1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28 
29 #include <trace/events/block.h>
30 
31 #define DM_MSG_PREFIX "core"
32 
33 #ifdef CONFIG_PRINTK
34 /*
35  * ratelimit state to be used in DMXXX_LIMIT().
36  */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 		       DEFAULT_RATELIMIT_INTERVAL,
39 		       DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42 
43 /*
44  * Cookies are numeric values sent with CHANGE and REMOVE
45  * uevents while resuming, removing or renaming the device.
46  */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per bio.
68  */
69 struct dm_io {
70 	struct mapped_device *md;
71 	int error;
72 	atomic_t io_count;
73 	struct bio *bio;
74 	unsigned long start_time;
75 	spinlock_t endio_lock;
76 	struct dm_stats_aux stats_aux;
77 };
78 
79 /*
80  * For request-based dm.
81  * One of these is allocated per request.
82  */
83 struct dm_rq_target_io {
84 	struct mapped_device *md;
85 	struct dm_target *ti;
86 	struct request *orig, *clone;
87 	struct kthread_work work;
88 	int error;
89 	union map_info info;
90 	struct dm_stats_aux stats_aux;
91 	unsigned long duration_jiffies;
92 	unsigned n_sectors;
93 };
94 
95 /*
96  * For request-based dm - the bio clones we allocate are embedded in these
97  * structs.
98  *
99  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100  * the bioset is created - this means the bio has to come at the end of the
101  * struct.
102  */
103 struct dm_rq_clone_bio_info {
104 	struct bio *orig;
105 	struct dm_rq_target_io *tio;
106 	struct bio clone;
107 };
108 
dm_get_rq_mapinfo(struct request * rq)109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 	if (rq && rq->end_io_data)
112 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 	return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116 
117 #define MINOR_ALLOCED ((void *)-1)
118 
119 /*
120  * Bits for the md->flags field.
121  */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_DEFERRED_REMOVE 6
129 #define DMF_SUSPENDED_INTERNALLY 7
130 
131 /*
132  * A dummy definition to make RCU happy.
133  * struct dm_table should never be dereferenced in this file.
134  */
135 struct dm_table {
136 	int undefined__;
137 };
138 
139 /*
140  * Work processed by per-device workqueue.
141  */
142 struct mapped_device {
143 	struct srcu_struct io_barrier;
144 	struct mutex suspend_lock;
145 	atomic_t holders;
146 	atomic_t open_count;
147 
148 	/*
149 	 * The current mapping.
150 	 * Use dm_get_live_table{_fast} or take suspend_lock for
151 	 * dereference.
152 	 */
153 	struct dm_table __rcu *map;
154 
155 	struct list_head table_devices;
156 	struct mutex table_devices_lock;
157 
158 	unsigned long flags;
159 
160 	struct request_queue *queue;
161 	unsigned type;
162 	/* Protect queue and type against concurrent access. */
163 	struct mutex type_lock;
164 
165 	struct target_type *immutable_target_type;
166 
167 	struct gendisk *disk;
168 	char name[16];
169 
170 	void *interface_ptr;
171 
172 	/*
173 	 * A list of ios that arrived while we were suspended.
174 	 */
175 	atomic_t pending[2];
176 	wait_queue_head_t wait;
177 	struct work_struct work;
178 	struct bio_list deferred;
179 	spinlock_t deferred_lock;
180 
181 	/*
182 	 * Processing queue (flush)
183 	 */
184 	struct workqueue_struct *wq;
185 
186 	/*
187 	 * io objects are allocated from here.
188 	 */
189 	mempool_t *io_pool;
190 	mempool_t *rq_pool;
191 
192 	struct bio_set *bs;
193 
194 	/*
195 	 * Event handling.
196 	 */
197 	atomic_t event_nr;
198 	wait_queue_head_t eventq;
199 	atomic_t uevent_seq;
200 	struct list_head uevent_list;
201 	spinlock_t uevent_lock; /* Protect access to uevent_list */
202 
203 	/*
204 	 * freeze/thaw support require holding onto a super block
205 	 */
206 	struct super_block *frozen_sb;
207 	struct block_device *bdev;
208 
209 	/* forced geometry settings */
210 	struct hd_geometry geometry;
211 
212 	/* kobject and completion */
213 	struct dm_kobject_holder kobj_holder;
214 
215 	/* zero-length flush that will be cloned and submitted to targets */
216 	struct bio flush_bio;
217 
218 	/* the number of internal suspends */
219 	unsigned internal_suspend_count;
220 
221 	struct dm_stats stats;
222 
223 	struct kthread_worker kworker;
224 	struct task_struct *kworker_task;
225 
226 	/* for request-based merge heuristic in dm_request_fn() */
227 	unsigned seq_rq_merge_deadline_usecs;
228 	int last_rq_rw;
229 	sector_t last_rq_pos;
230 	ktime_t last_rq_start_time;
231 
232 	/* for blk-mq request-based DM support */
233 	struct blk_mq_tag_set tag_set;
234 	bool use_blk_mq;
235 };
236 
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242 
dm_use_blk_mq(struct mapped_device * md)243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 	return md->use_blk_mq;
246 }
247 
248 /*
249  * For mempools pre-allocation at the table loading time.
250  */
251 struct dm_md_mempools {
252 	mempool_t *io_pool;
253 	mempool_t *rq_pool;
254 	struct bio_set *bs;
255 };
256 
257 struct table_device {
258 	struct list_head list;
259 	atomic_t count;
260 	struct dm_dev dm_dev;
261 };
262 
263 #define RESERVED_BIO_BASED_IOS		16
264 #define RESERVED_REQUEST_BASED_IOS	256
265 #define RESERVED_MAX_IOS		1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269 
270 /*
271  * Bio-based DM's mempools' reserved IOs set by the user.
272  */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274 
275 /*
276  * Request-based DM's mempools' reserved IOs set by the user.
277  */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279 
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)280 static unsigned __dm_get_module_param(unsigned *module_param,
281 				      unsigned def, unsigned max)
282 {
283 	unsigned param = ACCESS_ONCE(*module_param);
284 	unsigned modified_param = 0;
285 
286 	if (!param)
287 		modified_param = def;
288 	else if (param > max)
289 		modified_param = max;
290 
291 	if (modified_param) {
292 		(void)cmpxchg(module_param, param, modified_param);
293 		param = modified_param;
294 	}
295 
296 	return param;
297 }
298 
dm_get_reserved_bio_based_ios(void)299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 	return __dm_get_module_param(&reserved_bio_based_ios,
302 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305 
dm_get_reserved_rq_based_ios(void)306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 	return __dm_get_module_param(&reserved_rq_based_ios,
309 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312 
local_init(void)313 static int __init local_init(void)
314 {
315 	int r = -ENOMEM;
316 
317 	/* allocate a slab for the dm_ios */
318 	_io_cache = KMEM_CACHE(dm_io, 0);
319 	if (!_io_cache)
320 		return r;
321 
322 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 	if (!_rq_tio_cache)
324 		goto out_free_io_cache;
325 
326 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 				      __alignof__(struct request), 0, NULL);
328 	if (!_rq_cache)
329 		goto out_free_rq_tio_cache;
330 
331 	r = dm_uevent_init();
332 	if (r)
333 		goto out_free_rq_cache;
334 
335 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 	if (!deferred_remove_workqueue) {
337 		r = -ENOMEM;
338 		goto out_uevent_exit;
339 	}
340 
341 	_major = major;
342 	r = register_blkdev(_major, _name);
343 	if (r < 0)
344 		goto out_free_workqueue;
345 
346 	if (!_major)
347 		_major = r;
348 
349 	return 0;
350 
351 out_free_workqueue:
352 	destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 	dm_uevent_exit();
355 out_free_rq_cache:
356 	kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 	kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 	kmem_cache_destroy(_io_cache);
361 
362 	return r;
363 }
364 
local_exit(void)365 static void local_exit(void)
366 {
367 	flush_scheduled_work();
368 	destroy_workqueue(deferred_remove_workqueue);
369 
370 	kmem_cache_destroy(_rq_cache);
371 	kmem_cache_destroy(_rq_tio_cache);
372 	kmem_cache_destroy(_io_cache);
373 	unregister_blkdev(_major, _name);
374 	dm_uevent_exit();
375 
376 	_major = 0;
377 
378 	DMINFO("cleaned up");
379 }
380 
381 static int (*_inits[])(void) __initdata = {
382 	local_init,
383 	dm_target_init,
384 	dm_linear_init,
385 	dm_stripe_init,
386 	dm_io_init,
387 	dm_kcopyd_init,
388 	dm_interface_init,
389 	dm_statistics_init,
390 };
391 
392 static void (*_exits[])(void) = {
393 	local_exit,
394 	dm_target_exit,
395 	dm_linear_exit,
396 	dm_stripe_exit,
397 	dm_io_exit,
398 	dm_kcopyd_exit,
399 	dm_interface_exit,
400 	dm_statistics_exit,
401 };
402 
dm_init(void)403 static int __init dm_init(void)
404 {
405 	const int count = ARRAY_SIZE(_inits);
406 
407 	int r, i;
408 
409 	for (i = 0; i < count; i++) {
410 		r = _inits[i]();
411 		if (r)
412 			goto bad;
413 	}
414 
415 	return 0;
416 
417       bad:
418 	while (i--)
419 		_exits[i]();
420 
421 	return r;
422 }
423 
dm_exit(void)424 static void __exit dm_exit(void)
425 {
426 	int i = ARRAY_SIZE(_exits);
427 
428 	while (i--)
429 		_exits[i]();
430 
431 	/*
432 	 * Should be empty by this point.
433 	 */
434 	idr_destroy(&_minor_idr);
435 }
436 
437 /*
438  * Block device functions
439  */
dm_deleting_md(struct mapped_device * md)440 int dm_deleting_md(struct mapped_device *md)
441 {
442 	return test_bit(DMF_DELETING, &md->flags);
443 }
444 
dm_blk_open(struct block_device * bdev,fmode_t mode)445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 	struct mapped_device *md;
448 
449 	spin_lock(&_minor_lock);
450 
451 	md = bdev->bd_disk->private_data;
452 	if (!md)
453 		goto out;
454 
455 	if (test_bit(DMF_FREEING, &md->flags) ||
456 	    dm_deleting_md(md)) {
457 		md = NULL;
458 		goto out;
459 	}
460 
461 	dm_get(md);
462 	atomic_inc(&md->open_count);
463 out:
464 	spin_unlock(&_minor_lock);
465 
466 	return md ? 0 : -ENXIO;
467 }
468 
dm_blk_close(struct gendisk * disk,fmode_t mode)469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 	struct mapped_device *md;
472 
473 	spin_lock(&_minor_lock);
474 
475 	md = disk->private_data;
476 	if (WARN_ON(!md))
477 		goto out;
478 
479 	if (atomic_dec_and_test(&md->open_count) &&
480 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
482 
483 	dm_put(md);
484 out:
485 	spin_unlock(&_minor_lock);
486 }
487 
dm_open_count(struct mapped_device * md)488 int dm_open_count(struct mapped_device *md)
489 {
490 	return atomic_read(&md->open_count);
491 }
492 
493 /*
494  * Guarantees nothing is using the device before it's deleted.
495  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 	int r = 0;
499 
500 	spin_lock(&_minor_lock);
501 
502 	if (dm_open_count(md)) {
503 		r = -EBUSY;
504 		if (mark_deferred)
505 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 		r = -EEXIST;
508 	else
509 		set_bit(DMF_DELETING, &md->flags);
510 
511 	spin_unlock(&_minor_lock);
512 
513 	return r;
514 }
515 
dm_cancel_deferred_remove(struct mapped_device * md)516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 	int r = 0;
519 
520 	spin_lock(&_minor_lock);
521 
522 	if (test_bit(DMF_DELETING, &md->flags))
523 		r = -EBUSY;
524 	else
525 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526 
527 	spin_unlock(&_minor_lock);
528 
529 	return r;
530 }
531 
do_deferred_remove(struct work_struct * w)532 static void do_deferred_remove(struct work_struct *w)
533 {
534 	dm_deferred_remove();
535 }
536 
dm_get_size(struct mapped_device * md)537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 	return get_capacity(md->disk);
540 }
541 
dm_get_md_queue(struct mapped_device * md)542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 	return md->queue;
545 }
546 
dm_get_stats(struct mapped_device * md)547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 	return &md->stats;
550 }
551 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 	struct mapped_device *md = bdev->bd_disk->private_data;
555 
556 	return dm_get_geometry(md, geo);
557 }
558 
dm_get_live_table_for_ioctl(struct mapped_device * md,struct dm_target ** tgt,struct block_device ** bdev,fmode_t * mode,int * srcu_idx)559 static int dm_get_live_table_for_ioctl(struct mapped_device *md,
560 		struct dm_target **tgt, struct block_device **bdev,
561 		fmode_t *mode, int *srcu_idx)
562 {
563 	struct dm_table *map;
564 	int r;
565 
566 retry:
567 	r = -ENOTTY;
568 	map = dm_get_live_table(md, srcu_idx);
569 	if (!map || !dm_table_get_size(map))
570 		goto out;
571 
572 	/* We only support devices that have a single target */
573 	if (dm_table_get_num_targets(map) != 1)
574 		goto out;
575 
576 	*tgt = dm_table_get_target(map, 0);
577 
578 	if (!(*tgt)->type->prepare_ioctl)
579 		goto out;
580 
581 	if (dm_suspended_md(md)) {
582 		r = -EAGAIN;
583 		goto out;
584 	}
585 
586 	r = (*tgt)->type->prepare_ioctl(*tgt, bdev, mode);
587 	if (r < 0)
588 		goto out;
589 
590 	return r;
591 
592 out:
593 	dm_put_live_table(md, *srcu_idx);
594 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
595 		msleep(10);
596 		goto retry;
597 	}
598 	return r;
599 }
600 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)601 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
602 			unsigned int cmd, unsigned long arg)
603 {
604 	struct mapped_device *md = bdev->bd_disk->private_data;
605 	struct dm_target *tgt;
606 	struct block_device *tgt_bdev = NULL;
607 	int srcu_idx, r;
608 
609 	r = dm_get_live_table_for_ioctl(md, &tgt, &tgt_bdev, &mode, &srcu_idx);
610 	if (r < 0)
611 		return r;
612 
613 	if (r > 0) {
614 		/*
615 		 * Target determined this ioctl is being issued against
616 		 * a logical partition of the parent bdev; so extra
617 		 * validation is needed.
618 		 */
619 		r = scsi_verify_blk_ioctl(NULL, cmd);
620 		if (r)
621 			goto out;
622 	}
623 
624 	r =  __blkdev_driver_ioctl(tgt_bdev, mode, cmd, arg);
625 out:
626 	dm_put_live_table(md, srcu_idx);
627 	return r;
628 }
629 
alloc_io(struct mapped_device * md)630 static struct dm_io *alloc_io(struct mapped_device *md)
631 {
632 	return mempool_alloc(md->io_pool, GFP_NOIO);
633 }
634 
free_io(struct mapped_device * md,struct dm_io * io)635 static void free_io(struct mapped_device *md, struct dm_io *io)
636 {
637 	mempool_free(io, md->io_pool);
638 }
639 
free_tio(struct mapped_device * md,struct dm_target_io * tio)640 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
641 {
642 	bio_put(&tio->clone);
643 }
644 
alloc_rq_tio(struct mapped_device * md,gfp_t gfp_mask)645 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
646 					    gfp_t gfp_mask)
647 {
648 	return mempool_alloc(md->io_pool, gfp_mask);
649 }
650 
free_rq_tio(struct dm_rq_target_io * tio)651 static void free_rq_tio(struct dm_rq_target_io *tio)
652 {
653 	mempool_free(tio, tio->md->io_pool);
654 }
655 
alloc_clone_request(struct mapped_device * md,gfp_t gfp_mask)656 static struct request *alloc_clone_request(struct mapped_device *md,
657 					   gfp_t gfp_mask)
658 {
659 	return mempool_alloc(md->rq_pool, gfp_mask);
660 }
661 
free_clone_request(struct mapped_device * md,struct request * rq)662 static void free_clone_request(struct mapped_device *md, struct request *rq)
663 {
664 	mempool_free(rq, md->rq_pool);
665 }
666 
md_in_flight(struct mapped_device * md)667 static int md_in_flight(struct mapped_device *md)
668 {
669 	return atomic_read(&md->pending[READ]) +
670 	       atomic_read(&md->pending[WRITE]);
671 }
672 
start_io_acct(struct dm_io * io)673 static void start_io_acct(struct dm_io *io)
674 {
675 	struct mapped_device *md = io->md;
676 	struct bio *bio = io->bio;
677 	int cpu;
678 	int rw = bio_data_dir(bio);
679 
680 	io->start_time = jiffies;
681 
682 	cpu = part_stat_lock();
683 	part_round_stats(cpu, &dm_disk(md)->part0);
684 	part_stat_unlock();
685 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
686 		atomic_inc_return(&md->pending[rw]));
687 
688 	if (unlikely(dm_stats_used(&md->stats)))
689 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
690 				    bio_sectors(bio), false, 0, &io->stats_aux);
691 }
692 
end_io_acct(struct dm_io * io)693 static void end_io_acct(struct dm_io *io)
694 {
695 	struct mapped_device *md = io->md;
696 	struct bio *bio = io->bio;
697 	unsigned long duration = jiffies - io->start_time;
698 	int pending;
699 	int rw = bio_data_dir(bio);
700 
701 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
702 
703 	if (unlikely(dm_stats_used(&md->stats)))
704 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
705 				    bio_sectors(bio), true, duration, &io->stats_aux);
706 
707 	/*
708 	 * After this is decremented the bio must not be touched if it is
709 	 * a flush.
710 	 */
711 	pending = atomic_dec_return(&md->pending[rw]);
712 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
713 	pending += atomic_read(&md->pending[rw^0x1]);
714 
715 	/* nudge anyone waiting on suspend queue */
716 	if (!pending)
717 		wake_up(&md->wait);
718 }
719 
720 /*
721  * Add the bio to the list of deferred io.
722  */
queue_io(struct mapped_device * md,struct bio * bio)723 static void queue_io(struct mapped_device *md, struct bio *bio)
724 {
725 	unsigned long flags;
726 
727 	spin_lock_irqsave(&md->deferred_lock, flags);
728 	bio_list_add(&md->deferred, bio);
729 	spin_unlock_irqrestore(&md->deferred_lock, flags);
730 	queue_work(md->wq, &md->work);
731 }
732 
733 /*
734  * Everyone (including functions in this file), should use this
735  * function to access the md->map field, and make sure they call
736  * dm_put_live_table() when finished.
737  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)738 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
739 {
740 	*srcu_idx = srcu_read_lock(&md->io_barrier);
741 
742 	return srcu_dereference(md->map, &md->io_barrier);
743 }
744 
dm_put_live_table(struct mapped_device * md,int srcu_idx)745 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
746 {
747 	srcu_read_unlock(&md->io_barrier, srcu_idx);
748 }
749 
dm_sync_table(struct mapped_device * md)750 void dm_sync_table(struct mapped_device *md)
751 {
752 	synchronize_srcu(&md->io_barrier);
753 	synchronize_rcu_expedited();
754 }
755 
756 /*
757  * A fast alternative to dm_get_live_table/dm_put_live_table.
758  * The caller must not block between these two functions.
759  */
dm_get_live_table_fast(struct mapped_device * md)760 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
761 {
762 	rcu_read_lock();
763 	return rcu_dereference(md->map);
764 }
765 
dm_put_live_table_fast(struct mapped_device * md)766 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
767 {
768 	rcu_read_unlock();
769 }
770 
771 /*
772  * Open a table device so we can use it as a map destination.
773  */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)774 static int open_table_device(struct table_device *td, dev_t dev,
775 			     struct mapped_device *md)
776 {
777 	static char *_claim_ptr = "I belong to device-mapper";
778 	struct block_device *bdev;
779 
780 	int r;
781 
782 	BUG_ON(td->dm_dev.bdev);
783 
784 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
785 	if (IS_ERR(bdev))
786 		return PTR_ERR(bdev);
787 
788 	r = bd_link_disk_holder(bdev, dm_disk(md));
789 	if (r) {
790 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
791 		return r;
792 	}
793 
794 	td->dm_dev.bdev = bdev;
795 	return 0;
796 }
797 
798 /*
799  * Close a table device that we've been using.
800  */
close_table_device(struct table_device * td,struct mapped_device * md)801 static void close_table_device(struct table_device *td, struct mapped_device *md)
802 {
803 	if (!td->dm_dev.bdev)
804 		return;
805 
806 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
807 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
808 	td->dm_dev.bdev = NULL;
809 }
810 
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)811 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
812 					      fmode_t mode) {
813 	struct table_device *td;
814 
815 	list_for_each_entry(td, l, list)
816 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
817 			return td;
818 
819 	return NULL;
820 }
821 
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)822 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
823 			struct dm_dev **result) {
824 	int r;
825 	struct table_device *td;
826 
827 	mutex_lock(&md->table_devices_lock);
828 	td = find_table_device(&md->table_devices, dev, mode);
829 	if (!td) {
830 		td = kmalloc(sizeof(*td), GFP_KERNEL);
831 		if (!td) {
832 			mutex_unlock(&md->table_devices_lock);
833 			return -ENOMEM;
834 		}
835 
836 		td->dm_dev.mode = mode;
837 		td->dm_dev.bdev = NULL;
838 
839 		if ((r = open_table_device(td, dev, md))) {
840 			mutex_unlock(&md->table_devices_lock);
841 			kfree(td);
842 			return r;
843 		}
844 
845 		format_dev_t(td->dm_dev.name, dev);
846 
847 		atomic_set(&td->count, 0);
848 		list_add(&td->list, &md->table_devices);
849 	}
850 	atomic_inc(&td->count);
851 	mutex_unlock(&md->table_devices_lock);
852 
853 	*result = &td->dm_dev;
854 	return 0;
855 }
856 EXPORT_SYMBOL_GPL(dm_get_table_device);
857 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)858 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
859 {
860 	struct table_device *td = container_of(d, struct table_device, dm_dev);
861 
862 	mutex_lock(&md->table_devices_lock);
863 	if (atomic_dec_and_test(&td->count)) {
864 		close_table_device(td, md);
865 		list_del(&td->list);
866 		kfree(td);
867 	}
868 	mutex_unlock(&md->table_devices_lock);
869 }
870 EXPORT_SYMBOL(dm_put_table_device);
871 
free_table_devices(struct list_head * devices)872 static void free_table_devices(struct list_head *devices)
873 {
874 	struct list_head *tmp, *next;
875 
876 	list_for_each_safe(tmp, next, devices) {
877 		struct table_device *td = list_entry(tmp, struct table_device, list);
878 
879 		DMWARN("dm_destroy: %s still exists with %d references",
880 		       td->dm_dev.name, atomic_read(&td->count));
881 		kfree(td);
882 	}
883 }
884 
885 /*
886  * Get the geometry associated with a dm device
887  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)888 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
889 {
890 	*geo = md->geometry;
891 
892 	return 0;
893 }
894 
895 /*
896  * Set the geometry of a device.
897  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)898 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 {
900 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
901 
902 	if (geo->start > sz) {
903 		DMWARN("Start sector is beyond the geometry limits.");
904 		return -EINVAL;
905 	}
906 
907 	md->geometry = *geo;
908 
909 	return 0;
910 }
911 
912 /*-----------------------------------------------------------------
913  * CRUD START:
914  *   A more elegant soln is in the works that uses the queue
915  *   merge fn, unfortunately there are a couple of changes to
916  *   the block layer that I want to make for this.  So in the
917  *   interests of getting something for people to use I give
918  *   you this clearly demarcated crap.
919  *---------------------------------------------------------------*/
920 
__noflush_suspending(struct mapped_device * md)921 static int __noflush_suspending(struct mapped_device *md)
922 {
923 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
924 }
925 
926 /*
927  * Decrements the number of outstanding ios that a bio has been
928  * cloned into, completing the original io if necc.
929  */
dec_pending(struct dm_io * io,int error)930 static void dec_pending(struct dm_io *io, int error)
931 {
932 	unsigned long flags;
933 	int io_error;
934 	struct bio *bio;
935 	struct mapped_device *md = io->md;
936 
937 	/* Push-back supersedes any I/O errors */
938 	if (unlikely(error)) {
939 		spin_lock_irqsave(&io->endio_lock, flags);
940 		if (!(io->error > 0 && __noflush_suspending(md)))
941 			io->error = error;
942 		spin_unlock_irqrestore(&io->endio_lock, flags);
943 	}
944 
945 	if (atomic_dec_and_test(&io->io_count)) {
946 		if (io->error == DM_ENDIO_REQUEUE) {
947 			/*
948 			 * Target requested pushing back the I/O.
949 			 */
950 			spin_lock_irqsave(&md->deferred_lock, flags);
951 			if (__noflush_suspending(md))
952 				bio_list_add_head(&md->deferred, io->bio);
953 			else
954 				/* noflush suspend was interrupted. */
955 				io->error = -EIO;
956 			spin_unlock_irqrestore(&md->deferred_lock, flags);
957 		}
958 
959 		io_error = io->error;
960 		bio = io->bio;
961 		end_io_acct(io);
962 		free_io(md, io);
963 
964 		if (io_error == DM_ENDIO_REQUEUE)
965 			return;
966 
967 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
968 			/*
969 			 * Preflush done for flush with data, reissue
970 			 * without REQ_FLUSH.
971 			 */
972 			bio->bi_rw &= ~REQ_FLUSH;
973 			queue_io(md, bio);
974 		} else {
975 			/* done with normal IO or empty flush */
976 			trace_block_bio_complete(md->queue, bio, io_error);
977 			bio->bi_error = io_error;
978 			bio_endio(bio);
979 		}
980 	}
981 }
982 
disable_write_same(struct mapped_device * md)983 static void disable_write_same(struct mapped_device *md)
984 {
985 	struct queue_limits *limits = dm_get_queue_limits(md);
986 
987 	/* device doesn't really support WRITE SAME, disable it */
988 	limits->max_write_same_sectors = 0;
989 }
990 
clone_endio(struct bio * bio)991 static void clone_endio(struct bio *bio)
992 {
993 	int error = bio->bi_error;
994 	int r = error;
995 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
996 	struct dm_io *io = tio->io;
997 	struct mapped_device *md = tio->io->md;
998 	dm_endio_fn endio = tio->ti->type->end_io;
999 
1000 	if (endio) {
1001 		r = endio(tio->ti, bio, error);
1002 		if (r < 0 || r == DM_ENDIO_REQUEUE)
1003 			/*
1004 			 * error and requeue request are handled
1005 			 * in dec_pending().
1006 			 */
1007 			error = r;
1008 		else if (r == DM_ENDIO_INCOMPLETE)
1009 			/* The target will handle the io */
1010 			return;
1011 		else if (r) {
1012 			DMWARN("unimplemented target endio return value: %d", r);
1013 			BUG();
1014 		}
1015 	}
1016 
1017 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1018 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1019 		disable_write_same(md);
1020 
1021 	free_tio(md, tio);
1022 	dec_pending(io, error);
1023 }
1024 
1025 /*
1026  * Partial completion handling for request-based dm
1027  */
end_clone_bio(struct bio * clone)1028 static void end_clone_bio(struct bio *clone)
1029 {
1030 	struct dm_rq_clone_bio_info *info =
1031 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1032 	struct dm_rq_target_io *tio = info->tio;
1033 	struct bio *bio = info->orig;
1034 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1035 	int error = clone->bi_error;
1036 
1037 	bio_put(clone);
1038 
1039 	if (tio->error)
1040 		/*
1041 		 * An error has already been detected on the request.
1042 		 * Once error occurred, just let clone->end_io() handle
1043 		 * the remainder.
1044 		 */
1045 		return;
1046 	else if (error) {
1047 		/*
1048 		 * Don't notice the error to the upper layer yet.
1049 		 * The error handling decision is made by the target driver,
1050 		 * when the request is completed.
1051 		 */
1052 		tio->error = error;
1053 		return;
1054 	}
1055 
1056 	/*
1057 	 * I/O for the bio successfully completed.
1058 	 * Notice the data completion to the upper layer.
1059 	 */
1060 
1061 	/*
1062 	 * bios are processed from the head of the list.
1063 	 * So the completing bio should always be rq->bio.
1064 	 * If it's not, something wrong is happening.
1065 	 */
1066 	if (tio->orig->bio != bio)
1067 		DMERR("bio completion is going in the middle of the request");
1068 
1069 	/*
1070 	 * Update the original request.
1071 	 * Do not use blk_end_request() here, because it may complete
1072 	 * the original request before the clone, and break the ordering.
1073 	 */
1074 	blk_update_request(tio->orig, 0, nr_bytes);
1075 }
1076 
tio_from_request(struct request * rq)1077 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1078 {
1079 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1080 }
1081 
rq_end_stats(struct mapped_device * md,struct request * orig)1082 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1083 {
1084 	if (unlikely(dm_stats_used(&md->stats))) {
1085 		struct dm_rq_target_io *tio = tio_from_request(orig);
1086 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1087 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1088 				    tio->n_sectors, true, tio->duration_jiffies,
1089 				    &tio->stats_aux);
1090 	}
1091 }
1092 
1093 /*
1094  * Don't touch any member of the md after calling this function because
1095  * the md may be freed in dm_put() at the end of this function.
1096  * Or do dm_get() before calling this function and dm_put() later.
1097  */
rq_completed(struct mapped_device * md,int rw,bool run_queue)1098 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1099 {
1100 	atomic_dec(&md->pending[rw]);
1101 
1102 	/* nudge anyone waiting on suspend queue */
1103 	if (!md_in_flight(md))
1104 		wake_up(&md->wait);
1105 
1106 	/*
1107 	 * Run this off this callpath, as drivers could invoke end_io while
1108 	 * inside their request_fn (and holding the queue lock). Calling
1109 	 * back into ->request_fn() could deadlock attempting to grab the
1110 	 * queue lock again.
1111 	 */
1112 	if (!md->queue->mq_ops && run_queue)
1113 		blk_run_queue_async(md->queue);
1114 
1115 	/*
1116 	 * dm_put() must be at the end of this function. See the comment above
1117 	 */
1118 	dm_put(md);
1119 }
1120 
free_rq_clone(struct request * clone)1121 static void free_rq_clone(struct request *clone)
1122 {
1123 	struct dm_rq_target_io *tio = clone->end_io_data;
1124 	struct mapped_device *md = tio->md;
1125 
1126 	blk_rq_unprep_clone(clone);
1127 
1128 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1129 		/* stacked on blk-mq queue(s) */
1130 		tio->ti->type->release_clone_rq(clone);
1131 	else if (!md->queue->mq_ops)
1132 		/* request_fn queue stacked on request_fn queue(s) */
1133 		free_clone_request(md, clone);
1134 	/*
1135 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1136 	 * no need to call free_clone_request() because we leverage blk-mq by
1137 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1138 	 */
1139 
1140 	if (!md->queue->mq_ops)
1141 		free_rq_tio(tio);
1142 }
1143 
1144 /*
1145  * Complete the clone and the original request.
1146  * Must be called without clone's queue lock held,
1147  * see end_clone_request() for more details.
1148  */
dm_end_request(struct request * clone,int error)1149 static void dm_end_request(struct request *clone, int error)
1150 {
1151 	int rw = rq_data_dir(clone);
1152 	struct dm_rq_target_io *tio = clone->end_io_data;
1153 	struct mapped_device *md = tio->md;
1154 	struct request *rq = tio->orig;
1155 
1156 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1157 		rq->errors = clone->errors;
1158 		rq->resid_len = clone->resid_len;
1159 
1160 		if (rq->sense)
1161 			/*
1162 			 * We are using the sense buffer of the original
1163 			 * request.
1164 			 * So setting the length of the sense data is enough.
1165 			 */
1166 			rq->sense_len = clone->sense_len;
1167 	}
1168 
1169 	free_rq_clone(clone);
1170 	rq_end_stats(md, rq);
1171 	if (!rq->q->mq_ops)
1172 		blk_end_request_all(rq, error);
1173 	else
1174 		blk_mq_end_request(rq, error);
1175 	rq_completed(md, rw, true);
1176 }
1177 
dm_unprep_request(struct request * rq)1178 static void dm_unprep_request(struct request *rq)
1179 {
1180 	struct dm_rq_target_io *tio = tio_from_request(rq);
1181 	struct request *clone = tio->clone;
1182 
1183 	if (!rq->q->mq_ops) {
1184 		rq->special = NULL;
1185 		rq->cmd_flags &= ~REQ_DONTPREP;
1186 	}
1187 
1188 	if (clone)
1189 		free_rq_clone(clone);
1190 	else if (!tio->md->queue->mq_ops)
1191 		free_rq_tio(tio);
1192 }
1193 
1194 /*
1195  * Requeue the original request of a clone.
1196  */
old_requeue_request(struct request * rq)1197 static void old_requeue_request(struct request *rq)
1198 {
1199 	struct request_queue *q = rq->q;
1200 	unsigned long flags;
1201 
1202 	spin_lock_irqsave(q->queue_lock, flags);
1203 	blk_requeue_request(q, rq);
1204 	blk_run_queue_async(q);
1205 	spin_unlock_irqrestore(q->queue_lock, flags);
1206 }
1207 
dm_requeue_original_request(struct mapped_device * md,struct request * rq)1208 static void dm_requeue_original_request(struct mapped_device *md,
1209 					struct request *rq)
1210 {
1211 	int rw = rq_data_dir(rq);
1212 
1213 	rq_end_stats(md, rq);
1214 	dm_unprep_request(rq);
1215 
1216 	if (!rq->q->mq_ops)
1217 		old_requeue_request(rq);
1218 	else {
1219 		blk_mq_requeue_request(rq);
1220 		blk_mq_kick_requeue_list(rq->q);
1221 	}
1222 
1223 	rq_completed(md, rw, false);
1224 }
1225 
old_stop_queue(struct request_queue * q)1226 static void old_stop_queue(struct request_queue *q)
1227 {
1228 	unsigned long flags;
1229 
1230 	if (blk_queue_stopped(q))
1231 		return;
1232 
1233 	spin_lock_irqsave(q->queue_lock, flags);
1234 	blk_stop_queue(q);
1235 	spin_unlock_irqrestore(q->queue_lock, flags);
1236 }
1237 
stop_queue(struct request_queue * q)1238 static void stop_queue(struct request_queue *q)
1239 {
1240 	if (!q->mq_ops)
1241 		old_stop_queue(q);
1242 	else
1243 		blk_mq_stop_hw_queues(q);
1244 }
1245 
old_start_queue(struct request_queue * q)1246 static void old_start_queue(struct request_queue *q)
1247 {
1248 	unsigned long flags;
1249 
1250 	spin_lock_irqsave(q->queue_lock, flags);
1251 	if (blk_queue_stopped(q))
1252 		blk_start_queue(q);
1253 	spin_unlock_irqrestore(q->queue_lock, flags);
1254 }
1255 
start_queue(struct request_queue * q)1256 static void start_queue(struct request_queue *q)
1257 {
1258 	if (!q->mq_ops)
1259 		old_start_queue(q);
1260 	else
1261 		blk_mq_start_stopped_hw_queues(q, true);
1262 }
1263 
dm_done(struct request * clone,int error,bool mapped)1264 static void dm_done(struct request *clone, int error, bool mapped)
1265 {
1266 	int r = error;
1267 	struct dm_rq_target_io *tio = clone->end_io_data;
1268 	dm_request_endio_fn rq_end_io = NULL;
1269 
1270 	if (tio->ti) {
1271 		rq_end_io = tio->ti->type->rq_end_io;
1272 
1273 		if (mapped && rq_end_io)
1274 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1275 	}
1276 
1277 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1278 		     !clone->q->limits.max_write_same_sectors))
1279 		disable_write_same(tio->md);
1280 
1281 	if (r <= 0)
1282 		/* The target wants to complete the I/O */
1283 		dm_end_request(clone, r);
1284 	else if (r == DM_ENDIO_INCOMPLETE)
1285 		/* The target will handle the I/O */
1286 		return;
1287 	else if (r == DM_ENDIO_REQUEUE)
1288 		/* The target wants to requeue the I/O */
1289 		dm_requeue_original_request(tio->md, tio->orig);
1290 	else {
1291 		DMWARN("unimplemented target endio return value: %d", r);
1292 		BUG();
1293 	}
1294 }
1295 
1296 /*
1297  * Request completion handler for request-based dm
1298  */
dm_softirq_done(struct request * rq)1299 static void dm_softirq_done(struct request *rq)
1300 {
1301 	bool mapped = true;
1302 	struct dm_rq_target_io *tio = tio_from_request(rq);
1303 	struct request *clone = tio->clone;
1304 	int rw;
1305 
1306 	if (!clone) {
1307 		rq_end_stats(tio->md, rq);
1308 		rw = rq_data_dir(rq);
1309 		if (!rq->q->mq_ops) {
1310 			blk_end_request_all(rq, tio->error);
1311 			rq_completed(tio->md, rw, false);
1312 			free_rq_tio(tio);
1313 		} else {
1314 			blk_mq_end_request(rq, tio->error);
1315 			rq_completed(tio->md, rw, false);
1316 		}
1317 		return;
1318 	}
1319 
1320 	if (rq->cmd_flags & REQ_FAILED)
1321 		mapped = false;
1322 
1323 	dm_done(clone, tio->error, mapped);
1324 }
1325 
1326 /*
1327  * Complete the clone and the original request with the error status
1328  * through softirq context.
1329  */
dm_complete_request(struct request * rq,int error)1330 static void dm_complete_request(struct request *rq, int error)
1331 {
1332 	struct dm_rq_target_io *tio = tio_from_request(rq);
1333 
1334 	tio->error = error;
1335 	if (!rq->q->mq_ops)
1336 		blk_complete_request(rq);
1337 	else
1338 		blk_mq_complete_request(rq, error);
1339 }
1340 
1341 /*
1342  * Complete the not-mapped clone and the original request with the error status
1343  * through softirq context.
1344  * Target's rq_end_io() function isn't called.
1345  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1346  */
dm_kill_unmapped_request(struct request * rq,int error)1347 static void dm_kill_unmapped_request(struct request *rq, int error)
1348 {
1349 	rq->cmd_flags |= REQ_FAILED;
1350 	dm_complete_request(rq, error);
1351 }
1352 
1353 /*
1354  * Called with the clone's queue lock held (for non-blk-mq)
1355  */
end_clone_request(struct request * clone,int error)1356 static void end_clone_request(struct request *clone, int error)
1357 {
1358 	struct dm_rq_target_io *tio = clone->end_io_data;
1359 
1360 	if (!clone->q->mq_ops) {
1361 		/*
1362 		 * For just cleaning up the information of the queue in which
1363 		 * the clone was dispatched.
1364 		 * The clone is *NOT* freed actually here because it is alloced
1365 		 * from dm own mempool (REQ_ALLOCED isn't set).
1366 		 */
1367 		__blk_put_request(clone->q, clone);
1368 	}
1369 
1370 	/*
1371 	 * Actual request completion is done in a softirq context which doesn't
1372 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1373 	 *     - another request may be submitted by the upper level driver
1374 	 *       of the stacking during the completion
1375 	 *     - the submission which requires queue lock may be done
1376 	 *       against this clone's queue
1377 	 */
1378 	dm_complete_request(tio->orig, error);
1379 }
1380 
1381 /*
1382  * Return maximum size of I/O possible at the supplied sector up to the current
1383  * target boundary.
1384  */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)1385 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1386 {
1387 	sector_t target_offset = dm_target_offset(ti, sector);
1388 
1389 	return ti->len - target_offset;
1390 }
1391 
max_io_len(sector_t sector,struct dm_target * ti)1392 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1393 {
1394 	sector_t len = max_io_len_target_boundary(sector, ti);
1395 	sector_t offset, max_len;
1396 
1397 	/*
1398 	 * Does the target need to split even further?
1399 	 */
1400 	if (ti->max_io_len) {
1401 		offset = dm_target_offset(ti, sector);
1402 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1403 			max_len = sector_div(offset, ti->max_io_len);
1404 		else
1405 			max_len = offset & (ti->max_io_len - 1);
1406 		max_len = ti->max_io_len - max_len;
1407 
1408 		if (len > max_len)
1409 			len = max_len;
1410 	}
1411 
1412 	return len;
1413 }
1414 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1415 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1416 {
1417 	if (len > UINT_MAX) {
1418 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1419 		      (unsigned long long)len, UINT_MAX);
1420 		ti->error = "Maximum size of target IO is too large";
1421 		return -EINVAL;
1422 	}
1423 
1424 	ti->max_io_len = (uint32_t) len;
1425 
1426 	return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1429 
1430 /*
1431  * A target may call dm_accept_partial_bio only from the map routine.  It is
1432  * allowed for all bio types except REQ_FLUSH.
1433  *
1434  * dm_accept_partial_bio informs the dm that the target only wants to process
1435  * additional n_sectors sectors of the bio and the rest of the data should be
1436  * sent in a next bio.
1437  *
1438  * A diagram that explains the arithmetics:
1439  * +--------------------+---------------+-------+
1440  * |         1          |       2       |   3   |
1441  * +--------------------+---------------+-------+
1442  *
1443  * <-------------- *tio->len_ptr --------------->
1444  *                      <------- bi_size ------->
1445  *                      <-- n_sectors -->
1446  *
1447  * Region 1 was already iterated over with bio_advance or similar function.
1448  *	(it may be empty if the target doesn't use bio_advance)
1449  * Region 2 is the remaining bio size that the target wants to process.
1450  *	(it may be empty if region 1 is non-empty, although there is no reason
1451  *	 to make it empty)
1452  * The target requires that region 3 is to be sent in the next bio.
1453  *
1454  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1455  * the partially processed part (the sum of regions 1+2) must be the same for all
1456  * copies of the bio.
1457  */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1458 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1459 {
1460 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1461 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1462 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1463 	BUG_ON(bi_size > *tio->len_ptr);
1464 	BUG_ON(n_sectors > bi_size);
1465 	*tio->len_ptr -= bi_size - n_sectors;
1466 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1467 }
1468 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1469 
__map_bio(struct dm_target_io * tio)1470 static void __map_bio(struct dm_target_io *tio)
1471 {
1472 	int r;
1473 	sector_t sector;
1474 	struct mapped_device *md;
1475 	struct bio *clone = &tio->clone;
1476 	struct dm_target *ti = tio->ti;
1477 
1478 	clone->bi_end_io = clone_endio;
1479 
1480 	/*
1481 	 * Map the clone.  If r == 0 we don't need to do
1482 	 * anything, the target has assumed ownership of
1483 	 * this io.
1484 	 */
1485 	atomic_inc(&tio->io->io_count);
1486 	sector = clone->bi_iter.bi_sector;
1487 	r = ti->type->map(ti, clone);
1488 	if (r == DM_MAPIO_REMAPPED) {
1489 		/* the bio has been remapped so dispatch it */
1490 
1491 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1492 				      tio->io->bio->bi_bdev->bd_dev, sector);
1493 
1494 		generic_make_request(clone);
1495 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1496 		/* error the io and bail out, or requeue it if needed */
1497 		md = tio->io->md;
1498 		dec_pending(tio->io, r);
1499 		free_tio(md, tio);
1500 	} else if (r != DM_MAPIO_SUBMITTED) {
1501 		DMWARN("unimplemented target map return value: %d", r);
1502 		BUG();
1503 	}
1504 }
1505 
1506 struct clone_info {
1507 	struct mapped_device *md;
1508 	struct dm_table *map;
1509 	struct bio *bio;
1510 	struct dm_io *io;
1511 	sector_t sector;
1512 	unsigned sector_count;
1513 };
1514 
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1515 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1516 {
1517 	bio->bi_iter.bi_sector = sector;
1518 	bio->bi_iter.bi_size = to_bytes(len);
1519 }
1520 
1521 /*
1522  * Creates a bio that consists of range of complete bvecs.
1523  */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1524 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1525 		      sector_t sector, unsigned len)
1526 {
1527 	struct bio *clone = &tio->clone;
1528 
1529 	__bio_clone_fast(clone, bio);
1530 
1531 	if (bio_integrity(bio))
1532 		bio_integrity_clone(clone, bio, GFP_NOIO);
1533 
1534 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1535 	clone->bi_iter.bi_size = to_bytes(len);
1536 
1537 	if (bio_integrity(bio))
1538 		bio_integrity_trim(clone, 0, len);
1539 }
1540 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr)1541 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1542 				      struct dm_target *ti,
1543 				      unsigned target_bio_nr)
1544 {
1545 	struct dm_target_io *tio;
1546 	struct bio *clone;
1547 
1548 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1549 	tio = container_of(clone, struct dm_target_io, clone);
1550 
1551 	tio->io = ci->io;
1552 	tio->ti = ti;
1553 	tio->target_bio_nr = target_bio_nr;
1554 
1555 	return tio;
1556 }
1557 
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,unsigned * len)1558 static void __clone_and_map_simple_bio(struct clone_info *ci,
1559 				       struct dm_target *ti,
1560 				       unsigned target_bio_nr, unsigned *len)
1561 {
1562 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1563 	struct bio *clone = &tio->clone;
1564 
1565 	tio->len_ptr = len;
1566 
1567 	__bio_clone_fast(clone, ci->bio);
1568 	if (len)
1569 		bio_setup_sector(clone, ci->sector, *len);
1570 
1571 	__map_bio(tio);
1572 }
1573 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1574 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1575 				  unsigned num_bios, unsigned *len)
1576 {
1577 	unsigned target_bio_nr;
1578 
1579 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1580 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1581 }
1582 
__send_empty_flush(struct clone_info * ci)1583 static int __send_empty_flush(struct clone_info *ci)
1584 {
1585 	unsigned target_nr = 0;
1586 	struct dm_target *ti;
1587 
1588 	BUG_ON(bio_has_data(ci->bio));
1589 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1590 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1591 
1592 	return 0;
1593 }
1594 
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1595 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1596 				     sector_t sector, unsigned *len)
1597 {
1598 	struct bio *bio = ci->bio;
1599 	struct dm_target_io *tio;
1600 	unsigned target_bio_nr;
1601 	unsigned num_target_bios = 1;
1602 
1603 	/*
1604 	 * Does the target want to receive duplicate copies of the bio?
1605 	 */
1606 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1607 		num_target_bios = ti->num_write_bios(ti, bio);
1608 
1609 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1610 		tio = alloc_tio(ci, ti, target_bio_nr);
1611 		tio->len_ptr = len;
1612 		clone_bio(tio, bio, sector, *len);
1613 		__map_bio(tio);
1614 	}
1615 }
1616 
1617 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1618 
get_num_discard_bios(struct dm_target * ti)1619 static unsigned get_num_discard_bios(struct dm_target *ti)
1620 {
1621 	return ti->num_discard_bios;
1622 }
1623 
get_num_write_same_bios(struct dm_target * ti)1624 static unsigned get_num_write_same_bios(struct dm_target *ti)
1625 {
1626 	return ti->num_write_same_bios;
1627 }
1628 
1629 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1630 
is_split_required_for_discard(struct dm_target * ti)1631 static bool is_split_required_for_discard(struct dm_target *ti)
1632 {
1633 	return ti->split_discard_bios;
1634 }
1635 
__send_changing_extent_only(struct clone_info * ci,get_num_bios_fn get_num_bios,is_split_required_fn is_split_required)1636 static int __send_changing_extent_only(struct clone_info *ci,
1637 				       get_num_bios_fn get_num_bios,
1638 				       is_split_required_fn is_split_required)
1639 {
1640 	struct dm_target *ti;
1641 	unsigned len;
1642 	unsigned num_bios;
1643 
1644 	do {
1645 		ti = dm_table_find_target(ci->map, ci->sector);
1646 		if (!dm_target_is_valid(ti))
1647 			return -EIO;
1648 
1649 		/*
1650 		 * Even though the device advertised support for this type of
1651 		 * request, that does not mean every target supports it, and
1652 		 * reconfiguration might also have changed that since the
1653 		 * check was performed.
1654 		 */
1655 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1656 		if (!num_bios)
1657 			return -EOPNOTSUPP;
1658 
1659 		if (is_split_required && !is_split_required(ti))
1660 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1661 		else
1662 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1663 
1664 		__send_duplicate_bios(ci, ti, num_bios, &len);
1665 
1666 		ci->sector += len;
1667 	} while (ci->sector_count -= len);
1668 
1669 	return 0;
1670 }
1671 
__send_discard(struct clone_info * ci)1672 static int __send_discard(struct clone_info *ci)
1673 {
1674 	return __send_changing_extent_only(ci, get_num_discard_bios,
1675 					   is_split_required_for_discard);
1676 }
1677 
__send_write_same(struct clone_info * ci)1678 static int __send_write_same(struct clone_info *ci)
1679 {
1680 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1681 }
1682 
1683 /*
1684  * Select the correct strategy for processing a non-flush bio.
1685  */
__split_and_process_non_flush(struct clone_info * ci)1686 static int __split_and_process_non_flush(struct clone_info *ci)
1687 {
1688 	struct bio *bio = ci->bio;
1689 	struct dm_target *ti;
1690 	unsigned len;
1691 
1692 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1693 		return __send_discard(ci);
1694 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1695 		return __send_write_same(ci);
1696 
1697 	ti = dm_table_find_target(ci->map, ci->sector);
1698 	if (!dm_target_is_valid(ti))
1699 		return -EIO;
1700 
1701 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1702 
1703 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1704 
1705 	ci->sector += len;
1706 	ci->sector_count -= len;
1707 
1708 	return 0;
1709 }
1710 
1711 /*
1712  * Entry point to split a bio into clones and submit them to the targets.
1713  */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1714 static void __split_and_process_bio(struct mapped_device *md,
1715 				    struct dm_table *map, struct bio *bio)
1716 {
1717 	struct clone_info ci;
1718 	int error = 0;
1719 
1720 	if (unlikely(!map)) {
1721 		bio_io_error(bio);
1722 		return;
1723 	}
1724 
1725 	ci.map = map;
1726 	ci.md = md;
1727 	ci.io = alloc_io(md);
1728 	ci.io->error = 0;
1729 	atomic_set(&ci.io->io_count, 1);
1730 	ci.io->bio = bio;
1731 	ci.io->md = md;
1732 	spin_lock_init(&ci.io->endio_lock);
1733 	ci.sector = bio->bi_iter.bi_sector;
1734 
1735 	start_io_acct(ci.io);
1736 
1737 	if (bio->bi_rw & REQ_FLUSH) {
1738 		ci.bio = &ci.md->flush_bio;
1739 		ci.sector_count = 0;
1740 		error = __send_empty_flush(&ci);
1741 		/* dec_pending submits any data associated with flush */
1742 	} else {
1743 		ci.bio = bio;
1744 		ci.sector_count = bio_sectors(bio);
1745 		while (ci.sector_count && !error)
1746 			error = __split_and_process_non_flush(&ci);
1747 	}
1748 
1749 	/* drop the extra reference count */
1750 	dec_pending(ci.io, error);
1751 }
1752 /*-----------------------------------------------------------------
1753  * CRUD END
1754  *---------------------------------------------------------------*/
1755 
1756 /*
1757  * The request function that just remaps the bio built up by
1758  * dm_merge_bvec.
1759  */
dm_make_request(struct request_queue * q,struct bio * bio)1760 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1761 {
1762 	int rw = bio_data_dir(bio);
1763 	struct mapped_device *md = q->queuedata;
1764 	int srcu_idx;
1765 	struct dm_table *map;
1766 
1767 	map = dm_get_live_table(md, &srcu_idx);
1768 
1769 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1770 
1771 	/* if we're suspended, we have to queue this io for later */
1772 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1773 		dm_put_live_table(md, srcu_idx);
1774 
1775 		if (bio_rw(bio) != READA)
1776 			queue_io(md, bio);
1777 		else
1778 			bio_io_error(bio);
1779 		return BLK_QC_T_NONE;
1780 	}
1781 
1782 	__split_and_process_bio(md, map, bio);
1783 	dm_put_live_table(md, srcu_idx);
1784 	return BLK_QC_T_NONE;
1785 }
1786 
dm_request_based(struct mapped_device * md)1787 int dm_request_based(struct mapped_device *md)
1788 {
1789 	return blk_queue_stackable(md->queue);
1790 }
1791 
dm_dispatch_clone_request(struct request * clone,struct request * rq)1792 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1793 {
1794 	int r;
1795 
1796 	if (blk_queue_io_stat(clone->q))
1797 		clone->cmd_flags |= REQ_IO_STAT;
1798 
1799 	clone->start_time = jiffies;
1800 	r = blk_insert_cloned_request(clone->q, clone);
1801 	if (r)
1802 		/* must complete clone in terms of original request */
1803 		dm_complete_request(rq, r);
1804 }
1805 
dm_rq_bio_constructor(struct bio * bio,struct bio * bio_orig,void * data)1806 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1807 				 void *data)
1808 {
1809 	struct dm_rq_target_io *tio = data;
1810 	struct dm_rq_clone_bio_info *info =
1811 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1812 
1813 	info->orig = bio_orig;
1814 	info->tio = tio;
1815 	bio->bi_end_io = end_clone_bio;
1816 
1817 	return 0;
1818 }
1819 
setup_clone(struct request * clone,struct request * rq,struct dm_rq_target_io * tio,gfp_t gfp_mask)1820 static int setup_clone(struct request *clone, struct request *rq,
1821 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1822 {
1823 	int r;
1824 
1825 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1826 			      dm_rq_bio_constructor, tio);
1827 	if (r)
1828 		return r;
1829 
1830 	clone->cmd = rq->cmd;
1831 	clone->cmd_len = rq->cmd_len;
1832 	clone->sense = rq->sense;
1833 	clone->end_io = end_clone_request;
1834 	clone->end_io_data = tio;
1835 
1836 	tio->clone = clone;
1837 
1838 	return 0;
1839 }
1840 
clone_rq(struct request * rq,struct mapped_device * md,struct dm_rq_target_io * tio,gfp_t gfp_mask)1841 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1842 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1843 {
1844 	/*
1845 	 * Do not allocate a clone if tio->clone was already set
1846 	 * (see: dm_mq_queue_rq).
1847 	 */
1848 	bool alloc_clone = !tio->clone;
1849 	struct request *clone;
1850 
1851 	if (alloc_clone) {
1852 		clone = alloc_clone_request(md, gfp_mask);
1853 		if (!clone)
1854 			return NULL;
1855 	} else
1856 		clone = tio->clone;
1857 
1858 	blk_rq_init(NULL, clone);
1859 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1860 		/* -ENOMEM */
1861 		if (alloc_clone)
1862 			free_clone_request(md, clone);
1863 		return NULL;
1864 	}
1865 
1866 	return clone;
1867 }
1868 
1869 static void map_tio_request(struct kthread_work *work);
1870 
init_tio(struct dm_rq_target_io * tio,struct request * rq,struct mapped_device * md)1871 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1872 		     struct mapped_device *md)
1873 {
1874 	tio->md = md;
1875 	tio->ti = NULL;
1876 	tio->clone = NULL;
1877 	tio->orig = rq;
1878 	tio->error = 0;
1879 	memset(&tio->info, 0, sizeof(tio->info));
1880 	if (md->kworker_task)
1881 		init_kthread_work(&tio->work, map_tio_request);
1882 }
1883 
prep_tio(struct request * rq,struct mapped_device * md,gfp_t gfp_mask)1884 static struct dm_rq_target_io *prep_tio(struct request *rq,
1885 					struct mapped_device *md, gfp_t gfp_mask)
1886 {
1887 	struct dm_rq_target_io *tio;
1888 	int srcu_idx;
1889 	struct dm_table *table;
1890 
1891 	tio = alloc_rq_tio(md, gfp_mask);
1892 	if (!tio)
1893 		return NULL;
1894 
1895 	init_tio(tio, rq, md);
1896 
1897 	table = dm_get_live_table(md, &srcu_idx);
1898 	if (!dm_table_mq_request_based(table)) {
1899 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1900 			dm_put_live_table(md, srcu_idx);
1901 			free_rq_tio(tio);
1902 			return NULL;
1903 		}
1904 	}
1905 	dm_put_live_table(md, srcu_idx);
1906 
1907 	return tio;
1908 }
1909 
1910 /*
1911  * Called with the queue lock held.
1912  */
dm_prep_fn(struct request_queue * q,struct request * rq)1913 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1914 {
1915 	struct mapped_device *md = q->queuedata;
1916 	struct dm_rq_target_io *tio;
1917 
1918 	if (unlikely(rq->special)) {
1919 		DMWARN("Already has something in rq->special.");
1920 		return BLKPREP_KILL;
1921 	}
1922 
1923 	tio = prep_tio(rq, md, GFP_ATOMIC);
1924 	if (!tio)
1925 		return BLKPREP_DEFER;
1926 
1927 	rq->special = tio;
1928 	rq->cmd_flags |= REQ_DONTPREP;
1929 
1930 	return BLKPREP_OK;
1931 }
1932 
1933 /*
1934  * Returns:
1935  * 0                : the request has been processed
1936  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1937  * < 0              : the request was completed due to failure
1938  */
map_request(struct dm_rq_target_io * tio,struct request * rq,struct mapped_device * md)1939 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1940 		       struct mapped_device *md)
1941 {
1942 	int r;
1943 	struct dm_target *ti = tio->ti;
1944 	struct request *clone = NULL;
1945 
1946 	if (tio->clone) {
1947 		clone = tio->clone;
1948 		r = ti->type->map_rq(ti, clone, &tio->info);
1949 	} else {
1950 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1951 		if (r < 0) {
1952 			/* The target wants to complete the I/O */
1953 			dm_kill_unmapped_request(rq, r);
1954 			return r;
1955 		}
1956 		if (r != DM_MAPIO_REMAPPED)
1957 			return r;
1958 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1959 			/* -ENOMEM */
1960 			ti->type->release_clone_rq(clone);
1961 			return DM_MAPIO_REQUEUE;
1962 		}
1963 	}
1964 
1965 	switch (r) {
1966 	case DM_MAPIO_SUBMITTED:
1967 		/* The target has taken the I/O to submit by itself later */
1968 		break;
1969 	case DM_MAPIO_REMAPPED:
1970 		/* The target has remapped the I/O so dispatch it */
1971 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1972 				     blk_rq_pos(rq));
1973 		dm_dispatch_clone_request(clone, rq);
1974 		break;
1975 	case DM_MAPIO_REQUEUE:
1976 		/* The target wants to requeue the I/O */
1977 		dm_requeue_original_request(md, tio->orig);
1978 		break;
1979 	default:
1980 		if (r > 0) {
1981 			DMWARN("unimplemented target map return value: %d", r);
1982 			BUG();
1983 		}
1984 
1985 		/* The target wants to complete the I/O */
1986 		dm_kill_unmapped_request(rq, r);
1987 		return r;
1988 	}
1989 
1990 	return 0;
1991 }
1992 
map_tio_request(struct kthread_work * work)1993 static void map_tio_request(struct kthread_work *work)
1994 {
1995 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1996 	struct request *rq = tio->orig;
1997 	struct mapped_device *md = tio->md;
1998 
1999 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2000 		dm_requeue_original_request(md, rq);
2001 }
2002 
dm_start_request(struct mapped_device * md,struct request * orig)2003 static void dm_start_request(struct mapped_device *md, struct request *orig)
2004 {
2005 	if (!orig->q->mq_ops)
2006 		blk_start_request(orig);
2007 	else
2008 		blk_mq_start_request(orig);
2009 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2010 
2011 	if (md->seq_rq_merge_deadline_usecs) {
2012 		md->last_rq_pos = rq_end_sector(orig);
2013 		md->last_rq_rw = rq_data_dir(orig);
2014 		md->last_rq_start_time = ktime_get();
2015 	}
2016 
2017 	if (unlikely(dm_stats_used(&md->stats))) {
2018 		struct dm_rq_target_io *tio = tio_from_request(orig);
2019 		tio->duration_jiffies = jiffies;
2020 		tio->n_sectors = blk_rq_sectors(orig);
2021 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2022 				    tio->n_sectors, false, 0, &tio->stats_aux);
2023 	}
2024 
2025 	/*
2026 	 * Hold the md reference here for the in-flight I/O.
2027 	 * We can't rely on the reference count by device opener,
2028 	 * because the device may be closed during the request completion
2029 	 * when all bios are completed.
2030 	 * See the comment in rq_completed() too.
2031 	 */
2032 	dm_get(md);
2033 }
2034 
2035 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2036 
dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device * md,char * buf)2037 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2038 {
2039 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2040 }
2041 
dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device * md,const char * buf,size_t count)2042 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2043 						     const char *buf, size_t count)
2044 {
2045 	unsigned deadline;
2046 
2047 	if (!dm_request_based(md) || md->use_blk_mq)
2048 		return count;
2049 
2050 	if (kstrtouint(buf, 10, &deadline))
2051 		return -EINVAL;
2052 
2053 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2054 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2055 
2056 	md->seq_rq_merge_deadline_usecs = deadline;
2057 
2058 	return count;
2059 }
2060 
dm_request_peeked_before_merge_deadline(struct mapped_device * md)2061 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2062 {
2063 	ktime_t kt_deadline;
2064 
2065 	if (!md->seq_rq_merge_deadline_usecs)
2066 		return false;
2067 
2068 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2069 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2070 
2071 	return !ktime_after(ktime_get(), kt_deadline);
2072 }
2073 
2074 /*
2075  * q->request_fn for request-based dm.
2076  * Called with the queue lock held.
2077  */
dm_request_fn(struct request_queue * q)2078 static void dm_request_fn(struct request_queue *q)
2079 {
2080 	struct mapped_device *md = q->queuedata;
2081 	int srcu_idx;
2082 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2083 	struct dm_target *ti;
2084 	struct request *rq;
2085 	struct dm_rq_target_io *tio;
2086 	sector_t pos;
2087 
2088 	/*
2089 	 * For suspend, check blk_queue_stopped() and increment
2090 	 * ->pending within a single queue_lock not to increment the
2091 	 * number of in-flight I/Os after the queue is stopped in
2092 	 * dm_suspend().
2093 	 */
2094 	while (!blk_queue_stopped(q)) {
2095 		rq = blk_peek_request(q);
2096 		if (!rq)
2097 			goto out;
2098 
2099 		/* always use block 0 to find the target for flushes for now */
2100 		pos = 0;
2101 		if (!(rq->cmd_flags & REQ_FLUSH))
2102 			pos = blk_rq_pos(rq);
2103 
2104 		ti = dm_table_find_target(map, pos);
2105 		if (!dm_target_is_valid(ti)) {
2106 			/*
2107 			 * Must perform setup, that rq_completed() requires,
2108 			 * before calling dm_kill_unmapped_request
2109 			 */
2110 			DMERR_LIMIT("request attempted access beyond the end of device");
2111 			dm_start_request(md, rq);
2112 			dm_kill_unmapped_request(rq, -EIO);
2113 			continue;
2114 		}
2115 
2116 		if (dm_request_peeked_before_merge_deadline(md) &&
2117 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2118 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2119 			goto delay_and_out;
2120 
2121 		if (ti->type->busy && ti->type->busy(ti))
2122 			goto delay_and_out;
2123 
2124 		dm_start_request(md, rq);
2125 
2126 		tio = tio_from_request(rq);
2127 		/* Establish tio->ti before queuing work (map_tio_request) */
2128 		tio->ti = ti;
2129 		queue_kthread_work(&md->kworker, &tio->work);
2130 		BUG_ON(!irqs_disabled());
2131 	}
2132 
2133 	goto out;
2134 
2135 delay_and_out:
2136 	blk_delay_queue(q, HZ / 100);
2137 out:
2138 	dm_put_live_table(md, srcu_idx);
2139 }
2140 
dm_any_congested(void * congested_data,int bdi_bits)2141 static int dm_any_congested(void *congested_data, int bdi_bits)
2142 {
2143 	int r = bdi_bits;
2144 	struct mapped_device *md = congested_data;
2145 	struct dm_table *map;
2146 
2147 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2148 		map = dm_get_live_table_fast(md);
2149 		if (map) {
2150 			/*
2151 			 * Request-based dm cares about only own queue for
2152 			 * the query about congestion status of request_queue
2153 			 */
2154 			if (dm_request_based(md))
2155 				r = md->queue->backing_dev_info.wb.state &
2156 				    bdi_bits;
2157 			else
2158 				r = dm_table_any_congested(map, bdi_bits);
2159 		}
2160 		dm_put_live_table_fast(md);
2161 	}
2162 
2163 	return r;
2164 }
2165 
2166 /*-----------------------------------------------------------------
2167  * An IDR is used to keep track of allocated minor numbers.
2168  *---------------------------------------------------------------*/
free_minor(int minor)2169 static void free_minor(int minor)
2170 {
2171 	spin_lock(&_minor_lock);
2172 	idr_remove(&_minor_idr, minor);
2173 	spin_unlock(&_minor_lock);
2174 }
2175 
2176 /*
2177  * See if the device with a specific minor # is free.
2178  */
specific_minor(int minor)2179 static int specific_minor(int minor)
2180 {
2181 	int r;
2182 
2183 	if (minor >= (1 << MINORBITS))
2184 		return -EINVAL;
2185 
2186 	idr_preload(GFP_KERNEL);
2187 	spin_lock(&_minor_lock);
2188 
2189 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2190 
2191 	spin_unlock(&_minor_lock);
2192 	idr_preload_end();
2193 	if (r < 0)
2194 		return r == -ENOSPC ? -EBUSY : r;
2195 	return 0;
2196 }
2197 
next_free_minor(int * minor)2198 static int next_free_minor(int *minor)
2199 {
2200 	int r;
2201 
2202 	idr_preload(GFP_KERNEL);
2203 	spin_lock(&_minor_lock);
2204 
2205 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2206 
2207 	spin_unlock(&_minor_lock);
2208 	idr_preload_end();
2209 	if (r < 0)
2210 		return r;
2211 	*minor = r;
2212 	return 0;
2213 }
2214 
2215 static const struct block_device_operations dm_blk_dops;
2216 
2217 static void dm_wq_work(struct work_struct *work);
2218 
dm_init_md_queue(struct mapped_device * md)2219 static void dm_init_md_queue(struct mapped_device *md)
2220 {
2221 	/*
2222 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2223 	 * devices.  The type of this dm device may not have been decided yet.
2224 	 * The type is decided at the first table loading time.
2225 	 * To prevent problematic device stacking, clear the queue flag
2226 	 * for request stacking support until then.
2227 	 *
2228 	 * This queue is new, so no concurrency on the queue_flags.
2229 	 */
2230 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2231 
2232 	/*
2233 	 * Initialize data that will only be used by a non-blk-mq DM queue
2234 	 * - must do so here (in alloc_dev callchain) before queue is used
2235 	 */
2236 	md->queue->queuedata = md;
2237 	md->queue->backing_dev_info.congested_data = md;
2238 }
2239 
dm_init_old_md_queue(struct mapped_device * md)2240 static void dm_init_old_md_queue(struct mapped_device *md)
2241 {
2242 	md->use_blk_mq = false;
2243 	dm_init_md_queue(md);
2244 
2245 	/*
2246 	 * Initialize aspects of queue that aren't relevant for blk-mq
2247 	 */
2248 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2249 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2250 }
2251 
cleanup_mapped_device(struct mapped_device * md)2252 static void cleanup_mapped_device(struct mapped_device *md)
2253 {
2254 	if (md->wq)
2255 		destroy_workqueue(md->wq);
2256 	if (md->kworker_task)
2257 		kthread_stop(md->kworker_task);
2258 	mempool_destroy(md->io_pool);
2259 	mempool_destroy(md->rq_pool);
2260 	if (md->bs)
2261 		bioset_free(md->bs);
2262 
2263 	cleanup_srcu_struct(&md->io_barrier);
2264 
2265 	if (md->disk) {
2266 		spin_lock(&_minor_lock);
2267 		md->disk->private_data = NULL;
2268 		spin_unlock(&_minor_lock);
2269 		del_gendisk(md->disk);
2270 		put_disk(md->disk);
2271 	}
2272 
2273 	if (md->queue)
2274 		blk_cleanup_queue(md->queue);
2275 
2276 	if (md->bdev) {
2277 		bdput(md->bdev);
2278 		md->bdev = NULL;
2279 	}
2280 }
2281 
2282 /*
2283  * Allocate and initialise a blank device with a given minor.
2284  */
alloc_dev(int minor)2285 static struct mapped_device *alloc_dev(int minor)
2286 {
2287 	int r;
2288 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2289 	void *old_md;
2290 
2291 	if (!md) {
2292 		DMWARN("unable to allocate device, out of memory.");
2293 		return NULL;
2294 	}
2295 
2296 	if (!try_module_get(THIS_MODULE))
2297 		goto bad_module_get;
2298 
2299 	/* get a minor number for the dev */
2300 	if (minor == DM_ANY_MINOR)
2301 		r = next_free_minor(&minor);
2302 	else
2303 		r = specific_minor(minor);
2304 	if (r < 0)
2305 		goto bad_minor;
2306 
2307 	r = init_srcu_struct(&md->io_barrier);
2308 	if (r < 0)
2309 		goto bad_io_barrier;
2310 
2311 	md->use_blk_mq = use_blk_mq;
2312 	md->type = DM_TYPE_NONE;
2313 	mutex_init(&md->suspend_lock);
2314 	mutex_init(&md->type_lock);
2315 	mutex_init(&md->table_devices_lock);
2316 	spin_lock_init(&md->deferred_lock);
2317 	atomic_set(&md->holders, 1);
2318 	atomic_set(&md->open_count, 0);
2319 	atomic_set(&md->event_nr, 0);
2320 	atomic_set(&md->uevent_seq, 0);
2321 	INIT_LIST_HEAD(&md->uevent_list);
2322 	INIT_LIST_HEAD(&md->table_devices);
2323 	spin_lock_init(&md->uevent_lock);
2324 
2325 	md->queue = blk_alloc_queue(GFP_KERNEL);
2326 	if (!md->queue)
2327 		goto bad;
2328 
2329 	dm_init_md_queue(md);
2330 
2331 	md->disk = alloc_disk(1);
2332 	if (!md->disk)
2333 		goto bad;
2334 
2335 	atomic_set(&md->pending[0], 0);
2336 	atomic_set(&md->pending[1], 0);
2337 	init_waitqueue_head(&md->wait);
2338 	INIT_WORK(&md->work, dm_wq_work);
2339 	init_waitqueue_head(&md->eventq);
2340 	init_completion(&md->kobj_holder.completion);
2341 	md->kworker_task = NULL;
2342 
2343 	md->disk->major = _major;
2344 	md->disk->first_minor = minor;
2345 	md->disk->fops = &dm_blk_dops;
2346 	md->disk->queue = md->queue;
2347 	md->disk->private_data = md;
2348 	sprintf(md->disk->disk_name, "dm-%d", minor);
2349 	add_disk(md->disk);
2350 	format_dev_t(md->name, MKDEV(_major, minor));
2351 
2352 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2353 	if (!md->wq)
2354 		goto bad;
2355 
2356 	md->bdev = bdget_disk(md->disk, 0);
2357 	if (!md->bdev)
2358 		goto bad;
2359 
2360 	bio_init(&md->flush_bio);
2361 	md->flush_bio.bi_bdev = md->bdev;
2362 	md->flush_bio.bi_rw = WRITE_FLUSH;
2363 
2364 	dm_stats_init(&md->stats);
2365 
2366 	/* Populate the mapping, nobody knows we exist yet */
2367 	spin_lock(&_minor_lock);
2368 	old_md = idr_replace(&_minor_idr, md, minor);
2369 	spin_unlock(&_minor_lock);
2370 
2371 	BUG_ON(old_md != MINOR_ALLOCED);
2372 
2373 	return md;
2374 
2375 bad:
2376 	cleanup_mapped_device(md);
2377 bad_io_barrier:
2378 	free_minor(minor);
2379 bad_minor:
2380 	module_put(THIS_MODULE);
2381 bad_module_get:
2382 	kfree(md);
2383 	return NULL;
2384 }
2385 
2386 static void unlock_fs(struct mapped_device *md);
2387 
free_dev(struct mapped_device * md)2388 static void free_dev(struct mapped_device *md)
2389 {
2390 	int minor = MINOR(disk_devt(md->disk));
2391 
2392 	unlock_fs(md);
2393 
2394 	cleanup_mapped_device(md);
2395 	if (md->use_blk_mq)
2396 		blk_mq_free_tag_set(&md->tag_set);
2397 
2398 	free_table_devices(&md->table_devices);
2399 	dm_stats_cleanup(&md->stats);
2400 	free_minor(minor);
2401 
2402 	module_put(THIS_MODULE);
2403 	kfree(md);
2404 }
2405 
__bind_mempools(struct mapped_device * md,struct dm_table * t)2406 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2407 {
2408 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2409 
2410 	if (md->bs) {
2411 		/* The md already has necessary mempools. */
2412 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2413 			/*
2414 			 * Reload bioset because front_pad may have changed
2415 			 * because a different table was loaded.
2416 			 */
2417 			bioset_free(md->bs);
2418 			md->bs = p->bs;
2419 			p->bs = NULL;
2420 		}
2421 		/*
2422 		 * There's no need to reload with request-based dm
2423 		 * because the size of front_pad doesn't change.
2424 		 * Note for future: If you are to reload bioset,
2425 		 * prep-ed requests in the queue may refer
2426 		 * to bio from the old bioset, so you must walk
2427 		 * through the queue to unprep.
2428 		 */
2429 		goto out;
2430 	}
2431 
2432 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2433 
2434 	md->io_pool = p->io_pool;
2435 	p->io_pool = NULL;
2436 	md->rq_pool = p->rq_pool;
2437 	p->rq_pool = NULL;
2438 	md->bs = p->bs;
2439 	p->bs = NULL;
2440 
2441 out:
2442 	/* mempool bind completed, no longer need any mempools in the table */
2443 	dm_table_free_md_mempools(t);
2444 }
2445 
2446 /*
2447  * Bind a table to the device.
2448  */
event_callback(void * context)2449 static void event_callback(void *context)
2450 {
2451 	unsigned long flags;
2452 	LIST_HEAD(uevents);
2453 	struct mapped_device *md = (struct mapped_device *) context;
2454 
2455 	spin_lock_irqsave(&md->uevent_lock, flags);
2456 	list_splice_init(&md->uevent_list, &uevents);
2457 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2458 
2459 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2460 
2461 	atomic_inc(&md->event_nr);
2462 	wake_up(&md->eventq);
2463 }
2464 
2465 /*
2466  * Protected by md->suspend_lock obtained by dm_swap_table().
2467  */
__set_size(struct mapped_device * md,sector_t size)2468 static void __set_size(struct mapped_device *md, sector_t size)
2469 {
2470 	set_capacity(md->disk, size);
2471 
2472 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2473 }
2474 
2475 /*
2476  * Returns old map, which caller must destroy.
2477  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2478 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2479 			       struct queue_limits *limits)
2480 {
2481 	struct dm_table *old_map;
2482 	struct request_queue *q = md->queue;
2483 	sector_t size;
2484 
2485 	size = dm_table_get_size(t);
2486 
2487 	/*
2488 	 * Wipe any geometry if the size of the table changed.
2489 	 */
2490 	if (size != dm_get_size(md))
2491 		memset(&md->geometry, 0, sizeof(md->geometry));
2492 
2493 	__set_size(md, size);
2494 
2495 	dm_table_event_callback(t, event_callback, md);
2496 
2497 	/*
2498 	 * The queue hasn't been stopped yet, if the old table type wasn't
2499 	 * for request-based during suspension.  So stop it to prevent
2500 	 * I/O mapping before resume.
2501 	 * This must be done before setting the queue restrictions,
2502 	 * because request-based dm may be run just after the setting.
2503 	 */
2504 	if (dm_table_request_based(t))
2505 		stop_queue(q);
2506 
2507 	__bind_mempools(md, t);
2508 
2509 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2510 	rcu_assign_pointer(md->map, t);
2511 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2512 
2513 	dm_table_set_restrictions(t, q, limits);
2514 	if (old_map)
2515 		dm_sync_table(md);
2516 
2517 	return old_map;
2518 }
2519 
2520 /*
2521  * Returns unbound table for the caller to free.
2522  */
__unbind(struct mapped_device * md)2523 static struct dm_table *__unbind(struct mapped_device *md)
2524 {
2525 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2526 
2527 	if (!map)
2528 		return NULL;
2529 
2530 	dm_table_event_callback(map, NULL, NULL);
2531 	RCU_INIT_POINTER(md->map, NULL);
2532 	dm_sync_table(md);
2533 
2534 	return map;
2535 }
2536 
2537 /*
2538  * Constructor for a new device.
2539  */
dm_create(int minor,struct mapped_device ** result)2540 int dm_create(int minor, struct mapped_device **result)
2541 {
2542 	struct mapped_device *md;
2543 
2544 	md = alloc_dev(minor);
2545 	if (!md)
2546 		return -ENXIO;
2547 
2548 	dm_sysfs_init(md);
2549 
2550 	*result = md;
2551 	return 0;
2552 }
2553 
2554 /*
2555  * Functions to manage md->type.
2556  * All are required to hold md->type_lock.
2557  */
dm_lock_md_type(struct mapped_device * md)2558 void dm_lock_md_type(struct mapped_device *md)
2559 {
2560 	mutex_lock(&md->type_lock);
2561 }
2562 
dm_unlock_md_type(struct mapped_device * md)2563 void dm_unlock_md_type(struct mapped_device *md)
2564 {
2565 	mutex_unlock(&md->type_lock);
2566 }
2567 
dm_set_md_type(struct mapped_device * md,unsigned type)2568 void dm_set_md_type(struct mapped_device *md, unsigned type)
2569 {
2570 	BUG_ON(!mutex_is_locked(&md->type_lock));
2571 	md->type = type;
2572 }
2573 
dm_get_md_type(struct mapped_device * md)2574 unsigned dm_get_md_type(struct mapped_device *md)
2575 {
2576 	BUG_ON(!mutex_is_locked(&md->type_lock));
2577 	return md->type;
2578 }
2579 
dm_get_immutable_target_type(struct mapped_device * md)2580 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2581 {
2582 	return md->immutable_target_type;
2583 }
2584 
2585 /*
2586  * The queue_limits are only valid as long as you have a reference
2587  * count on 'md'.
2588  */
dm_get_queue_limits(struct mapped_device * md)2589 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2590 {
2591 	BUG_ON(!atomic_read(&md->holders));
2592 	return &md->queue->limits;
2593 }
2594 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2595 
init_rq_based_worker_thread(struct mapped_device * md)2596 static void init_rq_based_worker_thread(struct mapped_device *md)
2597 {
2598 	/* Initialize the request-based DM worker thread */
2599 	init_kthread_worker(&md->kworker);
2600 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2601 				       "kdmwork-%s", dm_device_name(md));
2602 }
2603 
2604 /*
2605  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2606  */
dm_init_request_based_queue(struct mapped_device * md)2607 static int dm_init_request_based_queue(struct mapped_device *md)
2608 {
2609 	struct request_queue *q = NULL;
2610 
2611 	/* Fully initialize the queue */
2612 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2613 	if (!q)
2614 		return -EINVAL;
2615 
2616 	/* disable dm_request_fn's merge heuristic by default */
2617 	md->seq_rq_merge_deadline_usecs = 0;
2618 
2619 	md->queue = q;
2620 	dm_init_old_md_queue(md);
2621 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2622 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2623 
2624 	init_rq_based_worker_thread(md);
2625 
2626 	elv_register_queue(md->queue);
2627 
2628 	return 0;
2629 }
2630 
dm_mq_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)2631 static int dm_mq_init_request(void *data, struct request *rq,
2632 			      unsigned int hctx_idx, unsigned int request_idx,
2633 			      unsigned int numa_node)
2634 {
2635 	struct mapped_device *md = data;
2636 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2637 
2638 	/*
2639 	 * Must initialize md member of tio, otherwise it won't
2640 	 * be available in dm_mq_queue_rq.
2641 	 */
2642 	tio->md = md;
2643 
2644 	return 0;
2645 }
2646 
dm_mq_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2647 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2648 			  const struct blk_mq_queue_data *bd)
2649 {
2650 	struct request *rq = bd->rq;
2651 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2652 	struct mapped_device *md = tio->md;
2653 	int srcu_idx;
2654 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2655 	struct dm_target *ti;
2656 	sector_t pos;
2657 
2658 	/* always use block 0 to find the target for flushes for now */
2659 	pos = 0;
2660 	if (!(rq->cmd_flags & REQ_FLUSH))
2661 		pos = blk_rq_pos(rq);
2662 
2663 	ti = dm_table_find_target(map, pos);
2664 	if (!dm_target_is_valid(ti)) {
2665 		dm_put_live_table(md, srcu_idx);
2666 		DMERR_LIMIT("request attempted access beyond the end of device");
2667 		/*
2668 		 * Must perform setup, that rq_completed() requires,
2669 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2670 		 */
2671 		dm_start_request(md, rq);
2672 		return BLK_MQ_RQ_QUEUE_ERROR;
2673 	}
2674 	dm_put_live_table(md, srcu_idx);
2675 
2676 	if (ti->type->busy && ti->type->busy(ti))
2677 		return BLK_MQ_RQ_QUEUE_BUSY;
2678 
2679 	dm_start_request(md, rq);
2680 
2681 	/* Init tio using md established in .init_request */
2682 	init_tio(tio, rq, md);
2683 
2684 	/*
2685 	 * Establish tio->ti before queuing work (map_tio_request)
2686 	 * or making direct call to map_request().
2687 	 */
2688 	tio->ti = ti;
2689 
2690 	/* Clone the request if underlying devices aren't blk-mq */
2691 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2692 		/* clone request is allocated at the end of the pdu */
2693 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2694 		(void) clone_rq(rq, md, tio, GFP_ATOMIC);
2695 		queue_kthread_work(&md->kworker, &tio->work);
2696 	} else {
2697 		/* Direct call is fine since .queue_rq allows allocations */
2698 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2699 			/* Undo dm_start_request() before requeuing */
2700 			rq_end_stats(md, rq);
2701 			rq_completed(md, rq_data_dir(rq), false);
2702 			return BLK_MQ_RQ_QUEUE_BUSY;
2703 		}
2704 	}
2705 
2706 	return BLK_MQ_RQ_QUEUE_OK;
2707 }
2708 
2709 static struct blk_mq_ops dm_mq_ops = {
2710 	.queue_rq = dm_mq_queue_rq,
2711 	.map_queue = blk_mq_map_queue,
2712 	.complete = dm_softirq_done,
2713 	.init_request = dm_mq_init_request,
2714 };
2715 
dm_init_request_based_blk_mq_queue(struct mapped_device * md)2716 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2717 {
2718 	unsigned md_type = dm_get_md_type(md);
2719 	struct request_queue *q;
2720 	int err;
2721 
2722 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2723 	md->tag_set.ops = &dm_mq_ops;
2724 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2725 	md->tag_set.numa_node = NUMA_NO_NODE;
2726 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2727 	md->tag_set.nr_hw_queues = 1;
2728 	if (md_type == DM_TYPE_REQUEST_BASED) {
2729 		/* make the memory for non-blk-mq clone part of the pdu */
2730 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2731 	} else
2732 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2733 	md->tag_set.driver_data = md;
2734 
2735 	err = blk_mq_alloc_tag_set(&md->tag_set);
2736 	if (err)
2737 		return err;
2738 
2739 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2740 	if (IS_ERR(q)) {
2741 		err = PTR_ERR(q);
2742 		goto out_tag_set;
2743 	}
2744 	md->queue = q;
2745 	dm_init_md_queue(md);
2746 
2747 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2748 	blk_mq_register_disk(md->disk);
2749 
2750 	if (md_type == DM_TYPE_REQUEST_BASED)
2751 		init_rq_based_worker_thread(md);
2752 
2753 	return 0;
2754 
2755 out_tag_set:
2756 	blk_mq_free_tag_set(&md->tag_set);
2757 	return err;
2758 }
2759 
filter_md_type(unsigned type,struct mapped_device * md)2760 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2761 {
2762 	if (type == DM_TYPE_BIO_BASED)
2763 		return type;
2764 
2765 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2766 }
2767 
2768 /*
2769  * Setup the DM device's queue based on md's type
2770  */
dm_setup_md_queue(struct mapped_device * md)2771 int dm_setup_md_queue(struct mapped_device *md)
2772 {
2773 	int r;
2774 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2775 
2776 	switch (md_type) {
2777 	case DM_TYPE_REQUEST_BASED:
2778 		r = dm_init_request_based_queue(md);
2779 		if (r) {
2780 			DMWARN("Cannot initialize queue for request-based mapped device");
2781 			return r;
2782 		}
2783 		break;
2784 	case DM_TYPE_MQ_REQUEST_BASED:
2785 		r = dm_init_request_based_blk_mq_queue(md);
2786 		if (r) {
2787 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2788 			return r;
2789 		}
2790 		break;
2791 	case DM_TYPE_BIO_BASED:
2792 		dm_init_old_md_queue(md);
2793 		blk_queue_make_request(md->queue, dm_make_request);
2794 		/*
2795 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2796 		 * since it won't be used (saves 1 process per bio-based DM device).
2797 		 */
2798 		bioset_free(md->queue->bio_split);
2799 		md->queue->bio_split = NULL;
2800 		break;
2801 	}
2802 
2803 	return 0;
2804 }
2805 
dm_get_md(dev_t dev)2806 struct mapped_device *dm_get_md(dev_t dev)
2807 {
2808 	struct mapped_device *md;
2809 	unsigned minor = MINOR(dev);
2810 
2811 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2812 		return NULL;
2813 
2814 	spin_lock(&_minor_lock);
2815 
2816 	md = idr_find(&_minor_idr, minor);
2817 	if (md) {
2818 		if ((md == MINOR_ALLOCED ||
2819 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2820 		     dm_deleting_md(md) ||
2821 		     test_bit(DMF_FREEING, &md->flags))) {
2822 			md = NULL;
2823 			goto out;
2824 		}
2825 		dm_get(md);
2826 	}
2827 
2828 out:
2829 	spin_unlock(&_minor_lock);
2830 
2831 	return md;
2832 }
2833 EXPORT_SYMBOL_GPL(dm_get_md);
2834 
dm_get_mdptr(struct mapped_device * md)2835 void *dm_get_mdptr(struct mapped_device *md)
2836 {
2837 	return md->interface_ptr;
2838 }
2839 
dm_set_mdptr(struct mapped_device * md,void * ptr)2840 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2841 {
2842 	md->interface_ptr = ptr;
2843 }
2844 
dm_get(struct mapped_device * md)2845 void dm_get(struct mapped_device *md)
2846 {
2847 	atomic_inc(&md->holders);
2848 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2849 }
2850 
dm_hold(struct mapped_device * md)2851 int dm_hold(struct mapped_device *md)
2852 {
2853 	spin_lock(&_minor_lock);
2854 	if (test_bit(DMF_FREEING, &md->flags)) {
2855 		spin_unlock(&_minor_lock);
2856 		return -EBUSY;
2857 	}
2858 	dm_get(md);
2859 	spin_unlock(&_minor_lock);
2860 	return 0;
2861 }
2862 EXPORT_SYMBOL_GPL(dm_hold);
2863 
dm_device_name(struct mapped_device * md)2864 const char *dm_device_name(struct mapped_device *md)
2865 {
2866 	return md->name;
2867 }
2868 EXPORT_SYMBOL_GPL(dm_device_name);
2869 
__dm_destroy(struct mapped_device * md,bool wait)2870 static void __dm_destroy(struct mapped_device *md, bool wait)
2871 {
2872 	struct dm_table *map;
2873 	int srcu_idx;
2874 
2875 	might_sleep();
2876 
2877 	spin_lock(&_minor_lock);
2878 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2879 	set_bit(DMF_FREEING, &md->flags);
2880 	spin_unlock(&_minor_lock);
2881 
2882 	if (dm_request_based(md) && md->kworker_task)
2883 		flush_kthread_worker(&md->kworker);
2884 
2885 	/*
2886 	 * Take suspend_lock so that presuspend and postsuspend methods
2887 	 * do not race with internal suspend.
2888 	 */
2889 	mutex_lock(&md->suspend_lock);
2890 	map = dm_get_live_table(md, &srcu_idx);
2891 	if (!dm_suspended_md(md)) {
2892 		dm_table_presuspend_targets(map);
2893 		dm_table_postsuspend_targets(map);
2894 	}
2895 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2896 	dm_put_live_table(md, srcu_idx);
2897 	mutex_unlock(&md->suspend_lock);
2898 
2899 	/*
2900 	 * Rare, but there may be I/O requests still going to complete,
2901 	 * for example.  Wait for all references to disappear.
2902 	 * No one should increment the reference count of the mapped_device,
2903 	 * after the mapped_device state becomes DMF_FREEING.
2904 	 */
2905 	if (wait)
2906 		while (atomic_read(&md->holders))
2907 			msleep(1);
2908 	else if (atomic_read(&md->holders))
2909 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2910 		       dm_device_name(md), atomic_read(&md->holders));
2911 
2912 	dm_sysfs_exit(md);
2913 	dm_table_destroy(__unbind(md));
2914 	free_dev(md);
2915 }
2916 
dm_destroy(struct mapped_device * md)2917 void dm_destroy(struct mapped_device *md)
2918 {
2919 	__dm_destroy(md, true);
2920 }
2921 
dm_destroy_immediate(struct mapped_device * md)2922 void dm_destroy_immediate(struct mapped_device *md)
2923 {
2924 	__dm_destroy(md, false);
2925 }
2926 
dm_put(struct mapped_device * md)2927 void dm_put(struct mapped_device *md)
2928 {
2929 	atomic_dec(&md->holders);
2930 }
2931 EXPORT_SYMBOL_GPL(dm_put);
2932 
dm_wait_for_completion(struct mapped_device * md,int interruptible)2933 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2934 {
2935 	int r = 0;
2936 	DECLARE_WAITQUEUE(wait, current);
2937 
2938 	add_wait_queue(&md->wait, &wait);
2939 
2940 	while (1) {
2941 		set_current_state(interruptible);
2942 
2943 		if (!md_in_flight(md))
2944 			break;
2945 
2946 		if (interruptible == TASK_INTERRUPTIBLE &&
2947 		    signal_pending(current)) {
2948 			r = -EINTR;
2949 			break;
2950 		}
2951 
2952 		io_schedule();
2953 	}
2954 	set_current_state(TASK_RUNNING);
2955 
2956 	remove_wait_queue(&md->wait, &wait);
2957 
2958 	return r;
2959 }
2960 
2961 /*
2962  * Process the deferred bios
2963  */
dm_wq_work(struct work_struct * work)2964 static void dm_wq_work(struct work_struct *work)
2965 {
2966 	struct mapped_device *md = container_of(work, struct mapped_device,
2967 						work);
2968 	struct bio *c;
2969 	int srcu_idx;
2970 	struct dm_table *map;
2971 
2972 	map = dm_get_live_table(md, &srcu_idx);
2973 
2974 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2975 		spin_lock_irq(&md->deferred_lock);
2976 		c = bio_list_pop(&md->deferred);
2977 		spin_unlock_irq(&md->deferred_lock);
2978 
2979 		if (!c)
2980 			break;
2981 
2982 		if (dm_request_based(md))
2983 			generic_make_request(c);
2984 		else
2985 			__split_and_process_bio(md, map, c);
2986 	}
2987 
2988 	dm_put_live_table(md, srcu_idx);
2989 }
2990 
dm_queue_flush(struct mapped_device * md)2991 static void dm_queue_flush(struct mapped_device *md)
2992 {
2993 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2994 	smp_mb__after_atomic();
2995 	queue_work(md->wq, &md->work);
2996 }
2997 
2998 /*
2999  * Swap in a new table, returning the old one for the caller to destroy.
3000  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)3001 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3002 {
3003 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3004 	struct queue_limits limits;
3005 	int r;
3006 
3007 	mutex_lock(&md->suspend_lock);
3008 
3009 	/* device must be suspended */
3010 	if (!dm_suspended_md(md))
3011 		goto out;
3012 
3013 	/*
3014 	 * If the new table has no data devices, retain the existing limits.
3015 	 * This helps multipath with queue_if_no_path if all paths disappear,
3016 	 * then new I/O is queued based on these limits, and then some paths
3017 	 * reappear.
3018 	 */
3019 	if (dm_table_has_no_data_devices(table)) {
3020 		live_map = dm_get_live_table_fast(md);
3021 		if (live_map)
3022 			limits = md->queue->limits;
3023 		dm_put_live_table_fast(md);
3024 	}
3025 
3026 	if (!live_map) {
3027 		r = dm_calculate_queue_limits(table, &limits);
3028 		if (r) {
3029 			map = ERR_PTR(r);
3030 			goto out;
3031 		}
3032 	}
3033 
3034 	map = __bind(md, table, &limits);
3035 
3036 out:
3037 	mutex_unlock(&md->suspend_lock);
3038 	return map;
3039 }
3040 
3041 /*
3042  * Functions to lock and unlock any filesystem running on the
3043  * device.
3044  */
lock_fs(struct mapped_device * md)3045 static int lock_fs(struct mapped_device *md)
3046 {
3047 	int r;
3048 
3049 	WARN_ON(md->frozen_sb);
3050 
3051 	md->frozen_sb = freeze_bdev(md->bdev);
3052 	if (IS_ERR(md->frozen_sb)) {
3053 		r = PTR_ERR(md->frozen_sb);
3054 		md->frozen_sb = NULL;
3055 		return r;
3056 	}
3057 
3058 	set_bit(DMF_FROZEN, &md->flags);
3059 
3060 	return 0;
3061 }
3062 
unlock_fs(struct mapped_device * md)3063 static void unlock_fs(struct mapped_device *md)
3064 {
3065 	if (!test_bit(DMF_FROZEN, &md->flags))
3066 		return;
3067 
3068 	thaw_bdev(md->bdev, md->frozen_sb);
3069 	md->frozen_sb = NULL;
3070 	clear_bit(DMF_FROZEN, &md->flags);
3071 }
3072 
3073 /*
3074  * If __dm_suspend returns 0, the device is completely quiescent
3075  * now. There is no request-processing activity. All new requests
3076  * are being added to md->deferred list.
3077  *
3078  * Caller must hold md->suspend_lock
3079  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,int interruptible)3080 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3081 			unsigned suspend_flags, int interruptible)
3082 {
3083 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3084 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3085 	int r;
3086 
3087 	/*
3088 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3089 	 * This flag is cleared before dm_suspend returns.
3090 	 */
3091 	if (noflush)
3092 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3093 
3094 	/*
3095 	 * This gets reverted if there's an error later and the targets
3096 	 * provide the .presuspend_undo hook.
3097 	 */
3098 	dm_table_presuspend_targets(map);
3099 
3100 	/*
3101 	 * Flush I/O to the device.
3102 	 * Any I/O submitted after lock_fs() may not be flushed.
3103 	 * noflush takes precedence over do_lockfs.
3104 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3105 	 */
3106 	if (!noflush && do_lockfs) {
3107 		r = lock_fs(md);
3108 		if (r) {
3109 			dm_table_presuspend_undo_targets(map);
3110 			return r;
3111 		}
3112 	}
3113 
3114 	/*
3115 	 * Here we must make sure that no processes are submitting requests
3116 	 * to target drivers i.e. no one may be executing
3117 	 * __split_and_process_bio. This is called from dm_request and
3118 	 * dm_wq_work.
3119 	 *
3120 	 * To get all processes out of __split_and_process_bio in dm_request,
3121 	 * we take the write lock. To prevent any process from reentering
3122 	 * __split_and_process_bio from dm_request and quiesce the thread
3123 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3124 	 * flush_workqueue(md->wq).
3125 	 */
3126 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3127 	if (map)
3128 		synchronize_srcu(&md->io_barrier);
3129 
3130 	/*
3131 	 * Stop md->queue before flushing md->wq in case request-based
3132 	 * dm defers requests to md->wq from md->queue.
3133 	 */
3134 	if (dm_request_based(md)) {
3135 		stop_queue(md->queue);
3136 		if (md->kworker_task)
3137 			flush_kthread_worker(&md->kworker);
3138 	}
3139 
3140 	flush_workqueue(md->wq);
3141 
3142 	/*
3143 	 * At this point no more requests are entering target request routines.
3144 	 * We call dm_wait_for_completion to wait for all existing requests
3145 	 * to finish.
3146 	 */
3147 	r = dm_wait_for_completion(md, interruptible);
3148 
3149 	if (noflush)
3150 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3151 	if (map)
3152 		synchronize_srcu(&md->io_barrier);
3153 
3154 	/* were we interrupted ? */
3155 	if (r < 0) {
3156 		dm_queue_flush(md);
3157 
3158 		if (dm_request_based(md))
3159 			start_queue(md->queue);
3160 
3161 		unlock_fs(md);
3162 		dm_table_presuspend_undo_targets(map);
3163 		/* pushback list is already flushed, so skip flush */
3164 	}
3165 
3166 	return r;
3167 }
3168 
3169 /*
3170  * We need to be able to change a mapping table under a mounted
3171  * filesystem.  For example we might want to move some data in
3172  * the background.  Before the table can be swapped with
3173  * dm_bind_table, dm_suspend must be called to flush any in
3174  * flight bios and ensure that any further io gets deferred.
3175  */
3176 /*
3177  * Suspend mechanism in request-based dm.
3178  *
3179  * 1. Flush all I/Os by lock_fs() if needed.
3180  * 2. Stop dispatching any I/O by stopping the request_queue.
3181  * 3. Wait for all in-flight I/Os to be completed or requeued.
3182  *
3183  * To abort suspend, start the request_queue.
3184  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)3185 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3186 {
3187 	struct dm_table *map = NULL;
3188 	int r = 0;
3189 
3190 retry:
3191 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3192 
3193 	if (dm_suspended_md(md)) {
3194 		r = -EINVAL;
3195 		goto out_unlock;
3196 	}
3197 
3198 	if (dm_suspended_internally_md(md)) {
3199 		/* already internally suspended, wait for internal resume */
3200 		mutex_unlock(&md->suspend_lock);
3201 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3202 		if (r)
3203 			return r;
3204 		goto retry;
3205 	}
3206 
3207 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3208 
3209 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3210 	if (r)
3211 		goto out_unlock;
3212 
3213 	set_bit(DMF_SUSPENDED, &md->flags);
3214 
3215 	dm_table_postsuspend_targets(map);
3216 
3217 out_unlock:
3218 	mutex_unlock(&md->suspend_lock);
3219 	return r;
3220 }
3221 
__dm_resume(struct mapped_device * md,struct dm_table * map)3222 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3223 {
3224 	if (map) {
3225 		int r = dm_table_resume_targets(map);
3226 		if (r)
3227 			return r;
3228 	}
3229 
3230 	dm_queue_flush(md);
3231 
3232 	/*
3233 	 * Flushing deferred I/Os must be done after targets are resumed
3234 	 * so that mapping of targets can work correctly.
3235 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3236 	 */
3237 	if (dm_request_based(md))
3238 		start_queue(md->queue);
3239 
3240 	unlock_fs(md);
3241 
3242 	return 0;
3243 }
3244 
dm_resume(struct mapped_device * md)3245 int dm_resume(struct mapped_device *md)
3246 {
3247 	int r = -EINVAL;
3248 	struct dm_table *map = NULL;
3249 
3250 retry:
3251 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3252 
3253 	if (!dm_suspended_md(md))
3254 		goto out;
3255 
3256 	if (dm_suspended_internally_md(md)) {
3257 		/* already internally suspended, wait for internal resume */
3258 		mutex_unlock(&md->suspend_lock);
3259 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3260 		if (r)
3261 			return r;
3262 		goto retry;
3263 	}
3264 
3265 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3266 	if (!map || !dm_table_get_size(map))
3267 		goto out;
3268 
3269 	r = __dm_resume(md, map);
3270 	if (r)
3271 		goto out;
3272 
3273 	clear_bit(DMF_SUSPENDED, &md->flags);
3274 
3275 	r = 0;
3276 out:
3277 	mutex_unlock(&md->suspend_lock);
3278 
3279 	return r;
3280 }
3281 
3282 /*
3283  * Internal suspend/resume works like userspace-driven suspend. It waits
3284  * until all bios finish and prevents issuing new bios to the target drivers.
3285  * It may be used only from the kernel.
3286  */
3287 
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)3288 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3289 {
3290 	struct dm_table *map = NULL;
3291 
3292 	if (md->internal_suspend_count++)
3293 		return; /* nested internal suspend */
3294 
3295 	if (dm_suspended_md(md)) {
3296 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3297 		return; /* nest suspend */
3298 	}
3299 
3300 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3301 
3302 	/*
3303 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3304 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3305 	 * would require changing .presuspend to return an error -- avoid this
3306 	 * until there is a need for more elaborate variants of internal suspend.
3307 	 */
3308 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3309 
3310 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3311 
3312 	dm_table_postsuspend_targets(map);
3313 }
3314 
__dm_internal_resume(struct mapped_device * md)3315 static void __dm_internal_resume(struct mapped_device *md)
3316 {
3317 	BUG_ON(!md->internal_suspend_count);
3318 
3319 	if (--md->internal_suspend_count)
3320 		return; /* resume from nested internal suspend */
3321 
3322 	if (dm_suspended_md(md))
3323 		goto done; /* resume from nested suspend */
3324 
3325 	/*
3326 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3327 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3328 	 */
3329 	(void) __dm_resume(md, NULL);
3330 
3331 done:
3332 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3333 	smp_mb__after_atomic();
3334 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3335 }
3336 
dm_internal_suspend_noflush(struct mapped_device * md)3337 void dm_internal_suspend_noflush(struct mapped_device *md)
3338 {
3339 	mutex_lock(&md->suspend_lock);
3340 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3341 	mutex_unlock(&md->suspend_lock);
3342 }
3343 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3344 
dm_internal_resume(struct mapped_device * md)3345 void dm_internal_resume(struct mapped_device *md)
3346 {
3347 	mutex_lock(&md->suspend_lock);
3348 	__dm_internal_resume(md);
3349 	mutex_unlock(&md->suspend_lock);
3350 }
3351 EXPORT_SYMBOL_GPL(dm_internal_resume);
3352 
3353 /*
3354  * Fast variants of internal suspend/resume hold md->suspend_lock,
3355  * which prevents interaction with userspace-driven suspend.
3356  */
3357 
dm_internal_suspend_fast(struct mapped_device * md)3358 void dm_internal_suspend_fast(struct mapped_device *md)
3359 {
3360 	mutex_lock(&md->suspend_lock);
3361 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3362 		return;
3363 
3364 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3365 	synchronize_srcu(&md->io_barrier);
3366 	flush_workqueue(md->wq);
3367 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3368 }
3369 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3370 
dm_internal_resume_fast(struct mapped_device * md)3371 void dm_internal_resume_fast(struct mapped_device *md)
3372 {
3373 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3374 		goto done;
3375 
3376 	dm_queue_flush(md);
3377 
3378 done:
3379 	mutex_unlock(&md->suspend_lock);
3380 }
3381 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3382 
3383 /*-----------------------------------------------------------------
3384  * Event notification.
3385  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)3386 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3387 		       unsigned cookie)
3388 {
3389 	char udev_cookie[DM_COOKIE_LENGTH];
3390 	char *envp[] = { udev_cookie, NULL };
3391 
3392 	if (!cookie)
3393 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3394 	else {
3395 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3396 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3397 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3398 					  action, envp);
3399 	}
3400 }
3401 
dm_next_uevent_seq(struct mapped_device * md)3402 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3403 {
3404 	return atomic_add_return(1, &md->uevent_seq);
3405 }
3406 
dm_get_event_nr(struct mapped_device * md)3407 uint32_t dm_get_event_nr(struct mapped_device *md)
3408 {
3409 	return atomic_read(&md->event_nr);
3410 }
3411 
dm_wait_event(struct mapped_device * md,int event_nr)3412 int dm_wait_event(struct mapped_device *md, int event_nr)
3413 {
3414 	return wait_event_interruptible(md->eventq,
3415 			(event_nr != atomic_read(&md->event_nr)));
3416 }
3417 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3418 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3419 {
3420 	unsigned long flags;
3421 
3422 	spin_lock_irqsave(&md->uevent_lock, flags);
3423 	list_add(elist, &md->uevent_list);
3424 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3425 }
3426 
3427 /*
3428  * The gendisk is only valid as long as you have a reference
3429  * count on 'md'.
3430  */
dm_disk(struct mapped_device * md)3431 struct gendisk *dm_disk(struct mapped_device *md)
3432 {
3433 	return md->disk;
3434 }
3435 EXPORT_SYMBOL_GPL(dm_disk);
3436 
dm_kobject(struct mapped_device * md)3437 struct kobject *dm_kobject(struct mapped_device *md)
3438 {
3439 	return &md->kobj_holder.kobj;
3440 }
3441 
dm_get_from_kobject(struct kobject * kobj)3442 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3443 {
3444 	struct mapped_device *md;
3445 
3446 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3447 
3448 	if (test_bit(DMF_FREEING, &md->flags) ||
3449 	    dm_deleting_md(md))
3450 		return NULL;
3451 
3452 	dm_get(md);
3453 	return md;
3454 }
3455 
dm_suspended_md(struct mapped_device * md)3456 int dm_suspended_md(struct mapped_device *md)
3457 {
3458 	return test_bit(DMF_SUSPENDED, &md->flags);
3459 }
3460 
dm_suspended_internally_md(struct mapped_device * md)3461 int dm_suspended_internally_md(struct mapped_device *md)
3462 {
3463 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3464 }
3465 
dm_test_deferred_remove_flag(struct mapped_device * md)3466 int dm_test_deferred_remove_flag(struct mapped_device *md)
3467 {
3468 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3469 }
3470 
dm_suspended(struct dm_target * ti)3471 int dm_suspended(struct dm_target *ti)
3472 {
3473 	return dm_suspended_md(dm_table_get_md(ti->table));
3474 }
3475 EXPORT_SYMBOL_GPL(dm_suspended);
3476 
dm_noflush_suspending(struct dm_target * ti)3477 int dm_noflush_suspending(struct dm_target *ti)
3478 {
3479 	return __noflush_suspending(dm_table_get_md(ti->table));
3480 }
3481 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3482 
dm_alloc_md_mempools(struct mapped_device * md,unsigned type,unsigned integrity,unsigned per_bio_data_size)3483 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3484 					    unsigned integrity, unsigned per_bio_data_size)
3485 {
3486 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3487 	struct kmem_cache *cachep = NULL;
3488 	unsigned int pool_size = 0;
3489 	unsigned int front_pad;
3490 
3491 	if (!pools)
3492 		return NULL;
3493 
3494 	type = filter_md_type(type, md);
3495 
3496 	switch (type) {
3497 	case DM_TYPE_BIO_BASED:
3498 		cachep = _io_cache;
3499 		pool_size = dm_get_reserved_bio_based_ios();
3500 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3501 		break;
3502 	case DM_TYPE_REQUEST_BASED:
3503 		cachep = _rq_tio_cache;
3504 		pool_size = dm_get_reserved_rq_based_ios();
3505 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3506 		if (!pools->rq_pool)
3507 			goto out;
3508 		/* fall through to setup remaining rq-based pools */
3509 	case DM_TYPE_MQ_REQUEST_BASED:
3510 		if (!pool_size)
3511 			pool_size = dm_get_reserved_rq_based_ios();
3512 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3513 		/* per_bio_data_size is not used. See __bind_mempools(). */
3514 		WARN_ON(per_bio_data_size != 0);
3515 		break;
3516 	default:
3517 		BUG();
3518 	}
3519 
3520 	if (cachep) {
3521 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3522 		if (!pools->io_pool)
3523 			goto out;
3524 	}
3525 
3526 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3527 	if (!pools->bs)
3528 		goto out;
3529 
3530 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3531 		goto out;
3532 
3533 	return pools;
3534 
3535 out:
3536 	dm_free_md_mempools(pools);
3537 
3538 	return NULL;
3539 }
3540 
dm_free_md_mempools(struct dm_md_mempools * pools)3541 void dm_free_md_mempools(struct dm_md_mempools *pools)
3542 {
3543 	if (!pools)
3544 		return;
3545 
3546 	mempool_destroy(pools->io_pool);
3547 	mempool_destroy(pools->rq_pool);
3548 
3549 	if (pools->bs)
3550 		bioset_free(pools->bs);
3551 
3552 	kfree(pools);
3553 }
3554 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3555 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3556 		u32 flags)
3557 {
3558 	struct mapped_device *md = bdev->bd_disk->private_data;
3559 	const struct pr_ops *ops;
3560 	struct dm_target *tgt;
3561 	fmode_t mode;
3562 	int srcu_idx, r;
3563 
3564 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3565 	if (r < 0)
3566 		return r;
3567 
3568 	ops = bdev->bd_disk->fops->pr_ops;
3569 	if (ops && ops->pr_register)
3570 		r = ops->pr_register(bdev, old_key, new_key, flags);
3571 	else
3572 		r = -EOPNOTSUPP;
3573 
3574 	dm_put_live_table(md, srcu_idx);
3575 	return r;
3576 }
3577 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3578 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3579 		u32 flags)
3580 {
3581 	struct mapped_device *md = bdev->bd_disk->private_data;
3582 	const struct pr_ops *ops;
3583 	struct dm_target *tgt;
3584 	fmode_t mode;
3585 	int srcu_idx, r;
3586 
3587 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3588 	if (r < 0)
3589 		return r;
3590 
3591 	ops = bdev->bd_disk->fops->pr_ops;
3592 	if (ops && ops->pr_reserve)
3593 		r = ops->pr_reserve(bdev, key, type, flags);
3594 	else
3595 		r = -EOPNOTSUPP;
3596 
3597 	dm_put_live_table(md, srcu_idx);
3598 	return r;
3599 }
3600 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3601 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3602 {
3603 	struct mapped_device *md = bdev->bd_disk->private_data;
3604 	const struct pr_ops *ops;
3605 	struct dm_target *tgt;
3606 	fmode_t mode;
3607 	int srcu_idx, r;
3608 
3609 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3610 	if (r < 0)
3611 		return r;
3612 
3613 	ops = bdev->bd_disk->fops->pr_ops;
3614 	if (ops && ops->pr_release)
3615 		r = ops->pr_release(bdev, key, type);
3616 	else
3617 		r = -EOPNOTSUPP;
3618 
3619 	dm_put_live_table(md, srcu_idx);
3620 	return r;
3621 }
3622 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3623 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3624 		enum pr_type type, bool abort)
3625 {
3626 	struct mapped_device *md = bdev->bd_disk->private_data;
3627 	const struct pr_ops *ops;
3628 	struct dm_target *tgt;
3629 	fmode_t mode;
3630 	int srcu_idx, r;
3631 
3632 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3633 	if (r < 0)
3634 		return r;
3635 
3636 	ops = bdev->bd_disk->fops->pr_ops;
3637 	if (ops && ops->pr_preempt)
3638 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3639 	else
3640 		r = -EOPNOTSUPP;
3641 
3642 	dm_put_live_table(md, srcu_idx);
3643 	return r;
3644 }
3645 
dm_pr_clear(struct block_device * bdev,u64 key)3646 static int dm_pr_clear(struct block_device *bdev, u64 key)
3647 {
3648 	struct mapped_device *md = bdev->bd_disk->private_data;
3649 	const struct pr_ops *ops;
3650 	struct dm_target *tgt;
3651 	fmode_t mode;
3652 	int srcu_idx, r;
3653 
3654 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3655 	if (r < 0)
3656 		return r;
3657 
3658 	ops = bdev->bd_disk->fops->pr_ops;
3659 	if (ops && ops->pr_clear)
3660 		r = ops->pr_clear(bdev, key);
3661 	else
3662 		r = -EOPNOTSUPP;
3663 
3664 	dm_put_live_table(md, srcu_idx);
3665 	return r;
3666 }
3667 
3668 static const struct pr_ops dm_pr_ops = {
3669 	.pr_register	= dm_pr_register,
3670 	.pr_reserve	= dm_pr_reserve,
3671 	.pr_release	= dm_pr_release,
3672 	.pr_preempt	= dm_pr_preempt,
3673 	.pr_clear	= dm_pr_clear,
3674 };
3675 
3676 static const struct block_device_operations dm_blk_dops = {
3677 	.open = dm_blk_open,
3678 	.release = dm_blk_close,
3679 	.ioctl = dm_blk_ioctl,
3680 	.getgeo = dm_blk_getgeo,
3681 	.pr_ops = &dm_pr_ops,
3682 	.owner = THIS_MODULE
3683 };
3684 
3685 /*
3686  * module hooks
3687  */
3688 module_init(dm_init);
3689 module_exit(dm_exit);
3690 
3691 module_param(major, uint, 0);
3692 MODULE_PARM_DESC(major, "The major number of the device mapper");
3693 
3694 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3695 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3696 
3697 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3698 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3699 
3700 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3701 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3702 
3703 MODULE_DESCRIPTION(DM_NAME " driver");
3704 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3705 MODULE_LICENSE("GPL");
3706