1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28
29 #include <trace/events/block.h>
30
31 #define DM_MSG_PREFIX "core"
32
33 #ifdef CONFIG_PRINTK
34 /*
35 * ratelimit state to be used in DMXXX_LIMIT().
36 */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 DEFAULT_RATELIMIT_INTERVAL,
39 DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42
43 /*
44 * Cookies are numeric values sent with CHANGE and REMOVE
45 * uevents while resuming, removing or renaming the device.
46 */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per bio.
68 */
69 struct dm_io {
70 struct mapped_device *md;
71 int error;
72 atomic_t io_count;
73 struct bio *bio;
74 unsigned long start_time;
75 spinlock_t endio_lock;
76 struct dm_stats_aux stats_aux;
77 };
78
79 /*
80 * For request-based dm.
81 * One of these is allocated per request.
82 */
83 struct dm_rq_target_io {
84 struct mapped_device *md;
85 struct dm_target *ti;
86 struct request *orig, *clone;
87 struct kthread_work work;
88 int error;
89 union map_info info;
90 struct dm_stats_aux stats_aux;
91 unsigned long duration_jiffies;
92 unsigned n_sectors;
93 };
94
95 /*
96 * For request-based dm - the bio clones we allocate are embedded in these
97 * structs.
98 *
99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100 * the bioset is created - this means the bio has to come at the end of the
101 * struct.
102 */
103 struct dm_rq_clone_bio_info {
104 struct bio *orig;
105 struct dm_rq_target_io *tio;
106 struct bio clone;
107 };
108
dm_get_rq_mapinfo(struct request * rq)109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 if (rq && rq->end_io_data)
112 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116
117 #define MINOR_ALLOCED ((void *)-1)
118
119 /*
120 * Bits for the md->flags field.
121 */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_DEFERRED_REMOVE 6
129 #define DMF_SUSPENDED_INTERNALLY 7
130
131 /*
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
134 */
135 struct dm_table {
136 int undefined__;
137 };
138
139 /*
140 * Work processed by per-device workqueue.
141 */
142 struct mapped_device {
143 struct srcu_struct io_barrier;
144 struct mutex suspend_lock;
145 atomic_t holders;
146 atomic_t open_count;
147
148 /*
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
151 * dereference.
152 */
153 struct dm_table __rcu *map;
154
155 struct list_head table_devices;
156 struct mutex table_devices_lock;
157
158 unsigned long flags;
159
160 struct request_queue *queue;
161 unsigned type;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock;
164
165 struct target_type *immutable_target_type;
166
167 struct gendisk *disk;
168 char name[16];
169
170 void *interface_ptr;
171
172 /*
173 * A list of ios that arrived while we were suspended.
174 */
175 atomic_t pending[2];
176 wait_queue_head_t wait;
177 struct work_struct work;
178 struct bio_list deferred;
179 spinlock_t deferred_lock;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * Event handling.
196 */
197 atomic_t event_nr;
198 wait_queue_head_t eventq;
199 atomic_t uevent_seq;
200 struct list_head uevent_list;
201 spinlock_t uevent_lock; /* Protect access to uevent_list */
202
203 /*
204 * freeze/thaw support require holding onto a super block
205 */
206 struct super_block *frozen_sb;
207 struct block_device *bdev;
208
209 /* forced geometry settings */
210 struct hd_geometry geometry;
211
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder;
214
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio;
217
218 /* the number of internal suspends */
219 unsigned internal_suspend_count;
220
221 struct dm_stats stats;
222
223 struct kthread_worker kworker;
224 struct task_struct *kworker_task;
225
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs;
228 int last_rq_rw;
229 sector_t last_rq_pos;
230 ktime_t last_rq_start_time;
231
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set;
234 bool use_blk_mq;
235 };
236
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242
dm_use_blk_mq(struct mapped_device * md)243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 return md->use_blk_mq;
246 }
247
248 /*
249 * For mempools pre-allocation at the table loading time.
250 */
251 struct dm_md_mempools {
252 mempool_t *io_pool;
253 mempool_t *rq_pool;
254 struct bio_set *bs;
255 };
256
257 struct table_device {
258 struct list_head list;
259 atomic_t count;
260 struct dm_dev dm_dev;
261 };
262
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269
270 /*
271 * Bio-based DM's mempools' reserved IOs set by the user.
272 */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274
275 /*
276 * Request-based DM's mempools' reserved IOs set by the user.
277 */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)280 static unsigned __dm_get_module_param(unsigned *module_param,
281 unsigned def, unsigned max)
282 {
283 unsigned param = ACCESS_ONCE(*module_param);
284 unsigned modified_param = 0;
285
286 if (!param)
287 modified_param = def;
288 else if (param > max)
289 modified_param = max;
290
291 if (modified_param) {
292 (void)cmpxchg(module_param, param, modified_param);
293 param = modified_param;
294 }
295
296 return param;
297 }
298
dm_get_reserved_bio_based_ios(void)299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 return __dm_get_module_param(&reserved_bio_based_ios,
302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305
dm_get_reserved_rq_based_ios(void)306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 return __dm_get_module_param(&reserved_rq_based_ios,
309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312
local_init(void)313 static int __init local_init(void)
314 {
315 int r = -ENOMEM;
316
317 /* allocate a slab for the dm_ios */
318 _io_cache = KMEM_CACHE(dm_io, 0);
319 if (!_io_cache)
320 return r;
321
322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 if (!_rq_tio_cache)
324 goto out_free_io_cache;
325
326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 __alignof__(struct request), 0, NULL);
328 if (!_rq_cache)
329 goto out_free_rq_tio_cache;
330
331 r = dm_uevent_init();
332 if (r)
333 goto out_free_rq_cache;
334
335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 if (!deferred_remove_workqueue) {
337 r = -ENOMEM;
338 goto out_uevent_exit;
339 }
340
341 _major = major;
342 r = register_blkdev(_major, _name);
343 if (r < 0)
344 goto out_free_workqueue;
345
346 if (!_major)
347 _major = r;
348
349 return 0;
350
351 out_free_workqueue:
352 destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 dm_uevent_exit();
355 out_free_rq_cache:
356 kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 kmem_cache_destroy(_io_cache);
361
362 return r;
363 }
364
local_exit(void)365 static void local_exit(void)
366 {
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue);
369
370 kmem_cache_destroy(_rq_cache);
371 kmem_cache_destroy(_rq_tio_cache);
372 kmem_cache_destroy(_io_cache);
373 unregister_blkdev(_major, _name);
374 dm_uevent_exit();
375
376 _major = 0;
377
378 DMINFO("cleaned up");
379 }
380
381 static int (*_inits[])(void) __initdata = {
382 local_init,
383 dm_target_init,
384 dm_linear_init,
385 dm_stripe_init,
386 dm_io_init,
387 dm_kcopyd_init,
388 dm_interface_init,
389 dm_statistics_init,
390 };
391
392 static void (*_exits[])(void) = {
393 local_exit,
394 dm_target_exit,
395 dm_linear_exit,
396 dm_stripe_exit,
397 dm_io_exit,
398 dm_kcopyd_exit,
399 dm_interface_exit,
400 dm_statistics_exit,
401 };
402
dm_init(void)403 static int __init dm_init(void)
404 {
405 const int count = ARRAY_SIZE(_inits);
406
407 int r, i;
408
409 for (i = 0; i < count; i++) {
410 r = _inits[i]();
411 if (r)
412 goto bad;
413 }
414
415 return 0;
416
417 bad:
418 while (i--)
419 _exits[i]();
420
421 return r;
422 }
423
dm_exit(void)424 static void __exit dm_exit(void)
425 {
426 int i = ARRAY_SIZE(_exits);
427
428 while (i--)
429 _exits[i]();
430
431 /*
432 * Should be empty by this point.
433 */
434 idr_destroy(&_minor_idr);
435 }
436
437 /*
438 * Block device functions
439 */
dm_deleting_md(struct mapped_device * md)440 int dm_deleting_md(struct mapped_device *md)
441 {
442 return test_bit(DMF_DELETING, &md->flags);
443 }
444
dm_blk_open(struct block_device * bdev,fmode_t mode)445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 struct mapped_device *md;
448
449 spin_lock(&_minor_lock);
450
451 md = bdev->bd_disk->private_data;
452 if (!md)
453 goto out;
454
455 if (test_bit(DMF_FREEING, &md->flags) ||
456 dm_deleting_md(md)) {
457 md = NULL;
458 goto out;
459 }
460
461 dm_get(md);
462 atomic_inc(&md->open_count);
463 out:
464 spin_unlock(&_minor_lock);
465
466 return md ? 0 : -ENXIO;
467 }
468
dm_blk_close(struct gendisk * disk,fmode_t mode)469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 struct mapped_device *md;
472
473 spin_lock(&_minor_lock);
474
475 md = disk->private_data;
476 if (WARN_ON(!md))
477 goto out;
478
479 if (atomic_dec_and_test(&md->open_count) &&
480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 queue_work(deferred_remove_workqueue, &deferred_remove_work);
482
483 dm_put(md);
484 out:
485 spin_unlock(&_minor_lock);
486 }
487
dm_open_count(struct mapped_device * md)488 int dm_open_count(struct mapped_device *md)
489 {
490 return atomic_read(&md->open_count);
491 }
492
493 /*
494 * Guarantees nothing is using the device before it's deleted.
495 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 int r = 0;
499
500 spin_lock(&_minor_lock);
501
502 if (dm_open_count(md)) {
503 r = -EBUSY;
504 if (mark_deferred)
505 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 r = -EEXIST;
508 else
509 set_bit(DMF_DELETING, &md->flags);
510
511 spin_unlock(&_minor_lock);
512
513 return r;
514 }
515
dm_cancel_deferred_remove(struct mapped_device * md)516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 int r = 0;
519
520 spin_lock(&_minor_lock);
521
522 if (test_bit(DMF_DELETING, &md->flags))
523 r = -EBUSY;
524 else
525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526
527 spin_unlock(&_minor_lock);
528
529 return r;
530 }
531
do_deferred_remove(struct work_struct * w)532 static void do_deferred_remove(struct work_struct *w)
533 {
534 dm_deferred_remove();
535 }
536
dm_get_size(struct mapped_device * md)537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 return get_capacity(md->disk);
540 }
541
dm_get_md_queue(struct mapped_device * md)542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 return md->queue;
545 }
546
dm_get_stats(struct mapped_device * md)547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 return &md->stats;
550 }
551
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 struct mapped_device *md = bdev->bd_disk->private_data;
555
556 return dm_get_geometry(md, geo);
557 }
558
dm_get_live_table_for_ioctl(struct mapped_device * md,struct dm_target ** tgt,struct block_device ** bdev,fmode_t * mode,int * srcu_idx)559 static int dm_get_live_table_for_ioctl(struct mapped_device *md,
560 struct dm_target **tgt, struct block_device **bdev,
561 fmode_t *mode, int *srcu_idx)
562 {
563 struct dm_table *map;
564 int r;
565
566 retry:
567 r = -ENOTTY;
568 map = dm_get_live_table(md, srcu_idx);
569 if (!map || !dm_table_get_size(map))
570 goto out;
571
572 /* We only support devices that have a single target */
573 if (dm_table_get_num_targets(map) != 1)
574 goto out;
575
576 *tgt = dm_table_get_target(map, 0);
577
578 if (!(*tgt)->type->prepare_ioctl)
579 goto out;
580
581 if (dm_suspended_md(md)) {
582 r = -EAGAIN;
583 goto out;
584 }
585
586 r = (*tgt)->type->prepare_ioctl(*tgt, bdev, mode);
587 if (r < 0)
588 goto out;
589
590 return r;
591
592 out:
593 dm_put_live_table(md, *srcu_idx);
594 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
595 msleep(10);
596 goto retry;
597 }
598 return r;
599 }
600
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)601 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
602 unsigned int cmd, unsigned long arg)
603 {
604 struct mapped_device *md = bdev->bd_disk->private_data;
605 struct dm_target *tgt;
606 struct block_device *tgt_bdev = NULL;
607 int srcu_idx, r;
608
609 r = dm_get_live_table_for_ioctl(md, &tgt, &tgt_bdev, &mode, &srcu_idx);
610 if (r < 0)
611 return r;
612
613 if (r > 0) {
614 /*
615 * Target determined this ioctl is being issued against
616 * a logical partition of the parent bdev; so extra
617 * validation is needed.
618 */
619 r = scsi_verify_blk_ioctl(NULL, cmd);
620 if (r)
621 goto out;
622 }
623
624 r = __blkdev_driver_ioctl(tgt_bdev, mode, cmd, arg);
625 out:
626 dm_put_live_table(md, srcu_idx);
627 return r;
628 }
629
alloc_io(struct mapped_device * md)630 static struct dm_io *alloc_io(struct mapped_device *md)
631 {
632 return mempool_alloc(md->io_pool, GFP_NOIO);
633 }
634
free_io(struct mapped_device * md,struct dm_io * io)635 static void free_io(struct mapped_device *md, struct dm_io *io)
636 {
637 mempool_free(io, md->io_pool);
638 }
639
free_tio(struct mapped_device * md,struct dm_target_io * tio)640 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
641 {
642 bio_put(&tio->clone);
643 }
644
alloc_rq_tio(struct mapped_device * md,gfp_t gfp_mask)645 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
646 gfp_t gfp_mask)
647 {
648 return mempool_alloc(md->io_pool, gfp_mask);
649 }
650
free_rq_tio(struct dm_rq_target_io * tio)651 static void free_rq_tio(struct dm_rq_target_io *tio)
652 {
653 mempool_free(tio, tio->md->io_pool);
654 }
655
alloc_clone_request(struct mapped_device * md,gfp_t gfp_mask)656 static struct request *alloc_clone_request(struct mapped_device *md,
657 gfp_t gfp_mask)
658 {
659 return mempool_alloc(md->rq_pool, gfp_mask);
660 }
661
free_clone_request(struct mapped_device * md,struct request * rq)662 static void free_clone_request(struct mapped_device *md, struct request *rq)
663 {
664 mempool_free(rq, md->rq_pool);
665 }
666
md_in_flight(struct mapped_device * md)667 static int md_in_flight(struct mapped_device *md)
668 {
669 return atomic_read(&md->pending[READ]) +
670 atomic_read(&md->pending[WRITE]);
671 }
672
start_io_acct(struct dm_io * io)673 static void start_io_acct(struct dm_io *io)
674 {
675 struct mapped_device *md = io->md;
676 struct bio *bio = io->bio;
677 int cpu;
678 int rw = bio_data_dir(bio);
679
680 io->start_time = jiffies;
681
682 cpu = part_stat_lock();
683 part_round_stats(cpu, &dm_disk(md)->part0);
684 part_stat_unlock();
685 atomic_set(&dm_disk(md)->part0.in_flight[rw],
686 atomic_inc_return(&md->pending[rw]));
687
688 if (unlikely(dm_stats_used(&md->stats)))
689 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
690 bio_sectors(bio), false, 0, &io->stats_aux);
691 }
692
end_io_acct(struct dm_io * io)693 static void end_io_acct(struct dm_io *io)
694 {
695 struct mapped_device *md = io->md;
696 struct bio *bio = io->bio;
697 unsigned long duration = jiffies - io->start_time;
698 int pending;
699 int rw = bio_data_dir(bio);
700
701 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
702
703 if (unlikely(dm_stats_used(&md->stats)))
704 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
705 bio_sectors(bio), true, duration, &io->stats_aux);
706
707 /*
708 * After this is decremented the bio must not be touched if it is
709 * a flush.
710 */
711 pending = atomic_dec_return(&md->pending[rw]);
712 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
713 pending += atomic_read(&md->pending[rw^0x1]);
714
715 /* nudge anyone waiting on suspend queue */
716 if (!pending)
717 wake_up(&md->wait);
718 }
719
720 /*
721 * Add the bio to the list of deferred io.
722 */
queue_io(struct mapped_device * md,struct bio * bio)723 static void queue_io(struct mapped_device *md, struct bio *bio)
724 {
725 unsigned long flags;
726
727 spin_lock_irqsave(&md->deferred_lock, flags);
728 bio_list_add(&md->deferred, bio);
729 spin_unlock_irqrestore(&md->deferred_lock, flags);
730 queue_work(md->wq, &md->work);
731 }
732
733 /*
734 * Everyone (including functions in this file), should use this
735 * function to access the md->map field, and make sure they call
736 * dm_put_live_table() when finished.
737 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)738 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
739 {
740 *srcu_idx = srcu_read_lock(&md->io_barrier);
741
742 return srcu_dereference(md->map, &md->io_barrier);
743 }
744
dm_put_live_table(struct mapped_device * md,int srcu_idx)745 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
746 {
747 srcu_read_unlock(&md->io_barrier, srcu_idx);
748 }
749
dm_sync_table(struct mapped_device * md)750 void dm_sync_table(struct mapped_device *md)
751 {
752 synchronize_srcu(&md->io_barrier);
753 synchronize_rcu_expedited();
754 }
755
756 /*
757 * A fast alternative to dm_get_live_table/dm_put_live_table.
758 * The caller must not block between these two functions.
759 */
dm_get_live_table_fast(struct mapped_device * md)760 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
761 {
762 rcu_read_lock();
763 return rcu_dereference(md->map);
764 }
765
dm_put_live_table_fast(struct mapped_device * md)766 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
767 {
768 rcu_read_unlock();
769 }
770
771 /*
772 * Open a table device so we can use it as a map destination.
773 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)774 static int open_table_device(struct table_device *td, dev_t dev,
775 struct mapped_device *md)
776 {
777 static char *_claim_ptr = "I belong to device-mapper";
778 struct block_device *bdev;
779
780 int r;
781
782 BUG_ON(td->dm_dev.bdev);
783
784 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
785 if (IS_ERR(bdev))
786 return PTR_ERR(bdev);
787
788 r = bd_link_disk_holder(bdev, dm_disk(md));
789 if (r) {
790 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
791 return r;
792 }
793
794 td->dm_dev.bdev = bdev;
795 return 0;
796 }
797
798 /*
799 * Close a table device that we've been using.
800 */
close_table_device(struct table_device * td,struct mapped_device * md)801 static void close_table_device(struct table_device *td, struct mapped_device *md)
802 {
803 if (!td->dm_dev.bdev)
804 return;
805
806 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
807 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
808 td->dm_dev.bdev = NULL;
809 }
810
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)811 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
812 fmode_t mode) {
813 struct table_device *td;
814
815 list_for_each_entry(td, l, list)
816 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
817 return td;
818
819 return NULL;
820 }
821
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)822 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
823 struct dm_dev **result) {
824 int r;
825 struct table_device *td;
826
827 mutex_lock(&md->table_devices_lock);
828 td = find_table_device(&md->table_devices, dev, mode);
829 if (!td) {
830 td = kmalloc(sizeof(*td), GFP_KERNEL);
831 if (!td) {
832 mutex_unlock(&md->table_devices_lock);
833 return -ENOMEM;
834 }
835
836 td->dm_dev.mode = mode;
837 td->dm_dev.bdev = NULL;
838
839 if ((r = open_table_device(td, dev, md))) {
840 mutex_unlock(&md->table_devices_lock);
841 kfree(td);
842 return r;
843 }
844
845 format_dev_t(td->dm_dev.name, dev);
846
847 atomic_set(&td->count, 0);
848 list_add(&td->list, &md->table_devices);
849 }
850 atomic_inc(&td->count);
851 mutex_unlock(&md->table_devices_lock);
852
853 *result = &td->dm_dev;
854 return 0;
855 }
856 EXPORT_SYMBOL_GPL(dm_get_table_device);
857
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)858 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
859 {
860 struct table_device *td = container_of(d, struct table_device, dm_dev);
861
862 mutex_lock(&md->table_devices_lock);
863 if (atomic_dec_and_test(&td->count)) {
864 close_table_device(td, md);
865 list_del(&td->list);
866 kfree(td);
867 }
868 mutex_unlock(&md->table_devices_lock);
869 }
870 EXPORT_SYMBOL(dm_put_table_device);
871
free_table_devices(struct list_head * devices)872 static void free_table_devices(struct list_head *devices)
873 {
874 struct list_head *tmp, *next;
875
876 list_for_each_safe(tmp, next, devices) {
877 struct table_device *td = list_entry(tmp, struct table_device, list);
878
879 DMWARN("dm_destroy: %s still exists with %d references",
880 td->dm_dev.name, atomic_read(&td->count));
881 kfree(td);
882 }
883 }
884
885 /*
886 * Get the geometry associated with a dm device
887 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)888 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
889 {
890 *geo = md->geometry;
891
892 return 0;
893 }
894
895 /*
896 * Set the geometry of a device.
897 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)898 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 {
900 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
901
902 if (geo->start > sz) {
903 DMWARN("Start sector is beyond the geometry limits.");
904 return -EINVAL;
905 }
906
907 md->geometry = *geo;
908
909 return 0;
910 }
911
912 /*-----------------------------------------------------------------
913 * CRUD START:
914 * A more elegant soln is in the works that uses the queue
915 * merge fn, unfortunately there are a couple of changes to
916 * the block layer that I want to make for this. So in the
917 * interests of getting something for people to use I give
918 * you this clearly demarcated crap.
919 *---------------------------------------------------------------*/
920
__noflush_suspending(struct mapped_device * md)921 static int __noflush_suspending(struct mapped_device *md)
922 {
923 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
924 }
925
926 /*
927 * Decrements the number of outstanding ios that a bio has been
928 * cloned into, completing the original io if necc.
929 */
dec_pending(struct dm_io * io,int error)930 static void dec_pending(struct dm_io *io, int error)
931 {
932 unsigned long flags;
933 int io_error;
934 struct bio *bio;
935 struct mapped_device *md = io->md;
936
937 /* Push-back supersedes any I/O errors */
938 if (unlikely(error)) {
939 spin_lock_irqsave(&io->endio_lock, flags);
940 if (!(io->error > 0 && __noflush_suspending(md)))
941 io->error = error;
942 spin_unlock_irqrestore(&io->endio_lock, flags);
943 }
944
945 if (atomic_dec_and_test(&io->io_count)) {
946 if (io->error == DM_ENDIO_REQUEUE) {
947 /*
948 * Target requested pushing back the I/O.
949 */
950 spin_lock_irqsave(&md->deferred_lock, flags);
951 if (__noflush_suspending(md))
952 bio_list_add_head(&md->deferred, io->bio);
953 else
954 /* noflush suspend was interrupted. */
955 io->error = -EIO;
956 spin_unlock_irqrestore(&md->deferred_lock, flags);
957 }
958
959 io_error = io->error;
960 bio = io->bio;
961 end_io_acct(io);
962 free_io(md, io);
963
964 if (io_error == DM_ENDIO_REQUEUE)
965 return;
966
967 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
968 /*
969 * Preflush done for flush with data, reissue
970 * without REQ_FLUSH.
971 */
972 bio->bi_rw &= ~REQ_FLUSH;
973 queue_io(md, bio);
974 } else {
975 /* done with normal IO or empty flush */
976 trace_block_bio_complete(md->queue, bio, io_error);
977 bio->bi_error = io_error;
978 bio_endio(bio);
979 }
980 }
981 }
982
disable_write_same(struct mapped_device * md)983 static void disable_write_same(struct mapped_device *md)
984 {
985 struct queue_limits *limits = dm_get_queue_limits(md);
986
987 /* device doesn't really support WRITE SAME, disable it */
988 limits->max_write_same_sectors = 0;
989 }
990
clone_endio(struct bio * bio)991 static void clone_endio(struct bio *bio)
992 {
993 int error = bio->bi_error;
994 int r = error;
995 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
996 struct dm_io *io = tio->io;
997 struct mapped_device *md = tio->io->md;
998 dm_endio_fn endio = tio->ti->type->end_io;
999
1000 if (endio) {
1001 r = endio(tio->ti, bio, error);
1002 if (r < 0 || r == DM_ENDIO_REQUEUE)
1003 /*
1004 * error and requeue request are handled
1005 * in dec_pending().
1006 */
1007 error = r;
1008 else if (r == DM_ENDIO_INCOMPLETE)
1009 /* The target will handle the io */
1010 return;
1011 else if (r) {
1012 DMWARN("unimplemented target endio return value: %d", r);
1013 BUG();
1014 }
1015 }
1016
1017 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1018 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1019 disable_write_same(md);
1020
1021 free_tio(md, tio);
1022 dec_pending(io, error);
1023 }
1024
1025 /*
1026 * Partial completion handling for request-based dm
1027 */
end_clone_bio(struct bio * clone)1028 static void end_clone_bio(struct bio *clone)
1029 {
1030 struct dm_rq_clone_bio_info *info =
1031 container_of(clone, struct dm_rq_clone_bio_info, clone);
1032 struct dm_rq_target_io *tio = info->tio;
1033 struct bio *bio = info->orig;
1034 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1035 int error = clone->bi_error;
1036
1037 bio_put(clone);
1038
1039 if (tio->error)
1040 /*
1041 * An error has already been detected on the request.
1042 * Once error occurred, just let clone->end_io() handle
1043 * the remainder.
1044 */
1045 return;
1046 else if (error) {
1047 /*
1048 * Don't notice the error to the upper layer yet.
1049 * The error handling decision is made by the target driver,
1050 * when the request is completed.
1051 */
1052 tio->error = error;
1053 return;
1054 }
1055
1056 /*
1057 * I/O for the bio successfully completed.
1058 * Notice the data completion to the upper layer.
1059 */
1060
1061 /*
1062 * bios are processed from the head of the list.
1063 * So the completing bio should always be rq->bio.
1064 * If it's not, something wrong is happening.
1065 */
1066 if (tio->orig->bio != bio)
1067 DMERR("bio completion is going in the middle of the request");
1068
1069 /*
1070 * Update the original request.
1071 * Do not use blk_end_request() here, because it may complete
1072 * the original request before the clone, and break the ordering.
1073 */
1074 blk_update_request(tio->orig, 0, nr_bytes);
1075 }
1076
tio_from_request(struct request * rq)1077 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1078 {
1079 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1080 }
1081
rq_end_stats(struct mapped_device * md,struct request * orig)1082 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1083 {
1084 if (unlikely(dm_stats_used(&md->stats))) {
1085 struct dm_rq_target_io *tio = tio_from_request(orig);
1086 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1087 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1088 tio->n_sectors, true, tio->duration_jiffies,
1089 &tio->stats_aux);
1090 }
1091 }
1092
1093 /*
1094 * Don't touch any member of the md after calling this function because
1095 * the md may be freed in dm_put() at the end of this function.
1096 * Or do dm_get() before calling this function and dm_put() later.
1097 */
rq_completed(struct mapped_device * md,int rw,bool run_queue)1098 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1099 {
1100 atomic_dec(&md->pending[rw]);
1101
1102 /* nudge anyone waiting on suspend queue */
1103 if (!md_in_flight(md))
1104 wake_up(&md->wait);
1105
1106 /*
1107 * Run this off this callpath, as drivers could invoke end_io while
1108 * inside their request_fn (and holding the queue lock). Calling
1109 * back into ->request_fn() could deadlock attempting to grab the
1110 * queue lock again.
1111 */
1112 if (!md->queue->mq_ops && run_queue)
1113 blk_run_queue_async(md->queue);
1114
1115 /*
1116 * dm_put() must be at the end of this function. See the comment above
1117 */
1118 dm_put(md);
1119 }
1120
free_rq_clone(struct request * clone)1121 static void free_rq_clone(struct request *clone)
1122 {
1123 struct dm_rq_target_io *tio = clone->end_io_data;
1124 struct mapped_device *md = tio->md;
1125
1126 blk_rq_unprep_clone(clone);
1127
1128 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1129 /* stacked on blk-mq queue(s) */
1130 tio->ti->type->release_clone_rq(clone);
1131 else if (!md->queue->mq_ops)
1132 /* request_fn queue stacked on request_fn queue(s) */
1133 free_clone_request(md, clone);
1134 /*
1135 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1136 * no need to call free_clone_request() because we leverage blk-mq by
1137 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1138 */
1139
1140 if (!md->queue->mq_ops)
1141 free_rq_tio(tio);
1142 }
1143
1144 /*
1145 * Complete the clone and the original request.
1146 * Must be called without clone's queue lock held,
1147 * see end_clone_request() for more details.
1148 */
dm_end_request(struct request * clone,int error)1149 static void dm_end_request(struct request *clone, int error)
1150 {
1151 int rw = rq_data_dir(clone);
1152 struct dm_rq_target_io *tio = clone->end_io_data;
1153 struct mapped_device *md = tio->md;
1154 struct request *rq = tio->orig;
1155
1156 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1157 rq->errors = clone->errors;
1158 rq->resid_len = clone->resid_len;
1159
1160 if (rq->sense)
1161 /*
1162 * We are using the sense buffer of the original
1163 * request.
1164 * So setting the length of the sense data is enough.
1165 */
1166 rq->sense_len = clone->sense_len;
1167 }
1168
1169 free_rq_clone(clone);
1170 rq_end_stats(md, rq);
1171 if (!rq->q->mq_ops)
1172 blk_end_request_all(rq, error);
1173 else
1174 blk_mq_end_request(rq, error);
1175 rq_completed(md, rw, true);
1176 }
1177
dm_unprep_request(struct request * rq)1178 static void dm_unprep_request(struct request *rq)
1179 {
1180 struct dm_rq_target_io *tio = tio_from_request(rq);
1181 struct request *clone = tio->clone;
1182
1183 if (!rq->q->mq_ops) {
1184 rq->special = NULL;
1185 rq->cmd_flags &= ~REQ_DONTPREP;
1186 }
1187
1188 if (clone)
1189 free_rq_clone(clone);
1190 else if (!tio->md->queue->mq_ops)
1191 free_rq_tio(tio);
1192 }
1193
1194 /*
1195 * Requeue the original request of a clone.
1196 */
old_requeue_request(struct request * rq)1197 static void old_requeue_request(struct request *rq)
1198 {
1199 struct request_queue *q = rq->q;
1200 unsigned long flags;
1201
1202 spin_lock_irqsave(q->queue_lock, flags);
1203 blk_requeue_request(q, rq);
1204 blk_run_queue_async(q);
1205 spin_unlock_irqrestore(q->queue_lock, flags);
1206 }
1207
dm_requeue_original_request(struct mapped_device * md,struct request * rq)1208 static void dm_requeue_original_request(struct mapped_device *md,
1209 struct request *rq)
1210 {
1211 int rw = rq_data_dir(rq);
1212
1213 rq_end_stats(md, rq);
1214 dm_unprep_request(rq);
1215
1216 if (!rq->q->mq_ops)
1217 old_requeue_request(rq);
1218 else {
1219 blk_mq_requeue_request(rq);
1220 blk_mq_kick_requeue_list(rq->q);
1221 }
1222
1223 rq_completed(md, rw, false);
1224 }
1225
old_stop_queue(struct request_queue * q)1226 static void old_stop_queue(struct request_queue *q)
1227 {
1228 unsigned long flags;
1229
1230 if (blk_queue_stopped(q))
1231 return;
1232
1233 spin_lock_irqsave(q->queue_lock, flags);
1234 blk_stop_queue(q);
1235 spin_unlock_irqrestore(q->queue_lock, flags);
1236 }
1237
stop_queue(struct request_queue * q)1238 static void stop_queue(struct request_queue *q)
1239 {
1240 if (!q->mq_ops)
1241 old_stop_queue(q);
1242 else
1243 blk_mq_stop_hw_queues(q);
1244 }
1245
old_start_queue(struct request_queue * q)1246 static void old_start_queue(struct request_queue *q)
1247 {
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(q->queue_lock, flags);
1251 if (blk_queue_stopped(q))
1252 blk_start_queue(q);
1253 spin_unlock_irqrestore(q->queue_lock, flags);
1254 }
1255
start_queue(struct request_queue * q)1256 static void start_queue(struct request_queue *q)
1257 {
1258 if (!q->mq_ops)
1259 old_start_queue(q);
1260 else
1261 blk_mq_start_stopped_hw_queues(q, true);
1262 }
1263
dm_done(struct request * clone,int error,bool mapped)1264 static void dm_done(struct request *clone, int error, bool mapped)
1265 {
1266 int r = error;
1267 struct dm_rq_target_io *tio = clone->end_io_data;
1268 dm_request_endio_fn rq_end_io = NULL;
1269
1270 if (tio->ti) {
1271 rq_end_io = tio->ti->type->rq_end_io;
1272
1273 if (mapped && rq_end_io)
1274 r = rq_end_io(tio->ti, clone, error, &tio->info);
1275 }
1276
1277 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1278 !clone->q->limits.max_write_same_sectors))
1279 disable_write_same(tio->md);
1280
1281 if (r <= 0)
1282 /* The target wants to complete the I/O */
1283 dm_end_request(clone, r);
1284 else if (r == DM_ENDIO_INCOMPLETE)
1285 /* The target will handle the I/O */
1286 return;
1287 else if (r == DM_ENDIO_REQUEUE)
1288 /* The target wants to requeue the I/O */
1289 dm_requeue_original_request(tio->md, tio->orig);
1290 else {
1291 DMWARN("unimplemented target endio return value: %d", r);
1292 BUG();
1293 }
1294 }
1295
1296 /*
1297 * Request completion handler for request-based dm
1298 */
dm_softirq_done(struct request * rq)1299 static void dm_softirq_done(struct request *rq)
1300 {
1301 bool mapped = true;
1302 struct dm_rq_target_io *tio = tio_from_request(rq);
1303 struct request *clone = tio->clone;
1304 int rw;
1305
1306 if (!clone) {
1307 rq_end_stats(tio->md, rq);
1308 rw = rq_data_dir(rq);
1309 if (!rq->q->mq_ops) {
1310 blk_end_request_all(rq, tio->error);
1311 rq_completed(tio->md, rw, false);
1312 free_rq_tio(tio);
1313 } else {
1314 blk_mq_end_request(rq, tio->error);
1315 rq_completed(tio->md, rw, false);
1316 }
1317 return;
1318 }
1319
1320 if (rq->cmd_flags & REQ_FAILED)
1321 mapped = false;
1322
1323 dm_done(clone, tio->error, mapped);
1324 }
1325
1326 /*
1327 * Complete the clone and the original request with the error status
1328 * through softirq context.
1329 */
dm_complete_request(struct request * rq,int error)1330 static void dm_complete_request(struct request *rq, int error)
1331 {
1332 struct dm_rq_target_io *tio = tio_from_request(rq);
1333
1334 tio->error = error;
1335 if (!rq->q->mq_ops)
1336 blk_complete_request(rq);
1337 else
1338 blk_mq_complete_request(rq, error);
1339 }
1340
1341 /*
1342 * Complete the not-mapped clone and the original request with the error status
1343 * through softirq context.
1344 * Target's rq_end_io() function isn't called.
1345 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1346 */
dm_kill_unmapped_request(struct request * rq,int error)1347 static void dm_kill_unmapped_request(struct request *rq, int error)
1348 {
1349 rq->cmd_flags |= REQ_FAILED;
1350 dm_complete_request(rq, error);
1351 }
1352
1353 /*
1354 * Called with the clone's queue lock held (for non-blk-mq)
1355 */
end_clone_request(struct request * clone,int error)1356 static void end_clone_request(struct request *clone, int error)
1357 {
1358 struct dm_rq_target_io *tio = clone->end_io_data;
1359
1360 if (!clone->q->mq_ops) {
1361 /*
1362 * For just cleaning up the information of the queue in which
1363 * the clone was dispatched.
1364 * The clone is *NOT* freed actually here because it is alloced
1365 * from dm own mempool (REQ_ALLOCED isn't set).
1366 */
1367 __blk_put_request(clone->q, clone);
1368 }
1369
1370 /*
1371 * Actual request completion is done in a softirq context which doesn't
1372 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1373 * - another request may be submitted by the upper level driver
1374 * of the stacking during the completion
1375 * - the submission which requires queue lock may be done
1376 * against this clone's queue
1377 */
1378 dm_complete_request(tio->orig, error);
1379 }
1380
1381 /*
1382 * Return maximum size of I/O possible at the supplied sector up to the current
1383 * target boundary.
1384 */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)1385 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1386 {
1387 sector_t target_offset = dm_target_offset(ti, sector);
1388
1389 return ti->len - target_offset;
1390 }
1391
max_io_len(sector_t sector,struct dm_target * ti)1392 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1393 {
1394 sector_t len = max_io_len_target_boundary(sector, ti);
1395 sector_t offset, max_len;
1396
1397 /*
1398 * Does the target need to split even further?
1399 */
1400 if (ti->max_io_len) {
1401 offset = dm_target_offset(ti, sector);
1402 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1403 max_len = sector_div(offset, ti->max_io_len);
1404 else
1405 max_len = offset & (ti->max_io_len - 1);
1406 max_len = ti->max_io_len - max_len;
1407
1408 if (len > max_len)
1409 len = max_len;
1410 }
1411
1412 return len;
1413 }
1414
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1415 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1416 {
1417 if (len > UINT_MAX) {
1418 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1419 (unsigned long long)len, UINT_MAX);
1420 ti->error = "Maximum size of target IO is too large";
1421 return -EINVAL;
1422 }
1423
1424 ti->max_io_len = (uint32_t) len;
1425
1426 return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1429
1430 /*
1431 * A target may call dm_accept_partial_bio only from the map routine. It is
1432 * allowed for all bio types except REQ_FLUSH.
1433 *
1434 * dm_accept_partial_bio informs the dm that the target only wants to process
1435 * additional n_sectors sectors of the bio and the rest of the data should be
1436 * sent in a next bio.
1437 *
1438 * A diagram that explains the arithmetics:
1439 * +--------------------+---------------+-------+
1440 * | 1 | 2 | 3 |
1441 * +--------------------+---------------+-------+
1442 *
1443 * <-------------- *tio->len_ptr --------------->
1444 * <------- bi_size ------->
1445 * <-- n_sectors -->
1446 *
1447 * Region 1 was already iterated over with bio_advance or similar function.
1448 * (it may be empty if the target doesn't use bio_advance)
1449 * Region 2 is the remaining bio size that the target wants to process.
1450 * (it may be empty if region 1 is non-empty, although there is no reason
1451 * to make it empty)
1452 * The target requires that region 3 is to be sent in the next bio.
1453 *
1454 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1455 * the partially processed part (the sum of regions 1+2) must be the same for all
1456 * copies of the bio.
1457 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1458 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1459 {
1460 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1461 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1462 BUG_ON(bio->bi_rw & REQ_FLUSH);
1463 BUG_ON(bi_size > *tio->len_ptr);
1464 BUG_ON(n_sectors > bi_size);
1465 *tio->len_ptr -= bi_size - n_sectors;
1466 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1467 }
1468 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1469
__map_bio(struct dm_target_io * tio)1470 static void __map_bio(struct dm_target_io *tio)
1471 {
1472 int r;
1473 sector_t sector;
1474 struct mapped_device *md;
1475 struct bio *clone = &tio->clone;
1476 struct dm_target *ti = tio->ti;
1477
1478 clone->bi_end_io = clone_endio;
1479
1480 /*
1481 * Map the clone. If r == 0 we don't need to do
1482 * anything, the target has assumed ownership of
1483 * this io.
1484 */
1485 atomic_inc(&tio->io->io_count);
1486 sector = clone->bi_iter.bi_sector;
1487 r = ti->type->map(ti, clone);
1488 if (r == DM_MAPIO_REMAPPED) {
1489 /* the bio has been remapped so dispatch it */
1490
1491 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1492 tio->io->bio->bi_bdev->bd_dev, sector);
1493
1494 generic_make_request(clone);
1495 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1496 /* error the io and bail out, or requeue it if needed */
1497 md = tio->io->md;
1498 dec_pending(tio->io, r);
1499 free_tio(md, tio);
1500 } else if (r != DM_MAPIO_SUBMITTED) {
1501 DMWARN("unimplemented target map return value: %d", r);
1502 BUG();
1503 }
1504 }
1505
1506 struct clone_info {
1507 struct mapped_device *md;
1508 struct dm_table *map;
1509 struct bio *bio;
1510 struct dm_io *io;
1511 sector_t sector;
1512 unsigned sector_count;
1513 };
1514
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1515 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1516 {
1517 bio->bi_iter.bi_sector = sector;
1518 bio->bi_iter.bi_size = to_bytes(len);
1519 }
1520
1521 /*
1522 * Creates a bio that consists of range of complete bvecs.
1523 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1524 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1525 sector_t sector, unsigned len)
1526 {
1527 struct bio *clone = &tio->clone;
1528
1529 __bio_clone_fast(clone, bio);
1530
1531 if (bio_integrity(bio))
1532 bio_integrity_clone(clone, bio, GFP_NOIO);
1533
1534 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1535 clone->bi_iter.bi_size = to_bytes(len);
1536
1537 if (bio_integrity(bio))
1538 bio_integrity_trim(clone, 0, len);
1539 }
1540
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr)1541 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1542 struct dm_target *ti,
1543 unsigned target_bio_nr)
1544 {
1545 struct dm_target_io *tio;
1546 struct bio *clone;
1547
1548 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1549 tio = container_of(clone, struct dm_target_io, clone);
1550
1551 tio->io = ci->io;
1552 tio->ti = ti;
1553 tio->target_bio_nr = target_bio_nr;
1554
1555 return tio;
1556 }
1557
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,unsigned * len)1558 static void __clone_and_map_simple_bio(struct clone_info *ci,
1559 struct dm_target *ti,
1560 unsigned target_bio_nr, unsigned *len)
1561 {
1562 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1563 struct bio *clone = &tio->clone;
1564
1565 tio->len_ptr = len;
1566
1567 __bio_clone_fast(clone, ci->bio);
1568 if (len)
1569 bio_setup_sector(clone, ci->sector, *len);
1570
1571 __map_bio(tio);
1572 }
1573
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1574 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1575 unsigned num_bios, unsigned *len)
1576 {
1577 unsigned target_bio_nr;
1578
1579 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1580 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1581 }
1582
__send_empty_flush(struct clone_info * ci)1583 static int __send_empty_flush(struct clone_info *ci)
1584 {
1585 unsigned target_nr = 0;
1586 struct dm_target *ti;
1587
1588 BUG_ON(bio_has_data(ci->bio));
1589 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1590 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1591
1592 return 0;
1593 }
1594
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1595 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1596 sector_t sector, unsigned *len)
1597 {
1598 struct bio *bio = ci->bio;
1599 struct dm_target_io *tio;
1600 unsigned target_bio_nr;
1601 unsigned num_target_bios = 1;
1602
1603 /*
1604 * Does the target want to receive duplicate copies of the bio?
1605 */
1606 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1607 num_target_bios = ti->num_write_bios(ti, bio);
1608
1609 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1610 tio = alloc_tio(ci, ti, target_bio_nr);
1611 tio->len_ptr = len;
1612 clone_bio(tio, bio, sector, *len);
1613 __map_bio(tio);
1614 }
1615 }
1616
1617 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1618
get_num_discard_bios(struct dm_target * ti)1619 static unsigned get_num_discard_bios(struct dm_target *ti)
1620 {
1621 return ti->num_discard_bios;
1622 }
1623
get_num_write_same_bios(struct dm_target * ti)1624 static unsigned get_num_write_same_bios(struct dm_target *ti)
1625 {
1626 return ti->num_write_same_bios;
1627 }
1628
1629 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1630
is_split_required_for_discard(struct dm_target * ti)1631 static bool is_split_required_for_discard(struct dm_target *ti)
1632 {
1633 return ti->split_discard_bios;
1634 }
1635
__send_changing_extent_only(struct clone_info * ci,get_num_bios_fn get_num_bios,is_split_required_fn is_split_required)1636 static int __send_changing_extent_only(struct clone_info *ci,
1637 get_num_bios_fn get_num_bios,
1638 is_split_required_fn is_split_required)
1639 {
1640 struct dm_target *ti;
1641 unsigned len;
1642 unsigned num_bios;
1643
1644 do {
1645 ti = dm_table_find_target(ci->map, ci->sector);
1646 if (!dm_target_is_valid(ti))
1647 return -EIO;
1648
1649 /*
1650 * Even though the device advertised support for this type of
1651 * request, that does not mean every target supports it, and
1652 * reconfiguration might also have changed that since the
1653 * check was performed.
1654 */
1655 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1656 if (!num_bios)
1657 return -EOPNOTSUPP;
1658
1659 if (is_split_required && !is_split_required(ti))
1660 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1661 else
1662 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1663
1664 __send_duplicate_bios(ci, ti, num_bios, &len);
1665
1666 ci->sector += len;
1667 } while (ci->sector_count -= len);
1668
1669 return 0;
1670 }
1671
__send_discard(struct clone_info * ci)1672 static int __send_discard(struct clone_info *ci)
1673 {
1674 return __send_changing_extent_only(ci, get_num_discard_bios,
1675 is_split_required_for_discard);
1676 }
1677
__send_write_same(struct clone_info * ci)1678 static int __send_write_same(struct clone_info *ci)
1679 {
1680 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1681 }
1682
1683 /*
1684 * Select the correct strategy for processing a non-flush bio.
1685 */
__split_and_process_non_flush(struct clone_info * ci)1686 static int __split_and_process_non_flush(struct clone_info *ci)
1687 {
1688 struct bio *bio = ci->bio;
1689 struct dm_target *ti;
1690 unsigned len;
1691
1692 if (unlikely(bio->bi_rw & REQ_DISCARD))
1693 return __send_discard(ci);
1694 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1695 return __send_write_same(ci);
1696
1697 ti = dm_table_find_target(ci->map, ci->sector);
1698 if (!dm_target_is_valid(ti))
1699 return -EIO;
1700
1701 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1702
1703 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1704
1705 ci->sector += len;
1706 ci->sector_count -= len;
1707
1708 return 0;
1709 }
1710
1711 /*
1712 * Entry point to split a bio into clones and submit them to the targets.
1713 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1714 static void __split_and_process_bio(struct mapped_device *md,
1715 struct dm_table *map, struct bio *bio)
1716 {
1717 struct clone_info ci;
1718 int error = 0;
1719
1720 if (unlikely(!map)) {
1721 bio_io_error(bio);
1722 return;
1723 }
1724
1725 ci.map = map;
1726 ci.md = md;
1727 ci.io = alloc_io(md);
1728 ci.io->error = 0;
1729 atomic_set(&ci.io->io_count, 1);
1730 ci.io->bio = bio;
1731 ci.io->md = md;
1732 spin_lock_init(&ci.io->endio_lock);
1733 ci.sector = bio->bi_iter.bi_sector;
1734
1735 start_io_acct(ci.io);
1736
1737 if (bio->bi_rw & REQ_FLUSH) {
1738 ci.bio = &ci.md->flush_bio;
1739 ci.sector_count = 0;
1740 error = __send_empty_flush(&ci);
1741 /* dec_pending submits any data associated with flush */
1742 } else {
1743 ci.bio = bio;
1744 ci.sector_count = bio_sectors(bio);
1745 while (ci.sector_count && !error)
1746 error = __split_and_process_non_flush(&ci);
1747 }
1748
1749 /* drop the extra reference count */
1750 dec_pending(ci.io, error);
1751 }
1752 /*-----------------------------------------------------------------
1753 * CRUD END
1754 *---------------------------------------------------------------*/
1755
1756 /*
1757 * The request function that just remaps the bio built up by
1758 * dm_merge_bvec.
1759 */
dm_make_request(struct request_queue * q,struct bio * bio)1760 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1761 {
1762 int rw = bio_data_dir(bio);
1763 struct mapped_device *md = q->queuedata;
1764 int srcu_idx;
1765 struct dm_table *map;
1766
1767 map = dm_get_live_table(md, &srcu_idx);
1768
1769 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1770
1771 /* if we're suspended, we have to queue this io for later */
1772 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1773 dm_put_live_table(md, srcu_idx);
1774
1775 if (bio_rw(bio) != READA)
1776 queue_io(md, bio);
1777 else
1778 bio_io_error(bio);
1779 return BLK_QC_T_NONE;
1780 }
1781
1782 __split_and_process_bio(md, map, bio);
1783 dm_put_live_table(md, srcu_idx);
1784 return BLK_QC_T_NONE;
1785 }
1786
dm_request_based(struct mapped_device * md)1787 int dm_request_based(struct mapped_device *md)
1788 {
1789 return blk_queue_stackable(md->queue);
1790 }
1791
dm_dispatch_clone_request(struct request * clone,struct request * rq)1792 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1793 {
1794 int r;
1795
1796 if (blk_queue_io_stat(clone->q))
1797 clone->cmd_flags |= REQ_IO_STAT;
1798
1799 clone->start_time = jiffies;
1800 r = blk_insert_cloned_request(clone->q, clone);
1801 if (r)
1802 /* must complete clone in terms of original request */
1803 dm_complete_request(rq, r);
1804 }
1805
dm_rq_bio_constructor(struct bio * bio,struct bio * bio_orig,void * data)1806 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1807 void *data)
1808 {
1809 struct dm_rq_target_io *tio = data;
1810 struct dm_rq_clone_bio_info *info =
1811 container_of(bio, struct dm_rq_clone_bio_info, clone);
1812
1813 info->orig = bio_orig;
1814 info->tio = tio;
1815 bio->bi_end_io = end_clone_bio;
1816
1817 return 0;
1818 }
1819
setup_clone(struct request * clone,struct request * rq,struct dm_rq_target_io * tio,gfp_t gfp_mask)1820 static int setup_clone(struct request *clone, struct request *rq,
1821 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1822 {
1823 int r;
1824
1825 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1826 dm_rq_bio_constructor, tio);
1827 if (r)
1828 return r;
1829
1830 clone->cmd = rq->cmd;
1831 clone->cmd_len = rq->cmd_len;
1832 clone->sense = rq->sense;
1833 clone->end_io = end_clone_request;
1834 clone->end_io_data = tio;
1835
1836 tio->clone = clone;
1837
1838 return 0;
1839 }
1840
clone_rq(struct request * rq,struct mapped_device * md,struct dm_rq_target_io * tio,gfp_t gfp_mask)1841 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1842 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1843 {
1844 /*
1845 * Do not allocate a clone if tio->clone was already set
1846 * (see: dm_mq_queue_rq).
1847 */
1848 bool alloc_clone = !tio->clone;
1849 struct request *clone;
1850
1851 if (alloc_clone) {
1852 clone = alloc_clone_request(md, gfp_mask);
1853 if (!clone)
1854 return NULL;
1855 } else
1856 clone = tio->clone;
1857
1858 blk_rq_init(NULL, clone);
1859 if (setup_clone(clone, rq, tio, gfp_mask)) {
1860 /* -ENOMEM */
1861 if (alloc_clone)
1862 free_clone_request(md, clone);
1863 return NULL;
1864 }
1865
1866 return clone;
1867 }
1868
1869 static void map_tio_request(struct kthread_work *work);
1870
init_tio(struct dm_rq_target_io * tio,struct request * rq,struct mapped_device * md)1871 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1872 struct mapped_device *md)
1873 {
1874 tio->md = md;
1875 tio->ti = NULL;
1876 tio->clone = NULL;
1877 tio->orig = rq;
1878 tio->error = 0;
1879 memset(&tio->info, 0, sizeof(tio->info));
1880 if (md->kworker_task)
1881 init_kthread_work(&tio->work, map_tio_request);
1882 }
1883
prep_tio(struct request * rq,struct mapped_device * md,gfp_t gfp_mask)1884 static struct dm_rq_target_io *prep_tio(struct request *rq,
1885 struct mapped_device *md, gfp_t gfp_mask)
1886 {
1887 struct dm_rq_target_io *tio;
1888 int srcu_idx;
1889 struct dm_table *table;
1890
1891 tio = alloc_rq_tio(md, gfp_mask);
1892 if (!tio)
1893 return NULL;
1894
1895 init_tio(tio, rq, md);
1896
1897 table = dm_get_live_table(md, &srcu_idx);
1898 if (!dm_table_mq_request_based(table)) {
1899 if (!clone_rq(rq, md, tio, gfp_mask)) {
1900 dm_put_live_table(md, srcu_idx);
1901 free_rq_tio(tio);
1902 return NULL;
1903 }
1904 }
1905 dm_put_live_table(md, srcu_idx);
1906
1907 return tio;
1908 }
1909
1910 /*
1911 * Called with the queue lock held.
1912 */
dm_prep_fn(struct request_queue * q,struct request * rq)1913 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1914 {
1915 struct mapped_device *md = q->queuedata;
1916 struct dm_rq_target_io *tio;
1917
1918 if (unlikely(rq->special)) {
1919 DMWARN("Already has something in rq->special.");
1920 return BLKPREP_KILL;
1921 }
1922
1923 tio = prep_tio(rq, md, GFP_ATOMIC);
1924 if (!tio)
1925 return BLKPREP_DEFER;
1926
1927 rq->special = tio;
1928 rq->cmd_flags |= REQ_DONTPREP;
1929
1930 return BLKPREP_OK;
1931 }
1932
1933 /*
1934 * Returns:
1935 * 0 : the request has been processed
1936 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1937 * < 0 : the request was completed due to failure
1938 */
map_request(struct dm_rq_target_io * tio,struct request * rq,struct mapped_device * md)1939 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1940 struct mapped_device *md)
1941 {
1942 int r;
1943 struct dm_target *ti = tio->ti;
1944 struct request *clone = NULL;
1945
1946 if (tio->clone) {
1947 clone = tio->clone;
1948 r = ti->type->map_rq(ti, clone, &tio->info);
1949 } else {
1950 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1951 if (r < 0) {
1952 /* The target wants to complete the I/O */
1953 dm_kill_unmapped_request(rq, r);
1954 return r;
1955 }
1956 if (r != DM_MAPIO_REMAPPED)
1957 return r;
1958 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1959 /* -ENOMEM */
1960 ti->type->release_clone_rq(clone);
1961 return DM_MAPIO_REQUEUE;
1962 }
1963 }
1964
1965 switch (r) {
1966 case DM_MAPIO_SUBMITTED:
1967 /* The target has taken the I/O to submit by itself later */
1968 break;
1969 case DM_MAPIO_REMAPPED:
1970 /* The target has remapped the I/O so dispatch it */
1971 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1972 blk_rq_pos(rq));
1973 dm_dispatch_clone_request(clone, rq);
1974 break;
1975 case DM_MAPIO_REQUEUE:
1976 /* The target wants to requeue the I/O */
1977 dm_requeue_original_request(md, tio->orig);
1978 break;
1979 default:
1980 if (r > 0) {
1981 DMWARN("unimplemented target map return value: %d", r);
1982 BUG();
1983 }
1984
1985 /* The target wants to complete the I/O */
1986 dm_kill_unmapped_request(rq, r);
1987 return r;
1988 }
1989
1990 return 0;
1991 }
1992
map_tio_request(struct kthread_work * work)1993 static void map_tio_request(struct kthread_work *work)
1994 {
1995 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1996 struct request *rq = tio->orig;
1997 struct mapped_device *md = tio->md;
1998
1999 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2000 dm_requeue_original_request(md, rq);
2001 }
2002
dm_start_request(struct mapped_device * md,struct request * orig)2003 static void dm_start_request(struct mapped_device *md, struct request *orig)
2004 {
2005 if (!orig->q->mq_ops)
2006 blk_start_request(orig);
2007 else
2008 blk_mq_start_request(orig);
2009 atomic_inc(&md->pending[rq_data_dir(orig)]);
2010
2011 if (md->seq_rq_merge_deadline_usecs) {
2012 md->last_rq_pos = rq_end_sector(orig);
2013 md->last_rq_rw = rq_data_dir(orig);
2014 md->last_rq_start_time = ktime_get();
2015 }
2016
2017 if (unlikely(dm_stats_used(&md->stats))) {
2018 struct dm_rq_target_io *tio = tio_from_request(orig);
2019 tio->duration_jiffies = jiffies;
2020 tio->n_sectors = blk_rq_sectors(orig);
2021 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2022 tio->n_sectors, false, 0, &tio->stats_aux);
2023 }
2024
2025 /*
2026 * Hold the md reference here for the in-flight I/O.
2027 * We can't rely on the reference count by device opener,
2028 * because the device may be closed during the request completion
2029 * when all bios are completed.
2030 * See the comment in rq_completed() too.
2031 */
2032 dm_get(md);
2033 }
2034
2035 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2036
dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device * md,char * buf)2037 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2038 {
2039 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2040 }
2041
dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device * md,const char * buf,size_t count)2042 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2043 const char *buf, size_t count)
2044 {
2045 unsigned deadline;
2046
2047 if (!dm_request_based(md) || md->use_blk_mq)
2048 return count;
2049
2050 if (kstrtouint(buf, 10, &deadline))
2051 return -EINVAL;
2052
2053 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2054 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2055
2056 md->seq_rq_merge_deadline_usecs = deadline;
2057
2058 return count;
2059 }
2060
dm_request_peeked_before_merge_deadline(struct mapped_device * md)2061 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2062 {
2063 ktime_t kt_deadline;
2064
2065 if (!md->seq_rq_merge_deadline_usecs)
2066 return false;
2067
2068 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2069 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2070
2071 return !ktime_after(ktime_get(), kt_deadline);
2072 }
2073
2074 /*
2075 * q->request_fn for request-based dm.
2076 * Called with the queue lock held.
2077 */
dm_request_fn(struct request_queue * q)2078 static void dm_request_fn(struct request_queue *q)
2079 {
2080 struct mapped_device *md = q->queuedata;
2081 int srcu_idx;
2082 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2083 struct dm_target *ti;
2084 struct request *rq;
2085 struct dm_rq_target_io *tio;
2086 sector_t pos;
2087
2088 /*
2089 * For suspend, check blk_queue_stopped() and increment
2090 * ->pending within a single queue_lock not to increment the
2091 * number of in-flight I/Os after the queue is stopped in
2092 * dm_suspend().
2093 */
2094 while (!blk_queue_stopped(q)) {
2095 rq = blk_peek_request(q);
2096 if (!rq)
2097 goto out;
2098
2099 /* always use block 0 to find the target for flushes for now */
2100 pos = 0;
2101 if (!(rq->cmd_flags & REQ_FLUSH))
2102 pos = blk_rq_pos(rq);
2103
2104 ti = dm_table_find_target(map, pos);
2105 if (!dm_target_is_valid(ti)) {
2106 /*
2107 * Must perform setup, that rq_completed() requires,
2108 * before calling dm_kill_unmapped_request
2109 */
2110 DMERR_LIMIT("request attempted access beyond the end of device");
2111 dm_start_request(md, rq);
2112 dm_kill_unmapped_request(rq, -EIO);
2113 continue;
2114 }
2115
2116 if (dm_request_peeked_before_merge_deadline(md) &&
2117 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2118 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2119 goto delay_and_out;
2120
2121 if (ti->type->busy && ti->type->busy(ti))
2122 goto delay_and_out;
2123
2124 dm_start_request(md, rq);
2125
2126 tio = tio_from_request(rq);
2127 /* Establish tio->ti before queuing work (map_tio_request) */
2128 tio->ti = ti;
2129 queue_kthread_work(&md->kworker, &tio->work);
2130 BUG_ON(!irqs_disabled());
2131 }
2132
2133 goto out;
2134
2135 delay_and_out:
2136 blk_delay_queue(q, HZ / 100);
2137 out:
2138 dm_put_live_table(md, srcu_idx);
2139 }
2140
dm_any_congested(void * congested_data,int bdi_bits)2141 static int dm_any_congested(void *congested_data, int bdi_bits)
2142 {
2143 int r = bdi_bits;
2144 struct mapped_device *md = congested_data;
2145 struct dm_table *map;
2146
2147 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2148 map = dm_get_live_table_fast(md);
2149 if (map) {
2150 /*
2151 * Request-based dm cares about only own queue for
2152 * the query about congestion status of request_queue
2153 */
2154 if (dm_request_based(md))
2155 r = md->queue->backing_dev_info.wb.state &
2156 bdi_bits;
2157 else
2158 r = dm_table_any_congested(map, bdi_bits);
2159 }
2160 dm_put_live_table_fast(md);
2161 }
2162
2163 return r;
2164 }
2165
2166 /*-----------------------------------------------------------------
2167 * An IDR is used to keep track of allocated minor numbers.
2168 *---------------------------------------------------------------*/
free_minor(int minor)2169 static void free_minor(int minor)
2170 {
2171 spin_lock(&_minor_lock);
2172 idr_remove(&_minor_idr, minor);
2173 spin_unlock(&_minor_lock);
2174 }
2175
2176 /*
2177 * See if the device with a specific minor # is free.
2178 */
specific_minor(int minor)2179 static int specific_minor(int minor)
2180 {
2181 int r;
2182
2183 if (minor >= (1 << MINORBITS))
2184 return -EINVAL;
2185
2186 idr_preload(GFP_KERNEL);
2187 spin_lock(&_minor_lock);
2188
2189 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2190
2191 spin_unlock(&_minor_lock);
2192 idr_preload_end();
2193 if (r < 0)
2194 return r == -ENOSPC ? -EBUSY : r;
2195 return 0;
2196 }
2197
next_free_minor(int * minor)2198 static int next_free_minor(int *minor)
2199 {
2200 int r;
2201
2202 idr_preload(GFP_KERNEL);
2203 spin_lock(&_minor_lock);
2204
2205 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2206
2207 spin_unlock(&_minor_lock);
2208 idr_preload_end();
2209 if (r < 0)
2210 return r;
2211 *minor = r;
2212 return 0;
2213 }
2214
2215 static const struct block_device_operations dm_blk_dops;
2216
2217 static void dm_wq_work(struct work_struct *work);
2218
dm_init_md_queue(struct mapped_device * md)2219 static void dm_init_md_queue(struct mapped_device *md)
2220 {
2221 /*
2222 * Request-based dm devices cannot be stacked on top of bio-based dm
2223 * devices. The type of this dm device may not have been decided yet.
2224 * The type is decided at the first table loading time.
2225 * To prevent problematic device stacking, clear the queue flag
2226 * for request stacking support until then.
2227 *
2228 * This queue is new, so no concurrency on the queue_flags.
2229 */
2230 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2231
2232 /*
2233 * Initialize data that will only be used by a non-blk-mq DM queue
2234 * - must do so here (in alloc_dev callchain) before queue is used
2235 */
2236 md->queue->queuedata = md;
2237 md->queue->backing_dev_info.congested_data = md;
2238 }
2239
dm_init_old_md_queue(struct mapped_device * md)2240 static void dm_init_old_md_queue(struct mapped_device *md)
2241 {
2242 md->use_blk_mq = false;
2243 dm_init_md_queue(md);
2244
2245 /*
2246 * Initialize aspects of queue that aren't relevant for blk-mq
2247 */
2248 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2249 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2250 }
2251
cleanup_mapped_device(struct mapped_device * md)2252 static void cleanup_mapped_device(struct mapped_device *md)
2253 {
2254 if (md->wq)
2255 destroy_workqueue(md->wq);
2256 if (md->kworker_task)
2257 kthread_stop(md->kworker_task);
2258 mempool_destroy(md->io_pool);
2259 mempool_destroy(md->rq_pool);
2260 if (md->bs)
2261 bioset_free(md->bs);
2262
2263 cleanup_srcu_struct(&md->io_barrier);
2264
2265 if (md->disk) {
2266 spin_lock(&_minor_lock);
2267 md->disk->private_data = NULL;
2268 spin_unlock(&_minor_lock);
2269 del_gendisk(md->disk);
2270 put_disk(md->disk);
2271 }
2272
2273 if (md->queue)
2274 blk_cleanup_queue(md->queue);
2275
2276 if (md->bdev) {
2277 bdput(md->bdev);
2278 md->bdev = NULL;
2279 }
2280 }
2281
2282 /*
2283 * Allocate and initialise a blank device with a given minor.
2284 */
alloc_dev(int minor)2285 static struct mapped_device *alloc_dev(int minor)
2286 {
2287 int r;
2288 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2289 void *old_md;
2290
2291 if (!md) {
2292 DMWARN("unable to allocate device, out of memory.");
2293 return NULL;
2294 }
2295
2296 if (!try_module_get(THIS_MODULE))
2297 goto bad_module_get;
2298
2299 /* get a minor number for the dev */
2300 if (minor == DM_ANY_MINOR)
2301 r = next_free_minor(&minor);
2302 else
2303 r = specific_minor(minor);
2304 if (r < 0)
2305 goto bad_minor;
2306
2307 r = init_srcu_struct(&md->io_barrier);
2308 if (r < 0)
2309 goto bad_io_barrier;
2310
2311 md->use_blk_mq = use_blk_mq;
2312 md->type = DM_TYPE_NONE;
2313 mutex_init(&md->suspend_lock);
2314 mutex_init(&md->type_lock);
2315 mutex_init(&md->table_devices_lock);
2316 spin_lock_init(&md->deferred_lock);
2317 atomic_set(&md->holders, 1);
2318 atomic_set(&md->open_count, 0);
2319 atomic_set(&md->event_nr, 0);
2320 atomic_set(&md->uevent_seq, 0);
2321 INIT_LIST_HEAD(&md->uevent_list);
2322 INIT_LIST_HEAD(&md->table_devices);
2323 spin_lock_init(&md->uevent_lock);
2324
2325 md->queue = blk_alloc_queue(GFP_KERNEL);
2326 if (!md->queue)
2327 goto bad;
2328
2329 dm_init_md_queue(md);
2330
2331 md->disk = alloc_disk(1);
2332 if (!md->disk)
2333 goto bad;
2334
2335 atomic_set(&md->pending[0], 0);
2336 atomic_set(&md->pending[1], 0);
2337 init_waitqueue_head(&md->wait);
2338 INIT_WORK(&md->work, dm_wq_work);
2339 init_waitqueue_head(&md->eventq);
2340 init_completion(&md->kobj_holder.completion);
2341 md->kworker_task = NULL;
2342
2343 md->disk->major = _major;
2344 md->disk->first_minor = minor;
2345 md->disk->fops = &dm_blk_dops;
2346 md->disk->queue = md->queue;
2347 md->disk->private_data = md;
2348 sprintf(md->disk->disk_name, "dm-%d", minor);
2349 add_disk(md->disk);
2350 format_dev_t(md->name, MKDEV(_major, minor));
2351
2352 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2353 if (!md->wq)
2354 goto bad;
2355
2356 md->bdev = bdget_disk(md->disk, 0);
2357 if (!md->bdev)
2358 goto bad;
2359
2360 bio_init(&md->flush_bio);
2361 md->flush_bio.bi_bdev = md->bdev;
2362 md->flush_bio.bi_rw = WRITE_FLUSH;
2363
2364 dm_stats_init(&md->stats);
2365
2366 /* Populate the mapping, nobody knows we exist yet */
2367 spin_lock(&_minor_lock);
2368 old_md = idr_replace(&_minor_idr, md, minor);
2369 spin_unlock(&_minor_lock);
2370
2371 BUG_ON(old_md != MINOR_ALLOCED);
2372
2373 return md;
2374
2375 bad:
2376 cleanup_mapped_device(md);
2377 bad_io_barrier:
2378 free_minor(minor);
2379 bad_minor:
2380 module_put(THIS_MODULE);
2381 bad_module_get:
2382 kfree(md);
2383 return NULL;
2384 }
2385
2386 static void unlock_fs(struct mapped_device *md);
2387
free_dev(struct mapped_device * md)2388 static void free_dev(struct mapped_device *md)
2389 {
2390 int minor = MINOR(disk_devt(md->disk));
2391
2392 unlock_fs(md);
2393
2394 cleanup_mapped_device(md);
2395 if (md->use_blk_mq)
2396 blk_mq_free_tag_set(&md->tag_set);
2397
2398 free_table_devices(&md->table_devices);
2399 dm_stats_cleanup(&md->stats);
2400 free_minor(minor);
2401
2402 module_put(THIS_MODULE);
2403 kfree(md);
2404 }
2405
__bind_mempools(struct mapped_device * md,struct dm_table * t)2406 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2407 {
2408 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2409
2410 if (md->bs) {
2411 /* The md already has necessary mempools. */
2412 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2413 /*
2414 * Reload bioset because front_pad may have changed
2415 * because a different table was loaded.
2416 */
2417 bioset_free(md->bs);
2418 md->bs = p->bs;
2419 p->bs = NULL;
2420 }
2421 /*
2422 * There's no need to reload with request-based dm
2423 * because the size of front_pad doesn't change.
2424 * Note for future: If you are to reload bioset,
2425 * prep-ed requests in the queue may refer
2426 * to bio from the old bioset, so you must walk
2427 * through the queue to unprep.
2428 */
2429 goto out;
2430 }
2431
2432 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2433
2434 md->io_pool = p->io_pool;
2435 p->io_pool = NULL;
2436 md->rq_pool = p->rq_pool;
2437 p->rq_pool = NULL;
2438 md->bs = p->bs;
2439 p->bs = NULL;
2440
2441 out:
2442 /* mempool bind completed, no longer need any mempools in the table */
2443 dm_table_free_md_mempools(t);
2444 }
2445
2446 /*
2447 * Bind a table to the device.
2448 */
event_callback(void * context)2449 static void event_callback(void *context)
2450 {
2451 unsigned long flags;
2452 LIST_HEAD(uevents);
2453 struct mapped_device *md = (struct mapped_device *) context;
2454
2455 spin_lock_irqsave(&md->uevent_lock, flags);
2456 list_splice_init(&md->uevent_list, &uevents);
2457 spin_unlock_irqrestore(&md->uevent_lock, flags);
2458
2459 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2460
2461 atomic_inc(&md->event_nr);
2462 wake_up(&md->eventq);
2463 }
2464
2465 /*
2466 * Protected by md->suspend_lock obtained by dm_swap_table().
2467 */
__set_size(struct mapped_device * md,sector_t size)2468 static void __set_size(struct mapped_device *md, sector_t size)
2469 {
2470 set_capacity(md->disk, size);
2471
2472 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2473 }
2474
2475 /*
2476 * Returns old map, which caller must destroy.
2477 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2478 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2479 struct queue_limits *limits)
2480 {
2481 struct dm_table *old_map;
2482 struct request_queue *q = md->queue;
2483 sector_t size;
2484
2485 size = dm_table_get_size(t);
2486
2487 /*
2488 * Wipe any geometry if the size of the table changed.
2489 */
2490 if (size != dm_get_size(md))
2491 memset(&md->geometry, 0, sizeof(md->geometry));
2492
2493 __set_size(md, size);
2494
2495 dm_table_event_callback(t, event_callback, md);
2496
2497 /*
2498 * The queue hasn't been stopped yet, if the old table type wasn't
2499 * for request-based during suspension. So stop it to prevent
2500 * I/O mapping before resume.
2501 * This must be done before setting the queue restrictions,
2502 * because request-based dm may be run just after the setting.
2503 */
2504 if (dm_table_request_based(t))
2505 stop_queue(q);
2506
2507 __bind_mempools(md, t);
2508
2509 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2510 rcu_assign_pointer(md->map, t);
2511 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2512
2513 dm_table_set_restrictions(t, q, limits);
2514 if (old_map)
2515 dm_sync_table(md);
2516
2517 return old_map;
2518 }
2519
2520 /*
2521 * Returns unbound table for the caller to free.
2522 */
__unbind(struct mapped_device * md)2523 static struct dm_table *__unbind(struct mapped_device *md)
2524 {
2525 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2526
2527 if (!map)
2528 return NULL;
2529
2530 dm_table_event_callback(map, NULL, NULL);
2531 RCU_INIT_POINTER(md->map, NULL);
2532 dm_sync_table(md);
2533
2534 return map;
2535 }
2536
2537 /*
2538 * Constructor for a new device.
2539 */
dm_create(int minor,struct mapped_device ** result)2540 int dm_create(int minor, struct mapped_device **result)
2541 {
2542 struct mapped_device *md;
2543
2544 md = alloc_dev(minor);
2545 if (!md)
2546 return -ENXIO;
2547
2548 dm_sysfs_init(md);
2549
2550 *result = md;
2551 return 0;
2552 }
2553
2554 /*
2555 * Functions to manage md->type.
2556 * All are required to hold md->type_lock.
2557 */
dm_lock_md_type(struct mapped_device * md)2558 void dm_lock_md_type(struct mapped_device *md)
2559 {
2560 mutex_lock(&md->type_lock);
2561 }
2562
dm_unlock_md_type(struct mapped_device * md)2563 void dm_unlock_md_type(struct mapped_device *md)
2564 {
2565 mutex_unlock(&md->type_lock);
2566 }
2567
dm_set_md_type(struct mapped_device * md,unsigned type)2568 void dm_set_md_type(struct mapped_device *md, unsigned type)
2569 {
2570 BUG_ON(!mutex_is_locked(&md->type_lock));
2571 md->type = type;
2572 }
2573
dm_get_md_type(struct mapped_device * md)2574 unsigned dm_get_md_type(struct mapped_device *md)
2575 {
2576 BUG_ON(!mutex_is_locked(&md->type_lock));
2577 return md->type;
2578 }
2579
dm_get_immutable_target_type(struct mapped_device * md)2580 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2581 {
2582 return md->immutable_target_type;
2583 }
2584
2585 /*
2586 * The queue_limits are only valid as long as you have a reference
2587 * count on 'md'.
2588 */
dm_get_queue_limits(struct mapped_device * md)2589 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2590 {
2591 BUG_ON(!atomic_read(&md->holders));
2592 return &md->queue->limits;
2593 }
2594 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2595
init_rq_based_worker_thread(struct mapped_device * md)2596 static void init_rq_based_worker_thread(struct mapped_device *md)
2597 {
2598 /* Initialize the request-based DM worker thread */
2599 init_kthread_worker(&md->kworker);
2600 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2601 "kdmwork-%s", dm_device_name(md));
2602 }
2603
2604 /*
2605 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2606 */
dm_init_request_based_queue(struct mapped_device * md)2607 static int dm_init_request_based_queue(struct mapped_device *md)
2608 {
2609 struct request_queue *q = NULL;
2610
2611 /* Fully initialize the queue */
2612 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2613 if (!q)
2614 return -EINVAL;
2615
2616 /* disable dm_request_fn's merge heuristic by default */
2617 md->seq_rq_merge_deadline_usecs = 0;
2618
2619 md->queue = q;
2620 dm_init_old_md_queue(md);
2621 blk_queue_softirq_done(md->queue, dm_softirq_done);
2622 blk_queue_prep_rq(md->queue, dm_prep_fn);
2623
2624 init_rq_based_worker_thread(md);
2625
2626 elv_register_queue(md->queue);
2627
2628 return 0;
2629 }
2630
dm_mq_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)2631 static int dm_mq_init_request(void *data, struct request *rq,
2632 unsigned int hctx_idx, unsigned int request_idx,
2633 unsigned int numa_node)
2634 {
2635 struct mapped_device *md = data;
2636 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2637
2638 /*
2639 * Must initialize md member of tio, otherwise it won't
2640 * be available in dm_mq_queue_rq.
2641 */
2642 tio->md = md;
2643
2644 return 0;
2645 }
2646
dm_mq_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2647 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2648 const struct blk_mq_queue_data *bd)
2649 {
2650 struct request *rq = bd->rq;
2651 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2652 struct mapped_device *md = tio->md;
2653 int srcu_idx;
2654 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2655 struct dm_target *ti;
2656 sector_t pos;
2657
2658 /* always use block 0 to find the target for flushes for now */
2659 pos = 0;
2660 if (!(rq->cmd_flags & REQ_FLUSH))
2661 pos = blk_rq_pos(rq);
2662
2663 ti = dm_table_find_target(map, pos);
2664 if (!dm_target_is_valid(ti)) {
2665 dm_put_live_table(md, srcu_idx);
2666 DMERR_LIMIT("request attempted access beyond the end of device");
2667 /*
2668 * Must perform setup, that rq_completed() requires,
2669 * before returning BLK_MQ_RQ_QUEUE_ERROR
2670 */
2671 dm_start_request(md, rq);
2672 return BLK_MQ_RQ_QUEUE_ERROR;
2673 }
2674 dm_put_live_table(md, srcu_idx);
2675
2676 if (ti->type->busy && ti->type->busy(ti))
2677 return BLK_MQ_RQ_QUEUE_BUSY;
2678
2679 dm_start_request(md, rq);
2680
2681 /* Init tio using md established in .init_request */
2682 init_tio(tio, rq, md);
2683
2684 /*
2685 * Establish tio->ti before queuing work (map_tio_request)
2686 * or making direct call to map_request().
2687 */
2688 tio->ti = ti;
2689
2690 /* Clone the request if underlying devices aren't blk-mq */
2691 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2692 /* clone request is allocated at the end of the pdu */
2693 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2694 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2695 queue_kthread_work(&md->kworker, &tio->work);
2696 } else {
2697 /* Direct call is fine since .queue_rq allows allocations */
2698 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2699 /* Undo dm_start_request() before requeuing */
2700 rq_end_stats(md, rq);
2701 rq_completed(md, rq_data_dir(rq), false);
2702 return BLK_MQ_RQ_QUEUE_BUSY;
2703 }
2704 }
2705
2706 return BLK_MQ_RQ_QUEUE_OK;
2707 }
2708
2709 static struct blk_mq_ops dm_mq_ops = {
2710 .queue_rq = dm_mq_queue_rq,
2711 .map_queue = blk_mq_map_queue,
2712 .complete = dm_softirq_done,
2713 .init_request = dm_mq_init_request,
2714 };
2715
dm_init_request_based_blk_mq_queue(struct mapped_device * md)2716 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2717 {
2718 unsigned md_type = dm_get_md_type(md);
2719 struct request_queue *q;
2720 int err;
2721
2722 memset(&md->tag_set, 0, sizeof(md->tag_set));
2723 md->tag_set.ops = &dm_mq_ops;
2724 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2725 md->tag_set.numa_node = NUMA_NO_NODE;
2726 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2727 md->tag_set.nr_hw_queues = 1;
2728 if (md_type == DM_TYPE_REQUEST_BASED) {
2729 /* make the memory for non-blk-mq clone part of the pdu */
2730 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2731 } else
2732 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2733 md->tag_set.driver_data = md;
2734
2735 err = blk_mq_alloc_tag_set(&md->tag_set);
2736 if (err)
2737 return err;
2738
2739 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2740 if (IS_ERR(q)) {
2741 err = PTR_ERR(q);
2742 goto out_tag_set;
2743 }
2744 md->queue = q;
2745 dm_init_md_queue(md);
2746
2747 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2748 blk_mq_register_disk(md->disk);
2749
2750 if (md_type == DM_TYPE_REQUEST_BASED)
2751 init_rq_based_worker_thread(md);
2752
2753 return 0;
2754
2755 out_tag_set:
2756 blk_mq_free_tag_set(&md->tag_set);
2757 return err;
2758 }
2759
filter_md_type(unsigned type,struct mapped_device * md)2760 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2761 {
2762 if (type == DM_TYPE_BIO_BASED)
2763 return type;
2764
2765 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2766 }
2767
2768 /*
2769 * Setup the DM device's queue based on md's type
2770 */
dm_setup_md_queue(struct mapped_device * md)2771 int dm_setup_md_queue(struct mapped_device *md)
2772 {
2773 int r;
2774 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2775
2776 switch (md_type) {
2777 case DM_TYPE_REQUEST_BASED:
2778 r = dm_init_request_based_queue(md);
2779 if (r) {
2780 DMWARN("Cannot initialize queue for request-based mapped device");
2781 return r;
2782 }
2783 break;
2784 case DM_TYPE_MQ_REQUEST_BASED:
2785 r = dm_init_request_based_blk_mq_queue(md);
2786 if (r) {
2787 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2788 return r;
2789 }
2790 break;
2791 case DM_TYPE_BIO_BASED:
2792 dm_init_old_md_queue(md);
2793 blk_queue_make_request(md->queue, dm_make_request);
2794 /*
2795 * DM handles splitting bios as needed. Free the bio_split bioset
2796 * since it won't be used (saves 1 process per bio-based DM device).
2797 */
2798 bioset_free(md->queue->bio_split);
2799 md->queue->bio_split = NULL;
2800 break;
2801 }
2802
2803 return 0;
2804 }
2805
dm_get_md(dev_t dev)2806 struct mapped_device *dm_get_md(dev_t dev)
2807 {
2808 struct mapped_device *md;
2809 unsigned minor = MINOR(dev);
2810
2811 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2812 return NULL;
2813
2814 spin_lock(&_minor_lock);
2815
2816 md = idr_find(&_minor_idr, minor);
2817 if (md) {
2818 if ((md == MINOR_ALLOCED ||
2819 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2820 dm_deleting_md(md) ||
2821 test_bit(DMF_FREEING, &md->flags))) {
2822 md = NULL;
2823 goto out;
2824 }
2825 dm_get(md);
2826 }
2827
2828 out:
2829 spin_unlock(&_minor_lock);
2830
2831 return md;
2832 }
2833 EXPORT_SYMBOL_GPL(dm_get_md);
2834
dm_get_mdptr(struct mapped_device * md)2835 void *dm_get_mdptr(struct mapped_device *md)
2836 {
2837 return md->interface_ptr;
2838 }
2839
dm_set_mdptr(struct mapped_device * md,void * ptr)2840 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2841 {
2842 md->interface_ptr = ptr;
2843 }
2844
dm_get(struct mapped_device * md)2845 void dm_get(struct mapped_device *md)
2846 {
2847 atomic_inc(&md->holders);
2848 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2849 }
2850
dm_hold(struct mapped_device * md)2851 int dm_hold(struct mapped_device *md)
2852 {
2853 spin_lock(&_minor_lock);
2854 if (test_bit(DMF_FREEING, &md->flags)) {
2855 spin_unlock(&_minor_lock);
2856 return -EBUSY;
2857 }
2858 dm_get(md);
2859 spin_unlock(&_minor_lock);
2860 return 0;
2861 }
2862 EXPORT_SYMBOL_GPL(dm_hold);
2863
dm_device_name(struct mapped_device * md)2864 const char *dm_device_name(struct mapped_device *md)
2865 {
2866 return md->name;
2867 }
2868 EXPORT_SYMBOL_GPL(dm_device_name);
2869
__dm_destroy(struct mapped_device * md,bool wait)2870 static void __dm_destroy(struct mapped_device *md, bool wait)
2871 {
2872 struct dm_table *map;
2873 int srcu_idx;
2874
2875 might_sleep();
2876
2877 spin_lock(&_minor_lock);
2878 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2879 set_bit(DMF_FREEING, &md->flags);
2880 spin_unlock(&_minor_lock);
2881
2882 if (dm_request_based(md) && md->kworker_task)
2883 flush_kthread_worker(&md->kworker);
2884
2885 /*
2886 * Take suspend_lock so that presuspend and postsuspend methods
2887 * do not race with internal suspend.
2888 */
2889 mutex_lock(&md->suspend_lock);
2890 map = dm_get_live_table(md, &srcu_idx);
2891 if (!dm_suspended_md(md)) {
2892 dm_table_presuspend_targets(map);
2893 dm_table_postsuspend_targets(map);
2894 }
2895 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2896 dm_put_live_table(md, srcu_idx);
2897 mutex_unlock(&md->suspend_lock);
2898
2899 /*
2900 * Rare, but there may be I/O requests still going to complete,
2901 * for example. Wait for all references to disappear.
2902 * No one should increment the reference count of the mapped_device,
2903 * after the mapped_device state becomes DMF_FREEING.
2904 */
2905 if (wait)
2906 while (atomic_read(&md->holders))
2907 msleep(1);
2908 else if (atomic_read(&md->holders))
2909 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2910 dm_device_name(md), atomic_read(&md->holders));
2911
2912 dm_sysfs_exit(md);
2913 dm_table_destroy(__unbind(md));
2914 free_dev(md);
2915 }
2916
dm_destroy(struct mapped_device * md)2917 void dm_destroy(struct mapped_device *md)
2918 {
2919 __dm_destroy(md, true);
2920 }
2921
dm_destroy_immediate(struct mapped_device * md)2922 void dm_destroy_immediate(struct mapped_device *md)
2923 {
2924 __dm_destroy(md, false);
2925 }
2926
dm_put(struct mapped_device * md)2927 void dm_put(struct mapped_device *md)
2928 {
2929 atomic_dec(&md->holders);
2930 }
2931 EXPORT_SYMBOL_GPL(dm_put);
2932
dm_wait_for_completion(struct mapped_device * md,int interruptible)2933 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2934 {
2935 int r = 0;
2936 DECLARE_WAITQUEUE(wait, current);
2937
2938 add_wait_queue(&md->wait, &wait);
2939
2940 while (1) {
2941 set_current_state(interruptible);
2942
2943 if (!md_in_flight(md))
2944 break;
2945
2946 if (interruptible == TASK_INTERRUPTIBLE &&
2947 signal_pending(current)) {
2948 r = -EINTR;
2949 break;
2950 }
2951
2952 io_schedule();
2953 }
2954 set_current_state(TASK_RUNNING);
2955
2956 remove_wait_queue(&md->wait, &wait);
2957
2958 return r;
2959 }
2960
2961 /*
2962 * Process the deferred bios
2963 */
dm_wq_work(struct work_struct * work)2964 static void dm_wq_work(struct work_struct *work)
2965 {
2966 struct mapped_device *md = container_of(work, struct mapped_device,
2967 work);
2968 struct bio *c;
2969 int srcu_idx;
2970 struct dm_table *map;
2971
2972 map = dm_get_live_table(md, &srcu_idx);
2973
2974 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2975 spin_lock_irq(&md->deferred_lock);
2976 c = bio_list_pop(&md->deferred);
2977 spin_unlock_irq(&md->deferred_lock);
2978
2979 if (!c)
2980 break;
2981
2982 if (dm_request_based(md))
2983 generic_make_request(c);
2984 else
2985 __split_and_process_bio(md, map, c);
2986 }
2987
2988 dm_put_live_table(md, srcu_idx);
2989 }
2990
dm_queue_flush(struct mapped_device * md)2991 static void dm_queue_flush(struct mapped_device *md)
2992 {
2993 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2994 smp_mb__after_atomic();
2995 queue_work(md->wq, &md->work);
2996 }
2997
2998 /*
2999 * Swap in a new table, returning the old one for the caller to destroy.
3000 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)3001 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3002 {
3003 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3004 struct queue_limits limits;
3005 int r;
3006
3007 mutex_lock(&md->suspend_lock);
3008
3009 /* device must be suspended */
3010 if (!dm_suspended_md(md))
3011 goto out;
3012
3013 /*
3014 * If the new table has no data devices, retain the existing limits.
3015 * This helps multipath with queue_if_no_path if all paths disappear,
3016 * then new I/O is queued based on these limits, and then some paths
3017 * reappear.
3018 */
3019 if (dm_table_has_no_data_devices(table)) {
3020 live_map = dm_get_live_table_fast(md);
3021 if (live_map)
3022 limits = md->queue->limits;
3023 dm_put_live_table_fast(md);
3024 }
3025
3026 if (!live_map) {
3027 r = dm_calculate_queue_limits(table, &limits);
3028 if (r) {
3029 map = ERR_PTR(r);
3030 goto out;
3031 }
3032 }
3033
3034 map = __bind(md, table, &limits);
3035
3036 out:
3037 mutex_unlock(&md->suspend_lock);
3038 return map;
3039 }
3040
3041 /*
3042 * Functions to lock and unlock any filesystem running on the
3043 * device.
3044 */
lock_fs(struct mapped_device * md)3045 static int lock_fs(struct mapped_device *md)
3046 {
3047 int r;
3048
3049 WARN_ON(md->frozen_sb);
3050
3051 md->frozen_sb = freeze_bdev(md->bdev);
3052 if (IS_ERR(md->frozen_sb)) {
3053 r = PTR_ERR(md->frozen_sb);
3054 md->frozen_sb = NULL;
3055 return r;
3056 }
3057
3058 set_bit(DMF_FROZEN, &md->flags);
3059
3060 return 0;
3061 }
3062
unlock_fs(struct mapped_device * md)3063 static void unlock_fs(struct mapped_device *md)
3064 {
3065 if (!test_bit(DMF_FROZEN, &md->flags))
3066 return;
3067
3068 thaw_bdev(md->bdev, md->frozen_sb);
3069 md->frozen_sb = NULL;
3070 clear_bit(DMF_FROZEN, &md->flags);
3071 }
3072
3073 /*
3074 * If __dm_suspend returns 0, the device is completely quiescent
3075 * now. There is no request-processing activity. All new requests
3076 * are being added to md->deferred list.
3077 *
3078 * Caller must hold md->suspend_lock
3079 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,int interruptible)3080 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3081 unsigned suspend_flags, int interruptible)
3082 {
3083 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3084 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3085 int r;
3086
3087 /*
3088 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3089 * This flag is cleared before dm_suspend returns.
3090 */
3091 if (noflush)
3092 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3093
3094 /*
3095 * This gets reverted if there's an error later and the targets
3096 * provide the .presuspend_undo hook.
3097 */
3098 dm_table_presuspend_targets(map);
3099
3100 /*
3101 * Flush I/O to the device.
3102 * Any I/O submitted after lock_fs() may not be flushed.
3103 * noflush takes precedence over do_lockfs.
3104 * (lock_fs() flushes I/Os and waits for them to complete.)
3105 */
3106 if (!noflush && do_lockfs) {
3107 r = lock_fs(md);
3108 if (r) {
3109 dm_table_presuspend_undo_targets(map);
3110 return r;
3111 }
3112 }
3113
3114 /*
3115 * Here we must make sure that no processes are submitting requests
3116 * to target drivers i.e. no one may be executing
3117 * __split_and_process_bio. This is called from dm_request and
3118 * dm_wq_work.
3119 *
3120 * To get all processes out of __split_and_process_bio in dm_request,
3121 * we take the write lock. To prevent any process from reentering
3122 * __split_and_process_bio from dm_request and quiesce the thread
3123 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3124 * flush_workqueue(md->wq).
3125 */
3126 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3127 if (map)
3128 synchronize_srcu(&md->io_barrier);
3129
3130 /*
3131 * Stop md->queue before flushing md->wq in case request-based
3132 * dm defers requests to md->wq from md->queue.
3133 */
3134 if (dm_request_based(md)) {
3135 stop_queue(md->queue);
3136 if (md->kworker_task)
3137 flush_kthread_worker(&md->kworker);
3138 }
3139
3140 flush_workqueue(md->wq);
3141
3142 /*
3143 * At this point no more requests are entering target request routines.
3144 * We call dm_wait_for_completion to wait for all existing requests
3145 * to finish.
3146 */
3147 r = dm_wait_for_completion(md, interruptible);
3148
3149 if (noflush)
3150 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3151 if (map)
3152 synchronize_srcu(&md->io_barrier);
3153
3154 /* were we interrupted ? */
3155 if (r < 0) {
3156 dm_queue_flush(md);
3157
3158 if (dm_request_based(md))
3159 start_queue(md->queue);
3160
3161 unlock_fs(md);
3162 dm_table_presuspend_undo_targets(map);
3163 /* pushback list is already flushed, so skip flush */
3164 }
3165
3166 return r;
3167 }
3168
3169 /*
3170 * We need to be able to change a mapping table under a mounted
3171 * filesystem. For example we might want to move some data in
3172 * the background. Before the table can be swapped with
3173 * dm_bind_table, dm_suspend must be called to flush any in
3174 * flight bios and ensure that any further io gets deferred.
3175 */
3176 /*
3177 * Suspend mechanism in request-based dm.
3178 *
3179 * 1. Flush all I/Os by lock_fs() if needed.
3180 * 2. Stop dispatching any I/O by stopping the request_queue.
3181 * 3. Wait for all in-flight I/Os to be completed or requeued.
3182 *
3183 * To abort suspend, start the request_queue.
3184 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)3185 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3186 {
3187 struct dm_table *map = NULL;
3188 int r = 0;
3189
3190 retry:
3191 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3192
3193 if (dm_suspended_md(md)) {
3194 r = -EINVAL;
3195 goto out_unlock;
3196 }
3197
3198 if (dm_suspended_internally_md(md)) {
3199 /* already internally suspended, wait for internal resume */
3200 mutex_unlock(&md->suspend_lock);
3201 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3202 if (r)
3203 return r;
3204 goto retry;
3205 }
3206
3207 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3208
3209 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3210 if (r)
3211 goto out_unlock;
3212
3213 set_bit(DMF_SUSPENDED, &md->flags);
3214
3215 dm_table_postsuspend_targets(map);
3216
3217 out_unlock:
3218 mutex_unlock(&md->suspend_lock);
3219 return r;
3220 }
3221
__dm_resume(struct mapped_device * md,struct dm_table * map)3222 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3223 {
3224 if (map) {
3225 int r = dm_table_resume_targets(map);
3226 if (r)
3227 return r;
3228 }
3229
3230 dm_queue_flush(md);
3231
3232 /*
3233 * Flushing deferred I/Os must be done after targets are resumed
3234 * so that mapping of targets can work correctly.
3235 * Request-based dm is queueing the deferred I/Os in its request_queue.
3236 */
3237 if (dm_request_based(md))
3238 start_queue(md->queue);
3239
3240 unlock_fs(md);
3241
3242 return 0;
3243 }
3244
dm_resume(struct mapped_device * md)3245 int dm_resume(struct mapped_device *md)
3246 {
3247 int r = -EINVAL;
3248 struct dm_table *map = NULL;
3249
3250 retry:
3251 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3252
3253 if (!dm_suspended_md(md))
3254 goto out;
3255
3256 if (dm_suspended_internally_md(md)) {
3257 /* already internally suspended, wait for internal resume */
3258 mutex_unlock(&md->suspend_lock);
3259 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3260 if (r)
3261 return r;
3262 goto retry;
3263 }
3264
3265 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3266 if (!map || !dm_table_get_size(map))
3267 goto out;
3268
3269 r = __dm_resume(md, map);
3270 if (r)
3271 goto out;
3272
3273 clear_bit(DMF_SUSPENDED, &md->flags);
3274
3275 r = 0;
3276 out:
3277 mutex_unlock(&md->suspend_lock);
3278
3279 return r;
3280 }
3281
3282 /*
3283 * Internal suspend/resume works like userspace-driven suspend. It waits
3284 * until all bios finish and prevents issuing new bios to the target drivers.
3285 * It may be used only from the kernel.
3286 */
3287
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)3288 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3289 {
3290 struct dm_table *map = NULL;
3291
3292 if (md->internal_suspend_count++)
3293 return; /* nested internal suspend */
3294
3295 if (dm_suspended_md(md)) {
3296 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3297 return; /* nest suspend */
3298 }
3299
3300 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3301
3302 /*
3303 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3304 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3305 * would require changing .presuspend to return an error -- avoid this
3306 * until there is a need for more elaborate variants of internal suspend.
3307 */
3308 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3309
3310 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3311
3312 dm_table_postsuspend_targets(map);
3313 }
3314
__dm_internal_resume(struct mapped_device * md)3315 static void __dm_internal_resume(struct mapped_device *md)
3316 {
3317 BUG_ON(!md->internal_suspend_count);
3318
3319 if (--md->internal_suspend_count)
3320 return; /* resume from nested internal suspend */
3321
3322 if (dm_suspended_md(md))
3323 goto done; /* resume from nested suspend */
3324
3325 /*
3326 * NOTE: existing callers don't need to call dm_table_resume_targets
3327 * (which may fail -- so best to avoid it for now by passing NULL map)
3328 */
3329 (void) __dm_resume(md, NULL);
3330
3331 done:
3332 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3333 smp_mb__after_atomic();
3334 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3335 }
3336
dm_internal_suspend_noflush(struct mapped_device * md)3337 void dm_internal_suspend_noflush(struct mapped_device *md)
3338 {
3339 mutex_lock(&md->suspend_lock);
3340 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3341 mutex_unlock(&md->suspend_lock);
3342 }
3343 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3344
dm_internal_resume(struct mapped_device * md)3345 void dm_internal_resume(struct mapped_device *md)
3346 {
3347 mutex_lock(&md->suspend_lock);
3348 __dm_internal_resume(md);
3349 mutex_unlock(&md->suspend_lock);
3350 }
3351 EXPORT_SYMBOL_GPL(dm_internal_resume);
3352
3353 /*
3354 * Fast variants of internal suspend/resume hold md->suspend_lock,
3355 * which prevents interaction with userspace-driven suspend.
3356 */
3357
dm_internal_suspend_fast(struct mapped_device * md)3358 void dm_internal_suspend_fast(struct mapped_device *md)
3359 {
3360 mutex_lock(&md->suspend_lock);
3361 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3362 return;
3363
3364 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3365 synchronize_srcu(&md->io_barrier);
3366 flush_workqueue(md->wq);
3367 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3368 }
3369 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3370
dm_internal_resume_fast(struct mapped_device * md)3371 void dm_internal_resume_fast(struct mapped_device *md)
3372 {
3373 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3374 goto done;
3375
3376 dm_queue_flush(md);
3377
3378 done:
3379 mutex_unlock(&md->suspend_lock);
3380 }
3381 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3382
3383 /*-----------------------------------------------------------------
3384 * Event notification.
3385 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)3386 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3387 unsigned cookie)
3388 {
3389 char udev_cookie[DM_COOKIE_LENGTH];
3390 char *envp[] = { udev_cookie, NULL };
3391
3392 if (!cookie)
3393 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3394 else {
3395 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3396 DM_COOKIE_ENV_VAR_NAME, cookie);
3397 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3398 action, envp);
3399 }
3400 }
3401
dm_next_uevent_seq(struct mapped_device * md)3402 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3403 {
3404 return atomic_add_return(1, &md->uevent_seq);
3405 }
3406
dm_get_event_nr(struct mapped_device * md)3407 uint32_t dm_get_event_nr(struct mapped_device *md)
3408 {
3409 return atomic_read(&md->event_nr);
3410 }
3411
dm_wait_event(struct mapped_device * md,int event_nr)3412 int dm_wait_event(struct mapped_device *md, int event_nr)
3413 {
3414 return wait_event_interruptible(md->eventq,
3415 (event_nr != atomic_read(&md->event_nr)));
3416 }
3417
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3418 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3419 {
3420 unsigned long flags;
3421
3422 spin_lock_irqsave(&md->uevent_lock, flags);
3423 list_add(elist, &md->uevent_list);
3424 spin_unlock_irqrestore(&md->uevent_lock, flags);
3425 }
3426
3427 /*
3428 * The gendisk is only valid as long as you have a reference
3429 * count on 'md'.
3430 */
dm_disk(struct mapped_device * md)3431 struct gendisk *dm_disk(struct mapped_device *md)
3432 {
3433 return md->disk;
3434 }
3435 EXPORT_SYMBOL_GPL(dm_disk);
3436
dm_kobject(struct mapped_device * md)3437 struct kobject *dm_kobject(struct mapped_device *md)
3438 {
3439 return &md->kobj_holder.kobj;
3440 }
3441
dm_get_from_kobject(struct kobject * kobj)3442 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3443 {
3444 struct mapped_device *md;
3445
3446 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3447
3448 if (test_bit(DMF_FREEING, &md->flags) ||
3449 dm_deleting_md(md))
3450 return NULL;
3451
3452 dm_get(md);
3453 return md;
3454 }
3455
dm_suspended_md(struct mapped_device * md)3456 int dm_suspended_md(struct mapped_device *md)
3457 {
3458 return test_bit(DMF_SUSPENDED, &md->flags);
3459 }
3460
dm_suspended_internally_md(struct mapped_device * md)3461 int dm_suspended_internally_md(struct mapped_device *md)
3462 {
3463 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3464 }
3465
dm_test_deferred_remove_flag(struct mapped_device * md)3466 int dm_test_deferred_remove_flag(struct mapped_device *md)
3467 {
3468 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3469 }
3470
dm_suspended(struct dm_target * ti)3471 int dm_suspended(struct dm_target *ti)
3472 {
3473 return dm_suspended_md(dm_table_get_md(ti->table));
3474 }
3475 EXPORT_SYMBOL_GPL(dm_suspended);
3476
dm_noflush_suspending(struct dm_target * ti)3477 int dm_noflush_suspending(struct dm_target *ti)
3478 {
3479 return __noflush_suspending(dm_table_get_md(ti->table));
3480 }
3481 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3482
dm_alloc_md_mempools(struct mapped_device * md,unsigned type,unsigned integrity,unsigned per_bio_data_size)3483 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3484 unsigned integrity, unsigned per_bio_data_size)
3485 {
3486 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3487 struct kmem_cache *cachep = NULL;
3488 unsigned int pool_size = 0;
3489 unsigned int front_pad;
3490
3491 if (!pools)
3492 return NULL;
3493
3494 type = filter_md_type(type, md);
3495
3496 switch (type) {
3497 case DM_TYPE_BIO_BASED:
3498 cachep = _io_cache;
3499 pool_size = dm_get_reserved_bio_based_ios();
3500 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3501 break;
3502 case DM_TYPE_REQUEST_BASED:
3503 cachep = _rq_tio_cache;
3504 pool_size = dm_get_reserved_rq_based_ios();
3505 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3506 if (!pools->rq_pool)
3507 goto out;
3508 /* fall through to setup remaining rq-based pools */
3509 case DM_TYPE_MQ_REQUEST_BASED:
3510 if (!pool_size)
3511 pool_size = dm_get_reserved_rq_based_ios();
3512 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3513 /* per_bio_data_size is not used. See __bind_mempools(). */
3514 WARN_ON(per_bio_data_size != 0);
3515 break;
3516 default:
3517 BUG();
3518 }
3519
3520 if (cachep) {
3521 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3522 if (!pools->io_pool)
3523 goto out;
3524 }
3525
3526 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3527 if (!pools->bs)
3528 goto out;
3529
3530 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3531 goto out;
3532
3533 return pools;
3534
3535 out:
3536 dm_free_md_mempools(pools);
3537
3538 return NULL;
3539 }
3540
dm_free_md_mempools(struct dm_md_mempools * pools)3541 void dm_free_md_mempools(struct dm_md_mempools *pools)
3542 {
3543 if (!pools)
3544 return;
3545
3546 mempool_destroy(pools->io_pool);
3547 mempool_destroy(pools->rq_pool);
3548
3549 if (pools->bs)
3550 bioset_free(pools->bs);
3551
3552 kfree(pools);
3553 }
3554
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3555 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3556 u32 flags)
3557 {
3558 struct mapped_device *md = bdev->bd_disk->private_data;
3559 const struct pr_ops *ops;
3560 struct dm_target *tgt;
3561 fmode_t mode;
3562 int srcu_idx, r;
3563
3564 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3565 if (r < 0)
3566 return r;
3567
3568 ops = bdev->bd_disk->fops->pr_ops;
3569 if (ops && ops->pr_register)
3570 r = ops->pr_register(bdev, old_key, new_key, flags);
3571 else
3572 r = -EOPNOTSUPP;
3573
3574 dm_put_live_table(md, srcu_idx);
3575 return r;
3576 }
3577
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3578 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3579 u32 flags)
3580 {
3581 struct mapped_device *md = bdev->bd_disk->private_data;
3582 const struct pr_ops *ops;
3583 struct dm_target *tgt;
3584 fmode_t mode;
3585 int srcu_idx, r;
3586
3587 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3588 if (r < 0)
3589 return r;
3590
3591 ops = bdev->bd_disk->fops->pr_ops;
3592 if (ops && ops->pr_reserve)
3593 r = ops->pr_reserve(bdev, key, type, flags);
3594 else
3595 r = -EOPNOTSUPP;
3596
3597 dm_put_live_table(md, srcu_idx);
3598 return r;
3599 }
3600
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3601 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3602 {
3603 struct mapped_device *md = bdev->bd_disk->private_data;
3604 const struct pr_ops *ops;
3605 struct dm_target *tgt;
3606 fmode_t mode;
3607 int srcu_idx, r;
3608
3609 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3610 if (r < 0)
3611 return r;
3612
3613 ops = bdev->bd_disk->fops->pr_ops;
3614 if (ops && ops->pr_release)
3615 r = ops->pr_release(bdev, key, type);
3616 else
3617 r = -EOPNOTSUPP;
3618
3619 dm_put_live_table(md, srcu_idx);
3620 return r;
3621 }
3622
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3623 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3624 enum pr_type type, bool abort)
3625 {
3626 struct mapped_device *md = bdev->bd_disk->private_data;
3627 const struct pr_ops *ops;
3628 struct dm_target *tgt;
3629 fmode_t mode;
3630 int srcu_idx, r;
3631
3632 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3633 if (r < 0)
3634 return r;
3635
3636 ops = bdev->bd_disk->fops->pr_ops;
3637 if (ops && ops->pr_preempt)
3638 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3639 else
3640 r = -EOPNOTSUPP;
3641
3642 dm_put_live_table(md, srcu_idx);
3643 return r;
3644 }
3645
dm_pr_clear(struct block_device * bdev,u64 key)3646 static int dm_pr_clear(struct block_device *bdev, u64 key)
3647 {
3648 struct mapped_device *md = bdev->bd_disk->private_data;
3649 const struct pr_ops *ops;
3650 struct dm_target *tgt;
3651 fmode_t mode;
3652 int srcu_idx, r;
3653
3654 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3655 if (r < 0)
3656 return r;
3657
3658 ops = bdev->bd_disk->fops->pr_ops;
3659 if (ops && ops->pr_clear)
3660 r = ops->pr_clear(bdev, key);
3661 else
3662 r = -EOPNOTSUPP;
3663
3664 dm_put_live_table(md, srcu_idx);
3665 return r;
3666 }
3667
3668 static const struct pr_ops dm_pr_ops = {
3669 .pr_register = dm_pr_register,
3670 .pr_reserve = dm_pr_reserve,
3671 .pr_release = dm_pr_release,
3672 .pr_preempt = dm_pr_preempt,
3673 .pr_clear = dm_pr_clear,
3674 };
3675
3676 static const struct block_device_operations dm_blk_dops = {
3677 .open = dm_blk_open,
3678 .release = dm_blk_close,
3679 .ioctl = dm_blk_ioctl,
3680 .getgeo = dm_blk_getgeo,
3681 .pr_ops = &dm_pr_ops,
3682 .owner = THIS_MODULE
3683 };
3684
3685 /*
3686 * module hooks
3687 */
3688 module_init(dm_init);
3689 module_exit(dm_exit);
3690
3691 module_param(major, uint, 0);
3692 MODULE_PARM_DESC(major, "The major number of the device mapper");
3693
3694 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3695 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3696
3697 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3698 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3699
3700 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3701 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3702
3703 MODULE_DESCRIPTION(DM_NAME " driver");
3704 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3705 MODULE_LICENSE("GPL");
3706