi, dev->sector);
1640 			}
1641 
1642 			if (head_sh->batch_head) {
1643 				sh = list_first_entry(&sh->batch_list,
1644 						      struct stripe_head,
1645 						      batch_list);
1646 				if (sh == head_sh)
1647 					continue;
1648 				goto again;
1649 			}
1650 		}
1651 	}
1652 
1653 	return tx;
1654 }
1655 
ops_complete_reconstruct(void * stripe_head_ref)1656 static void ops_complete_reconstruct(void *stripe_head_ref)
1657 {
1658 	struct stripe_head *sh = stripe_head_ref;
1659 	int disks = sh->disks;
1660 	int pd_idx = sh->pd_idx;
1661 	int qd_idx = sh->qd_idx;
1662 	int i;
1663 	bool fua = false, sync = false, discard = false;
1664 
1665 	pr_debug("%s: stripe %llu\n", __func__,
1666 		(unsigned long long)sh->sector);
1667 
1668 	for (i = disks; i--; ) {
1669 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1670 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1671 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1672 	}
1673 
1674 	for (i = disks; i--; ) {
1675 		struct r5dev *dev = &sh->dev[i];
1676 
1677 		if (dev->written || i == pd_idx || i == qd_idx) {
1678 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1679 				set_bit(R5_UPTODATE, &dev->flags);
1680 			if (fua)
1681 				set_bit(R5_WantFUA, &dev->flags);
1682 			if (sync)
1683 				set_bit(R5_SyncIO, &dev->flags);
1684 		}
1685 	}
1686 
1687 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1688 		sh->reconstruct_state = reconstruct_state_drain_result;
1689 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1690 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1691 	else {
1692 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1693 		sh->reconstruct_state = reconstruct_state_result;
1694 	}
1695 
1696 	set_bit(STRIPE_HANDLE, &sh->state);
1697 	raid5_release_stripe(sh);
1698 }
1699 
1700 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1701 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1702 		     struct dma_async_tx_descriptor *tx)
1703 {
1704 	int disks = sh->disks;
1705 	struct page **xor_srcs;
1706 	struct async_submit_ctl submit;
1707 	int count, pd_idx = sh->pd_idx, i;
1708 	struct page *xor_dest;
1709 	int prexor = 0;
1710 	unsigned long flags;
1711 	int j = 0;
1712 	struct stripe_head *head_sh = sh;
1713 	int last_stripe;
1714 
1715 	pr_debug("%s: stripe %llu\n", __func__,
1716 		(unsigned long long)sh->sector);
1717 
1718 	for (i = 0; i < sh->disks; i++) {
1719 		if (pd_idx == i)
1720 			continue;
1721 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1722 			break;
1723 	}
1724 	if (i >= sh->disks) {
1725 		atomic_inc(&sh->count);
1726 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1727 		ops_complete_reconstruct(sh);
1728 		return;
1729 	}
1730 again:
1731 	count = 0;
1732 	xor_srcs = to_addr_page(percpu, j);
1733 	/* check if prexor is active which means only process blocks
1734 	 * that are part of a read-modify-write (written)
1735 	 */
1736 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1737 		prexor = 1;
1738 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1739 		for (i = disks; i--; ) {
1740 			struct r5dev *dev = &sh->dev[i];
1741 			if (head_sh->dev[i].written)
1742 				xor_srcs[count++] = dev->page;
1743 		}
1744 	} else {
1745 		xor_dest = sh->dev[pd_idx].page;
1746 		for (i = disks; i--; ) {
1747 			struct r5dev *dev = &sh->dev[i];
1748 			if (i != pd_idx)
1749 				xor_srcs[count++] = dev->page;
1750 		}
1751 	}
1752 
1753 	/* 1/ if we prexor'd then the dest is reused as a source
1754 	 * 2/ if we did not prexor then we are redoing the parity
1755 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1756 	 * for the synchronous xor case
1757 	 */
1758 	last_stripe = !head_sh->batch_head ||
1759 		list_first_entry(&sh->batch_list,
1760 				 struct stripe_head, batch_list) == head_sh;
1761 	if (last_stripe) {
1762 		flags = ASYNC_TX_ACK |
1763 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1764 
1765 		atomic_inc(&head_sh->count);
1766 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1767 				  to_addr_conv(sh, percpu, j));
1768 	} else {
1769 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1770 		init_async_submit(&submit, flags, tx, NULL, NULL,
1771 				  to_addr_conv(sh, percpu, j));
1772 	}
1773 
1774 	if (unlikely(count == 1))
1775 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1776 	else
1777 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1778 	if (!last_stripe) {
1779 		j++;
1780 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1781 				      batch_list);
1782 		goto again;
1783 	}
1784 }
1785 
1786 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1787 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1788 		     struct dma_async_tx_descriptor *tx)
1789 {
1790 	struct async_submit_ctl submit;
1791 	struct page **blocks;
1792 	int count, i, j = 0;
1793 	struct stripe_head *head_sh = sh;
1794 	int last_stripe;
1795 	int synflags;
1796 	unsigned long txflags;
1797 
1798 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1799 
1800 	for (i = 0; i < sh->disks; i++) {
1801 		if (sh->pd_idx == i || sh->qd_idx == i)
1802 			continue;
1803 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1804 			break;
1805 	}
1806 	if (i >= sh->disks) {
1807 		atomic_inc(&sh->count);
1808 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1809 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1810 		ops_complete_reconstruct(sh);
1811 		return;
1812 	}
1813 
1814 again:
1815 	blocks = to_addr_page(percpu, j);
1816 
1817 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1818 		synflags = SYNDROME_SRC_WRITTEN;
1819 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1820 	} else {
1821 		synflags = SYNDROME_SRC_ALL;
1822 		txflags = ASYNC_TX_ACK;
1823 	}
1824 
1825 	count = set_syndrome_sources(blocks, sh, synflags);
1826 	last_stripe = !head_sh->batch_head ||
1827 		list_first_entry(&sh->batch_list,
1828 				 struct stripe_head, batch_list) == head_sh;
1829 
1830 	if (last_stripe) {
1831 		atomic_inc(&head_sh->count);
1832 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1833 				  head_sh, to_addr_conv(sh, percpu, j));
1834 	} else
1835 		init_async_submit(&submit, 0, tx, NULL, NULL,
1836 				  to_addr_conv(sh, percpu, j));
1837 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1838 	if (!last_stripe) {
1839 		j++;
1840 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1841 				      batch_list);
1842 		goto again;
1843 	}
1844 }
1845 
ops_complete_check(void * stripe_head_ref)1846 static void ops_complete_check(void *stripe_head_ref)
1847 {
1848 	struct stripe_head *sh = stripe_head_ref;
1849 
1850 	pr_debug("%s: stripe %llu\n", __func__,
1851 		(unsigned long long)sh->sector);
1852 
1853 	sh->check_state = check_state_check_result;
1854 	set_bit(STRIPE_HANDLE, &sh->state);
1855 	raid5_release_stripe(sh);
1856 }
1857 
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)1858 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1859 {
1860 	int disks = sh->disks;
1861 	int pd_idx = sh->pd_idx;
1862 	int qd_idx = sh->qd_idx;
1863 	struct page *xor_dest;
1864 	struct page **xor_srcs = to_addr_page(percpu, 0);
1865 	struct dma_async_tx_descriptor *tx;
1866 	struct async_submit_ctl submit;
1867 	int count;
1868 	int i;
1869 
1870 	pr_debug("%s: stripe %llu\n", __func__,
1871 		(unsigned long long)sh->sector);
1872 
1873 	BUG_ON(sh->batch_head);
1874 	count = 0;
1875 	xor_dest = sh->dev[pd_idx].page;
1876 	xor_srcs[count++] = xor_dest;
1877 	for (i = disks; i--; ) {
1878 		if (i == pd_idx || i == qd_idx)
1879 			continue;
1880 		xor_srcs[count++] = sh->dev[i].page;
1881 	}
1882 
1883 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1884 			  to_addr_conv(sh, percpu, 0));
1885 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1886 			   &sh->ops.zero_sum_result, &submit);
1887 
1888 	atomic_inc(&sh->count);
1889 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1890 	tx = async_trigger_callback(&submit);
1891 }
1892 
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)1893 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1894 {
1895 	struct page **srcs = to_addr_page(percpu, 0);
1896 	struct async_submit_ctl submit;
1897 	int count;
1898 
1899 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1900 		(unsigned long long)sh->sector, checkp);
1901 
1902 	BUG_ON(sh->batch_head);
1903 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1904 	if (!checkp)
1905 		srcs[count] = NULL;
1906 
1907 	atomic_inc(&sh->count);
1908 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1909 			  sh, to_addr_conv(sh, percpu, 0));
1910 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1911 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1912 }
1913 
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)1914 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1915 {
1916 	int overlap_clear = 0, i, disks = sh->disks;
1917 	struct dma_async_tx_descriptor *tx = NULL;
1918 	struct r5conf *conf = sh->raid_conf;
1919 	int level = conf->level;
1920 	struct raid5_percpu *percpu;
1921 	unsigned long cpu;
1922 
1923 	cpu = get_cpu();
1924 	percpu = per_cpu_ptr(conf->percpu, cpu);
1925 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1926 		ops_run_biofill(sh);
1927 		overlap_clear++;
1928 	}
1929 
1930 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1931 		if (level < 6)
1932 			tx = ops_run_compute5(sh, percpu);
1933 		else {
1934 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1935 				tx = ops_run_compute6_1(sh, percpu);
1936 			else
1937 				tx = ops_run_compute6_2(sh, percpu);
1938 		}
1939 		/* terminate the chain if reconstruct is not set to be run */
1940 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1941 			async_tx_ack(tx);
1942 	}
1943 
1944 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1945 		if (level < 6)
1946 			tx = ops_run_prexor5(sh, percpu, tx);
1947 		else
1948 			tx = ops_run_prexor6(sh, percpu, tx);
1949 	}
1950 
1951 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1952 		tx = ops_run_biodrain(sh, tx);
1953 		overlap_clear++;
1954 	}
1955 
1956 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1957 		if (level < 6)
1958 			ops_run_reconstruct5(sh, percpu, tx);
1959 		else
1960 			ops_run_reconstruct6(sh, percpu, tx);
1961 	}
1962 
1963 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1964 		if (sh->check_state == check_state_run)
1965 			ops_run_check_p(sh, percpu);
1966 		else if (sh->check_state == check_state_run_q)
1967 			ops_run_check_pq(sh, percpu, 0);
1968 		else if (sh->check_state == check_state_run_pq)
1969 			ops_run_check_pq(sh, percpu, 1);
1970 		else
1971 			BUG();
1972 	}
1973 
1974 	if (overlap_clear && !sh->batch_head)
1975 		for (i = disks; i--; ) {
1976 			struct r5dev *dev = &sh->dev[i];
1977 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1978 				wake_up(&sh->raid_conf->wait_for_overlap);
1979 		}
1980 	put_cpu();
1981 }
1982 
alloc_stripe(struct kmem_cache * sc,gfp_t gfp)1983 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1984 {
1985 	struct stripe_head *sh;
1986 
1987 	sh = kmem_cache_zalloc(sc, gfp);
1988 	if (sh) {
1989 		spin_lock_init(&sh->stripe_lock);
1990 		spin_lock_init(&sh->batch_lock);
1991 		INIT_LIST_HEAD(&sh->batch_list);
1992 		INIT_LIST_HEAD(&sh->lru);
1993 		atomic_set(&sh->count, 1);
1994 	}
1995 	return sh;
1996 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)1997 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1998 {
1999 	struct stripe_head *sh;
2000 
2001 	sh = alloc_stripe(conf->slab_cache, gfp);
2002 	if (!sh)
2003 		return 0;
2004 
2005 	sh->raid_conf = conf;
2006 
2007 	if (grow_buffers(sh, gfp)) {
2008 		shrink_buffers(sh);
2009 		kmem_cache_free(conf->slab_cache, sh);
2010 		return 0;
2011 	}
2012 	sh->hash_lock_index =
2013 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2014 	/* we just created an active stripe so... */
2015 	atomic_inc(&conf->active_stripes);
2016 
2017 	raid5_release_stripe(sh);
2018 	conf->max_nr_stripes++;
2019 	return 1;
2020 }
2021 
grow_stripes(struct r5conf * conf,int num)2022 static int grow_stripes(struct r5conf *conf, int num)
2023 {
2024 	struct kmem_cache *sc;
2025 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2026 
2027 	if (conf->mddev->gendisk)
2028 		sprintf(conf->cache_name[0],
2029 			"raid%d-%s", conf->level, mdname(conf->mddev));
2030 	else
2031 		sprintf(conf->cache_name[0],
2032 			"raid%d-%p", conf->level, conf->mddev);
2033 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2034 
2035 	conf->active_name = 0;
2036 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2037 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2038 			       0, 0, NULL);
2039 	if (!sc)
2040 		return 1;
2041 	conf->slab_cache = sc;
2042 	conf->pool_size = devs;
2043 	while (num--)
2044 		if (!grow_one_stripe(conf, GFP_KERNEL))
2045 			return 1;
2046 
2047 	return 0;
2048 }
2049 
2050 /**
2051  * scribble_len - return the required size of the scribble region
2052  * @num - total number of disks in the array
2053  *
2054  * The size must be enough to contain:
2055  * 1/ a struct page pointer for each device in the array +2
2056  * 2/ room to convert each entry in (1) to its corresponding dma
2057  *    (dma_map_page()) or page (page_address()) address.
2058  *
2059  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2060  * calculate over all devices (not just the data blocks), using zeros in place
2061  * of the P and Q blocks.
2062  */
scribble_alloc(int num,int cnt,gfp_t flags)2063 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2064 {
2065 	struct flex_array *ret;
2066 	size_t len;
2067 
2068 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2069 	ret = flex_array_alloc(len, cnt, flags);
2070 	if (!ret)
2071 		return NULL;
2072 	/* always prealloc all elements, so no locking is required */
2073 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2074 		flex_array_free(ret);
2075 		return NULL;
2076 	}
2077 	return ret;
2078 }
2079 
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2080 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2081 {
2082 	unsigned long cpu;
2083 	int err = 0;
2084 
2085 	/*
2086 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2087 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2088 	 * should equal to new_disks and new_sectors
2089 	 */
2090 	if (conf->scribble_disks >= new_disks &&
2091 	    conf->scribble_sectors >= new_sectors)
2092 		return 0;
2093 	mddev_suspend(conf->mddev);
2094 	get_online_cpus();
2095 	for_each_present_cpu(cpu) {
2096 		struct raid5_percpu *percpu;
2097 		struct flex_array *scribble;
2098 
2099 		percpu = per_cpu_ptr(conf->percpu, cpu);
2100 		scribble = scribble_alloc(new_disks,
2101 					  new_sectors / STRIPE_SECTORS,
2102 					  GFP_NOIO);
2103 
2104 		if (scribble) {
2105 			flex_array_free(percpu->scribble);
2106 			percpu->scribble = scribble;
2107 		} else {
2108 			err = -ENOMEM;
2109 			break;
2110 		}
2111 	}
2112 	put_online_cpus();
2113 	mddev_resume(conf->mddev);
2114 	if (!err) {
2115 		conf->scribble_disks = new_disks;
2116 		conf->scribble_sectors = new_sectors;
2117 	}
2118 	return err;
2119 }
2120 
resize_stripes(struct r5conf * conf,int newsize)2121 static int resize_stripes(struct r5conf *conf, int newsize)
2122 {
2123 	/* Make all the stripes able to hold 'newsize' devices.
2124 	 * New slots in each stripe get 'page' set to a new page.
2125 	 *
2126 	 * This happens in stages:
2127 	 * 1/ create a new kmem_cache and allocate the required number of
2128 	 *    stripe_heads.
2129 	 * 2/ gather all the old stripe_heads and transfer the pages across
2130 	 *    to the new stripe_heads.  This will have the side effect of
2131 	 *    freezing the array as once all stripe_heads have been collected,
2132 	 *    no IO will be possible.  Old stripe heads are freed once their
2133 	 *    pages have been transferred over, and the old kmem_cache is
2134 	 *    freed when all stripes are done.
2135 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2136 	 *    we simple return a failre status - no need to clean anything up.
2137 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2138 	 *    If this fails, we don't bother trying the shrink the
2139 	 *    stripe_heads down again, we just leave them as they are.
2140 	 *    As each stripe_head is processed the new one is released into
2141 	 *    active service.
2142 	 *
2143 	 * Once step2 is started, we cannot afford to wait for a write,
2144 	 * so we use GFP_NOIO allocations.
2145 	 */
2146 	struct stripe_head *osh, *nsh;
2147 	LIST_HEAD(newstripes);
2148 	struct disk_info *ndisks;
2149 	int err;
2150 	struct kmem_cache *sc;
2151 	int i;
2152 	int hash, cnt;
2153 
2154 	if (newsize <= conf->pool_size)
2155 		return 0; /* never bother to shrink */
2156 
2157 	err = md_allow_write(conf->mddev);
2158 	if (err)
2159 		return err;
2160 
2161 	/* Step 1 */
2162 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2163 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2164 			       0, 0, NULL);
2165 	if (!sc)
2166 		return -ENOMEM;
2167 
2168 	/* Need to ensure auto-resizing doesn't interfere */
2169 	mutex_lock(&conf->cache_size_mutex);
2170 
2171 	for (i = conf->max_nr_stripes; i; i--) {
2172 		nsh = alloc_stripe(sc, GFP_KERNEL);
2173 		if (!nsh)
2174 			break;
2175 
2176 		nsh->raid_conf = conf;
2177 		list_add(&nsh->lru, &newstripes);
2178 	}
2179 	if (i) {
2180 		/* didn't get enough, give up */
2181 		while (!list_empty(&newstripes)) {
2182 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2183 			list_del(&nsh->lru);
2184 			kmem_cache_free(sc, nsh);
2185 		}
2186 		kmem_cache_destroy(sc);
2187 		mutex_unlock(&conf->cache_size_mutex);
2188 		return -ENOMEM;
2189 	}
2190 	/* Step 2 - Must use GFP_NOIO now.
2191 	 * OK, we have enough stripes, start collecting inactive
2192 	 * stripes and copying them over
2193 	 */
2194 	hash = 0;
2195 	cnt = 0;
2196 	list_for_each_entry(nsh, &newstripes, lru) {
2197 		lock_device_hash_lock(conf, hash);
2198 		wait_event_cmd(conf->wait_for_stripe,
2199 				    !list_empty(conf->inactive_list + hash),
2200 				    unlock_device_hash_lock(conf, hash),
2201 				    lock_device_hash_lock(conf, hash));
2202 		osh = get_free_stripe(conf, hash);
2203 		unlock_device_hash_lock(conf, hash);
2204 
2205 		for(i=0; i<conf->pool_size; i++) {
2206 			nsh->dev[i].page = osh->dev[i].page;
2207 			nsh->dev[i].orig_page = osh->dev[i].page;
2208 		}
2209 		nsh->hash_lock_index = hash;
2210 		kmem_cache_free(conf->slab_cache, osh);
2211 		cnt++;
2212 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2213 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2214 			hash++;
2215 			cnt = 0;
2216 		}
2217 	}
2218 	kmem_cache_destroy(conf->slab_cache);
2219 
2220 	/* Step 3.
2221 	 * At this point, we are holding all the stripes so the array
2222 	 * is completely stalled, so now is a good time to resize
2223 	 * conf->disks and the scribble region
2224 	 */
2225 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2226 	if (ndisks) {
2227 		for (i=0; i<conf->raid_disks; i++)
2228 			ndisks[i] = conf->disks[i];
2229 		kfree(conf->disks);
2230 		conf->disks = ndisks;
2231 	} else
2232 		err = -ENOMEM;
2233 
2234 	mutex_unlock(&conf->cache_size_mutex);
2235 	/* Step 4, return new stripes to service */
2236 	while(!list_empty(&newstripes)) {
2237 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2238 		list_del_init(&nsh->lru);
2239 
2240 		for (i=conf->raid_disks; i < newsize; i++)
2241 			if (nsh->dev[i].page == NULL) {
2242 				struct page *p = alloc_page(GFP_NOIO);
2243 				nsh->dev[i].page = p;
2244 				nsh->dev[i].orig_page = p;
2245 				if (!p)
2246 					err = -ENOMEM;
2247 			}
2248 		raid5_release_stripe(nsh);
2249 	}
2250 	/* critical section pass, GFP_NOIO no longer needed */
2251 
2252 	conf->slab_cache = sc;
2253 	conf->active_name = 1-conf->active_name;
2254 	if (!err)
2255 		conf->pool_size = newsize;
2256 	return err;
2257 }
2258 
drop_one_stripe(struct r5conf * conf)2259 static int drop_one_stripe(struct r5conf *conf)
2260 {
2261 	struct stripe_head *sh;
2262 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2263 
2264 	spin_lock_irq(conf->hash_locks + hash);
2265 	sh = get_free_stripe(conf, hash);
2266 	spin_unlock_irq(conf->hash_locks + hash);
2267 	if (!sh)
2268 		return 0;
2269 	BUG_ON(atomic_read(&sh->count));
2270 	shrink_buffers(sh);
2271 	kmem_cache_free(conf->slab_cache, sh);
2272 	atomic_dec(&conf->active_stripes);
2273 	conf->max_nr_stripes--;
2274 	return 1;
2275 }
2276 
shrink_stripes(struct r5conf * conf)2277 static void shrink_stripes(struct r5conf *conf)
2278 {
2279 	while (conf->max_nr_stripes &&
2280 	       drop_one_stripe(conf))
2281 		;
2282 
2283 	kmem_cache_destroy(conf->slab_cache);
2284 	conf->slab_cache = NULL;
2285 }
2286 
raid5_end_read_request(struct bio * bi)2287 static void raid5_end_read_request(struct bio * bi)
2288 {
2289 	struct stripe_head *sh = bi->bi_private;
2290 	struct r5conf *conf = sh->raid_conf;
2291 	int disks = sh->disks, i;
2292 	char b[BDEVNAME_SIZE];
2293 	struct md_rdev *rdev = NULL;
2294 	sector_t s;
2295 
2296 	for (i=0 ; i<disks; i++)
2297 		if (bi == &sh->dev[i].req)
2298 			break;
2299 
2300 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2301 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2302 		bi->bi_error);
2303 	if (i == disks) {
2304 		BUG();
2305 		return;
2306 	}
2307 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2308 		/* If replacement finished while this request was outstanding,
2309 		 * 'replacement' might be NULL already.
2310 		 * In that case it moved down to 'rdev'.
2311 		 * rdev is not removed until all requests are finished.
2312 		 */
2313 		rdev = conf->disks[i].replacement;
2314 	if (!rdev)
2315 		rdev = conf->disks[i].rdev;
2316 
2317 	if (use_new_offset(conf, sh))
2318 		s = sh->sector + rdev->new_data_offset;
2319 	else
2320 		s = sh->sector + rdev->data_offset;
2321 	if (!bi->bi_error) {
2322 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2323 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2324 			/* Note that this cannot happen on a
2325 			 * replacement device.  We just fail those on
2326 			 * any error
2327 			 */
2328 			printk_ratelimited(
2329 				KERN_INFO
2330 				"md/raid:%s: read error corrected"
2331 				" (%lu sectors at %llu on %s)\n",
2332 				mdname(conf->mddev), STRIPE_SECTORS,
2333 				(unsigned long long)s,
2334 				bdevname(rdev->bdev, b));
2335 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2336 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2337 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2338 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2339 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2340 
2341 		if (atomic_read(&rdev->read_errors))
2342 			atomic_set(&rdev->read_errors, 0);
2343 	} else {
2344 		const char *bdn = bdevname(rdev->bdev, b);
2345 		int retry = 0;
2346 		int set_bad = 0;
2347 
2348 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2349 		atomic_inc(&rdev->read_errors);
2350 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2351 			printk_ratelimited(
2352 				KERN_WARNING
2353 				"md/raid:%s: read error on replacement device "
2354 				"(sector %llu on %s).\n",
2355 				mdname(conf->mddev),
2356 				(unsigned long long)s,
2357 				bdn);
2358 		else if (conf->mddev->degraded >= conf->max_degraded) {
2359 			set_bad = 1;
2360 			printk_ratelimited(
2361 				KERN_WARNING
2362 				"md/raid:%s: read error not correctable "
2363 				"(sector %llu on %s).\n",
2364 				mdname(conf->mddev),
2365 				(unsigned long long)s,
2366 				bdn);
2367 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2368 			/* Oh, no!!! */
2369 			set_bad = 1;
2370 			printk_ratelimited(
2371 				KERN_WARNING
2372 				"md/raid:%s: read error NOT corrected!! "
2373 				"(sector %llu on %s).\n",
2374 				mdname(conf->mddev),
2375 				(unsigned long long)s,
2376 				bdn);
2377 		} else if (atomic_read(&rdev->read_errors)
2378 			 > conf->max_nr_stripes)
2379 			printk(KERN_WARNING
2380 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2381 			       mdname(conf->mddev), bdn);
2382 		else
2383 			retry = 1;
2384 		if (set_bad && test_bit(In_sync, &rdev->flags)
2385 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2386 			retry = 1;
2387 		if (retry)
2388 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2389 				set_bit(R5_ReadError, &sh->dev[i].flags);
2390 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391 			} else
2392 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2393 		else {
2394 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2395 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2396 			if (!(set_bad
2397 			      && test_bit(In_sync, &rdev->flags)
2398 			      && rdev_set_badblocks(
2399 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2400 				md_error(conf->mddev, rdev);
2401 		}
2402 	}
2403 	rdev_dec_pending(rdev, conf->mddev);
2404 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2405 	set_bit(STRIPE_HANDLE, &sh->state);
2406 	raid5_release_stripe(sh);
2407 }
2408 
raid5_end_write_request(struct bio * bi)2409 static void raid5_end_write_request(struct bio *bi)
2410 {
2411 	struct stripe_head *sh = bi->bi_private;
2412 	struct r5conf *conf = sh->raid_conf;
2413 	int disks = sh->disks, i;
2414 	struct md_rdev *uninitialized_var(rdev);
2415 	sector_t first_bad;
2416 	int bad_sectors;
2417 	int replacement = 0;
2418 
2419 	for (i = 0 ; i < disks; i++) {
2420 		if (bi == &sh->dev[i].req) {
2421 			rdev = conf->disks[i].rdev;
2422 			break;
2423 		}
2424 		if (bi == &sh->dev[i].rreq) {
2425 			rdev = conf->disks[i].replacement;
2426 			if (rdev)
2427 				replacement = 1;
2428 			else
2429 				/* rdev was removed and 'replacement'
2430 				 * replaced it.  rdev is not removed
2431 				 * until all requests are finished.
2432 				 */
2433 				rdev = conf->disks[i].rdev;
2434 			break;
2435 		}
2436 	}
2437 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2438 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2439 		bi->bi_error);
2440 	if (i == disks) {
2441 		BUG();
2442 		return;
2443 	}
2444 
2445 	if (replacement) {
2446 		if (bi->bi_error)
2447 			md_error(conf->mddev, rdev);
2448 		else if (is_badblock(rdev, sh->sector,
2449 				     STRIPE_SECTORS,
2450 				     &first_bad, &bad_sectors))
2451 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2452 	} else {
2453 		if (bi->bi_error) {
2454 			set_bit(STRIPE_DEGRADED, &sh->state);
2455 			set_bit(WriteErrorSeen, &rdev->flags);
2456 			set_bit(R5_WriteError, &sh->dev[i].flags);
2457 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2458 				set_bit(MD_RECOVERY_NEEDED,
2459 					&rdev->mddev->recovery);
2460 		} else if (is_badblock(rdev, sh->sector,
2461 				       STRIPE_SECTORS,
2462 				       &first_bad, &bad_sectors)) {
2463 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2464 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2465 				/* That was a successful write so make
2466 				 * sure it looks like we already did
2467 				 * a re-write.
2468 				 */
2469 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2470 		}
2471 	}
2472 	rdev_dec_pending(rdev, conf->mddev);
2473 
2474 	if (sh->batch_head && bi->bi_error && !replacement)
2475 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2476 
2477 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2478 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2479 	set_bit(STRIPE_HANDLE, &sh->state);
2480 	raid5_release_stripe(sh);
2481 
2482 	if (sh->batch_head && sh != sh->batch_head)
2483 		raid5_release_stripe(sh->batch_head);
2484 }
2485 
raid5_build_block(struct stripe_head * sh,int i,int previous)2486 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2487 {
2488 	struct r5dev *dev = &sh->dev[i];
2489 
2490 	bio_init(&dev->req);
2491 	dev->req.bi_io_vec = &dev->vec;
2492 	dev->req.bi_max_vecs = 1;
2493 	dev->req.bi_private = sh;
2494 
2495 	bio_init(&dev->rreq);
2496 	dev->rreq.bi_io_vec = &dev->rvec;
2497 	dev->rreq.bi_max_vecs = 1;
2498 	dev->rreq.bi_private = sh;
2499 
2500 	dev->flags = 0;
2501 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2502 }
2503 
error(struct mddev * mddev,struct md_rdev * rdev)2504 static void error(struct mddev *mddev, struct md_rdev *rdev)
2505 {
2506 	char b[BDEVNAME_SIZE];
2507 	struct r5conf *conf = mddev->private;
2508 	unsigned long flags;
2509 	pr_debug("raid456: error called\n");
2510 
2511 	spin_lock_irqsave(&conf->device_lock, flags);
2512 	clear_bit(In_sync, &rdev->flags);
2513 	mddev->degraded = calc_degraded(conf);
2514 	spin_unlock_irqrestore(&conf->device_lock, flags);
2515 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2516 
2517 	set_bit(Blocked, &rdev->flags);
2518 	set_bit(Faulty, &rdev->flags);
2519 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2520 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2521 	printk(KERN_ALERT
2522 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2523 	       "md/raid:%s: Operation continuing on %d devices.\n",
2524 	       mdname(mddev),
2525 	       bdevname(rdev->bdev, b),
2526 	       mdname(mddev),
2527 	       conf->raid_disks - mddev->degraded);
2528 }
2529 
2530 /*
2531  * Input: a 'big' sector number,
2532  * Output: index of the data and parity disk, and the sector # in them.
2533  */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2534 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2535 			      int previous, int *dd_idx,
2536 			      struct stripe_head *sh)
2537 {
2538 	sector_t stripe, stripe2;
2539 	sector_t chunk_number;
2540 	unsigned int chunk_offset;
2541 	int pd_idx, qd_idx;
2542 	int ddf_layout = 0;
2543 	sector_t new_sector;
2544 	int algorithm = previous ? conf->prev_algo
2545 				 : conf->algorithm;
2546 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2547 					 : conf->chunk_sectors;
2548 	int raid_disks = previous ? conf->previous_raid_disks
2549 				  : conf->raid_disks;
2550 	int data_disks = raid_disks - conf->max_degraded;
2551 
2552 	/* First compute the information on this sector */
2553 
2554 	/*
2555 	 * Compute the chunk number and the sector offset inside the chunk
2556 	 */
2557 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2558 	chunk_number = r_sector;
2559 
2560 	/*
2561 	 * Compute the stripe number
2562 	 */
2563 	stripe = chunk_number;
2564 	*dd_idx = sector_div(stripe, data_disks);
2565 	stripe2 = stripe;
2566 	/*
2567 	 * Select the parity disk based on the user selected algorithm.
2568 	 */
2569 	pd_idx = qd_idx = -1;
2570 	switch(conf->level) {
2571 	case 4:
2572 		pd_idx = data_disks;
2573 		break;
2574 	case 5:
2575 		switch (algorithm) {
2576 		case ALGORITHM_LEFT_ASYMMETRIC:
2577 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2578 			if (*dd_idx >= pd_idx)
2579 				(*dd_idx)++;
2580 			break;
2581 		case ALGORITHM_RIGHT_ASYMMETRIC:
2582 			pd_idx = sector_div(stripe2, raid_disks);
2583 			if (*dd_idx >= pd_idx)
2584 				(*dd_idx)++;
2585 			break;
2586 		case ALGORITHM_LEFT_SYMMETRIC:
2587 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2588 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2589 			break;
2590 		case ALGORITHM_RIGHT_SYMMETRIC:
2591 			pd_idx = sector_div(stripe2, raid_disks);
2592 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2593 			break;
2594 		case ALGORITHM_PARITY_0:
2595 			pd_idx = 0;
2596 			(*dd_idx)++;
2597 			break;
2598 		case ALGORITHM_PARITY_N:
2599 			pd_idx = data_disks;
2600 			break;
2601 		default:
2602 			BUG();
2603 		}
2604 		break;
2605 	case 6:
2606 
2607 		switch (algorithm) {
2608 		case ALGORITHM_LEFT_ASYMMETRIC:
2609 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2610 			qd_idx = pd_idx + 1;
2611 			if (pd_idx == raid_disks-1) {
2612 				(*dd_idx)++;	/* Q D D D P */
2613 				qd_idx = 0;
2614 			} else if (*dd_idx >= pd_idx)
2615 				(*dd_idx) += 2; /* D D P Q D */
2616 			break;
2617 		case ALGORITHM_RIGHT_ASYMMETRIC:
2618 			pd_idx = sector_div(stripe2, raid_disks);
2619 			qd_idx = pd_idx + 1;
2620 			if (pd_idx == raid_disks-1) {
2621 				(*dd_idx)++;	/* Q D D D P */
2622 				qd_idx = 0;
2623 			} else if (*dd_idx >= pd_idx)
2624 				(*dd_idx) += 2; /* D D P Q D */
2625 			break;
2626 		case ALGORITHM_LEFT_SYMMETRIC:
2627 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2628 			qd_idx = (pd_idx + 1) % raid_disks;
2629 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2630 			break;
2631 		case ALGORITHM_RIGHT_SYMMETRIC:
2632 			pd_idx = sector_div(stripe2, raid_disks);
2633 			qd_idx = (pd_idx + 1) % raid_disks;
2634 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2635 			break;
2636 
2637 		case ALGORITHM_PARITY_0:
2638 			pd_idx = 0;
2639 			qd_idx = 1;
2640 			(*dd_idx) += 2;
2641 			break;
2642 		case ALGORITHM_PARITY_N:
2643 			pd_idx = data_disks;
2644 			qd_idx = data_disks + 1;
2645 			break;
2646 
2647 		case ALGORITHM_ROTATING_ZERO_RESTART:
2648 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2649 			 * of blocks for computing Q is different.
2650 			 */
2651 			pd_idx = sector_div(stripe2, raid_disks);
2652 			qd_idx = pd_idx + 1;
2653 			if (pd_idx == raid_disks-1) {
2654 				(*dd_idx)++;	/* Q D D D P */
2655 				qd_idx = 0;
2656 			} else if (*dd_idx >= pd_idx)
2657 				(*dd_idx) += 2; /* D D P Q D */
2658 			ddf_layout = 1;
2659 			break;
2660 
2661 		case ALGORITHM_ROTATING_N_RESTART:
2662 			/* Same a left_asymmetric, by first stripe is
2663 			 * D D D P Q  rather than
2664 			 * Q D D D P
2665 			 */
2666 			stripe2 += 1;
2667 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2668 			qd_idx = pd_idx + 1;
2669 			if (pd_idx == raid_disks-1) {
2670 				(*dd_idx)++;	/* Q D D D P */
2671 				qd_idx = 0;
2672 			} else if (*dd_idx >= pd_idx)
2673 				(*dd_idx) += 2; /* D D P Q D */
2674 			ddf_layout = 1;
2675 			break;
2676 
2677 		case ALGORITHM_ROTATING_N_CONTINUE:
2678 			/* Same as left_symmetric but Q is before P */
2679 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2680 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2681 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2682 			ddf_layout = 1;
2683 			break;
2684 
2685 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2686 			/* RAID5 left_asymmetric, with Q on last device */
2687 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2688 			if (*dd_idx >= pd_idx)
2689 				(*dd_idx)++;
2690 			qd_idx = raid_disks - 1;
2691 			break;
2692 
2693 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2694 			pd_idx = sector_div(stripe2, raid_disks-1);
2695 			if (*dd_idx >= pd_idx)
2696 				(*dd_idx)++;
2697 			qd_idx = raid_disks - 1;
2698 			break;
2699 
2700 		case ALGORITHM_LEFT_SYMMETRIC_6:
2701 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2702 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2703 			qd_idx = raid_disks - 1;
2704 			break;
2705 
2706 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2707 			pd_idx = sector_div(stripe2, raid_disks-1);
2708 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2709 			qd_idx = raid_disks - 1;
2710 			break;
2711 
2712 		case ALGORITHM_PARITY_0_6:
2713 			pd_idx = 0;
2714 			(*dd_idx)++;
2715 			qd_idx = raid_disks - 1;
2716 			break;
2717 
2718 		default:
2719 			BUG();
2720 		}
2721 		break;
2722 	}
2723 
2724 	if (sh) {
2725 		sh->pd_idx = pd_idx;
2726 		sh->qd_idx = qd_idx;
2727 		sh->ddf_layout = ddf_layout;
2728 	}
2729 	/*
2730 	 * Finally, compute the new sector number
2731 	 */
2732 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2733 	return new_sector;
2734 }
2735 
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)2736 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2737 {
2738 	struct r5conf *conf = sh->raid_conf;
2739 	int raid_disks = sh->disks;
2740 	int data_disks = raid_disks - conf->max_degraded;
2741 	sector_t new_sector = sh->sector, check;
2742 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2743 					 : conf->chunk_sectors;
2744 	int algorithm = previous ? conf->prev_algo
2745 				 : conf->algorithm;
2746 	sector_t stripe;
2747 	int chunk_offset;
2748 	sector_t chunk_number;
2749 	int dummy1, dd_idx = i;
2750 	sector_t r_sector;
2751 	struct stripe_head sh2;
2752 
2753 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2754 	stripe = new_sector;
2755 
2756 	if (i == sh->pd_idx)
2757 		return 0;
2758 	switch(conf->level) {
2759 	case 4: break;
2760 	case 5:
2761 		switch (algorithm) {
2762 		case ALGORITHM_LEFT_ASYMMETRIC:
2763 		case ALGORITHM_RIGHT_ASYMMETRIC:
2764 			if (i > sh->pd_idx)
2765 				i--;
2766 			break;
2767 		case ALGORITHM_LEFT_SYMMETRIC:
2768 		case ALGORITHM_RIGHT_SYMMETRIC:
2769 			if (i < sh->pd_idx)
2770 				i += raid_disks;
2771 			i -= (sh->pd_idx + 1);
2772 			break;
2773 		case ALGORITHM_PARITY_0:
2774 			i -= 1;
2775 			break;
2776 		case ALGORITHM_PARITY_N:
2777 			break;
2778 		default:
2779 			BUG();
2780 		}
2781 		break;
2782 	case 6:
2783 		if (i == sh->qd_idx)
2784 			return 0; /* It is the Q disk */
2785 		switch (algorithm) {
2786 		case ALGORITHM_LEFT_ASYMMETRIC:
2787 		case ALGORITHM_RIGHT_ASYMMETRIC:
2788 		case ALGORITHM_ROTATING_ZERO_RESTART:
2789 		case ALGORITHM_ROTATING_N_RESTART:
2790 			if (sh->pd_idx == raid_disks-1)
2791 				i--;	/* Q D D D P */
2792 			else if (i > sh->pd_idx)
2793 				i -= 2; /* D D P Q D */
2794 			break;
2795 		case ALGORITHM_LEFT_SYMMETRIC:
2796 		case ALGORITHM_RIGHT_SYMMETRIC:
2797 			if (sh->pd_idx == raid_disks-1)
2798 				i--; /* Q D D D P */
2799 			else {
2800 				/* D D P Q D */
2801 				if (i < sh->pd_idx)
2802 					i += raid_disks;
2803 				i -= (sh->pd_idx + 2);
2804 			}
2805 			break;
2806 		case ALGORITHM_PARITY_0:
2807 			i -= 2;
2808 			break;
2809 		case ALGORITHM_PARITY_N:
2810 			break;
2811 		case ALGORITHM_ROTATING_N_CONTINUE:
2812 			/* Like left_symmetric, but P is before Q */
2813 			if (sh->pd_idx == 0)
2814 				i--;	/* P D D D Q */
2815 			else {
2816 				/* D D Q P D */
2817 				if (i < sh->pd_idx)
2818 					i += raid_disks;
2819 				i -= (sh->pd_idx + 1);
2820 			}
2821 			break;
2822 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2823 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2824 			if (i > sh->pd_idx)
2825 				i--;
2826 			break;
2827 		case ALGORITHM_LEFT_SYMMETRIC_6:
2828 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2829 			if (i < sh->pd_idx)
2830 				i += data_disks + 1;
2831 			i -= (sh->pd_idx + 1);
2832 			break;
2833 		case ALGORITHM_PARITY_0_6:
2834 			i -= 1;
2835 			break;
2836 		default:
2837 			BUG();
2838 		}
2839 		break;
2840 	}
2841 
2842 	chunk_number = stripe * data_disks + i;
2843 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2844 
2845 	check = raid5_compute_sector(conf, r_sector,
2846 				     previous, &dummy1, &sh2);
2847 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2848 		|| sh2.qd_idx != sh->qd_idx) {
2849 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2850 		       mdname(conf->mddev));
2851 		return 0;
2852 	}
2853 	return r_sector;
2854 }
2855 
2856 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)2857 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2858 			 int rcw, int expand)
2859 {
2860 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2861 	struct r5conf *conf = sh->raid_conf;
2862 	int level = conf->level;
2863 
2864 	if (rcw) {
2865 
2866 		for (i = disks; i--; ) {
2867 			struct r5dev *dev = &sh->dev[i];
2868 
2869 			if (dev->towrite) {
2870 				set_bit(R5_LOCKED, &dev->flags);
2871 				set_bit(R5_Wantdrain, &dev->flags);
2872 				if (!expand)
2873 					clear_bit(R5_UPTODATE, &dev->flags);
2874 				s->locked++;
2875 			}
2876 		}
2877 		/* if we are not expanding this is a proper write request, and
2878 		 * there will be bios with new data to be drained into the
2879 		 * stripe cache
2880 		 */
2881 		if (!expand) {
2882 			if (!s->locked)
2883 				/* False alarm, nothing to do */
2884 				return;
2885 			sh->reconstruct_state = reconstruct_state_drain_run;
2886 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2887 		} else
2888 			sh->reconstruct_state = reconstruct_state_run;
2889 
2890 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2891 
2892 		if (s->locked + conf->max_degraded == disks)
2893 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2894 				atomic_inc(&conf->pending_full_writes);
2895 	} else {
2896 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2897 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2898 		BUG_ON(level == 6 &&
2899 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2900 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2901 
2902 		for (i = disks; i--; ) {
2903 			struct r5dev *dev = &sh->dev[i];
2904 			if (i == pd_idx || i == qd_idx)
2905 				continue;
2906 
2907 			if (dev->towrite &&
2908 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2909 			     test_bit(R5_Wantcompute, &dev->flags))) {
2910 				set_bit(R5_Wantdrain, &dev->flags);
2911 				set_bit(R5_LOCKED, &dev->flags);
2912 				clear_bit(R5_UPTODATE, &dev->flags);
2913 				s->locked++;
2914 			}
2915 		}
2916 		if (!s->locked)
2917 			/* False alarm - nothing to do */
2918 			return;
2919 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2920 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2921 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2922 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2923 	}
2924 
2925 	/* keep the parity disk(s) locked while asynchronous operations
2926 	 * are in flight
2927 	 */
2928 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2929 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2930 	s->locked++;
2931 
2932 	if (level == 6) {
2933 		int qd_idx = sh->qd_idx;
2934 		struct r5dev *dev = &sh->dev[qd_idx];
2935 
2936 		set_bit(R5_LOCKED, &dev->flags);
2937 		clear_bit(R5_UPTODATE, &dev->flags);
2938 		s->locked++;
2939 	}
2940 
2941 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2942 		__func__, (unsigned long long)sh->sector,
2943 		s->locked, s->ops_request);
2944 }
2945 
2946 /*
2947  * Each stripe/dev can have one or more bion attached.
2948  * toread/towrite point to the first in a chain.
2949  * The bi_next chain must be in order.
2950  */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)2951 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2952 			  int forwrite, int previous)
2953 {
2954 	struct bio **bip;
2955 	struct r5conf *conf = sh->raid_conf;
2956 	int firstwrite=0;
2957 
2958 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2959 		(unsigned long long)bi->bi_iter.bi_sector,
2960 		(unsigned long long)sh->sector);
2961 
2962 	/*
2963 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2964 	 * reference count to avoid race. The reference count should already be
2965 	 * increased before this function is called (for example, in
2966 	 * make_request()), so other bio sharing this stripe will not free the
2967 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2968 	 * protect it.
2969 	 */
2970 	spin_lock_irq(&sh->stripe_lock);
2971 	/* Don't allow new IO added to stripes in batch list */
2972 	if (sh->batch_head)
2973 		goto overlap;
2974 	if (forwrite) {
2975 		bip = &sh->dev[dd_idx].towrite;
2976 		if (*bip == NULL)
2977 			firstwrite = 1;
2978 	} else
2979 		bip = &sh->dev[dd_idx].toread;
2980 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2981 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2982 			goto overlap;
2983 		bip = & (*bip)->bi_next;
2984 	}
2985 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2986 		goto overlap;
2987 
2988 	if (!forwrite || previous)
2989 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2990 
2991 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2992 	if (*bip)
2993 		bi->bi_next = *bip;
2994 	*bip = bi;
2995 	raid5_inc_bi_active_stripes(bi);
2996 
2997 	if (forwrite) {
2998 		/* check if page is covered */
2999 		sector_t sector = sh->dev[dd_idx].sector;
3000 		for (bi=sh->dev[dd_idx].towrite;
3001 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3002 			     bi && bi->bi_iter.bi_sector <= sector;
3003 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3004 			if (bio_end_sector(bi) >= sector)
3005 				sector = bio_end_sector(bi);
3006 		}
3007 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3008 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3009 				sh->overwrite_disks++;
3010 	}
3011 
3012 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3013 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3014 		(unsigned long long)sh->sector, dd_idx);
3015 
3016 	if (conf->mddev->bitmap && firstwrite) {
3017 		/* Cannot hold spinlock over bitmap_startwrite,
3018 		 * but must ensure this isn't added to a batch until
3019 		 * we have added to the bitmap and set bm_seq.
3020 		 * So set STRIPE_BITMAP_PENDING to prevent
3021 		 * batching.
3022 		 * If multiple add_stripe_bio() calls race here they
3023 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3024 		 * to complete "bitmap_startwrite" gets to set
3025 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3026 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3027 		 * any more.
3028 		 */
3029 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3030 		spin_unlock_irq(&sh->stripe_lock);
3031 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3032 				  STRIPE_SECTORS, 0);
3033 		spin_lock_irq(&sh->stripe_lock);
3034 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3035 		if (!sh->batch_head) {
3036 			sh->bm_seq = conf->seq_flush+1;
3037 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3038 		}
3039 	}
3040 	spin_unlock_irq(&sh->stripe_lock);
3041 
3042 	if (stripe_can_batch(sh))
3043 		stripe_add_to_batch_list(conf, sh);
3044 	return 1;
3045 
3046  overlap:
3047 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3048 	spin_unlock_irq(&sh->stripe_lock);
3049 	return 0;
3050 }
3051 
3052 static void end_reshape(struct r5conf *conf);
3053 
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3054 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3055 			    struct stripe_head *sh)
3056 {
3057 	int sectors_per_chunk =
3058 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3059 	int dd_idx;
3060 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3061 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3062 
3063 	raid5_compute_sector(conf,
3064 			     stripe * (disks - conf->max_degraded)
3065 			     *sectors_per_chunk + chunk_offset,
3066 			     previous,
3067 			     &dd_idx, sh);
3068 }
3069 
3070 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks,struct bio_list * return_bi)3071 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3072 				struct stripe_head_state *s, int disks,
3073 				struct bio_list *return_bi)
3074 {
3075 	int i;
3076 	BUG_ON(sh->batch_head);
3077 	for (i = disks; i--; ) {
3078 		struct bio *bi;
3079 		int bitmap_end = 0;
3080 
3081 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3082 			struct md_rdev *rdev;
3083 			rcu_read_lock();
3084 			rdev = rcu_dereference(conf->disks[i].rdev);
3085 			if (rdev && test_bit(In_sync, &rdev->flags))
3086 				atomic_inc(&rdev->nr_pending);
3087 			else
3088 				rdev = NULL;
3089 			rcu_read_unlock();
3090 			if (rdev) {
3091 				if (!rdev_set_badblocks(
3092 					    rdev,
3093 					    sh->sector,
3094 					    STRIPE_SECTORS, 0))
3095 					md_error(conf->mddev, rdev);
3096 				rdev_dec_pending(rdev, conf->mddev);
3097 			}
3098 		}
3099 		spin_lock_irq(&sh->stripe_lock);
3100 		/* fail all writes first */
3101 		bi = sh->dev[i].towrite;
3102 		sh->dev[i].towrite = NULL;
3103 		sh->overwrite_disks = 0;
3104 		spin_unlock_irq(&sh->stripe_lock);
3105 		if (bi)
3106 			bitmap_end = 1;
3107 
3108 		r5l_stripe_write_finished(sh);
3109 
3110 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3111 			wake_up(&conf->wait_for_overlap);
3112 
3113 		while (bi && bi->bi_iter.bi_sector <
3114 			sh->dev[i].sector + STRIPE_SECTORS) {
3115 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3116 
3117 			bi->bi_error = -EIO;
3118 			if (!raid5_dec_bi_active_stripes(bi)) {
3119 				md_write_end(conf->mddev);
3120 				bio_list_add(return_bi, bi);
3121 			}
3122 			bi = nextbi;
3123 		}
3124 		if (bitmap_end)
3125 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3126 				STRIPE_SECTORS, 0, 0);
3127 		bitmap_end = 0;
3128 		/* and fail all 'written' */
3129 		bi = sh->dev[i].written;
3130 		sh->dev[i].written = NULL;
3131 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3132 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3133 			sh->dev[i].page = sh->dev[i].orig_page;
3134 		}
3135 
3136 		if (bi) bitmap_end = 1;
3137 		while (bi && bi->bi_iter.bi_sector <
3138 		       sh->dev[i].sector + STRIPE_SECTORS) {
3139 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3140 
3141 			bi->bi_error = -EIO;
3142 			if (!raid5_dec_bi_active_stripes(bi)) {
3143 				md_write_end(conf->mddev);
3144 				bio_list_add(return_bi, bi);
3145 			}
3146 			bi = bi2;
3147 		}
3148 
3149 		/* fail any reads if this device is non-operational and
3150 		 * the data has not reached the cache yet.
3151 		 */
3152 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3153 		    s->failed > conf->max_degraded &&
3154 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3155 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3156 			spin_lock_irq(&sh->stripe_lock);
3157 			bi = sh->dev[i].toread;
3158 			sh->dev[i].toread = NULL;
3159 			spin_unlock_irq(&sh->stripe_lock);
3160 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3161 				wake_up(&conf->wait_for_overlap);
3162 			if (bi)
3163 				s->to_read--;
3164 			while (bi && bi->bi_iter.bi_sector <
3165 			       sh->dev[i].sector + STRIPE_SECTORS) {
3166 				struct bio *nextbi =
3167 					r5_next_bio(bi, sh->dev[i].sector);
3168 
3169 				bi->bi_error = -EIO;
3170 				if (!raid5_dec_bi_active_stripes(bi))
3171 					bio_list_add(return_bi, bi);
3172 				bi = nextbi;
3173 			}
3174 		}
3175 		if (bitmap_end)
3176 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3177 					STRIPE_SECTORS, 0, 0);
3178 		/* If we were in the middle of a write the parity block might
3179 		 * still be locked - so just clear all R5_LOCKED flags
3180 		 */
3181 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3182 	}
3183 	s->to_write = 0;
3184 	s->written = 0;
3185 
3186 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3187 		if (atomic_dec_and_test(&conf->pending_full_writes))
3188 			md_wakeup_thread(conf->mddev->thread);
3189 }
3190 
3191 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3192 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3193 		   struct stripe_head_state *s)
3194 {
3195 	int abort = 0;
3196 	int i;
3197 
3198 	BUG_ON(sh->batch_head);
3199 	clear_bit(STRIPE_SYNCING, &sh->state);
3200 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3201 		wake_up(&conf->wait_for_overlap);
3202 	s->syncing = 0;
3203 	s->replacing = 0;
3204 	/* There is nothing more to do for sync/check/repair.
3205 	 * Don't even need to abort as that is handled elsewhere
3206 	 * if needed, and not always wanted e.g. if there is a known
3207 	 * bad block here.
3208 	 * For recover/replace we need to record a bad block on all
3209 	 * non-sync devices, or abort the recovery
3210 	 */
3211 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3212 		/* During recovery devices cannot be removed, so
3213 		 * locking and refcounting of rdevs is not needed
3214 		 */
3215 		for (i = 0; i < conf->raid_disks; i++) {
3216 			struct md_rdev *rdev = conf->disks[i].rdev;
3217 			if (rdev
3218 			    && !test_bit(Faulty, &rdev->flags)
3219 			    && !test_bit(In_sync, &rdev->flags)
3220 			    && !rdev_set_badblocks(rdev, sh->sector,
3221 						   STRIPE_SECTORS, 0))
3222 				abort = 1;
3223 			rdev = conf->disks[i].replacement;
3224 			if (rdev
3225 			    && !test_bit(Faulty, &rdev->flags)
3226 			    && !test_bit(In_sync, &rdev->flags)
3227 			    && !rdev_set_badblocks(rdev, sh->sector,
3228 						   STRIPE_SECTORS, 0))
3229 				abort = 1;
3230 		}
3231 		if (abort)
3232 			conf->recovery_disabled =
3233 				conf->mddev->recovery_disabled;
3234 	}
3235 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3236 }
3237 
want_replace(struct stripe_head * sh,int disk_idx)3238 static int want_replace(struct stripe_head *sh, int disk_idx)
3239 {
3240 	struct md_rdev *rdev;
3241 	int rv = 0;
3242 	/* Doing recovery so rcu locking not required */
3243 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3244 	if (rdev
3245 	    && !test_bit(Faulty, &rdev->flags)
3246 	    && !test_bit(In_sync, &rdev->flags)
3247 	    && (rdev->recovery_offset <= sh->sector
3248 		|| rdev->mddev->recovery_cp <= sh->sector))
3249 		rv = 1;
3250 
3251 	return rv;
3252 }
3253 
3254 /* fetch_block - checks the given member device to see if its data needs
3255  * to be read or computed to satisfy a request.
3256  *
3257  * Returns 1 when no more member devices need to be checked, otherwise returns
3258  * 0 to tell the loop in handle_stripe_fill to continue
3259  */
3260 
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3261 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3262 			   int disk_idx, int disks)
3263 {
3264 	struct r5dev *dev = &sh->dev[disk_idx];
3265 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3266 				  &sh->dev[s->failed_num[1]] };
3267 	int i;
3268 
3269 
3270 	if (test_bit(R5_LOCKED, &dev->flags) ||
3271 	    test_bit(R5_UPTODATE, &dev->flags))
3272 		/* No point reading this as we already have it or have
3273 		 * decided to get it.
3274 		 */
3275 		return 0;
3276 
3277 	if (dev->toread ||
3278 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3279 		/* We need this block to directly satisfy a request */
3280 		return 1;
3281 
3282 	if (s->syncing || s->expanding ||
3283 	    (s->replacing && want_replace(sh, disk_idx)))
3284 		/* When syncing, or expanding we read everything.
3285 		 * When replacing, we need the replaced block.
3286 		 */
3287 		return 1;
3288 
3289 	if ((s->failed >= 1 && fdev[0]->toread) ||
3290 	    (s->failed >= 2 && fdev[1]->toread))
3291 		/* If we want to read from a failed device, then
3292 		 * we need to actually read every other device.
3293 		 */
3294 		return 1;
3295 
3296 	/* Sometimes neither read-modify-write nor reconstruct-write
3297 	 * cycles can work.  In those cases we read every block we
3298 	 * can.  Then the parity-update is certain to have enough to
3299 	 * work with.
3300 	 * This can only be a problem when we need to write something,
3301 	 * and some device has failed.  If either of those tests
3302 	 * fail we need look no further.
3303 	 */
3304 	if (!s->failed || !s->to_write)
3305 		return 0;
3306 
3307 	if (test_bit(R5_Insync, &dev->flags) &&
3308 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3309 		/* Pre-reads at not permitted until after short delay
3310 		 * to gather multiple requests.  However if this
3311 		 * device is no Insync, the block could only be be computed
3312 		 * and there is no need to delay that.
3313 		 */
3314 		return 0;
3315 
3316 	for (i = 0; i < s->failed && i < 2; i++) {
3317 		if (fdev[i]->towrite &&
3318 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3319 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3320 			/* If we have a partial write to a failed
3321 			 * device, then we will need to reconstruct
3322 			 * the content of that device, so all other
3323 			 * devices must be read.
3324 			 */
3325 			return 1;
3326 	}
3327 
3328 	/* If we are forced to do a reconstruct-write, either because
3329 	 * the current RAID6 implementation only supports that, or
3330 	 * or because parity cannot be trusted and we are currently
3331 	 * recovering it, there is extra need to be careful.
3332 	 * If one of the devices that we would need to read, because
3333 	 * it is not being overwritten (and maybe not written at all)
3334 	 * is missing/faulty, then we need to read everything we can.
3335 	 */
3336 	if (sh->raid_conf->level != 6 &&
3337 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3338 		/* reconstruct-write isn't being forced */
3339 		return 0;
3340 	for (i = 0; i < s->failed && i < 2; i++) {
3341 		if (s->failed_num[i] != sh->pd_idx &&
3342 		    s->failed_num[i] != sh->qd_idx &&
3343 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3344 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3345 			return 1;
3346 	}
3347 
3348 	return 0;
3349 }
3350 
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3351 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3352 		       int disk_idx, int disks)
3353 {
3354 	struct r5dev *dev = &sh->dev[disk_idx];
3355 
3356 	/* is the data in this block needed, and can we get it? */
3357 	if (need_this_block(sh, s, disk_idx, disks)) {
3358 		/* we would like to get this block, possibly by computing it,
3359 		 * otherwise read it if the backing disk is insync
3360 		 */
3361 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3362 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3363 		BUG_ON(sh->batch_head);
3364 		if ((s->uptodate == disks - 1) &&
3365 		    (s->failed && (disk_idx == s->failed_num[0] ||
3366 				   disk_idx == s->failed_num[1]))) {
3367 			/* have disk failed, and we're requested to fetch it;
3368 			 * do compute it
3369 			 */
3370 			pr_debug("Computing stripe %llu block %d\n",
3371 			       (unsigned long long)sh->sector, disk_idx);
3372 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3373 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3374 			set_bit(R5_Wantcompute, &dev->flags);
3375 			sh->ops.target = disk_idx;
3376 			sh->ops.target2 = -1; /* no 2nd target */
3377 			s->req_compute = 1;
3378 			/* Careful: from this point on 'uptodate' is in the eye
3379 			 * of raid_run_ops which services 'compute' operations
3380 			 * before writes. R5_Wantcompute flags a block that will
3381 			 * be R5_UPTODATE by the time it is needed for a
3382 			 * subsequent operation.
3383 			 */
3384 			s->uptodate++;
3385 			return 1;
3386 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3387 			/* Computing 2-failure is *very* expensive; only
3388 			 * do it if failed >= 2
3389 			 */
3390 			int other;
3391 			for (other = disks; other--; ) {
3392 				if (other == disk_idx)
3393 					continue;
3394 				if (!test_bit(R5_UPTODATE,
3395 				      &sh->dev[other].flags))
3396 					break;
3397 			}
3398 			BUG_ON(other < 0);
3399 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3400 			       (unsigned long long)sh->sector,
3401 			       disk_idx, other);
3402 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3403 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3404 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3405 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3406 			sh->ops.target = disk_idx;
3407 			sh->ops.target2 = other;
3408 			s->uptodate += 2;
3409 			s->req_compute = 1;
3410 			return 1;
3411 		} else if (test_bit(R5_Insync, &dev->flags)) {
3412 			set_bit(R5_LOCKED, &dev->flags);
3413 			set_bit(R5_Wantread, &dev->flags);
3414 			s->locked++;
3415 			pr_debug("Reading block %d (sync=%d)\n",
3416 				disk_idx, s->syncing);
3417 		}
3418 	}
3419 
3420 	return 0;
3421 }
3422 
3423 /**
3424  * handle_stripe_fill - read or compute data to satisfy pending requests.
3425  */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3426 static void handle_stripe_fill(struct stripe_head *sh,
3427 			       struct stripe_head_state *s,
3428 			       int disks)
3429 {
3430 	int i;
3431 
3432 	/* look for blocks to read/compute, skip this if a compute
3433 	 * is already in flight, or if the stripe contents are in the
3434 	 * midst of changing due to a write
3435 	 */
3436 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3437 	    !sh->reconstruct_state)
3438 		for (i = disks; i--; )
3439 			if (fetch_block(sh, s, i, disks))
3440 				break;
3441 	set_bit(STRIPE_HANDLE, &sh->state);
3442 }
3443 
3444 static void break_stripe_batch_list(struct stripe_head *head_sh,
3445 				    unsigned long handle_flags);
3446 /* handle_stripe_clean_event
3447  * any written block on an uptodate or failed drive can be returned.
3448  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3449  * never LOCKED, so we don't need to test 'failed' directly.
3450  */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks,struct bio_list * return_bi)3451 static void handle_stripe_clean_event(struct r5conf *conf,
3452 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3453 {
3454 	int i;
3455 	struct r5dev *dev;
3456 	int discard_pending = 0;
3457 	struct stripe_head *head_sh = sh;
3458 	bool do_endio = false;
3459 
3460 	for (i = disks; i--; )
3461 		if (sh->dev[i].written) {
3462 			dev = &sh->dev[i];
3463 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3464 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3465 			     test_bit(R5_Discard, &dev->flags) ||
3466 			     test_bit(R5_SkipCopy, &dev->flags))) {
3467 				/* We can return any write requests */
3468 				struct bio *wbi, *wbi2;
3469 				pr_debug("Return write for disc %d\n", i);
3470 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3471 					clear_bit(R5_UPTODATE, &dev->flags);
3472 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3473 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3474 				}
3475 				do_endio = true;
3476 
3477 returnbi:
3478 				dev->page = dev->orig_page;
3479 				wbi = dev->written;
3480 				dev->written = NULL;
3481 				while (wbi && wbi->bi_iter.bi_sector <
3482 					dev->sector + STRIPE_SECTORS) {
3483 					wbi2 = r5_next_bio(wbi, dev->sector);
3484 					if (!raid5_dec_bi_active_stripes(wbi)) {
3485 						md_write_end(conf->mddev);
3486 						bio_list_add(return_bi, wbi);
3487 					}
3488 					wbi = wbi2;
3489 				}
3490 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3491 						STRIPE_SECTORS,
3492 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3493 						0);
3494 				if (head_sh->batch_head) {
3495 					sh = list_first_entry(&sh->batch_list,
3496 							      struct stripe_head,
3497 							      batch_list);
3498 					if (sh != head_sh) {
3499 						dev = &sh->dev[i];
3500 						goto returnbi;
3501 					}
3502 				}
3503 				sh = head_sh;
3504 				dev = &sh->dev[i];
3505 			} else if (test_bit(R5_Discard, &dev->flags))
3506 				discard_pending = 1;
3507 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3508 			WARN_ON(dev->page != dev->orig_page);
3509 		}
3510 
3511 	r5l_stripe_write_finished(sh);
3512 
3513 	if (!discard_pending &&
3514 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3515 		int hash;
3516 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3517 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3518 		if (sh->qd_idx >= 0) {
3519 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3520 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3521 		}
3522 		/* now that discard is done we can proceed with any sync */
3523 		clear_bit(STRIPE_DISCARD, &sh->state);
3524 		/*
3525 		 * SCSI discard will change some bio fields and the stripe has
3526 		 * no updated data, so remove it from hash list and the stripe
3527 		 * will be reinitialized
3528 		 */
3529 unhash:
3530 		hash = sh->hash_lock_index;
3531 		spin_lock_irq(conf->hash_locks + hash);
3532 		remove_hash(sh);
3533 		spin_unlock_irq(conf->hash_locks + hash);
3534 		if (head_sh->batch_head) {
3535 			sh = list_first_entry(&sh->batch_list,
3536 					      struct stripe_head, batch_list);
3537 			if (sh != head_sh)
3538 					goto unhash;
3539 		}
3540 		sh = head_sh;
3541 
3542 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3543 			set_bit(STRIPE_HANDLE, &sh->state);
3544 
3545 	}
3546 
3547 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3548 		if (atomic_dec_and_test(&conf->pending_full_writes))
3549 			md_wakeup_thread(conf->mddev->thread);
3550 
3551 	if (head_sh->batch_head && do_endio)
3552 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3553 }
3554 
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3555 static void handle_stripe_dirtying(struct r5conf *conf,
3556 				   struct stripe_head *sh,
3557 				   struct stripe_head_state *s,
3558 				   int disks)
3559 {
3560 	int rmw = 0, rcw = 0, i;
3561 	sector_t recovery_cp = conf->mddev->recovery_cp;
3562 
3563 	/* Check whether resync is now happening or should start.
3564 	 * If yes, then the array is dirty (after unclean shutdown or
3565 	 * initial creation), so parity in some stripes might be inconsistent.
3566 	 * In this case, we need to always do reconstruct-write, to ensure
3567 	 * that in case of drive failure or read-error correction, we
3568 	 * generate correct data from the parity.
3569 	 */
3570 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3571 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3572 	     s->failed == 0)) {
3573 		/* Calculate the real rcw later - for now make it
3574 		 * look like rcw is cheaper
3575 		 */
3576 		rcw = 1; rmw = 2;
3577 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3578 			 conf->rmw_level, (unsigned long long)recovery_cp,
3579 			 (unsigned long long)sh->sector);
3580 	} else for (i = disks; i--; ) {
3581 		/* would I have to read this buffer for read_modify_write */
3582 		struct r5dev *dev = &sh->dev[i];
3583 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3584 		    !test_bit(R5_LOCKED, &dev->flags) &&
3585 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3586 		      test_bit(R5_Wantcompute, &dev->flags))) {
3587 			if (test_bit(R5_Insync, &dev->flags))
3588 				rmw++;
3589 			else
3590 				rmw += 2*disks;  /* cannot read it */
3591 		}
3592 		/* Would I have to read this buffer for reconstruct_write */
3593 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3594 		    i != sh->pd_idx && i != sh->qd_idx &&
3595 		    !test_bit(R5_LOCKED, &dev->flags) &&
3596 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3597 		    test_bit(R5_Wantcompute, &dev->flags))) {
3598 			if (test_bit(R5_Insync, &dev->flags))
3599 				rcw++;
3600 			else
3601 				rcw += 2*disks;
3602 		}
3603 	}
3604 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3605 		(unsigned long long)sh->sector, rmw, rcw);
3606 	set_bit(STRIPE_HANDLE, &sh->state);
3607 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3608 		/* prefer read-modify-write, but need to get some data */
3609 		if (conf->mddev->queue)
3610 			blk_add_trace_msg(conf->mddev->queue,
3611 					  "raid5 rmw %llu %d",
3612 					  (unsigned long long)sh->sector, rmw);
3613 		for (i = disks; i--; ) {
3614 			struct r5dev *dev = &sh->dev[i];
3615 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3616 			    !test_bit(R5_LOCKED, &dev->flags) &&
3617 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3618 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3619 			    test_bit(R5_Insync, &dev->flags)) {
3620 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3621 					     &sh->state)) {
3622 					pr_debug("Read_old block %d for r-m-w\n",
3623 						 i);
3624 					set_bit(R5_LOCKED, &dev->flags);
3625 					set_bit(R5_Wantread, &dev->flags);
3626 					s->locked++;
3627 				} else {
3628 					set_bit(STRIPE_DELAYED, &sh->state);
3629 					set_bit(STRIPE_HANDLE, &sh->state);
3630 				}
3631 			}
3632 		}
3633 	}
3634 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3635 		/* want reconstruct write, but need to get some data */
3636 		int qread =0;
3637 		rcw = 0;
3638 		for (i = disks; i--; ) {
3639 			struct r5dev *dev = &sh->dev[i];
3640 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3641 			    i != sh->pd_idx && i != sh->qd_idx &&
3642 			    !test_bit(R5_LOCKED, &dev->flags) &&
3643 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3644 			      test_bit(R5_Wantcompute, &dev->flags))) {
3645 				rcw++;
3646 				if (test_bit(R5_Insync, &dev->flags) &&
3647 				    test_bit(STRIPE_PREREAD_ACTIVE,
3648 					     &sh->state)) {
3649 					pr_debug("Read_old block "
3650 						"%d for Reconstruct\n", i);
3651 					set_bit(R5_LOCKED, &dev->flags);
3652 					set_bit(R5_Wantread, &dev->flags);
3653 					s->locked++;
3654 					qread++;
3655 				} else {
3656 					set_bit(STRIPE_DELAYED, &sh->state);
3657 					set_bit(STRIPE_HANDLE, &sh->state);
3658 				}
3659 			}
3660 		}
3661 		if (rcw && conf->mddev->queue)
3662 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3663 					  (unsigned long long)sh->sector,
3664 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3665 	}
3666 
3667 	if (rcw > disks && rmw > disks &&
3668 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3669 		set_bit(STRIPE_DELAYED, &sh->state);
3670 
3671 	/* now if nothing is locked, and if we have enough data,
3672 	 * we can start a write request
3673 	 */
3674 	/* since handle_stripe can be called at any time we need to handle the
3675 	 * case where a compute block operation has been submitted and then a
3676 	 * subsequent call wants to start a write request.  raid_run_ops only
3677 	 * handles the case where compute block and reconstruct are requested
3678 	 * simultaneously.  If this is not the case then new writes need to be
3679 	 * held off until the compute completes.
3680 	 */
3681 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3682 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3683 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3684 		schedule_reconstruction(sh, s, rcw == 0, 0);
3685 }
3686 
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3687 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3688 				struct stripe_head_state *s, int disks)
3689 {
3690 	struct r5dev *dev = NULL;
3691 
3692 	BUG_ON(sh->batch_head);
3693 	set_bit(STRIPE_HANDLE, &sh->state);
3694 
3695 	switch (sh->check_state) {
3696 	case check_state_idle:
3697 		/* start a new check operation if there are no failures */
3698 		if (s->failed == 0) {
3699 			BUG_ON(s->uptodate != disks);
3700 			sh->check_state = check_state_run;
3701 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3702 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3703 			s->uptodate--;
3704 			break;
3705 		}
3706 		dev = &sh->dev[s->failed_num[0]];
3707 		/* fall through */
3708 	case check_state_compute_result:
3709 		sh->check_state = check_state_idle;
3710 		if (!dev)
3711 			dev = &sh->dev[sh->pd_idx];
3712 
3713 		/* check that a write has not made the stripe insync */
3714 		if (test_bit(STRIPE_INSYNC, &sh->state))
3715 			break;
3716 
3717 		/* either failed parity check, or recovery is happening */
3718 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3719 		BUG_ON(s->uptodate != disks);
3720 
3721 		set_bit(R5_LOCKED, &dev->flags);
3722 		s->locked++;
3723 		set_bit(R5_Wantwrite, &dev->flags);
3724 
3725 		clear_bit(STRIPE_DEGRADED, &sh->state);
3726 		set_bit(STRIPE_INSYNC, &sh->state);
3727 		break;
3728 	case check_state_run:
3729 		break; /* we will be called again upon completion */
3730 	case check_state_check_result:
3731 		sh->check_state = check_state_idle;
3732 
3733 		/* if a failure occurred during the check operation, leave
3734 		 * STRIPE_INSYNC not set and let the stripe be handled again
3735 		 */
3736 		if (s->failed)
3737 			break;
3738 
3739 		/* handle a successful check operation, if parity is correct
3740 		 * we are done.  Otherwise update the mismatch count and repair
3741 		 * parity if !MD_RECOVERY_CHECK
3742 		 */
3743 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3744 			/* parity is correct (on disc,
3745 			 * not in buffer any more)
3746 			 */
3747 			set_bit(STRIPE_INSYNC, &sh->state);
3748 		else {
3749 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3750 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3751 				/* don't try to repair!! */
3752 				set_bit(STRIPE_INSYNC, &sh->state);
3753 			else {
3754 				sh->check_state = check_state_compute_run;
3755 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3756 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3757 				set_bit(R5_Wantcompute,
3758 					&sh->dev[sh->pd_idx].flags);
3759 				sh->ops.target = sh->pd_idx;
3760 				sh->ops.target2 = -1;
3761 				s->uptodate++;
3762 			}
3763 		}
3764 		break;
3765 	case check_state_compute_run:
3766 		break;
3767 	default:
3768 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3769 		       __func__, sh->check_state,
3770 		       (unsigned long long) sh->sector);
3771 		BUG();
3772 	}
3773 }
3774 
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3775 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3776 				  struct stripe_head_state *s,
3777 				  int disks)
3778 {
3779 	int pd_idx = sh->pd_idx;
3780 	int qd_idx = sh->qd_idx;
3781 	struct r5dev *dev;
3782 
3783 	BUG_ON(sh->batch_head);
3784 	set_bit(STRIPE_HANDLE, &sh->state);
3785 
3786 	BUG_ON(s->failed > 2);
3787 
3788 	/* Want to check and possibly repair P and Q.
3789 	 * However there could be one 'failed' device, in which
3790 	 * case we can only check one of them, possibly using the
3791 	 * other to generate missing data
3792 	 */
3793 
3794 	switch (sh->check_state) {
3795 	case check_state_idle:
3796 		/* start a new check operation if there are < 2 failures */
3797 		if (s->failed == s->q_failed) {
3798 			/* The only possible failed device holds Q, so it
3799 			 * makes sense to check P (If anything else were failed,
3800 			 * we would have used P to recreate it).
3801 			 */
3802 			sh->check_state = check_state_run;
3803 		}
3804 		if (!s->q_failed && s->failed < 2) {
3805 			/* Q is not failed, and we didn't use it to generate
3806 			 * anything, so it makes sense to check it
3807 			 */
3808 			if (sh->check_state == check_state_run)
3809 				sh->check_state = check_state_run_pq;
3810 			else
3811 				sh->check_state = check_state_run_q;
3812 		}
3813 
3814 		/* discard potentially stale zero_sum_result */
3815 		sh->ops.zero_sum_result = 0;
3816 
3817 		if (sh->check_state == check_state_run) {
3818 			/* async_xor_zero_sum destroys the contents of P */
3819 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3820 			s->uptodate--;
3821 		}
3822 		if (sh->check_state >= check_state_run &&
3823 		    sh->check_state <= check_state_run_pq) {
3824 			/* async_syndrome_zero_sum preserves P and Q, so
3825 			 * no need to mark them !uptodate here
3826 			 */
3827 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3828 			break;
3829 		}
3830 
3831 		/* we have 2-disk failure */
3832 		BUG_ON(s->failed != 2);
3833 		/* fall through */
3834 	case check_state_compute_result:
3835 		sh->check_state = check_state_idle;
3836 
3837 		/* check that a write has not made the stripe insync */
3838 		if (test_bit(STRIPE_INSYNC, &sh->state))
3839 			break;
3840 
3841 		/* now write out any block on a failed drive,
3842 		 * or P or Q if they were recomputed
3843 		 */
3844 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3845 		if (s->failed == 2) {
3846 			dev = &sh->dev[s->failed_num[1]];
3847 			s->locked++;
3848 			set_bit(R5_LOCKED, &dev->flags);
3849 			set_bit(R5_Wantwrite, &dev->flags);
3850 		}
3851 		if (s->failed >= 1) {
3852 			dev = &sh->dev[s->failed_num[0]];
3853 			s->locked++;
3854 			set_bit(R5_LOCKED, &dev->flags);
3855 			set_bit(R5_Wantwrite, &dev->flags);
3856 		}
3857 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3858 			dev = &sh->dev[pd_idx];
3859 			s->locked++;
3860 			set_bit(R5_LOCKED, &dev->flags);
3861 			set_bit(R5_Wantwrite, &dev->flags);
3862 		}
3863 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3864 			dev = &sh->dev[qd_idx];
3865 			s->locked++;
3866 			set_bit(R5_LOCKED, &dev->flags);
3867 			set_bit(R5_Wantwrite, &dev->flags);
3868 		}
3869 		clear_bit(STRIPE_DEGRADED, &sh->state);
3870 
3871 		set_bit(STRIPE_INSYNC, &sh->state);
3872 		break;
3873 	case check_state_run:
3874 	case check_state_run_q:
3875 	case check_state_run_pq:
3876 		break; /* we will be called again upon completion */
3877 	case check_state_check_result:
3878 		sh->check_state = check_state_idle;
3879 
3880 		/* handle a successful check operation, if parity is correct
3881 		 * we are done.  Otherwise update the mismatch count and repair
3882 		 * parity if !MD_RECOVERY_CHECK
3883 		 */
3884 		if (sh->ops.zero_sum_result == 0) {
3885 			/* both parities are correct */
3886 			if (!s->failed)
3887 				set_bit(STRIPE_INSYNC, &sh->state);
3888 			else {
3889 				/* in contrast to the raid5 case we can validate
3890 				 * parity, but still have a failure to write
3891 				 * back
3892 				 */
3893 				sh->check_state = check_state_compute_result;
3894 				/* Returning at this point means that we may go
3895 				 * off and bring p and/or q uptodate again so
3896 				 * we make sure to check zero_sum_result again
3897 				 * to verify if p or q need writeback
3898 				 */
3899 			}
3900 		} else {
3901 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3902 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3903 				/* don't try to repair!! */
3904 				set_bit(STRIPE_INSYNC, &sh->state);
3905 			else {
3906 				int *target = &sh->ops.target;
3907 
3908 				sh->ops.target = -1;
3909 				sh->ops.target2 = -1;
3910 				sh->check_state = check_state_compute_run;
3911 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3912 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3913 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3914 					set_bit(R5_Wantcompute,
3915 						&sh->dev[pd_idx].flags);
3916 					*target = pd_idx;
3917 					target = &sh->ops.target2;
3918 					s->uptodate++;
3919 				}
3920 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3921 					set_bit(R5_Wantcompute,
3922 						&sh->dev[qd_idx].flags);
3923 					*target = qd_idx;
3924 					s->uptodate++;
3925 				}
3926 			}
3927 		}
3928 		break;
3929 	case check_state_compute_run:
3930 		break;
3931 	default:
3932 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3933 		       __func__, sh->check_state,
3934 		       (unsigned long long) sh->sector);
3935 		BUG();
3936 	}
3937 }
3938 
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)3939 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3940 {
3941 	int i;
3942 
3943 	/* We have read all the blocks in this stripe and now we need to
3944 	 * copy some of them into a target stripe for expand.
3945 	 */
3946 	struct dma_async_tx_descriptor *tx = NULL;
3947 	BUG_ON(sh->batch_head);
3948 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3949 	for (i = 0; i < sh->disks; i++)
3950 		if (i != sh->pd_idx && i != sh->qd_idx) {
3951 			int dd_idx, j;
3952 			struct stripe_head *sh2;
3953 			struct async_submit_ctl submit;
3954 
3955 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
3956 			sector_t s = raid5_compute_sector(conf, bn, 0,
3957 							  &dd_idx, NULL);
3958 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3959 			if (sh2 == NULL)
3960 				/* so far only the early blocks of this stripe
3961 				 * have been requested.  When later blocks
3962 				 * get requested, we will try again
3963 				 */
3964 				continue;
3965 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3966 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3967 				/* must have already done this block */
3968 				raid5_release_stripe(sh2);
3969 				continue;
3970 			}
3971 
3972 			/* place all the copies on one channel */
3973 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3974 			tx = async_memcpy(sh2->dev[dd_idx].page,
3975 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3976 					  &submit);
3977 
3978 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3979 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3980 			for (j = 0; j < conf->raid_disks; j++)
3981 				if (j != sh2->pd_idx &&
3982 				    j != sh2->qd_idx &&
3983 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3984 					break;
3985 			if (j == conf->raid_disks) {
3986 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3987 				set_bit(STRIPE_HANDLE, &sh2->state);
3988 			}
3989 			raid5_release_stripe(sh2);
3990 
3991 		}
3992 	/* done submitting copies, wait for them to complete */
3993 	async_tx_quiesce(&tx);
3994 }
3995 
3996 /*
3997  * handle_stripe - do things to a stripe.
3998  *
3999  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4000  * state of various bits to see what needs to be done.
4001  * Possible results:
4002  *    return some read requests which now have data
4003  *    return some write requests which are safely on storage
4004  *    schedule a read on some buffers
4005  *    schedule a write of some buffers
4006  *    return confirmation of parity correctness
4007  *
4008  */
4009 
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4010 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4011 {
4012 	struct r5conf *conf = sh->raid_conf;
4013 	int disks = sh->disks;
4014 	struct r5dev *dev;
4015 	int i;
4016 	int do_recovery = 0;
4017 
4018 	memset(s, 0, sizeof(*s));
4019 
4020 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4021 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4022 	s->failed_num[0] = -1;
4023 	s->failed_num[1] = -1;
4024 	s->log_failed = r5l_log_disk_error(conf);
4025 
4026 	/* Now to look around and see what can be done */
4027 	rcu_read_lock();
4028 	for (i=disks; i--; ) {
4029 		struct md_rdev *rdev;
4030 		sector_t first_bad;
4031 		int bad_sectors;
4032 		int is_bad = 0;
4033 
4034 		dev = &sh->dev[i];
4035 
4036 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4037 			 i, dev->flags,
4038 			 dev->toread, dev->towrite, dev->written);
4039 		/* maybe we can reply to a read
4040 		 *
4041 		 * new wantfill requests are only permitted while
4042 		 * ops_complete_biofill is guaranteed to be inactive
4043 		 */
4044 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4045 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4046 			set_bit(R5_Wantfill, &dev->flags);
4047 
4048 		/* now count some things */
4049 		if (test_bit(R5_LOCKED, &dev->flags))
4050 			s->locked++;
4051 		if (test_bit(R5_UPTODATE, &dev->flags))
4052 			s->uptodate++;
4053 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4054 			s->compute++;
4055 			BUG_ON(s->compute > 2);
4056 		}
4057 
4058 		if (test_bit(R5_Wantfill, &dev->flags))
4059 			s->to_fill++;
4060 		else if (dev->toread)
4061 			s->to_read++;
4062 		if (dev->towrite) {
4063 			s->to_write++;
4064 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4065 				s->non_overwrite++;
4066 		}
4067 		if (dev->written)
4068 			s->written++;
4069 		/* Prefer to use the replacement for reads, but only
4070 		 * if it is recovered enough and has no bad blocks.
4071 		 */
4072 		rdev = rcu_dereference(conf->disks[i].replacement);
4073 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4074 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4075 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4076 				 &first_bad, &bad_sectors))
4077 			set_bit(R5_ReadRepl, &dev->flags);
4078 		else {
4079 			if (rdev && !test_bit(Faulty, &rdev->flags))
4080 				set_bit(R5_NeedReplace, &dev->flags);
4081 			else
4082 				clear_bit(R5_NeedReplace, &dev->flags);
4083 			rdev = rcu_dereference(conf->disks[i].rdev);
4084 			clear_bit(R5_ReadRepl, &dev->flags);
4085 		}
4086 		if (rdev && test_bit(Faulty, &rdev->flags))
4087 			rdev = NULL;
4088 		if (rdev) {
4089 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4090 					     &first_bad, &bad_sectors);
4091 			if (s->blocked_rdev == NULL
4092 			    && (test_bit(Blocked, &rdev->flags)
4093 				|| is_bad < 0)) {
4094 				if (is_bad < 0)
4095 					set_bit(BlockedBadBlocks,
4096 						&rdev->flags);
4097 				s->blocked_rdev = rdev;
4098 				atomic_inc(&rdev->nr_pending);
4099 			}
4100 		}
4101 		clear_bit(R5_Insync, &dev->flags);
4102 		if (!rdev)
4103 			/* Not in-sync */;
4104 		else if (is_bad) {
4105 			/* also not in-sync */
4106 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4107 			    test_bit(R5_UPTODATE, &dev->flags)) {
4108 				/* treat as in-sync, but with a read error
4109 				 * which we can now try to correct
4110 				 */
4111 				set_bit(R5_Insync, &dev->flags);
4112 				set_bit(R5_ReadError, &dev->flags);
4113 			}
4114 		} else if (test_bit(In_sync, &rdev->flags))
4115 			set_bit(R5_Insync, &dev->flags);
4116 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4117 			/* in sync if before recovery_offset */
4118 			set_bit(R5_Insync, &dev->flags);
4119 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4120 			 test_bit(R5_Expanded, &dev->flags))
4121 			/* If we've reshaped into here, we assume it is Insync.
4122 			 * We will shortly update recovery_offset to make
4123 			 * it official.
4124 			 */
4125 			set_bit(R5_Insync, &dev->flags);
4126 
4127 		if (test_bit(R5_WriteError, &dev->flags)) {
4128 			/* This flag does not apply to '.replacement'
4129 			 * only to .rdev, so make sure to check that*/
4130 			struct md_rdev *rdev2 = rcu_dereference(
4131 				conf->disks[i].rdev);
4132 			if (rdev2 == rdev)
4133 				clear_bit(R5_Insync, &dev->flags);
4134 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4135 				s->handle_bad_blocks = 1;
4136 				atomic_inc(&rdev2->nr_pending);
4137 			} else
4138 				clear_bit(R5_WriteError, &dev->flags);
4139 		}
4140 		if (test_bit(R5_MadeGood, &dev->flags)) {
4141 			/* This flag does not apply to '.replacement'
4142 			 * only to .rdev, so make sure to check that*/
4143 			struct md_rdev *rdev2 = rcu_dereference(
4144 				conf->disks[i].rdev);
4145 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4146 				s->handle_bad_blocks = 1;
4147 				atomic_inc(&rdev2->nr_pending);
4148 			} else
4149 				clear_bit(R5_MadeGood, &dev->flags);
4150 		}
4151 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4152 			struct md_rdev *rdev2 = rcu_dereference(
4153 				conf->disks[i].replacement);
4154 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4155 				s->handle_bad_blocks = 1;
4156 				atomic_inc(&rdev2->nr_pending);
4157 			} else
4158 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4159 		}
4160 		if (!test_bit(R5_Insync, &dev->flags)) {
4161 			/* The ReadError flag will just be confusing now */
4162 			clear_bit(R5_ReadError, &dev->flags);
4163 			clear_bit(R5_ReWrite, &dev->flags);
4164 		}
4165 		if (test_bit(R5_ReadError, &dev->flags))
4166 			clear_bit(R5_Insync, &dev->flags);
4167 		if (!test_bit(R5_Insync, &dev->flags)) {
4168 			if (s->failed < 2)
4169 				s->failed_num[s->failed] = i;
4170 			s->failed++;
4171 			if (rdev && !test_bit(Faulty, &rdev->flags))
4172 				do_recovery = 1;
4173 		}
4174 	}
4175 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4176 		/* If there is a failed device being replaced,
4177 		 *     we must be recovering.
4178 		 * else if we are after recovery_cp, we must be syncing
4179 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4180 		 * else we can only be replacing
4181 		 * sync and recovery both need to read all devices, and so
4182 		 * use the same flag.
4183 		 */
4184 		if (do_recovery ||
4185 		    sh->sector >= conf->mddev->recovery_cp ||
4186 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4187 			s->syncing = 1;
4188 		else
4189 			s->replacing = 1;
4190 	}
4191 	rcu_read_unlock();
4192 }
4193 
clear_batch_ready(struct stripe_head * sh)4194 static int clear_batch_ready(struct stripe_head *sh)
4195 {
4196 	/* Return '1' if this is a member of batch, or
4197 	 * '0' if it is a lone stripe or a head which can now be
4198 	 * handled.
4199 	 */
4200 	struct stripe_head *tmp;
4201 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4202 		return (sh->batch_head && sh->batch_head != sh);
4203 	spin_lock(&sh->stripe_lock);
4204 	if (!sh->batch_head) {
4205 		spin_unlock(&sh->stripe_lock);
4206 		return 0;
4207 	}
4208 
4209 	/*
4210 	 * this stripe could be added to a batch list before we check
4211 	 * BATCH_READY, skips it
4212 	 */
4213 	if (sh->batch_head != sh) {
4214 		spin_unlock(&sh->stripe_lock);
4215 		return 1;
4216 	}
4217 	spin_lock(&sh->batch_lock);
4218 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4219 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4220 	spin_unlock(&sh->batch_lock);
4221 	spin_unlock(&sh->stripe_lock);
4222 
4223 	/*
4224 	 * BATCH_READY is cleared, no new stripes can be added.
4225 	 * batch_list can be accessed without lock
4226 	 */
4227 	return 0;
4228 }
4229 
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4230 static void break_stripe_batch_list(struct stripe_head *head_sh,
4231 				    unsigned long handle_flags)
4232 {
4233 	struct stripe_head *sh, *next;
4234 	int i;
4235 	int do_wakeup = 0;
4236 
4237 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4238 
4239 		list_del_init(&sh->batch_list);
4240 
4241 		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4242 					  (1 << STRIPE_SYNCING) |
4243 					  (1 << STRIPE_REPLACED) |
4244 					  (1 << STRIPE_DELAYED) |
4245 					  (1 << STRIPE_BIT_DELAY) |
4246 					  (1 << STRIPE_FULL_WRITE) |
4247 					  (1 << STRIPE_BIOFILL_RUN) |
4248 					  (1 << STRIPE_COMPUTE_RUN)  |
4249 					  (1 << STRIPE_OPS_REQ_PENDING) |
4250 					  (1 << STRIPE_DISCARD) |
4251 					  (1 << STRIPE_BATCH_READY) |
4252 					  (1 << STRIPE_BATCH_ERR) |
4253 					  (1 << STRIPE_BITMAP_PENDING)));
4254 		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4255 					      (1 << STRIPE_REPLACED)));
4256 
4257 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4258 					    (1 << STRIPE_PREREAD_ACTIVE) |
4259 					    (1 << STRIPE_DEGRADED)),
4260 			      head_sh->state & (1 << STRIPE_INSYNC));
4261 
4262 		sh->check_state = head_sh->check_state;
4263 		sh->reconstruct_state = head_sh->reconstruct_state;
4264 		for (i = 0; i < sh->disks; i++) {
4265 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4266 				do_wakeup = 1;
4267 			sh->dev[i].flags = head_sh->dev[i].flags &
4268 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4269 		}
4270 		spin_lock_irq(&sh->stripe_lock);
4271 		sh->batch_head = NULL;
4272 		spin_unlock_irq(&sh->stripe_lock);
4273 		if (handle_flags == 0 ||
4274 		    sh->state & handle_flags)
4275 			set_bit(STRIPE_HANDLE, &sh->state);
4276 		raid5_release_stripe(sh);
4277 	}
4278 	spin_lock_irq(&head_sh->stripe_lock);
4279 	head_sh->batch_head = NULL;
4280 	spin_unlock_irq(&head_sh->stripe_lock);
4281 	for (i = 0; i < head_sh->disks; i++)
4282 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4283 			do_wakeup = 1;
4284 	if (head_sh->state & handle_flags)
4285 		set_bit(STRIPE_HANDLE, &head_sh->state);
4286 
4287 	if (do_wakeup)
4288 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4289 }
4290 
handle_stripe(struct stripe_head * sh)4291 static void handle_stripe(struct stripe_head *sh)
4292 {
4293 	struct stripe_head_state s;
4294 	struct r5conf *conf = sh->raid_conf;
4295 	int i;
4296 	int prexor;
4297 	int disks = sh->disks;
4298 	struct r5dev *pdev, *qdev;
4299 
4300 	clear_bit(STRIPE_HANDLE, &sh->state);
4301 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4302 		/* already being handled, ensure it gets handled
4303 		 * again when current action finishes */
4304 		set_bit(STRIPE_HANDLE, &sh->state);
4305 		return;
4306 	}
4307 
4308 	if (clear_batch_ready(sh) ) {
4309 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4310 		return;
4311 	}
4312 
4313 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4314 		break_stripe_batch_list(sh, 0);
4315 
4316 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4317 		spin_lock(&sh->stripe_lock);
4318 		/* Cannot process 'sync' concurrently with 'discard' */
4319 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4320 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4321 			set_bit(STRIPE_SYNCING, &sh->state);
4322 			clear_bit(STRIPE_INSYNC, &sh->state);
4323 			clear_bit(STRIPE_REPLACED, &sh->state);
4324 		}
4325 		spin_unlock(&sh->stripe_lock);
4326 	}
4327 	clear_bit(STRIPE_DELAYED, &sh->state);
4328 
4329 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4330 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4331 	       (unsigned long long)sh->sector, sh->state,
4332 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4333 	       sh->check_state, sh->reconstruct_state);
4334 
4335 	analyse_stripe(sh, &s);
4336 
4337 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4338 		goto finish;
4339 
4340 	if (s.handle_bad_blocks) {
4341 		set_bit(STRIPE_HANDLE, &sh->state);
4342 		goto finish;
4343 	}
4344 
4345 	if (unlikely(s.blocked_rdev)) {
4346 		if (s.syncing || s.expanding || s.expanded ||
4347 		    s.replacing || s.to_write || s.written) {
4348 			set_bit(STRIPE_HANDLE, &sh->state);
4349 			goto finish;
4350 		}
4351 		/* There is nothing for the blocked_rdev to block */
4352 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4353 		s.blocked_rdev = NULL;
4354 	}
4355 
4356 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4357 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4358 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4359 	}
4360 
4361 	pr_debug("locked=%d uptodate=%d to_read=%d"
4362 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4363 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4364 	       s.failed_num[0], s.failed_num[1]);
4365 	/* check if the array has lost more than max_degraded devices and,
4366 	 * if so, some requests might need to be failed.
4367 	 */
4368 	if (s.failed > conf->max_degraded || s.log_failed) {
4369 		sh->check_state = 0;
4370 		sh->reconstruct_state = 0;
4371 		break_stripe_batch_list(sh, 0);
4372 		if (s.to_read+s.to_write+s.written)
4373 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4374 		if (s.syncing + s.replacing)
4375 			handle_failed_sync(conf, sh, &s);
4376 	}
4377 
4378 	/* Now we check to see if any write operations have recently
4379 	 * completed
4380 	 */
4381 	prexor = 0;
4382 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4383 		prexor = 1;
4384 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4385 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4386 		sh->reconstruct_state = reconstruct_state_idle;
4387 
4388 		/* All the 'written' buffers and the parity block are ready to
4389 		 * be written back to disk
4390 		 */
4391 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4392 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4393 		BUG_ON(sh->qd_idx >= 0 &&
4394 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4395 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4396 		for (i = disks; i--; ) {
4397 			struct r5dev *dev = &sh->dev[i];
4398 			if (test_bit(R5_LOCKED, &dev->flags) &&
4399 				(i == sh->pd_idx || i == sh->qd_idx ||
4400 				 dev->written)) {
4401 				pr_debug("Writing block %d\n", i);
4402 				set_bit(R5_Wantwrite, &dev->flags);
4403 				if (prexor)
4404 					continue;
4405 				if (s.failed > 1)
4406 					continue;
4407 				if (!test_bit(R5_Insync, &dev->flags) ||
4408 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4409 				     s.failed == 0))
4410 					set_bit(STRIPE_INSYNC, &sh->state);
4411 			}
4412 		}
4413 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4414 			s.dec_preread_active = 1;
4415 	}
4416 
4417 	/*
4418 	 * might be able to return some write requests if the parity blocks
4419 	 * are safe, or on a failed drive
4420 	 */
4421 	pdev = &sh->dev[sh->pd_idx];
4422 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4423 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4424 	qdev = &sh->dev[sh->qd_idx];
4425 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4426 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4427 		|| conf->level < 6;
4428 
4429 	if (s.written &&
4430 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4431 			     && !test_bit(R5_LOCKED, &pdev->flags)
4432 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4433 				 test_bit(R5_Discard, &pdev->flags))))) &&
4434 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4435 			     && !test_bit(R5_LOCKED, &qdev->flags)
4436 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4437 				 test_bit(R5_Discard, &qdev->flags))))))
4438 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4439 
4440 	/* Now we might consider reading some blocks, either to check/generate
4441 	 * parity, or to satisfy requests
4442 	 * or to load a block that is being partially written.
4443 	 */
4444 	if (s.to_read || s.non_overwrite
4445 	    || (conf->level == 6 && s.to_write && s.failed)
4446 	    || (s.syncing && (s.uptodate + s.compute < disks))
4447 	    || s.replacing
4448 	    || s.expanding)
4449 		handle_stripe_fill(sh, &s, disks);
4450 
4451 	/* Now to consider new write requests and what else, if anything
4452 	 * should be read.  We do not handle new writes when:
4453 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4454 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4455 	 *    block.
4456 	 */
4457 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4458 		handle_stripe_dirtying(conf, sh, &s, disks);
4459 
4460 	/* maybe we need to check and possibly fix the parity for this stripe
4461 	 * Any reads will already have been scheduled, so we just see if enough
4462 	 * data is available.  The parity check is held off while parity
4463 	 * dependent operations are in flight.
4464 	 */
4465 	if (sh->check_state ||
4466 	    (s.syncing && s.locked == 0 &&
4467 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4468 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4469 		if (conf->level == 6)
4470 			handle_parity_checks6(conf, sh, &s, disks);
4471 		else
4472 			handle_parity_checks5(conf, sh, &s, disks);
4473 	}
4474 
4475 	if ((s.replacing || s.syncing) && s.locked == 0
4476 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4477 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4478 		/* Write out to replacement devices where possible */
4479 		for (i = 0; i < conf->raid_disks; i++)
4480 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4481 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4482 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4483 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4484 				s.locked++;
4485 			}
4486 		if (s.replacing)
4487 			set_bit(STRIPE_INSYNC, &sh->state);
4488 		set_bit(STRIPE_REPLACED, &sh->state);
4489 	}
4490 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4491 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4492 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4493 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4494 		clear_bit(STRIPE_SYNCING, &sh->state);
4495 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4496 			wake_up(&conf->wait_for_overlap);
4497 	}
4498 
4499 	/* If the failed drives are just a ReadError, then we might need
4500 	 * to progress the repair/check process
4501 	 */
4502 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4503 		for (i = 0; i < s.failed; i++) {
4504 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4505 			if (test_bit(R5_ReadError, &dev->flags)
4506 			    && !test_bit(R5_LOCKED, &dev->flags)
4507 			    && test_bit(R5_UPTODATE, &dev->flags)
4508 				) {
4509 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4510 					set_bit(R5_Wantwrite, &dev->flags);
4511 					set_bit(R5_ReWrite, &dev->flags);
4512 					set_bit(R5_LOCKED, &dev->flags);
4513 					s.locked++;
4514 				} else {
4515 					/* let's read it back */
4516 					set_bit(R5_Wantread, &dev->flags);
4517 					set_bit(R5_LOCKED, &dev->flags);
4518 					s.locked++;
4519 				}
4520 			}
4521 		}
4522 
4523 	/* Finish reconstruct operations initiated by the expansion process */
4524 	if (sh->reconstruct_state == reconstruct_state_result) {
4525 		struct stripe_head *sh_src
4526 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4527 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4528 			/* sh cannot be written until sh_src has been read.
4529 			 * so arrange for sh to be delayed a little
4530 			 */
4531 			set_bit(STRIPE_DELAYED, &sh->state);
4532 			set_bit(STRIPE_HANDLE, &sh->state);
4533 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4534 					      &sh_src->state))
4535 				atomic_inc(&conf->preread_active_stripes);
4536 			raid5_release_stripe(sh_src);
4537 			goto finish;
4538 		}
4539 		if (sh_src)
4540 			raid5_release_stripe(sh_src);
4541 
4542 		sh->reconstruct_state = reconstruct_state_idle;
4543 		clear_bit(STRIPE_EXPANDING, &sh->state);
4544 		for (i = conf->raid_disks; i--; ) {
4545 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4546 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4547 			s.locked++;
4548 		}
4549 	}
4550 
4551 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4552 	    !sh->reconstruct_state) {
4553 		/* Need to write out all blocks after computing parity */
4554 		sh->disks = conf->raid_disks;
4555 		stripe_set_idx(sh->sector, conf, 0, sh);
4556 		schedule_reconstruction(sh, &s, 1, 1);
4557 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4558 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4559 		atomic_dec(&conf->reshape_stripes);
4560 		wake_up(&conf->wait_for_overlap);
4561 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4562 	}
4563 
4564 	if (s.expanding && s.locked == 0 &&
4565 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4566 		handle_stripe_expansion(conf, sh);
4567 
4568 finish:
4569 	/* wait for this device to become unblocked */
4570 	if (unlikely(s.blocked_rdev)) {
4571 		if (conf->mddev->external)
4572 			md_wait_for_blocked_rdev(s.blocked_rdev,
4573 						 conf->mddev);
4574 		else
4575 			/* Internal metadata will immediately
4576 			 * be written by raid5d, so we don't
4577 			 * need to wait here.
4578 			 */
4579 			rdev_dec_pending(s.blocked_rdev,
4580 					 conf->mddev);
4581 	}
4582 
4583 	if (s.handle_bad_blocks)
4584 		for (i = disks; i--; ) {
4585 			struct md_rdev *rdev;
4586 			struct r5dev *dev = &sh->dev[i];
4587 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4588 				/* We own a safe reference to the rdev */
4589 				rdev = conf->disks[i].rdev;
4590 				if (!rdev_set_badblocks(rdev, sh->sector,
4591 							STRIPE_SECTORS, 0))
4592 					md_error(conf->mddev, rdev);
4593 				rdev_dec_pending(rdev, conf->mddev);
4594 			}
4595 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4596 				rdev = conf->disks[i].rdev;
4597 				rdev_clear_badblocks(rdev, sh->sector,
4598 						     STRIPE_SECTORS, 0);
4599 				rdev_dec_pending(rdev, conf->mddev);
4600 			}
4601 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4602 				rdev = conf->disks[i].replacement;
4603 				if (!rdev)
4604 					/* rdev have been moved down */
4605 					rdev = conf->disks[i].rdev;
4606 				rdev_clear_badblocks(rdev, sh->sector,
4607 						     STRIPE_SECTORS, 0);
4608 				rdev_dec_pending(rdev, conf->mddev);
4609 			}
4610 		}
4611 
4612 	if (s.ops_request)
4613 		raid_run_ops(sh, s.ops_request);
4614 
4615 	ops_run_io(sh, &s);
4616 
4617 	if (s.dec_preread_active) {
4618 		/* We delay this until after ops_run_io so that if make_request
4619 		 * is waiting on a flush, it won't continue until the writes
4620 		 * have actually been submitted.
4621 		 */
4622 		atomic_dec(&conf->preread_active_stripes);
4623 		if (atomic_read(&conf->preread_active_stripes) <
4624 		    IO_THRESHOLD)
4625 			md_wakeup_thread(conf->mddev->thread);
4626 	}
4627 
4628 	if (!bio_list_empty(&s.return_bi)) {
4629 		if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4630 			spin_lock_irq(&conf->device_lock);
4631 			bio_list_merge(&conf->return_bi, &s.return_bi);
4632 			spin_unlock_irq(&conf->device_lock);
4633 			md_wakeup_thread(conf->mddev->thread);
4634 		} else
4635 			return_io(&s.return_bi);
4636 	}
4637 
4638 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4639 }
4640 
raid5_activate_delayed(struct r5conf * conf)4641 static void raid5_activate_delayed(struct r5conf *conf)
4642 {
4643 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4644 		while (!list_empty(&conf->delayed_list)) {
4645 			struct list_head *l = conf->delayed_list.next;
4646 			struct stripe_head *sh;
4647 			sh = list_entry(l, struct stripe_head, lru);
4648 			list_del_init(l);
4649 			clear_bit(STRIPE_DELAYED, &sh->state);
4650 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4651 				atomic_inc(&conf->preread_active_stripes);
4652 			list_add_tail(&sh->lru, &conf->hold_list);
4653 			raid5_wakeup_stripe_thread(sh);
4654 		}
4655 	}
4656 }
4657 
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)4658 static void activate_bit_delay(struct r5conf *conf,
4659 	struct list_head *temp_inactive_list)
4660 {
4661 	/* device_lock is held */
4662 	struct list_head head;
4663 	list_add(&head, &conf->bitmap_list);
4664 	list_del_init(&conf->bitmap_list);
4665 	while (!list_empty(&head)) {
4666 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4667 		int hash;
4668 		list_del_init(&sh->lru);
4669 		atomic_inc(&sh->count);
4670 		hash = sh->hash_lock_index;
4671 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4672 	}
4673 }
4674 
raid5_congested(struct mddev * mddev,int bits)4675 static int raid5_congested(struct mddev *mddev, int bits)
4676 {
4677 	struct r5conf *conf = mddev->private;
4678 
4679 	/* No difference between reads and writes.  Just check
4680 	 * how busy the stripe_cache is
4681 	 */
4682 
4683 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4684 		return 1;
4685 	if (conf->quiesce)
4686 		return 1;
4687 	if (atomic_read(&conf->empty_inactive_list_nr))
4688 		return 1;
4689 
4690 	return 0;
4691 }
4692 
in_chunk_boundary(struct mddev * mddev,struct bio * bio)4693 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4694 {
4695 	struct r5conf *conf = mddev->private;
4696 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4697 	unsigned int chunk_sectors;
4698 	unsigned int bio_sectors = bio_sectors(bio);
4699 
4700 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4701 	return  chunk_sectors >=
4702 		((sector & (chunk_sectors - 1)) + bio_sectors);
4703 }
4704 
4705 /*
4706  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4707  *  later sampled by raid5d.
4708  */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)4709 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4710 {
4711 	unsigned long flags;
4712 
4713 	spin_lock_irqsave(&conf->device_lock, flags);
4714 
4715 	bi->bi_next = conf->retry_read_aligned_list;
4716 	conf->retry_read_aligned_list = bi;
4717 
4718 	spin_unlock_irqrestore(&conf->device_lock, flags);
4719 	md_wakeup_thread(conf->mddev->thread);
4720 }
4721 
remove_bio_from_retry(struct r5conf * conf)4722 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4723 {
4724 	struct bio *bi;
4725 
4726 	bi = conf->retry_read_aligned;
4727 	if (bi) {
4728 		conf->retry_read_aligned = NULL;
4729 		return bi;
4730 	}
4731 	bi = conf->retry_read_aligned_list;
4732 	if(bi) {
4733 		conf->retry_read_aligned_list = bi->bi_next;
4734 		bi->bi_next = NULL;
4735 		/*
4736 		 * this sets the active strip count to 1 and the processed
4737 		 * strip count to zero (upper 8 bits)
4738 		 */
4739 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4740 	}
4741 
4742 	return bi;
4743 }
4744 
4745 /*
4746  *  The "raid5_align_endio" should check if the read succeeded and if it
4747  *  did, call bio_endio on the original bio (having bio_put the new bio
4748  *  first).
4749  *  If the read failed..
4750  */
raid5_align_endio(struct bio * bi)4751 static void raid5_align_endio(struct bio *bi)
4752 {
4753 	struct bio* raid_bi  = bi->bi_private;
4754 	struct mddev *mddev;
4755 	struct r5conf *conf;
4756 	struct md_rdev *rdev;
4757 	int error = bi->bi_error;
4758 
4759 	bio_put(bi);
4760 
4761 	rdev = (void*)raid_bi->bi_next;
4762 	raid_bi->bi_next = NULL;
4763 	mddev = rdev->mddev;
4764 	conf = mddev->private;
4765 
4766 	rdev_dec_pending(rdev, conf->mddev);
4767 
4768 	if (!error) {
4769 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4770 					 raid_bi, 0);
4771 		bio_endio(raid_bi);
4772 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4773 			wake_up(&conf->wait_for_quiescent);
4774 		return;
4775 	}
4776 
4777 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4778 
4779 	add_bio_to_retry(raid_bi, conf);
4780 }
4781 
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)4782 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4783 {
4784 	struct r5conf *conf = mddev->private;
4785 	int dd_idx;
4786 	struct bio* align_bi;
4787 	struct md_rdev *rdev;
4788 	sector_t end_sector;
4789 
4790 	if (!in_chunk_boundary(mddev, raid_bio)) {
4791 		pr_debug("%s: non aligned\n", __func__);
4792 		return 0;
4793 	}
4794 	/*
4795 	 * use bio_clone_mddev to make a copy of the bio
4796 	 */
4797 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4798 	if (!align_bi)
4799 		return 0;
4800 	/*
4801 	 *   set bi_end_io to a new function, and set bi_private to the
4802 	 *     original bio.
4803 	 */
4804 	align_bi->bi_end_io  = raid5_align_endio;
4805 	align_bi->bi_private = raid_bio;
4806 	/*
4807 	 *	compute position
4808 	 */
4809 	align_bi->bi_iter.bi_sector =
4810 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4811 				     0, &dd_idx, NULL);
4812 
4813 	end_sector = bio_end_sector(align_bi);
4814 	rcu_read_lock();
4815 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4816 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4817 	    rdev->recovery_offset < end_sector) {
4818 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4819 		if (rdev &&
4820 		    (test_bit(Faulty, &rdev->flags) ||
4821 		    !(test_bit(In_sync, &rdev->flags) ||
4822 		      rdev->recovery_offset >= end_sector)))
4823 			rdev = NULL;
4824 	}
4825 	if (rdev) {
4826 		sector_t first_bad;
4827 		int bad_sectors;
4828 
4829 		atomic_inc(&rdev->nr_pending);
4830 		rcu_read_unlock();
4831 		raid_bio->bi_next = (void*)rdev;
4832 		align_bi->bi_bdev =  rdev->bdev;
4833 		bio_clear_flag(align_bi, BIO_SEG_VALID);
4834 
4835 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4836 				bio_sectors(align_bi),
4837 				&first_bad, &bad_sectors)) {
4838 			bio_put(align_bi);
4839 			rdev_dec_pending(rdev, mddev);
4840 			return 0;
4841 		}
4842 
4843 		/* No reshape active, so we can trust rdev->data_offset */
4844 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4845 
4846 		spin_lock_irq(&conf->device_lock);
4847 		wait_event_lock_irq(conf->wait_for_quiescent,
4848 				    conf->quiesce == 0,
4849 				    conf->device_lock);
4850 		atomic_inc(&conf->active_aligned_reads);
4851 		spin_unlock_irq(&conf->device_lock);
4852 
4853 		if (mddev->gendisk)
4854 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4855 					      align_bi, disk_devt(mddev->gendisk),
4856 					      raid_bio->bi_iter.bi_sector);
4857 		generic_make_request(align_bi);
4858 		return 1;
4859 	} else {
4860 		rcu_read_unlock();
4861 		bio_put(align_bi);
4862 		return 0;
4863 	}
4864 }
4865 
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)4866 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4867 {
4868 	struct bio *split;
4869 
4870 	do {
4871 		sector_t sector = raid_bio->bi_iter.bi_sector;
4872 		unsigned chunk_sects = mddev->chunk_sectors;
4873 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4874 
4875 		if (sectors < bio_sectors(raid_bio)) {
4876 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4877 			bio_chain(split, raid_bio);
4878 		} else
4879 			split = raid_bio;
4880 
4881 		if (!raid5_read_one_chunk(mddev, split)) {
4882 			if (split != raid_bio)
4883 				generic_make_request(raid_bio);
4884 			return split;
4885 		}
4886 	} while (split != raid_bio);
4887 
4888 	return NULL;
4889 }
4890 
4891 /* __get_priority_stripe - get the next stripe to process
4892  *
4893  * Full stripe writes are allowed to pass preread active stripes up until
4894  * the bypass_threshold is exceeded.  In general the bypass_count
4895  * increments when the handle_list is handled before the hold_list; however, it
4896  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4897  * stripe with in flight i/o.  The bypass_count will be reset when the
4898  * head of the hold_list has changed, i.e. the head was promoted to the
4899  * handle_list.
4900  */
__get_priority_stripe(struct r5conf * conf,int group)4901 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4902 {
4903 	struct stripe_head *sh = NULL, *tmp;
4904 	struct list_head *handle_list = NULL;
4905 	struct r5worker_group *wg = NULL;
4906 
4907 	if (conf->worker_cnt_per_group == 0) {
4908 		handle_list = &conf->handle_list;
4909 	} else if (group != ANY_GROUP) {
4910 		handle_list = &conf->worker_groups[group].handle_list;
4911 		wg = &conf->worker_groups[group];
4912 	} else {
4913 		int i;
4914 		for (i = 0; i < conf->group_cnt; i++) {
4915 			handle_list = &conf->worker_groups[i].handle_list;
4916 			wg = &conf->worker_groups[i];
4917 			if (!list_empty(handle_list))
4918 				break;
4919 		}
4920 	}
4921 
4922 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4923 		  __func__,
4924 		  list_empty(handle_list) ? "empty" : "busy",
4925 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4926 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4927 
4928 	if (!list_empty(handle_list)) {
4929 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4930 
4931 		if (list_empty(&conf->hold_list))
4932 			conf->bypass_count = 0;
4933 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4934 			if (conf->hold_list.next == conf->last_hold)
4935 				conf->bypass_count++;
4936 			else {
4937 				conf->last_hold = conf->hold_list.next;
4938 				conf->bypass_count -= conf->bypass_threshold;
4939 				if (conf->bypass_count < 0)
4940 					conf->bypass_count = 0;
4941 			}
4942 		}
4943 	} else if (!list_empty(&conf->hold_list) &&
4944 		   ((conf->bypass_threshold &&
4945 		     conf->bypass_count > conf->bypass_threshold) ||
4946 		    atomic_read(&conf->pending_full_writes) == 0)) {
4947 
4948 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4949 			if (conf->worker_cnt_per_group == 0 ||
4950 			    group == ANY_GROUP ||
4951 			    !cpu_online(tmp->cpu) ||
4952 			    cpu_to_group(tmp->cpu) == group) {
4953 				sh = tmp;
4954 				break;
4955 			}
4956 		}
4957 
4958 		if (sh) {
4959 			conf->bypass_count -= conf->bypass_threshold;
4960 			if (conf->bypass_count < 0)
4961 				conf->bypass_count = 0;
4962 		}
4963 		wg = NULL;
4964 	}
4965 
4966 	if (!sh)
4967 		return NULL;
4968 
4969 	if (wg) {
4970 		wg->stripes_cnt--;
4971 		sh->group = NULL;
4972 	}
4973 	list_del_init(&sh->lru);
4974 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4975 	return sh;
4976 }
4977 
4978 struct raid5_plug_cb {
4979 	struct blk_plug_cb	cb;
4980 	struct list_head	list;
4981 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4982 };
4983 
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)4984 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4985 {
4986 	struct raid5_plug_cb *cb = container_of(
4987 		blk_cb, struct raid5_plug_cb, cb);
4988 	struct stripe_head *sh;
4989 	struct mddev *mddev = cb->cb.data;
4990 	struct r5conf *conf = mddev->private;
4991 	int cnt = 0;
4992 	int hash;
4993 
4994 	if (cb->list.next && !list_empty(&cb->list)) {
4995 		spin_lock_irq(&conf->device_lock);
4996 		while (!list_empty(&cb->list)) {
4997 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4998 			list_del_init(&sh->lru);
4999 			/*
5000 			 * avoid race release_stripe_plug() sees
5001 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5002 			 * is still in our list
5003 			 */
5004 			smp_mb__before_atomic();
5005 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5006 			/*
5007 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5008 			 * case, the count is always > 1 here
5009 			 */
5010 			hash = sh->hash_lock_index;
5011 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5012 			cnt++;
5013 		}
5014 		spin_unlock_irq(&conf->device_lock);
5015 	}
5016 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5017 				     NR_STRIPE_HASH_LOCKS);
5018 	if (mddev->queue)
5019 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5020 	kfree(cb);
5021 }
5022 
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5023 static void release_stripe_plug(struct mddev *mddev,
5024 				struct stripe_head *sh)
5025 {
5026 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5027 		raid5_unplug, mddev,
5028 		sizeof(struct raid5_plug_cb));
5029 	struct raid5_plug_cb *cb;
5030 
5031 	if (!blk_cb) {
5032 		raid5_release_stripe(sh);
5033 		return;
5034 	}
5035 
5036 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5037 
5038 	if (cb->list.next == NULL) {
5039 		int i;
5040 		INIT_LIST_HEAD(&cb->list);
5041 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5042 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5043 	}
5044 
5045 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5046 		list_add_tail(&sh->lru, &cb->list);
5047 	else
5048 		raid5_release_stripe(sh);
5049 }
5050 
make_discard_request(struct mddev * mddev,struct bio * bi)5051 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5052 {
5053 	struct r5conf *conf = mddev->private;
5054 	sector_t logical_sector, last_sector;
5055 	struct stripe_head *sh;
5056 	int remaining;
5057 	int stripe_sectors;
5058 
5059 	if (mddev->reshape_position != MaxSector)
5060 		/* Skip discard while reshape is happening */
5061 		return;
5062 
5063 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5064 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5065 
5066 	bi->bi_next = NULL;
5067 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5068 
5069 	stripe_sectors = conf->chunk_sectors *
5070 		(conf->raid_disks - conf->max_degraded);
5071 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5072 					       stripe_sectors);
5073 	sector_div(last_sector, stripe_sectors);
5074 
5075 	logical_sector *= conf->chunk_sectors;
5076 	last_sector *= conf->chunk_sectors;
5077 
5078 	for (; logical_sector < last_sector;
5079 	     logical_sector += STRIPE_SECTORS) {
5080 		DEFINE_WAIT(w);
5081 		int d;
5082 	again:
5083 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5084 		prepare_to_wait(&conf->wait_for_overlap, &w,
5085 				TASK_UNINTERRUPTIBLE);
5086 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5087 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5088 			raid5_release_stripe(sh);
5089 			schedule();
5090 			goto again;
5091 		}
5092 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5093 		spin_lock_irq(&sh->stripe_lock);
5094 		for (d = 0; d < conf->raid_disks; d++) {
5095 			if (d == sh->pd_idx || d == sh->qd_idx)
5096 				continue;
5097 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5098 				set_bit(R5_Overlap, &sh->dev[d].flags);
5099 				spin_unlock_irq(&sh->stripe_lock);
5100 				raid5_release_stripe(sh);
5101 				schedule();
5102 				goto again;
5103 			}
5104 		}
5105 		set_bit(STRIPE_DISCARD, &sh->state);
5106 		finish_wait(&conf->wait_for_overlap, &w);
5107 		sh->overwrite_disks = 0;
5108 		for (d = 0; d < conf->raid_disks; d++) {
5109 			if (d == sh->pd_idx || d == sh->qd_idx)
5110 				continue;
5111 			sh->dev[d].towrite = bi;
5112 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5113 			raid5_inc_bi_active_stripes(bi);
5114 			sh->overwrite_disks++;
5115 		}
5116 		spin_unlock_irq(&sh->stripe_lock);
5117 		if (conf->mddev->bitmap) {
5118 			for (d = 0;
5119 			     d < conf->raid_disks - conf->max_degraded;
5120 			     d++)
5121 				bitmap_startwrite(mddev->bitmap,
5122 						  sh->sector,
5123 						  STRIPE_SECTORS,
5124 						  0);
5125 			sh->bm_seq = conf->seq_flush + 1;
5126 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5127 		}
5128 
5129 		set_bit(STRIPE_HANDLE, &sh->state);
5130 		clear_bit(STRIPE_DELAYED, &sh->state);
5131 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5132 			atomic_inc(&conf->preread_active_stripes);
5133 		release_stripe_plug(mddev, sh);
5134 	}
5135 
5136 	remaining = raid5_dec_bi_active_stripes(bi);
5137 	if (remaining == 0) {
5138 		md_write_end(mddev);
5139 		bio_endio(bi);
5140 	}
5141 }
5142 
make_request(struct mddev * mddev,struct bio * bi)5143 static void make_request(struct mddev *mddev, struct bio * bi)
5144 {
5145 	struct r5conf *conf = mddev->private;
5146 	int dd_idx;
5147 	sector_t new_sector;
5148 	sector_t logical_sector, last_sector;
5149 	struct stripe_head *sh;
5150 	const int rw = bio_data_dir(bi);
5151 	int remaining;
5152 	DEFINE_WAIT(w);
5153 	bool do_prepare;
5154 
5155 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5156 		int ret = r5l_handle_flush_request(conf->log, bi);
5157 
5158 		if (ret == 0)
5159 			return;
5160 		if (ret == -ENODEV) {
5161 			md_flush_request(mddev, bi);
5162 			return;
5163 		}
5164 		/* ret == -EAGAIN, fallback */
5165 	}
5166 
5167 	md_write_start(mddev, bi);
5168 
5169 	/*
5170 	 * If array is degraded, better not do chunk aligned read because
5171 	 * later we might have to read it again in order to reconstruct
5172 	 * data on failed drives.
5173 	 */
5174 	if (rw == READ && mddev->degraded == 0 &&
5175 	    mddev->reshape_position == MaxSector) {
5176 		bi = chunk_aligned_read(mddev, bi);
5177 		if (!bi)
5178 			return;
5179 	}
5180 
5181 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5182 		make_discard_request(mddev, bi);
5183 		return;
5184 	}
5185 
5186 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5187 	last_sector = bio_end_sector(bi);
5188 	bi->bi_next = NULL;
5189 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5190 
5191 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5192 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5193 		int previous;
5194 		int seq;
5195 
5196 		do_prepare = false;
5197 	retry:
5198 		seq = read_seqcount_begin(&conf->gen_lock);
5199 		previous = 0;
5200 		if (do_prepare)
5201 			prepare_to_wait(&conf->wait_for_overlap, &w,
5202 				TASK_UNINTERRUPTIBLE);
5203 		if (unlikely(conf->reshape_progress != MaxSector)) {
5204 			/* spinlock is needed as reshape_progress may be
5205 			 * 64bit on a 32bit platform, and so it might be
5206 			 * possible to see a half-updated value
5207 			 * Of course reshape_progress could change after
5208 			 * the lock is dropped, so once we get a reference
5209 			 * to the stripe that we think it is, we will have
5210 			 * to check again.
5211 			 */
5212 			spin_lock_irq(&conf->device_lock);
5213 			if (mddev->reshape_backwards
5214 			    ? logical_sector < conf->reshape_progress
5215 			    : logical_sector >= conf->reshape_progress) {
5216 				previous = 1;
5217 			} else {
5218 				if (mddev->reshape_backwards
5219 				    ? logical_sector < conf->reshape_safe
5220 				    : logical_sector >= conf->reshape_safe) {
5221 					spin_unlock_irq(&conf->device_lock);
5222 					schedule();
5223 					do_prepare = true;
5224 					goto retry;
5225 				}
5226 			}
5227 			spin_unlock_irq(&conf->device_lock);
5228 		}
5229 
5230 		new_sector = raid5_compute_sector(conf, logical_sector,
5231 						  previous,
5232 						  &dd_idx, NULL);
5233 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5234 			(unsigned long long)new_sector,
5235 			(unsigned long long)logical_sector);
5236 
5237 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5238 				       (bi->bi_rw&RWA_MASK), 0);
5239 		if (sh) {
5240 			if (unlikely(previous)) {
5241 				/* expansion might have moved on while waiting for a
5242 				 * stripe, so we must do the range check again.
5243 				 * Expansion could still move past after this
5244 				 * test, but as we are holding a reference to
5245 				 * 'sh', we know that if that happens,
5246 				 *  STRIPE_EXPANDING will get set and the expansion
5247 				 * won't proceed until we finish with the stripe.
5248 				 */
5249 				int must_retry = 0;
5250 				spin_lock_irq(&conf->device_lock);
5251 				if (mddev->reshape_backwards
5252 				    ? logical_sector >= conf->reshape_progress
5253 				    : logical_sector < conf->reshape_progress)
5254 					/* mismatch, need to try again */
5255 					must_retry = 1;
5256 				spin_unlock_irq(&conf->device_lock);
5257 				if (must_retry) {
5258 					raid5_release_stripe(sh);
5259 					schedule();
5260 					do_prepare = true;
5261 					goto retry;
5262 				}
5263 			}
5264 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5265 				/* Might have got the wrong stripe_head
5266 				 * by accident
5267 				 */
5268 				raid5_release_stripe(sh);
5269 				goto retry;
5270 			}
5271 
5272 			if (rw == WRITE &&
5273 			    logical_sector >= mddev->suspend_lo &&
5274 			    logical_sector < mddev->suspend_hi) {
5275 				raid5_release_stripe(sh);
5276 				/* As the suspend_* range is controlled by
5277 				 * userspace, we want an interruptible
5278 				 * wait.
5279 				 */
5280 				flush_signals(current);
5281 				prepare_to_wait(&conf->wait_for_overlap,
5282 						&w, TASK_INTERRUPTIBLE);
5283 				if (logical_sector >= mddev->suspend_lo &&
5284 				    logical_sector < mddev->suspend_hi) {
5285 					schedule();
5286 					do_prepare = true;
5287 				}
5288 				goto retry;
5289 			}
5290 
5291 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5292 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5293 				/* Stripe is busy expanding or
5294 				 * add failed due to overlap.  Flush everything
5295 				 * and wait a while
5296 				 */
5297 				md_wakeup_thread(mddev->thread);
5298 				raid5_release_stripe(sh);
5299 				schedule();
5300 				do_prepare = true;
5301 				goto retry;
5302 			}
5303 			set_bit(STRIPE_HANDLE, &sh->state);
5304 			clear_bit(STRIPE_DELAYED, &sh->state);
5305 			if ((!sh->batch_head || sh == sh->batch_head) &&
5306 			    (bi->bi_rw & REQ_SYNC) &&
5307 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5308 				atomic_inc(&conf->preread_active_stripes);
5309 			release_stripe_plug(mddev, sh);
5310 		} else {
5311 			/* cannot get stripe for read-ahead, just give-up */
5312 			bi->bi_error = -EIO;
5313 			break;
5314 		}
5315 	}
5316 	finish_wait(&conf->wait_for_overlap, &w);
5317 
5318 	remaining = raid5_dec_bi_active_stripes(bi);
5319 	if (remaining == 0) {
5320 
5321 		if ( rw == WRITE )
5322 			md_write_end(mddev);
5323 
5324 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5325 					 bi, 0);
5326 		bio_endio(bi);
5327 	}
5328 }
5329 
5330 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5331 
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)5332 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5333 {
5334 	/* reshaping is quite different to recovery/resync so it is
5335 	 * handled quite separately ... here.
5336 	 *
5337 	 * On each call to sync_request, we gather one chunk worth of
5338 	 * destination stripes and flag them as expanding.
5339 	 * Then we find all the source stripes and request reads.
5340 	 * As the reads complete, handle_stripe will copy the data
5341 	 * into the destination stripe and release that stripe.
5342 	 */
5343 	struct r5conf *conf = mddev->private;
5344 	struct stripe_head *sh;
5345 	sector_t first_sector, last_sector;
5346 	int raid_disks = conf->previous_raid_disks;
5347 	int data_disks = raid_disks - conf->max_degraded;
5348 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5349 	int i;
5350 	int dd_idx;
5351 	sector_t writepos, readpos, safepos;
5352 	sector_t stripe_addr;
5353 	int reshape_sectors;
5354 	struct list_head stripes;
5355 	sector_t retn;
5356 
5357 	if (sector_nr == 0) {
5358 		/* If restarting in the middle, skip the initial sectors */
5359 		if (mddev->reshape_backwards &&
5360 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5361 			sector_nr = raid5_size(mddev, 0, 0)
5362 				- conf->reshape_progress;
5363 		} else if (mddev->reshape_backwards &&
5364 			   conf->reshape_progress == MaxSector) {
5365 			/* shouldn't happen, but just in case, finish up.*/
5366 			sector_nr = MaxSector;
5367 		} else if (!mddev->reshape_backwards &&
5368 			   conf->reshape_progress > 0)
5369 			sector_nr = conf->reshape_progress;
5370 		sector_div(sector_nr, new_data_disks);
5371 		if (sector_nr) {
5372 			mddev->curr_resync_completed = sector_nr;
5373 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5374 			*skipped = 1;
5375 			retn = sector_nr;
5376 			goto finish;
5377 		}
5378 	}
5379 
5380 	/* We need to process a full chunk at a time.
5381 	 * If old and new chunk sizes differ, we need to process the
5382 	 * largest of these
5383 	 */
5384 
5385 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5386 
5387 	/* We update the metadata at least every 10 seconds, or when
5388 	 * the data about to be copied would over-write the source of
5389 	 * the data at the front of the range.  i.e. one new_stripe
5390 	 * along from reshape_progress new_maps to after where
5391 	 * reshape_safe old_maps to
5392 	 */
5393 	writepos = conf->reshape_progress;
5394 	sector_div(writepos, new_data_disks);
5395 	readpos = conf->reshape_progress;
5396 	sector_div(readpos, data_disks);
5397 	safepos = conf->reshape_safe;
5398 	sector_div(safepos, data_disks);
5399 	if (mddev->reshape_backwards) {
5400 		BUG_ON(writepos < reshape_sectors);
5401 		writepos -= reshape_sectors;
5402 		readpos += reshape_sectors;
5403 		safepos += reshape_sectors;
5404 	} else {
5405 		writepos += reshape_sectors;
5406 		/* readpos and safepos are worst-case calculations.
5407 		 * A negative number is overly pessimistic, and causes
5408 		 * obvious problems for unsigned storage.  So clip to 0.
5409 		 */
5410 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5411 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5412 	}
5413 
5414 	/* Having calculated the 'writepos' possibly use it
5415 	 * to set 'stripe_addr' which is where we will write to.
5416 	 */
5417 	if (mddev->reshape_backwards) {
5418 		BUG_ON(conf->reshape_progress == 0);
5419 		stripe_addr = writepos;
5420 		BUG_ON((mddev->dev_sectors &
5421 			~((sector_t)reshape_sectors - 1))
5422 		       - reshape_sectors - stripe_addr
5423 		       != sector_nr);
5424 	} else {
5425 		BUG_ON(writepos != sector_nr + reshape_sectors);
5426 		stripe_addr = sector_nr;
5427 	}
5428 
5429 	/* 'writepos' is the most advanced device address we might write.
5430 	 * 'readpos' is the least advanced device address we might read.
5431 	 * 'safepos' is the least address recorded in the metadata as having
5432 	 *     been reshaped.
5433 	 * If there is a min_offset_diff, these are adjusted either by
5434 	 * increasing the safepos/readpos if diff is negative, or
5435 	 * increasing writepos if diff is positive.
5436 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5437 	 * ensure safety in the face of a crash - that must be done by userspace
5438 	 * making a backup of the data.  So in that case there is no particular
5439 	 * rush to update metadata.
5440 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5441 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5442 	 * we can be safe in the event of a crash.
5443 	 * So we insist on updating metadata if safepos is behind writepos and
5444 	 * readpos is beyond writepos.
5445 	 * In any case, update the metadata every 10 seconds.
5446 	 * Maybe that number should be configurable, but I'm not sure it is
5447 	 * worth it.... maybe it could be a multiple of safemode_delay???
5448 	 */
5449 	if (conf->min_offset_diff < 0) {
5450 		safepos += -conf->min_offset_diff;
5451 		readpos += -conf->min_offset_diff;
5452 	} else
5453 		writepos += conf->min_offset_diff;
5454 
5455 	if ((mddev->reshape_backwards
5456 	     ? (safepos > writepos && readpos < writepos)
5457 	     : (safepos < writepos && readpos > writepos)) ||
5458 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5459 		/* Cannot proceed until we've updated the superblock... */
5460 		wait_event(conf->wait_for_overlap,
5461 			   atomic_read(&conf->reshape_stripes)==0
5462 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5463 		if (atomic_read(&conf->reshape_stripes) != 0)
5464 			return 0;
5465 		mddev->reshape_position = conf->reshape_progress;
5466 		mddev->curr_resync_completed = sector_nr;
5467 		conf->reshape_checkpoint = jiffies;
5468 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5469 		md_wakeup_thread(mddev->thread);
5470 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5471 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5472 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5473 			return 0;
5474 		spin_lock_irq(&conf->device_lock);
5475 		conf->reshape_safe = mddev->reshape_position;
5476 		spin_unlock_irq(&conf->device_lock);
5477 		wake_up(&conf->wait_for_overlap);
5478 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5479 	}
5480 
5481 	INIT_LIST_HEAD(&stripes);
5482 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5483 		int j;
5484 		int skipped_disk = 0;
5485 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5486 		set_bit(STRIPE_EXPANDING, &sh->state);
5487 		atomic_inc(&conf->reshape_stripes);
5488 		/* If any of this stripe is beyond the end of the old
5489 		 * array, then we need to zero those blocks
5490 		 */
5491 		for (j=sh->disks; j--;) {
5492 			sector_t s;
5493 			if (j == sh->pd_idx)
5494 				continue;
5495 			if (conf->level == 6 &&
5496 			    j == sh->qd_idx)
5497 				continue;
5498 			s = raid5_compute_blocknr(sh, j, 0);
5499 			if (s < raid5_size(mddev, 0, 0)) {
5500 				skipped_disk = 1;
5501 				continue;
5502 			}
5503 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5504 			set_bit(R5_Expanded, &sh->dev[j].flags);
5505 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5506 		}
5507 		if (!skipped_disk) {
5508 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5509 			set_bit(STRIPE_HANDLE, &sh->state);
5510 		}
5511 		list_add(&sh->lru, &stripes);
5512 	}
5513 	spin_lock_irq(&conf->device_lock);
5514 	if (mddev->reshape_backwards)
5515 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5516 	else
5517 		conf->reshape_progress += reshape_sectors * new_data_disks;
5518 	spin_unlock_irq(&conf->device_lock);
5519 	/* Ok, those stripe are ready. We can start scheduling
5520 	 * reads on the source stripes.
5521 	 * The source stripes are determined by mapping the first and last
5522 	 * block on the destination stripes.
5523 	 */
5524 	first_sector =
5525 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5526 				     1, &dd_idx, NULL);
5527 	last_sector =
5528 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5529 					    * new_data_disks - 1),
5530 				     1, &dd_idx, NULL);
5531 	if (last_sector >= mddev->dev_sectors)
5532 		last_sector = mddev->dev_sectors - 1;
5533 	while (first_sector <= last_sector) {
5534 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5535 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5536 		set_bit(STRIPE_HANDLE, &sh->state);
5537 		raid5_release_stripe(sh);
5538 		first_sector += STRIPE_SECTORS;
5539 	}
5540 	/* Now that the sources are clearly marked, we can release
5541 	 * the destination stripes
5542 	 */
5543 	while (!list_empty(&stripes)) {
5544 		sh = list_entry(stripes.next, struct stripe_head, lru);
5545 		list_del_init(&sh->lru);
5546 		raid5_release_stripe(sh);
5547 	}
5548 	/* If this takes us to the resync_max point where we have to pause,
5549 	 * then we need to write out the superblock.
5550 	 */
5551 	sector_nr += reshape_sectors;
5552 	retn = reshape_sectors;
5553 finish:
5554 	if (mddev->curr_resync_completed > mddev->resync_max ||
5555 	    (sector_nr - mddev->curr_resync_completed) * 2
5556 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5557 		/* Cannot proceed until we've updated the superblock... */
5558 		wait_event(conf->wait_for_overlap,
5559 			   atomic_read(&conf->reshape_stripes) == 0
5560 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5561 		if (atomic_read(&conf->reshape_stripes) != 0)
5562 			goto ret;
5563 		mddev->reshape_position = conf->reshape_progress;
5564 		mddev->curr_resync_completed = sector_nr;
5565 		conf->reshape_checkpoint = jiffies;
5566 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5567 		md_wakeup_thread(mddev->thread);
5568 		wait_event(mddev->sb_wait,
5569 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5570 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5571 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5572 			goto ret;
5573 		spin_lock_irq(&conf->device_lock);
5574 		conf->reshape_safe = mddev->reshape_position;
5575 		spin_unlock_irq(&conf->device_lock);
5576 		wake_up(&conf->wait_for_overlap);
5577 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5578 	}
5579 ret:
5580 	return retn;
5581 }
5582 
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)5583 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5584 {
5585 	struct r5conf *conf = mddev->private;
5586 	struct stripe_head *sh;
5587 	sector_t max_sector = mddev->dev_sectors;
5588 	sector_t sync_blocks;
5589 	int still_degraded = 0;
5590 	int i;
5591 
5592 	if (sector_nr >= max_sector) {
5593 		/* just being told to finish up .. nothing much to do */
5594 
5595 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5596 			end_reshape(conf);
5597 			return 0;
5598 		}
5599 
5600 		if (mddev->curr_resync < max_sector) /* aborted */
5601 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5602 					&sync_blocks, 1);
5603 		else /* completed sync */
5604 			conf->fullsync = 0;
5605 		bitmap_close_sync(mddev->bitmap);
5606 
5607 		return 0;
5608 	}
5609 
5610 	/* Allow raid5_quiesce to complete */
5611 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5612 
5613 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5614 		return reshape_request(mddev, sector_nr, skipped);
5615 
5616 	/* No need to check resync_max as we never do more than one
5617 	 * stripe, and as resync_max will always be on a chunk boundary,
5618 	 * if the check in md_do_sync didn't fire, there is no chance
5619 	 * of overstepping resync_max here
5620 	 */
5621 
5622 	/* if there is too many failed drives and we are trying
5623 	 * to resync, then assert that we are finished, because there is
5624 	 * nothing we can do.
5625 	 */
5626 	if (mddev->degraded >= conf->max_degraded &&
5627 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5628 		sector_t rv = mddev->dev_sectors - sector_nr;
5629 		*skipped = 1;
5630 		return rv;
5631 	}
5632 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5633 	    !conf->fullsync &&
5634 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5635 	    sync_blocks >= STRIPE_SECTORS) {
5636 		/* we can skip this block, and probably more */
5637 		sync_blocks /= STRIPE_SECTORS;
5638 		*skipped = 1;
5639 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5640 	}
5641 
5642 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5643 
5644 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5645 	if (sh == NULL) {
5646 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5647 		/* make sure we don't swamp the stripe cache if someone else
5648 		 * is trying to get access
5649 		 */
5650 		schedule_timeout_uninterruptible(1);
5651 	}
5652 	/* Need to check if array will still be degraded after recovery/resync
5653 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5654 	 * one drive while leaving another faulty drive in array.
5655 	 */
5656 	rcu_read_lock();
5657 	for (i = 0; i < conf->raid_disks; i++) {
5658 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5659 
5660 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5661 			still_degraded = 1;
5662 	}
5663 	rcu_read_unlock();
5664 
5665 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5666 
5667 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5668 	set_bit(STRIPE_HANDLE, &sh->state);
5669 
5670 	raid5_release_stripe(sh);
5671 
5672 	return STRIPE_SECTORS;
5673 }
5674 
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio)5675 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5676 {
5677 	/* We may not be able to submit a whole bio at once as there
5678 	 * may not be enough stripe_heads available.
5679 	 * We cannot pre-allocate enough stripe_heads as we may need
5680 	 * more than exist in the cache (if we allow ever large chunks).
5681 	 * So we do one stripe head at a time and record in
5682 	 * ->bi_hw_segments how many have been done.
5683 	 *
5684 	 * We *know* that this entire raid_bio is in one chunk, so
5685 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5686 	 */
5687 	struct stripe_head *sh;
5688 	int dd_idx;
5689 	sector_t sector, logical_sector, last_sector;
5690 	int scnt = 0;
5691 	int remaining;
5692 	int handled = 0;
5693 
5694 	logical_sector = raid_bio->bi_iter.bi_sector &
5695 		~((sector_t)STRIPE_SECTORS-1);
5696 	sector = raid5_compute_sector(conf, logical_sector,
5697 				      0, &dd_idx, NULL);
5698 	last_sector = bio_end_sector(raid_bio);
5699 
5700 	for (; logical_sector < last_sector;
5701 	     logical_sector += STRIPE_SECTORS,
5702 		     sector += STRIPE_SECTORS,
5703 		     scnt++) {
5704 
5705 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5706 			/* already done this stripe */
5707 			continue;
5708 
5709 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5710 
5711 		if (!sh) {
5712 			/* failed to get a stripe - must wait */
5713 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5714 			conf->retry_read_aligned = raid_bio;
5715 			return handled;
5716 		}
5717 
5718 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5719 			raid5_release_stripe(sh);
5720 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5721 			conf->retry_read_aligned = raid_bio;
5722 			return handled;
5723 		}
5724 
5725 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5726 		handle_stripe(sh);
5727 		raid5_release_stripe(sh);
5728 		handled++;
5729 	}
5730 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5731 	if (remaining == 0) {
5732 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5733 					 raid_bio, 0);
5734 		bio_endio(raid_bio);
5735 	}
5736 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5737 		wake_up(&conf->wait_for_quiescent);
5738 	return handled;
5739 }
5740 
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)5741 static int handle_active_stripes(struct r5conf *conf, int group,
5742 				 struct r5worker *worker,
5743 				 struct list_head *temp_inactive_list)
5744 {
5745 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5746 	int i, batch_size = 0, hash;
5747 	bool release_inactive = false;
5748 
5749 	while (batch_size < MAX_STRIPE_BATCH &&
5750 			(sh = __get_priority_stripe(conf, group)) != NULL)
5751 		batch[batch_size++] = sh;
5752 
5753 	if (batch_size == 0) {
5754 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5755 			if (!list_empty(temp_inactive_list + i))
5756 				break;
5757 		if (i == NR_STRIPE_HASH_LOCKS) {
5758 			spin_unlock_irq(&conf->device_lock);
5759 			r5l_flush_stripe_to_raid(conf->log);
5760 			spin_lock_irq(&conf->device_lock);
5761 			return batch_size;
5762 		}
5763 		release_inactive = true;
5764 	}
5765 	spin_unlock_irq(&conf->device_lock);
5766 
5767 	release_inactive_stripe_list(conf, temp_inactive_list,
5768 				     NR_STRIPE_HASH_LOCKS);
5769 
5770 	r5l_flush_stripe_to_raid(conf->log);
5771 	if (release_inactive) {
5772 		spin_lock_irq(&conf->device_lock);
5773 		return 0;
5774 	}
5775 
5776 	for (i = 0; i < batch_size; i++)
5777 		handle_stripe(batch[i]);
5778 	r5l_write_stripe_run(conf->log);
5779 
5780 	cond_resched();
5781 
5782 	spin_lock_irq(&conf->device_lock);
5783 	for (i = 0; i < batch_size; i++) {
5784 		hash = batch[i]->hash_lock_index;
5785 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5786 	}
5787 	return batch_size;
5788 }
5789 
raid5_do_work(struct work_struct * work)5790 static void raid5_do_work(struct work_struct *work)
5791 {
5792 	struct r5worker *worker = container_of(work, struct r5worker, work);
5793 	struct r5worker_group *group = worker->group;
5794 	struct r5conf *conf = group->conf;
5795 	int group_id = group - conf->worker_groups;
5796 	int handled;
5797 	struct blk_plug plug;
5798 
5799 	pr_debug("+++ raid5worker active\n");
5800 
5801 	blk_start_plug(&plug);
5802 	handled = 0;
5803 	spin_lock_irq(&conf->device_lock);
5804 	while (1) {
5805 		int batch_size, released;
5806 
5807 		released = release_stripe_list(conf, worker->temp_inactive_list);
5808 
5809 		batch_size = handle_active_stripes(conf, group_id, worker,
5810 						   worker->temp_inactive_list);
5811 		worker->working = false;
5812 		if (!batch_size && !released)
5813 			break;
5814 		handled += batch_size;
5815 	}
5816 	pr_debug("%d stripes handled\n", handled);
5817 
5818 	spin_unlock_irq(&conf->device_lock);
5819 	blk_finish_plug(&plug);
5820 
5821 	pr_debug("--- raid5worker inactive\n");
5822 }
5823 
5824 /*
5825  * This is our raid5 kernel thread.
5826  *
5827  * We scan the hash table for stripes which can be handled now.
5828  * During the scan, completed stripes are saved for us by the interrupt
5829  * handler, so that they will not have to wait for our next wakeup.
5830  */
raid5d(struct md_thread * thread)5831 static void raid5d(struct md_thread *thread)
5832 {
5833 	struct mddev *mddev = thread->mddev;
5834 	struct r5conf *conf = mddev->private;
5835 	int handled;
5836 	struct blk_plug plug;
5837 
5838 	pr_debug("+++ raid5d active\n");
5839 
5840 	md_check_recovery(mddev);
5841 
5842 	if (!bio_list_empty(&conf->return_bi) &&
5843 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5844 		struct bio_list tmp = BIO_EMPTY_LIST;
5845 		spin_lock_irq(&conf->device_lock);
5846 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5847 			bio_list_merge(&tmp, &conf->return_bi);
5848 			bio_list_init(&conf->return_bi);
5849 		}
5850 		spin_unlock_irq(&conf->device_lock);
5851 		return_io(&tmp);
5852 	}
5853 
5854 	blk_start_plug(&plug);
5855 	handled = 0;
5856 	spin_lock_irq(&conf->device_lock);
5857 	while (1) {
5858 		struct bio *bio;
5859 		int batch_size, released;
5860 
5861 		released = release_stripe_list(conf, conf->temp_inactive_list);
5862 		if (released)
5863 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5864 
5865 		if (
5866 		    !list_empty(&conf->bitmap_list)) {
5867 			/* Now is a good time to flush some bitmap updates */
5868 			conf->seq_flush++;
5869 			spin_unlock_irq(&conf->device_lock);
5870 			bitmap_unplug(mddev->bitmap);
5871 			spin_lock_irq(&conf->device_lock);
5872 			conf->seq_write = conf->seq_flush;
5873 			activate_bit_delay(conf, conf->temp_inactive_list);
5874 		}
5875 		raid5_activate_delayed(conf);
5876 
5877 		while ((bio = remove_bio_from_retry(conf))) {
5878 			int ok;
5879 			spin_unlock_irq(&conf->device_lock);
5880 			ok = retry_aligned_read(conf, bio);
5881 			spin_lock_irq(&conf->device_lock);
5882 			if (!ok)
5883 				break;
5884 			handled++;
5885 		}
5886 
5887 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5888 						   conf->temp_inactive_list);
5889 		if (!batch_size && !released)
5890 			break;
5891 		handled += batch_size;
5892 
5893 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5894 			spin_unlock_irq(&conf->device_lock);
5895 			md_check_recovery(mddev);
5896 			spin_lock_irq(&conf->device_lock);
5897 		}
5898 	}
5899 	pr_debug("%d stripes handled\n", handled);
5900 
5901 	spin_unlock_irq(&conf->device_lock);
5902 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5903 	    mutex_trylock(&conf->cache_size_mutex)) {
5904 		grow_one_stripe(conf, __GFP_NOWARN);
5905 		/* Set flag even if allocation failed.  This helps
5906 		 * slow down allocation requests when mem is short
5907 		 */
5908 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5909 		mutex_unlock(&conf->cache_size_mutex);
5910 	}
5911 
5912 	r5l_flush_stripe_to_raid(conf->log);
5913 
5914 	async_tx_issue_pending_all();
5915 	blk_finish_plug(&plug);
5916 
5917 	pr_debug("--- raid5d inactive\n");
5918 }
5919 
5920 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)5921 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5922 {
5923 	struct r5conf *conf;
5924 	int ret = 0;
5925 	spin_lock(&mddev->lock);
5926 	conf = mddev->private;
5927 	if (conf)
5928 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5929 	spin_unlock(&mddev->lock);
5930 	return ret;
5931 }
5932 
5933 int
raid5_set_cache_size(struct mddev * mddev,int size)5934 raid5_set_cache_size(struct mddev *mddev, int size)
5935 {
5936 	struct r5conf *conf = mddev->private;
5937 	int err;
5938 
5939 	if (size <= 16 || size > 32768)
5940 		return -EINVAL;
5941 
5942 	conf->min_nr_stripes = size;
5943 	mutex_lock(&conf->cache_size_mutex);
5944 	while (size < conf->max_nr_stripes &&
5945 	       drop_one_stripe(conf))
5946 		;
5947 	mutex_unlock(&conf->cache_size_mutex);
5948 
5949 
5950 	err = md_allow_write(mddev);
5951 	if (err)
5952 		return err;
5953 
5954 	mutex_lock(&conf->cache_size_mutex);
5955 	while (size > conf->max_nr_stripes)
5956 		if (!grow_one_stripe(conf, GFP_KERNEL))
5957 			break;
5958 	mutex_unlock(&conf->cache_size_mutex);
5959 
5960 	return 0;
5961 }
5962 EXPORT_SYMBOL(raid5_set_cache_size);
5963 
5964 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)5965 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5966 {
5967 	struct r5conf *conf;
5968 	unsigned long new;
5969 	int err;
5970 
5971 	if (len >= PAGE_SIZE)
5972 		return -EINVAL;
5973 	if (kstrtoul(page, 10, &new))
5974 		return -EINVAL;
5975 	err = mddev_lock(mddev);
5976 	if (err)
5977 		return err;
5978 	conf = mddev->private;
5979 	if (!conf)
5980 		err = -ENODEV;
5981 	else
5982 		err = raid5_set_cache_size(mddev, new);
5983 	mddev_unlock(mddev);
5984 
5985 	return err ?: len;
5986 }
5987 
5988 static struct md_sysfs_entry
5989 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5990 				raid5_show_stripe_cache_size,
5991 				raid5_store_stripe_cache_size);
5992 
5993 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)5994 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5995 {
5996 	struct r5conf *conf = mddev->private;
5997 	if (conf)
5998 		return sprintf(page, "%d\n", conf->rmw_level);
5999 	else
6000 		return 0;
6001 }
6002 
6003 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6004 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6005 {
6006 	struct r5conf *conf = mddev->private;
6007 	unsigned long new;
6008 
6009 	if (!conf)
6010 		return -ENODEV;
6011 
6012 	if (len >= PAGE_SIZE)
6013 		return -EINVAL;
6014 
6015 	if (kstrtoul(page, 10, &new))
6016 		return -EINVAL;
6017 
6018 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6019 		return -EINVAL;
6020 
6021 	if (new != PARITY_DISABLE_RMW &&
6022 	    new != PARITY_ENABLE_RMW &&
6023 	    new != PARITY_PREFER_RMW)
6024 		return -EINVAL;
6025 
6026 	conf->rmw_level = new;
6027 	return len;
6028 }
6029 
6030 static struct md_sysfs_entry
6031 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6032 			 raid5_show_rmw_level,
6033 			 raid5_store_rmw_level);
6034 
6035 
6036 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)6037 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6038 {
6039 	struct r5conf *conf;
6040 	int ret = 0;
6041 	spin_lock(&mddev->lock);
6042 	conf = mddev->private;
6043 	if (conf)
6044 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6045 	spin_unlock(&mddev->lock);
6046 	return ret;
6047 }
6048 
6049 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)6050 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6051 {
6052 	struct r5conf *conf;
6053 	unsigned long new;
6054 	int err;
6055 
6056 	if (len >= PAGE_SIZE)
6057 		return -EINVAL;
6058 	if (kstrtoul(page, 10, &new))
6059 		return -EINVAL;
6060 
6061 	err = mddev_lock(mddev);
6062 	if (err)
6063 		return err;
6064 	conf = mddev->private;
6065 	if (!conf)
6066 		err = -ENODEV;
6067 	else if (new > conf->min_nr_stripes)
6068 		err = -EINVAL;
6069 	else
6070 		conf->bypass_threshold = new;
6071 	mddev_unlock(mddev);
6072 	return err ?: len;
6073 }
6074 
6075 static struct md_sysfs_entry
6076 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6077 					S_IRUGO | S_IWUSR,
6078 					raid5_show_preread_threshold,
6079 					raid5_store_preread_threshold);
6080 
6081 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)6082 raid5_show_skip_copy(struct mddev *mddev, char *page)
6083 {
6084 	struct r5conf *conf;
6085 	int ret = 0;
6086 	spin_lock(&mddev->lock);
6087 	conf = mddev->private;
6088 	if (conf)
6089 		ret = sprintf(page, "%d\n", conf->skip_copy);
6090 	spin_unlock(&mddev->lock);
6091 	return ret;
6092 }
6093 
6094 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)6095 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6096 {
6097 	struct r5conf *conf;
6098 	unsigned long new;
6099 	int err;
6100 
6101 	if (len >= PAGE_SIZE)
6102 		return -EINVAL;
6103 	if (kstrtoul(page, 10, &new))
6104 		return -EINVAL;
6105 	new = !!new;
6106 
6107 	err = mddev_lock(mddev);
6108 	if (err)
6109 		return err;
6110 	conf = mddev->private;
6111 	if (!conf)
6112 		err = -ENODEV;
6113 	else if (new != conf->skip_copy) {
6114 		mddev_suspend(mddev);
6115 		conf->skip_copy = new;
6116 		if (new)
6117 			mddev->queue->backing_dev_info.capabilities |=
6118 				BDI_CAP_STABLE_WRITES;
6119 		else
6120 			mddev->queue->backing_dev_info.capabilities &=
6121 				~BDI_CAP_STABLE_WRITES;
6122 		mddev_resume(mddev);
6123 	}
6124 	mddev_unlock(mddev);
6125 	return err ?: len;
6126 }
6127 
6128 static struct md_sysfs_entry
6129 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6130 					raid5_show_skip_copy,
6131 					raid5_store_skip_copy);
6132 
6133 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)6134 stripe_cache_active_show(struct mddev *mddev, char *page)
6135 {
6136 	struct r5conf *conf = mddev->private;
6137 	if (conf)
6138 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6139 	else
6140 		return 0;
6141 }
6142 
6143 static struct md_sysfs_entry
6144 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6145 
6146 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)6147 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6148 {
6149 	struct r5conf *conf;
6150 	int ret = 0;
6151 	spin_lock(&mddev->lock);
6152 	conf = mddev->private;
6153 	if (conf)
6154 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6155 	spin_unlock(&mddev->lock);
6156 	return ret;
6157 }
6158 
6159 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6160 			       int *group_cnt,
6161 			       int *worker_cnt_per_group,
6162 			       struct r5worker_group **worker_groups);
6163 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)6164 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6165 {
6166 	struct r5conf *conf;
6167 	unsigned long new;
6168 	int err;
6169 	struct r5worker_group *new_groups, *old_groups;
6170 	int group_cnt, worker_cnt_per_group;
6171 
6172 	if (len >= PAGE_SIZE)
6173 		return -EINVAL;
6174 	if (kstrtoul(page, 10, &new))
6175 		return -EINVAL;
6176 
6177 	err = mddev_lock(mddev);
6178 	if (err)
6179 		return err;
6180 	conf = mddev->private;
6181 	if (!conf)
6182 		err = -ENODEV;
6183 	else if (new != conf->worker_cnt_per_group) {
6184 		mddev_suspend(mddev);
6185 
6186 		old_groups = conf->worker_groups;
6187 		if (old_groups)
6188 			flush_workqueue(raid5_wq);
6189 
6190 		err = alloc_thread_groups(conf, new,
6191 					  &group_cnt, &worker_cnt_per_group,
6192 					  &new_groups);
6193 		if (!err) {
6194 			spin_lock_irq(&conf->device_lock);
6195 			conf->group_cnt = group_cnt;
6196 			conf->worker_cnt_per_group = worker_cnt_per_group;
6197 			conf->worker_groups = new_groups;
6198 			spin_unlock_irq(&conf->device_lock);
6199 
6200 			if (old_groups)
6201 				kfree(old_groups[0].workers);
6202 			kfree(old_groups);
6203 		}
6204 		mddev_resume(mddev);
6205 	}
6206 	mddev_unlock(mddev);
6207 
6208 	return err ?: len;
6209 }
6210 
6211 static struct md_sysfs_entry
6212 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6213 				raid5_show_group_thread_cnt,
6214 				raid5_store_group_thread_cnt);
6215 
6216 static struct attribute *raid5_attrs[] =  {
6217 	&raid5_stripecache_size.attr,
6218 	&raid5_stripecache_active.attr,
6219 	&raid5_preread_bypass_threshold.attr,
6220 	&raid5_group_thread_cnt.attr,
6221 	&raid5_skip_copy.attr,
6222 	&raid5_rmw_level.attr,
6223 	NULL,
6224 };
6225 static struct attribute_group raid5_attrs_group = {
6226 	.name = NULL,
6227 	.attrs = raid5_attrs,
6228 };
6229 
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,int * worker_cnt_per_group,struct r5worker_group ** worker_groups)6230 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6231 			       int *group_cnt,
6232 			       int *worker_cnt_per_group,
6233 			       struct r5worker_group **worker_groups)
6234 {
6235 	int i, j, k;
6236 	ssize_t size;
6237 	struct r5worker *workers;
6238 
6239 	*worker_cnt_per_group = cnt;
6240 	if (cnt == 0) {
6241 		*group_cnt = 0;
6242 		*worker_groups = NULL;
6243 		return 0;
6244 	}
6245 	*group_cnt = num_possible_nodes();
6246 	size = sizeof(struct r5worker) * cnt;
6247 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6248 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6249 				*group_cnt, GFP_NOIO);
6250 	if (!*worker_groups || !workers) {
6251 		kfree(workers);
6252 		kfree(*worker_groups);
6253 		return -ENOMEM;
6254 	}
6255 
6256 	for (i = 0; i < *group_cnt; i++) {
6257 		struct r5worker_group *group;
6258 
6259 		group = &(*worker_groups)[i];
6260 		INIT_LIST_HEAD(&group->handle_list);
6261 		group->conf = conf;
6262 		group->workers = workers + i * cnt;
6263 
6264 		for (j = 0; j < cnt; j++) {
6265 			struct r5worker *worker = group->workers + j;
6266 			worker->group = group;
6267 			INIT_WORK(&worker->work, raid5_do_work);
6268 
6269 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6270 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6271 		}
6272 	}
6273 
6274 	return 0;
6275 }
6276 
free_thread_groups(struct r5conf * conf)6277 static void free_thread_groups(struct r5conf *conf)
6278 {
6279 	if (conf->worker_groups)
6280 		kfree(conf->worker_groups[0].workers);
6281 	kfree(conf->worker_groups);
6282 	conf->worker_groups = NULL;
6283 }
6284 
6285 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)6286 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6287 {
6288 	struct r5conf *conf = mddev->private;
6289 
6290 	if (!sectors)
6291 		sectors = mddev->dev_sectors;
6292 	if (!raid_disks)
6293 		/* size is defined by the smallest of previous and new size */
6294 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6295 
6296 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6297 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6298 	return sectors * (raid_disks - conf->max_degraded);
6299 }
6300 
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)6301 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6302 {
6303 	safe_put_page(percpu->spare_page);
6304 	if (percpu->scribble)
6305 		flex_array_free(percpu->scribble);
6306 	percpu->spare_page = NULL;
6307 	percpu->scribble = NULL;
6308 }
6309 
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)6310 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6311 {
6312 	if (conf->level == 6 && !percpu->spare_page)
6313 		percpu->spare_page = alloc_page(GFP_KERNEL);
6314 	if (!percpu->scribble)
6315 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6316 						      conf->previous_raid_disks),
6317 						  max(conf->chunk_sectors,
6318 						      conf->prev_chunk_sectors)
6319 						   / STRIPE_SECTORS,
6320 						  GFP_KERNEL);
6321 
6322 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6323 		free_scratch_buffer(conf, percpu);
6324 		return -ENOMEM;
6325 	}
6326 
6327 	return 0;
6328 }
6329 
raid5_free_percpu(struct r5conf * conf)6330 static void raid5_free_percpu(struct r5conf *conf)
6331 {
6332 	unsigned long cpu;
6333 
6334 	if (!conf->percpu)
6335 		return;
6336 
6337 #ifdef CONFIG_HOTPLUG_CPU
6338 	unregister_cpu_notifier(&conf->cpu_notify);
6339 #endif
6340 
6341 	get_online_cpus();
6342 	for_each_possible_cpu(cpu)
6343 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6344 	put_online_cpus();
6345 
6346 	free_percpu(conf->percpu);
6347 }
6348 
free_conf(struct r5conf * conf)6349 static void free_conf(struct r5conf *conf)
6350 {
6351 	if (conf->log)
6352 		r5l_exit_log(conf->log);
6353 	if (conf->shrinker.seeks)
6354 		unregister_shrinker(&conf->shrinker);
6355 
6356 	free_thread_groups(conf);
6357 	shrink_stripes(conf);
6358 	raid5_free_percpu(conf);
6359 	kfree(conf->disks);
6360 	kfree(conf->stripe_hashtbl);
6361 	kfree(conf);
6362 }
6363 
6364 #ifdef CONFIG_HOTPLUG_CPU
raid456_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)6365 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6366 			      void *hcpu)
6367 {
6368 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6369 	long cpu = (long)hcpu;
6370 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6371 
6372 	switch (action) {
6373 	case CPU_UP_PREPARE:
6374 	case CPU_UP_PREPARE_FROZEN:
6375 		if (alloc_scratch_buffer(conf, percpu)) {
6376 			pr_err("%s: failed memory allocation for cpu%ld\n",
6377 			       __func__, cpu);
6378 			return notifier_from_errno(-ENOMEM);
6379 		}
6380 		break;
6381 	case CPU_DEAD:
6382 	case CPU_DEAD_FROZEN:
6383 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6384 		break;
6385 	default:
6386 		break;
6387 	}
6388 	return NOTIFY_OK;
6389 }
6390 #endif
6391 
raid5_alloc_percpu(struct r5conf * conf)6392 static int raid5_alloc_percpu(struct r5conf *conf)
6393 {
6394 	unsigned long cpu;
6395 	int err = 0;
6396 
6397 	conf->percpu = alloc_percpu(struct raid5_percpu);
6398 	if (!conf->percpu)
6399 		return -ENOMEM;
6400 
6401 #ifdef CONFIG_HOTPLUG_CPU
6402 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6403 	conf->cpu_notify.priority = 0;
6404 	err = register_cpu_notifier(&conf->cpu_notify);
6405 	if (err)
6406 		return err;
6407 #endif
6408 
6409 	get_online_cpus();
6410 	for_each_present_cpu(cpu) {
6411 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6412 		if (err) {
6413 			pr_err("%s: failed memory allocation for cpu%ld\n",
6414 			       __func__, cpu);
6415 			break;
6416 		}
6417 	}
6418 	put_online_cpus();
6419 
6420 	if (!err) {
6421 		conf->scribble_disks = max(conf->raid_disks,
6422 			conf->previous_raid_disks);
6423 		conf->scribble_sectors = max(conf->chunk_sectors,
6424 			conf->prev_chunk_sectors);
6425 	}
6426 	return err;
6427 }
6428 
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)6429 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6430 				      struct shrink_control *sc)
6431 {
6432 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6433 	unsigned long ret = SHRINK_STOP;
6434 
6435 	if (mutex_trylock(&conf->cache_size_mutex)) {
6436 		ret= 0;
6437 		while (ret < sc->nr_to_scan &&
6438 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6439 			if (drop_one_stripe(conf) == 0) {
6440 				ret = SHRINK_STOP;
6441 				break;
6442 			}
6443 			ret++;
6444 		}
6445 		mutex_unlock(&conf->cache_size_mutex);
6446 	}
6447 	return ret;
6448 }
6449 
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)6450 static unsigned long raid5_cache_count(struct shrinker *shrink,
6451 				       struct shrink_control *sc)
6452 {
6453 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6454 
6455 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6456 		/* unlikely, but not impossible */
6457 		return 0;
6458 	return conf->max_nr_stripes - conf->min_nr_stripes;
6459 }
6460 
setup_conf(struct mddev * mddev)6461 static struct r5conf *setup_conf(struct mddev *mddev)
6462 {
6463 	struct r5conf *conf;
6464 	int raid_disk, memory, max_disks;
6465 	struct md_rdev *rdev;
6466 	struct disk_info *disk;
6467 	char pers_name[6];
6468 	int i;
6469 	int group_cnt, worker_cnt_per_group;
6470 	struct r5worker_group *new_group;
6471 
6472 	if (mddev->new_level != 5
6473 	    && mddev->new_level != 4
6474 	    && mddev->new_level != 6) {
6475 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6476 		       mdname(mddev), mddev->new_level);
6477 		return ERR_PTR(-EIO);
6478 	}
6479 	if ((mddev->new_level == 5
6480 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6481 	    (mddev->new_level == 6
6482 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6483 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6484 		       mdname(mddev), mddev->new_layout);
6485 		return ERR_PTR(-EIO);
6486 	}
6487 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6488 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6489 		       mdname(mddev), mddev->raid_disks);
6490 		return ERR_PTR(-EINVAL);
6491 	}
6492 
6493 	if (!mddev->new_chunk_sectors ||
6494 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6495 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6496 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6497 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6498 		return ERR_PTR(-EINVAL);
6499 	}
6500 
6501 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6502 	if (conf == NULL)
6503 		goto abort;
6504 	/* Don't enable multi-threading by default*/
6505 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6506 				 &new_group)) {
6507 		conf->group_cnt = group_cnt;
6508 		conf->worker_cnt_per_group = worker_cnt_per_group;
6509 		conf->worker_groups = new_group;
6510 	} else
6511 		goto abort;
6512 	spin_lock_init(&conf->device_lock);
6513 	seqcount_init(&conf->gen_lock);
6514 	mutex_init(&conf->cache_size_mutex);
6515 	init_waitqueue_head(&conf->wait_for_quiescent);
6516 	init_waitqueue_head(&conf->wait_for_stripe);
6517 	init_waitqueue_head(&conf->wait_for_overlap);
6518 	INIT_LIST_HEAD(&conf->handle_list);
6519 	INIT_LIST_HEAD(&conf->hold_list);
6520 	INIT_LIST_HEAD(&conf->delayed_list);
6521 	INIT_LIST_HEAD(&conf->bitmap_list);
6522 	bio_list_init(&conf->return_bi);
6523 	init_llist_head(&conf->released_stripes);
6524 	atomic_set(&conf->active_stripes, 0);
6525 	atomic_set(&conf->preread_active_stripes, 0);
6526 	atomic_set(&conf->active_aligned_reads, 0);
6527 	conf->bypass_threshold = BYPASS_THRESHOLD;
6528 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6529 
6530 	conf->raid_disks = mddev->raid_disks;
6531 	if (mddev->reshape_position == MaxSector)
6532 		conf->previous_raid_disks = mddev->raid_disks;
6533 	else
6534 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6535 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6536 
6537 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6538 			      GFP_KERNEL);
6539 	if (!conf->disks)
6540 		goto abort;
6541 
6542 	conf->mddev = mddev;
6543 
6544 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6545 		goto abort;
6546 
6547 	/* We init hash_locks[0] separately to that it can be used
6548 	 * as the reference lock in the spin_lock_nest_lock() call
6549 	 * in lock_all_device_hash_locks_irq in order to convince
6550 	 * lockdep that we know what we are doing.
6551 	 */
6552 	spin_lock_init(conf->hash_locks);
6553 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6554 		spin_lock_init(conf->hash_locks + i);
6555 
6556 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6557 		INIT_LIST_HEAD(conf->inactive_list + i);
6558 
6559 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6560 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6561 
6562 	conf->level = mddev->new_level;
6563 	conf->chunk_sectors = mddev->new_chunk_sectors;
6564 	if (raid5_alloc_percpu(conf) != 0)
6565 		goto abort;
6566 
6567 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6568 
6569 	rdev_for_each(rdev, mddev) {
6570 		raid_disk = rdev->raid_disk;
6571 		if (raid_disk >= max_disks
6572 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6573 			continue;
6574 		disk = conf->disks + raid_disk;
6575 
6576 		if (test_bit(Replacement, &rdev->flags)) {
6577 			if (disk->replacement)
6578 				goto abort;
6579 			disk->replacement = rdev;
6580 		} else {
6581 			if (disk->rdev)
6582 				goto abort;
6583 			disk->rdev = rdev;
6584 		}
6585 
6586 		if (test_bit(In_sync, &rdev->flags)) {
6587 			char b[BDEVNAME_SIZE];
6588 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6589 			       " disk %d\n",
6590 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6591 		} else if (rdev->saved_raid_disk != raid_disk)
6592 			/* Cannot rely on bitmap to complete recovery */
6593 			conf->fullsync = 1;
6594 	}
6595 
6596 	conf->level = mddev->new_level;
6597 	if (conf->level == 6) {
6598 		conf->max_degraded = 2;
6599 		if (raid6_call.xor_syndrome)
6600 			conf->rmw_level = PARITY_ENABLE_RMW;
6601 		else
6602 			conf->rmw_level = PARITY_DISABLE_RMW;
6603 	} else {
6604 		conf->max_degraded = 1;
6605 		conf->rmw_level = PARITY_ENABLE_RMW;
6606 	}
6607 	conf->algorithm = mddev->new_layout;
6608 	conf->reshape_progress = mddev->reshape_position;
6609 	if (conf->reshape_progress != MaxSector) {
6610 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6611 		conf->prev_algo = mddev->layout;
6612 	} else {
6613 		conf->prev_chunk_sectors = conf->chunk_sectors;
6614 		conf->prev_algo = conf->algorithm;
6615 	}
6616 
6617 	conf->min_nr_stripes = NR_STRIPES;
6618 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6619 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6620 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6621 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6622 		printk(KERN_ERR
6623 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6624 		       mdname(mddev), memory);
6625 		goto abort;
6626 	} else
6627 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6628 		       mdname(mddev), memory);
6629 	/*
6630 	 * Losing a stripe head costs more than the time to refill it,
6631 	 * it reduces the queue depth and so can hurt throughput.
6632 	 * So set it rather large, scaled by number of devices.
6633 	 */
6634 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6635 	conf->shrinker.scan_objects = raid5_cache_scan;
6636 	conf->shrinker.count_objects = raid5_cache_count;
6637 	conf->shrinker.batch = 128;
6638 	conf->shrinker.flags = 0;
6639 	register_shrinker(&conf->shrinker);
6640 
6641 	sprintf(pers_name, "raid%d", mddev->new_level);
6642 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6643 	if (!conf->thread) {
6644 		printk(KERN_ERR
6645 		       "md/raid:%s: couldn't allocate thread.\n",
6646 		       mdname(mddev));
6647 		goto abort;
6648 	}
6649 
6650 	return conf;
6651 
6652  abort:
6653 	if (conf) {
6654 		free_conf(conf);
6655 		return ERR_PTR(-EIO);
6656 	} else
6657 		return ERR_PTR(-ENOMEM);
6658 }
6659 
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)6660 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6661 {
6662 	switch (algo) {
6663 	case ALGORITHM_PARITY_0:
6664 		if (raid_disk < max_degraded)
6665 			return 1;
6666 		break;
6667 	case ALGORITHM_PARITY_N:
6668 		if (raid_disk >= raid_disks - max_degraded)
6669 			return 1;
6670 		break;
6671 	case ALGORITHM_PARITY_0_6:
6672 		if (raid_disk == 0 ||
6673 		    raid_disk == raid_disks - 1)
6674 			return 1;
6675 		break;
6676 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6677 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6678 	case ALGORITHM_LEFT_SYMMETRIC_6:
6679 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6680 		if (raid_disk == raid_disks - 1)
6681 			return 1;
6682 	}
6683 	return 0;
6684 }
6685 
run(struct mddev * mddev)6686 static int run(struct mddev *mddev)
6687 {
6688 	struct r5conf *conf;
6689 	int working_disks = 0;
6690 	int dirty_parity_disks = 0;
6691 	struct md_rdev *rdev;
6692 	struct md_rdev *journal_dev = NULL;
6693 	sector_t reshape_offset = 0;
6694 	int i;
6695 	long long min_offset_diff = 0;
6696 	int first = 1;
6697 
6698 	if (mddev->recovery_cp != MaxSector)
6699 		printk(KERN_NOTICE "md/raid:%s: not clean"
6700 		       " -- starting background reconstruction\n",
6701 		       mdname(mddev));
6702 
6703 	rdev_for_each(rdev, mddev) {
6704 		long long diff;
6705 
6706 		if (test_bit(Journal, &rdev->flags)) {
6707 			journal_dev = rdev;
6708 			continue;
6709 		}
6710 		if (rdev->raid_disk < 0)
6711 			continue;
6712 		diff = (rdev->new_data_offset - rdev->data_offset);
6713 		if (first) {
6714 			min_offset_diff = diff;
6715 			first = 0;
6716 		} else if (mddev->reshape_backwards &&
6717 			 diff < min_offset_diff)
6718 			min_offset_diff = diff;
6719 		else if (!mddev->reshape_backwards &&
6720 			 diff > min_offset_diff)
6721 			min_offset_diff = diff;
6722 	}
6723 
6724 	if (mddev->reshape_position != MaxSector) {
6725 		/* Check that we can continue the reshape.
6726 		 * Difficulties arise if the stripe we would write to
6727 		 * next is at or after the stripe we would read from next.
6728 		 * For a reshape that changes the number of devices, this
6729 		 * is only possible for a very short time, and mdadm makes
6730 		 * sure that time appears to have past before assembling
6731 		 * the array.  So we fail if that time hasn't passed.
6732 		 * For a reshape that keeps the number of devices the same
6733 		 * mdadm must be monitoring the reshape can keeping the
6734 		 * critical areas read-only and backed up.  It will start
6735 		 * the array in read-only mode, so we check for that.
6736 		 */
6737 		sector_t here_new, here_old;
6738 		int old_disks;
6739 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6740 		int chunk_sectors;
6741 		int new_data_disks;
6742 
6743 		if (journal_dev) {
6744 			printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6745 			       mdname(mddev));
6746 			return -EINVAL;
6747 		}
6748 
6749 		if (mddev->new_level != mddev->level) {
6750 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6751 			       "required - aborting.\n",
6752 			       mdname(mddev));
6753 			return -EINVAL;
6754 		}
6755 		old_disks = mddev->raid_disks - mddev->delta_disks;
6756 		/* reshape_position must be on a new-stripe boundary, and one
6757 		 * further up in new geometry must map after here in old
6758 		 * geometry.
6759 		 * If the chunk sizes are different, then as we perform reshape
6760 		 * in units of the largest of the two, reshape_position needs
6761 		 * be a multiple of the largest chunk size times new data disks.
6762 		 */
6763 		here_new = mddev->reshape_position;
6764 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6765 		new_data_disks = mddev->raid_disks - max_degraded;
6766 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6767 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6768 			       "on a stripe boundary\n", mdname(mddev));
6769 			return -EINVAL;
6770 		}
6771 		reshape_offset = here_new * chunk_sectors;
6772 		/* here_new is the stripe we will write to */
6773 		here_old = mddev->reshape_position;
6774 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6775 		/* here_old is the first stripe that we might need to read
6776 		 * from */
6777 		if (mddev->delta_disks == 0) {
6778 			/* We cannot be sure it is safe to start an in-place
6779 			 * reshape.  It is only safe if user-space is monitoring
6780 			 * and taking constant backups.
6781 			 * mdadm always starts a situation like this in
6782 			 * readonly mode so it can take control before
6783 			 * allowing any writes.  So just check for that.
6784 			 */
6785 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6786 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6787 				/* not really in-place - so OK */;
6788 			else if (mddev->ro == 0) {
6789 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6790 				       "must be started in read-only mode "
6791 				       "- aborting\n",
6792 				       mdname(mddev));
6793 				return -EINVAL;
6794 			}
6795 		} else if (mddev->reshape_backwards
6796 		    ? (here_new * chunk_sectors + min_offset_diff <=
6797 		       here_old * chunk_sectors)
6798 		    : (here_new * chunk_sectors >=
6799 		       here_old * chunk_sectors + (-min_offset_diff))) {
6800 			/* Reading from the same stripe as writing to - bad */
6801 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6802 			       "auto-recovery - aborting.\n",
6803 			       mdname(mddev));
6804 			return -EINVAL;
6805 		}
6806 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6807 		       mdname(mddev));
6808 		/* OK, we should be able to continue; */
6809 	} else {
6810 		BUG_ON(mddev->level != mddev->new_level);
6811 		BUG_ON(mddev->layout != mddev->new_layout);
6812 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6813 		BUG_ON(mddev->delta_disks != 0);
6814 	}
6815 
6816 	if (mddev->private == NULL)
6817 		conf = setup_conf(mddev);
6818 	else
6819 		conf = mddev->private;
6820 
6821 	if (IS_ERR(conf))
6822 		return PTR_ERR(conf);
6823 
6824 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6825 		printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6826 		       mdname(mddev));
6827 		mddev->ro = 1;
6828 		set_disk_ro(mddev->gendisk, 1);
6829 	}
6830 
6831 	conf->min_offset_diff = min_offset_diff;
6832 	mddev->thread = conf->thread;
6833 	conf->thread = NULL;
6834 	mddev->private = conf;
6835 
6836 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6837 	     i++) {
6838 		rdev = conf->disks[i].rdev;
6839 		if (!rdev && conf->disks[i].replacement) {
6840 			/* The replacement is all we have yet */
6841 			rdev = conf->disks[i].replacement;
6842 			conf->disks[i].replacement = NULL;
6843 			clear_bit(Replacement, &rdev->flags);
6844 			conf->disks[i].rdev = rdev;
6845 		}
6846 		if (!rdev)
6847 			continue;
6848 		if (conf->disks[i].replacement &&
6849 		    conf->reshape_progress != MaxSector) {
6850 			/* replacements and reshape simply do not mix. */
6851 			printk(KERN_ERR "md: cannot handle concurrent "
6852 			       "replacement and reshape.\n");
6853 			goto abort;
6854 		}
6855 		if (test_bit(In_sync, &rdev->flags)) {
6856 			working_disks++;
6857 			continue;
6858 		}
6859 		/* This disc is not fully in-sync.  However if it
6860 		 * just stored parity (beyond the recovery_offset),
6861 		 * when we don't need to be concerned about the
6862 		 * array being dirty.
6863 		 * When reshape goes 'backwards', we never have
6864 		 * partially completed devices, so we only need
6865 		 * to worry about reshape going forwards.
6866 		 */
6867 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6868 		if (mddev->major_version == 0 &&
6869 		    mddev->minor_version > 90)
6870 			rdev->recovery_offset = reshape_offset;
6871 
6872 		if (rdev->recovery_offset < reshape_offset) {
6873 			/* We need to check old and new layout */
6874 			if (!only_parity(rdev->raid_disk,
6875 					 conf->algorithm,
6876 					 conf->raid_disks,
6877 					 conf->max_degraded))
6878 				continue;
6879 		}
6880 		if (!only_parity(rdev->raid_disk,
6881 				 conf->prev_algo,
6882 				 conf->previous_raid_disks,
6883 				 conf->max_degraded))
6884 			continue;
6885 		dirty_parity_disks++;
6886 	}
6887 
6888 	/*
6889 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6890 	 */
6891 	mddev->degraded = calc_degraded(conf);
6892 
6893 	if (has_failed(conf)) {
6894 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6895 			" (%d/%d failed)\n",
6896 			mdname(mddev), mddev->degraded, conf->raid_disks);
6897 		goto abort;
6898 	}
6899 
6900 	/* device size must be a multiple of chunk size */
6901 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6902 	mddev->resync_max_sectors = mddev->dev_sectors;
6903 
6904 	if (mddev->degraded > dirty_parity_disks &&
6905 	    mddev->recovery_cp != MaxSector) {
6906 		if (mddev->ok_start_degraded)
6907 			printk(KERN_WARNING
6908 			       "md/raid:%s: starting dirty degraded array"
6909 			       " - data corruption possible.\n",
6910 			       mdname(mddev));
6911 		else {
6912 			printk(KERN_ERR
6913 			       "md/raid:%s: cannot start dirty degraded array.\n",
6914 			       mdname(mddev));
6915 			goto abort;
6916 		}
6917 	}
6918 
6919 	if (mddev->degraded == 0)
6920 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6921 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6922 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6923 		       mddev->new_layout);
6924 	else
6925 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6926 		       " out of %d devices, algorithm %d\n",
6927 		       mdname(mddev), conf->level,
6928 		       mddev->raid_disks - mddev->degraded,
6929 		       mddev->raid_disks, mddev->new_layout);
6930 
6931 	print_raid5_conf(conf);
6932 
6933 	if (conf->reshape_progress != MaxSector) {
6934 		conf->reshape_safe = conf->reshape_progress;
6935 		atomic_set(&conf->reshape_stripes, 0);
6936 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6937 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6938 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6939 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6940 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6941 							"reshape");
6942 	}
6943 
6944 	/* Ok, everything is just fine now */
6945 	if (mddev->to_remove == &raid5_attrs_group)
6946 		mddev->to_remove = NULL;
6947 	else if (mddev->kobj.sd &&
6948 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6949 		printk(KERN_WARNING
6950 		       "raid5: failed to create sysfs attributes for %s\n",
6951 		       mdname(mddev));
6952 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6953 
6954 	if (mddev->queue) {
6955 		int chunk_size;
6956 		bool discard_supported = true;
6957 		/* read-ahead size must cover two whole stripes, which
6958 		 * is 2 * (datadisks) * chunksize where 'n' is the
6959 		 * number of raid devices
6960 		 */
6961 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6962 		int stripe = data_disks *
6963 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6964 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6965 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6966 
6967 		chunk_size = mddev->chunk_sectors << 9;
6968 		blk_queue_io_min(mddev->queue, chunk_size);
6969 		blk_queue_io_opt(mddev->queue, chunk_size *
6970 				 (conf->raid_disks - conf->max_degraded));
6971 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6972 		/*
6973 		 * We can only discard a whole stripe. It doesn't make sense to
6974 		 * discard data disk but write parity disk
6975 		 */
6976 		stripe = stripe * PAGE_SIZE;
6977 		/* Round up to power of 2, as discard handling
6978 		 * currently assumes that */
6979 		while ((stripe-1) & stripe)
6980 			stripe = (stripe | (stripe-1)) + 1;
6981 		mddev->queue->limits.discard_alignment = stripe;
6982 		mddev->queue->limits.discard_granularity = stripe;
6983 		/*
6984 		 * unaligned part of discard request will be ignored, so can't
6985 		 * guarantee discard_zeroes_data
6986 		 */
6987 		mddev->queue->limits.discard_zeroes_data = 0;
6988 
6989 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6990 
6991 		rdev_for_each(rdev, mddev) {
6992 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6993 					  rdev->data_offset << 9);
6994 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6995 					  rdev->new_data_offset << 9);
6996 			/*
6997 			 * discard_zeroes_data is required, otherwise data
6998 			 * could be lost. Consider a scenario: discard a stripe
6999 			 * (the stripe could be inconsistent if
7000 			 * discard_zeroes_data is 0); write one disk of the
7001 			 * stripe (the stripe could be inconsistent again
7002 			 * depending on which disks are used to calculate
7003 			 * parity); the disk is broken; The stripe data of this
7004 			 * disk is lost.
7005 			 */
7006 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7007 			    !bdev_get_queue(rdev->bdev)->
7008 						limits.discard_zeroes_data)
7009 				discard_supported = false;
7010 			/* Unfortunately, discard_zeroes_data is not currently
7011 			 * a guarantee - just a hint.  So we only allow DISCARD
7012 			 * if the sysadmin has confirmed that only safe devices
7013 			 * are in use by setting a module parameter.
7014 			 */
7015 			if (!devices_handle_discard_safely) {
7016 				if (discard_supported) {
7017 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7018 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7019 				}
7020 				discard_supported = false;
7021 			}
7022 		}
7023 
7024 		if (discard_supported &&
7025 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7026 		    mddev->queue->limits.discard_granularity >= stripe)
7027 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7028 						mddev->queue);
7029 		else
7030 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7031 						mddev->queue);
7032 	}
7033 
7034 	if (journal_dev) {
7035 		char b[BDEVNAME_SIZE];
7036 
7037 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7038 		       mdname(mddev), bdevname(journal_dev->bdev, b));
7039 		r5l_init_log(conf, journal_dev);
7040 	}
7041 
7042 	return 0;
7043 abort:
7044 	md_unregister_thread(&mddev->thread);
7045 	print_raid5_conf(conf);
7046 	free_conf(conf);
7047 	mddev->private = NULL;
7048 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7049 	return -EIO;
7050 }
7051 
raid5_free(struct mddev * mddev,void * priv)7052 static void raid5_free(struct mddev *mddev, void *priv)
7053 {
7054 	struct r5conf *conf = priv;
7055 
7056 	free_conf(conf);
7057 	mddev->to_remove = &raid5_attrs_group;
7058 }
7059 
status(struct seq_file * seq,struct mddev * mddev)7060 static void status(struct seq_file *seq, struct mddev *mddev)
7061 {
7062 	struct r5conf *conf = mddev->private;
7063 	int i;
7064 
7065 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7066 		conf->chunk_sectors / 2, mddev->layout);
7067 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7068 	for (i = 0; i < conf->raid_disks; i++)
7069 		seq_printf (seq, "%s",
7070 			       conf->disks[i].rdev &&
7071 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7072 	seq_printf (seq, "]");
7073 }
7074 
print_raid5_conf(struct r5conf * conf)7075 static void print_raid5_conf (struct r5conf *conf)
7076 {
7077 	int i;
7078 	struct disk_info *tmp;
7079 
7080 	printk(KERN_DEBUG "RAID conf printout:\n");
7081 	if (!conf) {
7082 		printk("(conf==NULL)\n");
7083 		return;
7084 	}
7085 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7086 	       conf->raid_disks,
7087 	       conf->raid_disks - conf->mddev->degraded);
7088 
7089 	for (i = 0; i < conf->raid_disks; i++) {
7090 		char b[BDEVNAME_SIZE];
7091 		tmp = conf->disks + i;
7092 		if (tmp->rdev)
7093 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7094 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7095 			       bdevname(tmp->rdev->bdev, b));
7096 	}
7097 }
7098 
raid5_spare_active(struct mddev * mddev)7099 static int raid5_spare_active(struct mddev *mddev)
7100 {
7101 	int i;
7102 	struct r5conf *conf = mddev->private;
7103 	struct disk_info *tmp;
7104 	int count = 0;
7105 	unsigned long flags;
7106 
7107 	for (i = 0; i < conf->raid_disks; i++) {
7108 		tmp = conf->disks + i;
7109 		if (tmp->replacement
7110 		    && tmp->replacement->recovery_offset == MaxSector
7111 		    && !test_bit(Faulty, &tmp->replacement->flags)
7112 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7113 			/* Replacement has just become active. */
7114 			if (!tmp->rdev
7115 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7116 				count++;
7117 			if (tmp->rdev) {
7118 				/* Replaced device not technically faulty,
7119 				 * but we need to be sure it gets removed
7120 				 * and never re-added.
7121 				 */
7122 				set_bit(Faulty, &tmp->rdev->flags);
7123 				sysfs_notify_dirent_safe(
7124 					tmp->rdev->sysfs_state);
7125 			}
7126 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7127 		} else if (tmp->rdev
7128 		    && tmp->rdev->recovery_offset == MaxSector
7129 		    && !test_bit(Faulty, &tmp->rdev->flags)
7130 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7131 			count++;
7132 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7133 		}
7134 	}
7135 	spin_lock_irqsave(&conf->device_lock, flags);
7136 	mddev->degraded = calc_degraded(conf);
7137 	spin_unlock_irqrestore(&conf->device_lock, flags);
7138 	print_raid5_conf(conf);
7139 	return count;
7140 }
7141 
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)7142 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7143 {
7144 	struct r5conf *conf = mddev->private;
7145 	int err = 0;
7146 	int number = rdev->raid_disk;
7147 	struct md_rdev **rdevp;
7148 	struct disk_info *p = conf->disks + number;
7149 
7150 	print_raid5_conf(conf);
7151 	if (test_bit(Journal, &rdev->flags)) {
7152 		/*
7153 		 * journal disk is not removable, but we need give a chance to
7154 		 * update superblock of other disks. Otherwise journal disk
7155 		 * will be considered as 'fresh'
7156 		 */
7157 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7158 		return -EINVAL;
7159 	}
7160 	if (rdev == p->rdev)
7161 		rdevp = &p->rdev;
7162 	else if (rdev == p->replacement)
7163 		rdevp = &p->replacement;
7164 	else
7165 		return 0;
7166 
7167 	if (number >= conf->raid_disks &&
7168 	    conf->reshape_progress == MaxSector)
7169 		clear_bit(In_sync, &rdev->flags);
7170 
7171 	if (test_bit(In_sync, &rdev->flags) ||
7172 	    atomic_read(&rdev->nr_pending)) {
7173 		err = -EBUSY;
7174 		goto abort;
7175 	}
7176 	/* Only remove non-faulty devices if recovery
7177 	 * isn't possible.
7178 	 */
7179 	if (!test_bit(Faulty, &rdev->flags) &&
7180 	    mddev->recovery_disabled != conf->recovery_disabled &&
7181 	    !has_failed(conf) &&
7182 	    (!p->replacement || p->replacement == rdev) &&
7183 	    number < conf->raid_disks) {
7184 		err = -EBUSY;
7185 		goto abort;
7186 	}
7187 	*rdevp = NULL;
7188 	synchronize_rcu();
7189 	if (atomic_read(&rdev->nr_pending)) {
7190 		/* lost the race, try later */
7191 		err = -EBUSY;
7192 		*rdevp = rdev;
7193 	} else if (p->replacement) {
7194 		/* We must have just cleared 'rdev' */
7195 		p->rdev = p->replacement;
7196 		clear_bit(Replacement, &p->replacement->flags);
7197 		smp_mb(); /* Make sure other CPUs may see both as identical
7198 			   * but will never see neither - if they are careful
7199 			   */
7200 		p->replacement = NULL;
7201 		clear_bit(WantReplacement, &rdev->flags);
7202 	} else
7203 		/* We might have just removed the Replacement as faulty-
7204 		 * clear the bit just in case
7205 		 */
7206 		clear_bit(WantReplacement, &rdev->flags);
7207 abort:
7208 
7209 	print_raid5_conf(conf);
7210 	return err;
7211 }
7212 
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)7213 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7214 {
7215 	struct r5conf *conf = mddev->private;
7216 	int err = -EEXIST;
7217 	int disk;
7218 	struct disk_info *p;
7219 	int first = 0;
7220 	int last = conf->raid_disks - 1;
7221 
7222 	if (test_bit(Journal, &rdev->flags))
7223 		return -EINVAL;
7224 	if (mddev->recovery_disabled == conf->recovery_disabled)
7225 		return -EBUSY;
7226 
7227 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7228 		/* no point adding a device */
7229 		return -EINVAL;
7230 
7231 	if (rdev->raid_disk >= 0)
7232 		first = last = rdev->raid_disk;
7233 
7234 	/*
7235 	 * find the disk ... but prefer rdev->saved_raid_disk
7236 	 * if possible.
7237 	 */
7238 	if (rdev->saved_raid_disk >= 0 &&
7239 	    rdev->saved_raid_disk >= first &&
7240 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7241 		first = rdev->saved_raid_disk;
7242 
7243 	for (disk = first; disk <= last; disk++) {
7244 		p = conf->disks + disk;
7245 		if (p->rdev == NULL) {
7246 			clear_bit(In_sync, &rdev->flags);
7247 			rdev->raid_disk = disk;
7248 			err = 0;
7249 			if (rdev->saved_raid_disk != disk)
7250 				conf->fullsync = 1;
7251 			rcu_assign_pointer(p->rdev, rdev);
7252 			goto out;
7253 		}
7254 	}
7255 	for (disk = first; disk <= last; disk++) {
7256 		p = conf->disks + disk;
7257 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7258 		    p->replacement == NULL) {
7259 			clear_bit(In_sync, &rdev->flags);
7260 			set_bit(Replacement, &rdev->flags);
7261 			rdev->raid_disk = disk;
7262 			err = 0;
7263 			conf->fullsync = 1;
7264 			rcu_assign_pointer(p->replacement, rdev);
7265 			break;
7266 		}
7267 	}
7268 out:
7269 	print_raid5_conf(conf);
7270 	return err;
7271 }
7272 
raid5_resize(struct mddev * mddev,sector_t sectors)7273 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7274 {
7275 	/* no resync is happening, and there is enough space
7276 	 * on all devices, so we can resize.
7277 	 * We need to make sure resync covers any new space.
7278 	 * If the array is shrinking we should possibly wait until
7279 	 * any io in the removed space completes, but it hardly seems
7280 	 * worth it.
7281 	 */
7282 	sector_t newsize;
7283 	struct r5conf *conf = mddev->private;
7284 
7285 	if (conf->log)
7286 		return -EINVAL;
7287 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7288 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7289 	if (mddev->external_size &&
7290 	    mddev->array_sectors > newsize)
7291 		return -EINVAL;
7292 	if (mddev->bitmap) {
7293 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7294 		if (ret)
7295 			return ret;
7296 	}
7297 	md_set_array_sectors(mddev, newsize);
7298 	set_capacity(mddev->gendisk, mddev->array_sectors);
7299 	revalidate_disk(mddev->gendisk);
7300 	if (sectors > mddev->dev_sectors &&
7301 	    mddev->recovery_cp > mddev->dev_sectors) {
7302 		mddev->recovery_cp = mddev->dev_sectors;
7303 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7304 	}
7305 	mddev->dev_sectors = sectors;
7306 	mddev->resync_max_sectors = sectors;
7307 	return 0;
7308 }
7309 
check_stripe_cache(struct mddev * mddev)7310 static int check_stripe_cache(struct mddev *mddev)
7311 {
7312 	/* Can only proceed if there are plenty of stripe_heads.
7313 	 * We need a minimum of one full stripe,, and for sensible progress
7314 	 * it is best to have about 4 times that.
7315 	 * If we require 4 times, then the default 256 4K stripe_heads will
7316 	 * allow for chunk sizes up to 256K, which is probably OK.
7317 	 * If the chunk size is greater, user-space should request more
7318 	 * stripe_heads first.
7319 	 */
7320 	struct r5conf *conf = mddev->private;
7321 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7322 	    > conf->min_nr_stripes ||
7323 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7324 	    > conf->min_nr_stripes) {
7325 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7326 		       mdname(mddev),
7327 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7328 			/ STRIPE_SIZE)*4);
7329 		return 0;
7330 	}
7331 	return 1;
7332 }
7333 
check_reshape(struct mddev * mddev)7334 static int check_reshape(struct mddev *mddev)
7335 {
7336 	struct r5conf *conf = mddev->private;
7337 
7338 	if (conf->log)
7339 		return -EINVAL;
7340 	if (mddev->delta_disks == 0 &&
7341 	    mddev->new_layout == mddev->layout &&
7342 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7343 		return 0; /* nothing to do */
7344 	if (has_failed(conf))
7345 		return -EINVAL;
7346 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7347 		/* We might be able to shrink, but the devices must
7348 		 * be made bigger first.
7349 		 * For raid6, 4 is the minimum size.
7350 		 * Otherwise 2 is the minimum
7351 		 */
7352 		int min = 2;
7353 		if (mddev->level == 6)
7354 			min = 4;
7355 		if (mddev->raid_disks + mddev->delta_disks < min)
7356 			return -EINVAL;
7357 	}
7358 
7359 	if (!check_stripe_cache(mddev))
7360 		return -ENOSPC;
7361 
7362 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7363 	    mddev->delta_disks > 0)
7364 		if (resize_chunks(conf,
7365 				  conf->previous_raid_disks
7366 				  + max(0, mddev->delta_disks),
7367 				  max(mddev->new_chunk_sectors,
7368 				      mddev->chunk_sectors)
7369 			    ) < 0)
7370 			return -ENOMEM;
7371 	return resize_stripes(conf, (conf->previous_raid_disks
7372 				     + mddev->delta_disks));
7373 }
7374 
raid5_start_reshape(struct mddev * mddev)7375 static int raid5_start_reshape(struct mddev *mddev)
7376 {
7377 	struct r5conf *conf = mddev->private;
7378 	struct md_rdev *rdev;
7379 	int spares = 0;
7380 	unsigned long flags;
7381 
7382 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7383 		return -EBUSY;
7384 
7385 	if (!check_stripe_cache(mddev))
7386 		return -ENOSPC;
7387 
7388 	if (has_failed(conf))
7389 		return -EINVAL;
7390 
7391 	rdev_for_each(rdev, mddev) {
7392 		if (!test_bit(In_sync, &rdev->flags)
7393 		    && !test_bit(Faulty, &rdev->flags))
7394 			spares++;
7395 	}
7396 
7397 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7398 		/* Not enough devices even to make a degraded array
7399 		 * of that size
7400 		 */
7401 		return -EINVAL;
7402 
7403 	/* Refuse to reduce size of the array.  Any reductions in
7404 	 * array size must be through explicit setting of array_size
7405 	 * attribute.
7406 	 */
7407 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7408 	    < mddev->array_sectors) {
7409 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7410 		       "before number of disks\n", mdname(mddev));
7411 		return -EINVAL;
7412 	}
7413 
7414 	atomic_set(&conf->reshape_stripes, 0);
7415 	spin_lock_irq(&conf->device_lock);
7416 	write_seqcount_begin(&conf->gen_lock);
7417 	conf->previous_raid_disks = conf->raid_disks;
7418 	conf->raid_disks += mddev->delta_disks;
7419 	conf->prev_chunk_sectors = conf->chunk_sectors;
7420 	conf->chunk_sectors = mddev->new_chunk_sectors;
7421 	conf->prev_algo = conf->algorithm;
7422 	conf->algorithm = mddev->new_layout;
7423 	conf->generation++;
7424 	/* Code that selects data_offset needs to see the generation update
7425 	 * if reshape_progress has been set - so a memory barrier needed.
7426 	 */
7427 	smp_mb();
7428 	if (mddev->reshape_backwards)
7429 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7430 	else
7431 		conf->reshape_progress = 0;
7432 	conf->reshape_safe = conf->reshape_progress;
7433 	write_seqcount_end(&conf->gen_lock);
7434 	spin_unlock_irq(&conf->device_lock);
7435 
7436 	/* Now make sure any requests that proceeded on the assumption
7437 	 * the reshape wasn't running - like Discard or Read - have
7438 	 * completed.
7439 	 */
7440 	mddev_suspend(mddev);
7441 	mddev_resume(mddev);
7442 
7443 	/* Add some new drives, as many as will fit.
7444 	 * We know there are enough to make the newly sized array work.
7445 	 * Don't add devices if we are reducing the number of
7446 	 * devices in the array.  This is because it is not possible
7447 	 * to correctly record the "partially reconstructed" state of
7448 	 * such devices during the reshape and confusion could result.
7449 	 */
7450 	if (mddev->delta_disks >= 0) {
7451 		rdev_for_each(rdev, mddev)
7452 			if (rdev->raid_disk < 0 &&
7453 			    !test_bit(Faulty, &rdev->flags)) {
7454 				if (raid5_add_disk(mddev, rdev) == 0) {
7455 					if (rdev->raid_disk
7456 					    >= conf->previous_raid_disks)
7457 						set_bit(In_sync, &rdev->flags);
7458 					else
7459 						rdev->recovery_offset = 0;
7460 
7461 					if (sysfs_link_rdev(mddev, rdev))
7462 						/* Failure here is OK */;
7463 				}
7464 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7465 				   && !test_bit(Faulty, &rdev->flags)) {
7466 				/* This is a spare that was manually added */
7467 				set_bit(In_sync, &rdev->flags);
7468 			}
7469 
7470 		/* When a reshape changes the number of devices,
7471 		 * ->degraded is measured against the larger of the
7472 		 * pre and post number of devices.
7473 		 */
7474 		spin_lock_irqsave(&conf->device_lock, flags);
7475 		mddev->degraded = calc_degraded(conf);
7476 		spin_unlock_irqrestore(&conf->device_lock, flags);
7477 	}
7478 	mddev->raid_disks = conf->raid_disks;
7479 	mddev->reshape_position = conf->reshape_progress;
7480 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7481 
7482 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7483 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7484 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7485 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7486 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7487 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7488 						"reshape");
7489 	if (!mddev->sync_thread) {
7490 		mddev->recovery = 0;
7491 		spin_lock_irq(&conf->device_lock);
7492 		write_seqcount_begin(&conf->gen_lock);
7493 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7494 		mddev->new_chunk_sectors =
7495 			conf->chunk_sectors = conf->prev_chunk_sectors;
7496 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7497 		rdev_for_each(rdev, mddev)
7498 			rdev->new_data_offset = rdev->data_offset;
7499 		smp_wmb();
7500 		conf->generation --;
7501 		conf->reshape_progress = MaxSector;
7502 		mddev->reshape_position = MaxSector;
7503 		write_seqcount_end(&conf->gen_lock);
7504 		spin_unlock_irq(&conf->device_lock);
7505 		return -EAGAIN;
7506 	}
7507 	conf->reshape_checkpoint = jiffies;
7508 	md_wakeup_thread(mddev->sync_thread);
7509 	md_new_event(mddev);
7510 	return 0;
7511 }
7512 
7513 /* This is called from the reshape thread and should make any
7514  * changes needed in 'conf'
7515  */
end_reshape(struct r5conf * conf)7516 static void end_reshape(struct r5conf *conf)
7517 {
7518 
7519 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7520 		struct md_rdev *rdev;
7521 
7522 		spin_lock_irq(&conf->device_lock);
7523 		conf->previous_raid_disks = conf->raid_disks;
7524 		rdev_for_each(rdev, conf->mddev)
7525 			rdev->data_offset = rdev->new_data_offset;
7526 		smp_wmb();
7527 		conf->reshape_progress = MaxSector;
7528 		conf->mddev->reshape_position = MaxSector;
7529 		spin_unlock_irq(&conf->device_lock);
7530 		wake_up(&conf->wait_for_overlap);
7531 
7532 		/* read-ahead size must cover two whole stripes, which is
7533 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7534 		 */
7535 		if (conf->mddev->queue) {
7536 			int data_disks = conf->raid_disks - conf->max_degraded;
7537 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7538 						   / PAGE_SIZE);
7539 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7540 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7541 		}
7542 	}
7543 }
7544 
7545 /* This is called from the raid5d thread with mddev_lock held.
7546  * It makes config changes to the device.
7547  */
raid5_finish_reshape(struct mddev * mddev)7548 static void raid5_finish_reshape(struct mddev *mddev)
7549 {
7550 	struct r5conf *conf = mddev->private;
7551 
7552 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7553 
7554 		if (mddev->delta_disks > 0) {
7555 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7556 			set_capacity(mddev->gendisk, mddev->array_sectors);
7557 			revalidate_disk(mddev->gendisk);
7558 		} else {
7559 			int d;
7560 			spin_lock_irq(&conf->device_lock);
7561 			mddev->degraded = calc_degraded(conf);
7562 			spin_unlock_irq(&conf->device_lock);
7563 			for (d = conf->raid_disks ;
7564 			     d < conf->raid_disks - mddev->delta_disks;
7565 			     d++) {
7566 				struct md_rdev *rdev = conf->disks[d].rdev;
7567 				if (rdev)
7568 					clear_bit(In_sync, &rdev->flags);
7569 				rdev = conf->disks[d].replacement;
7570 				if (rdev)
7571 					clear_bit(In_sync, &rdev->flags);
7572 			}
7573 		}
7574 		mddev->layout = conf->algorithm;
7575 		mddev->chunk_sectors = conf->chunk_sectors;
7576 		mddev->reshape_position = MaxSector;
7577 		mddev->delta_disks = 0;
7578 		mddev->reshape_backwards = 0;
7579 	}
7580 }
7581 
raid5_quiesce(struct mddev * mddev,int state)7582 static void raid5_quiesce(struct mddev *mddev, int state)
7583 {
7584 	struct r5conf *conf = mddev->private;
7585 
7586 	switch(state) {
7587 	case 2: /* resume for a suspend */
7588 		wake_up(&conf->wait_for_overlap);
7589 		break;
7590 
7591 	case 1: /* stop all writes */
7592 		lock_all_device_hash_locks_irq(conf);
7593 		/* '2' tells resync/reshape to pause so that all
7594 		 * active stripes can drain
7595 		 */
7596 		conf->quiesce = 2;
7597 		wait_event_cmd(conf->wait_for_quiescent,
7598 				    atomic_read(&conf->active_stripes) == 0 &&
7599 				    atomic_read(&conf->active_aligned_reads) == 0,
7600 				    unlock_all_device_hash_locks_irq(conf),
7601 				    lock_all_device_hash_locks_irq(conf));
7602 		conf->quiesce = 1;
7603 		unlock_all_device_hash_locks_irq(conf);
7604 		/* allow reshape to continue */
7605 		wake_up(&conf->wait_for_overlap);
7606 		break;
7607 
7608 	case 0: /* re-enable writes */
7609 		lock_all_device_hash_locks_irq(conf);
7610 		conf->quiesce = 0;
7611 		wake_up(&conf->wait_for_quiescent);
7612 		wake_up(&conf->wait_for_overlap);
7613 		unlock_all_device_hash_locks_irq(conf);
7614 		break;
7615 	}
7616 	r5l_quiesce(conf->log, state);
7617 }
7618 
raid45_takeover_raid0(struct mddev * mddev,int level)7619 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7620 {
7621 	struct r0conf *raid0_conf = mddev->private;
7622 	sector_t sectors;
7623 
7624 	/* for raid0 takeover only one zone is supported */
7625 	if (raid0_conf->nr_strip_zones > 1) {
7626 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7627 		       mdname(mddev));
7628 		return ERR_PTR(-EINVAL);
7629 	}
7630 
7631 	sectors = raid0_conf->strip_zone[0].zone_end;
7632 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7633 	mddev->dev_sectors = sectors;
7634 	mddev->new_level = level;
7635 	mddev->new_layout = ALGORITHM_PARITY_N;
7636 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7637 	mddev->raid_disks += 1;
7638 	mddev->delta_disks = 1;
7639 	/* make sure it will be not marked as dirty */
7640 	mddev->recovery_cp = MaxSector;
7641 
7642 	return setup_conf(mddev);
7643 }
7644 
raid5_takeover_raid1(struct mddev * mddev)7645 static void *raid5_takeover_raid1(struct mddev *mddev)
7646 {
7647 	int chunksect;
7648 
7649 	if (mddev->raid_disks != 2 ||
7650 	    mddev->degraded > 1)
7651 		return ERR_PTR(-EINVAL);
7652 
7653 	/* Should check if there are write-behind devices? */
7654 
7655 	chunksect = 64*2; /* 64K by default */
7656 
7657 	/* The array must be an exact multiple of chunksize */
7658 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7659 		chunksect >>= 1;
7660 
7661 	if ((chunksect<<9) < STRIPE_SIZE)
7662 		/* array size does not allow a suitable chunk size */
7663 		return ERR_PTR(-EINVAL);
7664 
7665 	mddev->new_level = 5;
7666 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7667 	mddev->new_chunk_sectors = chunksect;
7668 
7669 	return setup_conf(mddev);
7670 }
7671 
raid5_takeover_raid6(struct mddev * mddev)7672 static void *raid5_takeover_raid6(struct mddev *mddev)
7673 {
7674 	int new_layout;
7675 
7676 	switch (mddev->layout) {
7677 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7678 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7679 		break;
7680 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7681 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7682 		break;
7683 	case ALGORITHM_LEFT_SYMMETRIC_6:
7684 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7685 		break;
7686 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7687 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7688 		break;
7689 	case ALGORITHM_PARITY_0_6:
7690 		new_layout = ALGORITHM_PARITY_0;
7691 		break;
7692 	case ALGORITHM_PARITY_N:
7693 		new_layout = ALGORITHM_PARITY_N;
7694 		break;
7695 	default:
7696 		return ERR_PTR(-EINVAL);
7697 	}
7698 	mddev->new_level = 5;
7699 	mddev->new_layout = new_layout;
7700 	mddev->delta_disks = -1;
7701 	mddev->raid_disks -= 1;
7702 	return setup_conf(mddev);
7703 }
7704 
raid5_check_reshape(struct mddev * mddev)7705 static int raid5_check_reshape(struct mddev *mddev)
7706 {
7707 	/* For a 2-drive array, the layout and chunk size can be changed
7708 	 * immediately as not restriping is needed.
7709 	 * For larger arrays we record the new value - after validation
7710 	 * to be used by a reshape pass.
7711 	 */
7712 	struct r5conf *conf = mddev->private;
7713 	int new_chunk = mddev->new_chunk_sectors;
7714 
7715 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7716 		return -EINVAL;
7717 	if (new_chunk > 0) {
7718 		if (!is_power_of_2(new_chunk))
7719 			return -EINVAL;
7720 		if (new_chunk < (PAGE_SIZE>>9))
7721 			return -EINVAL;
7722 		if (mddev->array_sectors & (new_chunk-1))
7723 			/* not factor of array size */
7724 			return -EINVAL;
7725 	}
7726 
7727 	/* They look valid */
7728 
7729 	if (mddev->raid_disks == 2) {
7730 		/* can make the change immediately */
7731 		if (mddev->new_layout >= 0) {
7732 			conf->algorithm = mddev->new_layout;
7733 			mddev->layout = mddev->new_layout;
7734 		}
7735 		if (new_chunk > 0) {
7736 			conf->chunk_sectors = new_chunk ;
7737 			mddev->chunk_sectors = new_chunk;
7738 		}
7739 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7740 		md_wakeup_thread(mddev->thread);
7741 	}
7742 	return check_reshape(mddev);
7743 }
7744 
raid6_check_reshape(struct mddev * mddev)7745 static int raid6_check_reshape(struct mddev *mddev)
7746 {
7747 	int new_chunk = mddev->new_chunk_sectors;
7748 
7749 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7750 		return -EINVAL;
7751 	if (new_chunk > 0) {
7752 		if (!is_power_of_2(new_chunk))
7753 			return -EINVAL;
7754 		if (new_chunk < (PAGE_SIZE >> 9))
7755 			return -EINVAL;
7756 		if (mddev->array_sectors & (new_chunk-1))
7757 			/* not factor of array size */
7758 			return -EINVAL;
7759 	}
7760 
7761 	/* They look valid */
7762 	return check_reshape(mddev);
7763 }
7764 
raid5_takeover(struct mddev * mddev)7765 static void *raid5_takeover(struct mddev *mddev)
7766 {
7767 	/* raid5 can take over:
7768 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7769 	 *  raid1 - if there are two drives.  We need to know the chunk size
7770 	 *  raid4 - trivial - just use a raid4 layout.
7771 	 *  raid6 - Providing it is a *_6 layout
7772 	 */
7773 	if (mddev->level == 0)
7774 		return raid45_takeover_raid0(mddev, 5);
7775 	if (mddev->level == 1)
7776 		return raid5_takeover_raid1(mddev);
7777 	if (mddev->level == 4) {
7778 		mddev->new_layout = ALGORITHM_PARITY_N;
7779 		mddev->new_level = 5;
7780 		return setup_conf(mddev);
7781 	}
7782 	if (mddev->level == 6)
7783 		return raid5_takeover_raid6(mddev);
7784 
7785 	return ERR_PTR(-EINVAL);
7786 }
7787 
raid4_takeover(struct mddev * mddev)7788 static void *raid4_takeover(struct mddev *mddev)
7789 {
7790 	/* raid4 can take over:
7791 	 *  raid0 - if there is only one strip zone
7792 	 *  raid5 - if layout is right
7793 	 */
7794 	if (mddev->level == 0)
7795 		return raid45_takeover_raid0(mddev, 4);
7796 	if (mddev->level == 5 &&
7797 	    mddev->layout == ALGORITHM_PARITY_N) {
7798 		mddev->new_layout = 0;
7799 		mddev->new_level = 4;
7800 		return setup_conf(mddev);
7801 	}
7802 	return ERR_PTR(-EINVAL);
7803 }
7804 
7805 static struct md_personality raid5_personality;
7806 
raid6_takeover(struct mddev * mddev)7807 static void *raid6_takeover(struct mddev *mddev)
7808 {
7809 	/* Currently can only take over a raid5.  We map the
7810 	 * personality to an equivalent raid6 personality
7811 	 * with the Q block at the end.
7812 	 */
7813 	int new_layout;
7814 
7815 	if (mddev->pers != &raid5_personality)
7816 		return ERR_PTR(-EINVAL);
7817 	if (mddev->degraded > 1)
7818 		return ERR_PTR(-EINVAL);
7819 	if (mddev->raid_disks > 253)
7820 		return ERR_PTR(-EINVAL);
7821 	if (mddev->raid_disks < 3)
7822 		return ERR_PTR(-EINVAL);
7823 
7824 	switch (mddev->layout) {
7825 	case ALGORITHM_LEFT_ASYMMETRIC:
7826 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7827 		break;
7828 	case ALGORITHM_RIGHT_ASYMMETRIC:
7829 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7830 		break;
7831 	case ALGORITHM_LEFT_SYMMETRIC:
7832 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7833 		break;
7834 	case ALGORITHM_RIGHT_SYMMETRIC:
7835 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7836 		break;
7837 	case ALGORITHM_PARITY_0:
7838 		new_layout = ALGORITHM_PARITY_0_6;
7839 		break;
7840 	case ALGORITHM_PARITY_N:
7841 		new_layout = ALGORITHM_PARITY_N;
7842 		break;
7843 	default:
7844 		return ERR_PTR(-EINVAL);
7845 	}
7846 	mddev->new_level = 6;
7847 	mddev->new_layout = new_layout;
7848 	mddev->delta_disks = 1;
7849 	mddev->raid_disks += 1;
7850 	return setup_conf(mddev);
7851 }
7852 
7853 static struct md_personality raid6_personality =
7854 {
7855 	.name		= "raid6",
7856 	.level		= 6,
7857 	.owner		= THIS_MODULE,
7858 	.make_request	= make_request,
7859 	.run		= run,
7860 	.free		= raid5_free,
7861 	.status		= status,
7862 	.error_handler	= error,
7863 	.hot_add_disk	= raid5_add_disk,
7864 	.hot_remove_disk= raid5_remove_disk,
7865 	.spare_active	= raid5_spare_active,
7866 	.sync_request	= sync_request,
7867 	.resize		= raid5_resize,
7868 	.size		= raid5_size,
7869 	.check_reshape	= raid6_check_reshape,
7870 	.start_reshape  = raid5_start_reshape,
7871 	.finish_reshape = raid5_finish_reshape,
7872 	.quiesce	= raid5_quiesce,
7873 	.takeover	= raid6_takeover,
7874 	.congested	= raid5_congested,
7875 };
7876 static struct md_personality raid5_personality =
7877 {
7878 	.name		= "raid5",
7879 	.level		= 5,
7880 	.owner		= THIS_MODULE,
7881 	.make_request	= make_request,
7882 	.run		= run,
7883 	.free		= raid5_free,
7884 	.status		= status,
7885 	.error_handler	= error,
7886 	.hot_add_disk	= raid5_add_disk,
7887 	.hot_remove_disk= raid5_remove_disk,
7888 	.spare_active	= raid5_spare_active,
7889 	.sync_request	= sync_request,
7890 	.resize		= raid5_resize,
7891 	.size		= raid5_size,
7892 	.check_reshape	= raid5_check_reshape,
7893 	.start_reshape  = raid5_start_reshape,
7894 	.finish_reshape = raid5_finish_reshape,
7895 	.quiesce	= raid5_quiesce,
7896 	.takeover	= raid5_takeover,
7897 	.congested	= raid5_congested,
7898 };
7899 
7900 static struct md_personality raid4_personality =
7901 {
7902 	.name		= "raid4",
7903 	.level		= 4,
7904 	.owner		= THIS_MODULE,
7905 	.make_request	= make_request,
7906 	.run		= run,
7907 	.free		= raid5_free,
7908 	.status		= status,
7909 	.error_handler	= error,
7910 	.hot_add_disk	= raid5_add_disk,
7911 	.hot_remove_disk= raid5_remove_disk,
7912 	.spare_active	= raid5_spare_active,
7913 	.sync_request	= sync_request,
7914 	.resize		= raid5_resize,
7915 	.size		= raid5_size,
7916 	.check_reshape	= raid5_check_reshape,
7917 	.start_reshape  = raid5_start_reshape,
7918 	.finish_reshape = raid5_finish_reshape,
7919 	.quiesce	= raid5_quiesce,
7920 	.takeover	= raid4_takeover,
7921 	.congested	= raid5_congested,
7922 };
7923 
raid5_init(void)7924 static int __init raid5_init(void)
7925 {
7926 	raid5_wq = alloc_workqueue("raid5wq",
7927 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7928 	if (!raid5_wq)
7929 		return -ENOMEM;
7930 	register_md_personality(&raid6_personality);
7931 	register_md_personality(&raid5_personality);
7932 	register_md_personality(&raid4_personality);
7933 	return 0;
7934 }
7935 
raid5_exit(void)7936 static void raid5_exit(void)
7937 {
7938 	unregister_md_personality(&raid6_personality);
7939 	unregister_md_personality(&raid5_personality);
7940 	unregister_md_personality(&raid4_personality);
7941 	destroy_workqueue(raid5_wq);
7942 }
7943 
7944 module_init(raid5_init);
7945 module_exit(raid5_exit);
7946 MODULE_LICENSE("GPL");
7947 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7948 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7949 MODULE_ALIAS("md-raid5");
7950 MODULE_ALIAS("md-raid4");
7951 MODULE_ALIAS("md-level-5");
7952 MODULE_ALIAS("md-level-4");
7953 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7954 MODULE_ALIAS("md-raid6");
7955 MODULE_ALIAS("md-level-6");
7956 
7957 /* This used to be two separate modules, they were: */
7958 MODULE_ALIAS("raid5");
7959 MODULE_ALIAS("raid6");
7960