1/*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "persistent-data/dm-btree.h"
9#include "persistent-data/dm-space-map.h"
10#include "persistent-data/dm-space-map-disk.h"
11#include "persistent-data/dm-transaction-manager.h"
12
13#include <linux/list.h>
14#include <linux/device-mapper.h>
15#include <linux/workqueue.h>
16
17/*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 *   atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31 *   field holding the time in the low 24 bits, and block in the top 48
32 *   bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block.  Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size).  The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values.  We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry.  Which points to a
45 *   bitmap block, and has some details about how many free entries there
46 *   are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum).  Then the rest
49 *   of the block is pairs of bits.  With the meaning being:
50 *
51 *   0 - ref count is 0
52 *   1 - ref count is 1
53 *   2 - ref count is 2
54 *   3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 *   second btree that directly maps the block_address to a uint32_t ref
58 *   count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree.  Instead
61 * it has one single blocks worth of index_entries.  This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert.  With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back.  Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75#define DM_MSG_PREFIX   "thin metadata"
76
77#define THIN_SUPERBLOCK_MAGIC 27022010
78#define THIN_SUPERBLOCK_LOCATION 0
79#define THIN_VERSION 2
80#define THIN_METADATA_CACHE_SIZE 64
81#define SECTOR_TO_BLOCK_SHIFT 3
82
83/*
84 *  3 for btree insert +
85 *  2 for btree lookup used within space map
86 */
87#define THIN_MAX_CONCURRENT_LOCKS 5
88
89/* This should be plenty */
90#define SPACE_MAP_ROOT_SIZE 128
91
92/*
93 * Little endian on-disk superblock and device details.
94 */
95struct thin_disk_superblock {
96	__le32 csum;	/* Checksum of superblock except for this field. */
97	__le32 flags;
98	__le64 blocknr;	/* This block number, dm_block_t. */
99
100	__u8 uuid[16];
101	__le64 magic;
102	__le32 version;
103	__le32 time;
104
105	__le64 trans_id;
106
107	/*
108	 * Root held by userspace transactions.
109	 */
110	__le64 held_root;
111
112	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
114
115	/*
116	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
117	 */
118	__le64 data_mapping_root;
119
120	/*
121	 * Device detail root mapping dev_id -> device_details
122	 */
123	__le64 device_details_root;
124
125	__le32 data_block_size;		/* In 512-byte sectors. */
126
127	__le32 metadata_block_size;	/* In 512-byte sectors. */
128	__le64 metadata_nr_blocks;
129
130	__le32 compat_flags;
131	__le32 compat_ro_flags;
132	__le32 incompat_flags;
133} __packed;
134
135struct disk_device_details {
136	__le64 mapped_blocks;
137	__le64 transaction_id;		/* When created. */
138	__le32 creation_time;
139	__le32 snapshotted_time;
140} __packed;
141
142struct dm_pool_metadata {
143	struct hlist_node hash;
144
145	struct block_device *bdev;
146	struct dm_block_manager *bm;
147	struct dm_space_map *metadata_sm;
148	struct dm_space_map *data_sm;
149	struct dm_transaction_manager *tm;
150	struct dm_transaction_manager *nb_tm;
151
152	/*
153	 * Two-level btree.
154	 * First level holds thin_dev_t.
155	 * Second level holds mappings.
156	 */
157	struct dm_btree_info info;
158
159	/*
160	 * Non-blocking version of the above.
161	 */
162	struct dm_btree_info nb_info;
163
164	/*
165	 * Just the top level for deleting whole devices.
166	 */
167	struct dm_btree_info tl_info;
168
169	/*
170	 * Just the bottom level for creating new devices.
171	 */
172	struct dm_btree_info bl_info;
173
174	/*
175	 * Describes the device details btree.
176	 */
177	struct dm_btree_info details_info;
178
179	struct rw_semaphore root_lock;
180	uint32_t time;
181	dm_block_t root;
182	dm_block_t details_root;
183	struct list_head thin_devices;
184	uint64_t trans_id;
185	unsigned long flags;
186	sector_t data_block_size;
187
188	/*
189	 * Set if a transaction has to be aborted but the attempt to roll back
190	 * to the previous (good) transaction failed.  The only pool metadata
191	 * operation possible in this state is the closing of the device.
192	 */
193	bool fail_io:1;
194
195	/*
196	 * Reading the space map roots can fail, so we read it into these
197	 * buffers before the superblock is locked and updated.
198	 */
199	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
200	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
201};
202
203struct dm_thin_device {
204	struct list_head list;
205	struct dm_pool_metadata *pmd;
206	dm_thin_id id;
207
208	int open_count;
209	bool changed:1;
210	bool aborted_with_changes:1;
211	uint64_t mapped_blocks;
212	uint64_t transaction_id;
213	uint32_t creation_time;
214	uint32_t snapshotted_time;
215};
216
217/*----------------------------------------------------------------
218 * superblock validator
219 *--------------------------------------------------------------*/
220
221#define SUPERBLOCK_CSUM_XOR 160774
222
223static void sb_prepare_for_write(struct dm_block_validator *v,
224				 struct dm_block *b,
225				 size_t block_size)
226{
227	struct thin_disk_superblock *disk_super = dm_block_data(b);
228
229	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
230	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
231						      block_size - sizeof(__le32),
232						      SUPERBLOCK_CSUM_XOR));
233}
234
235static int sb_check(struct dm_block_validator *v,
236		    struct dm_block *b,
237		    size_t block_size)
238{
239	struct thin_disk_superblock *disk_super = dm_block_data(b);
240	__le32 csum_le;
241
242	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
243		DMERR("sb_check failed: blocknr %llu: "
244		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
245		      (unsigned long long)dm_block_location(b));
246		return -ENOTBLK;
247	}
248
249	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
250		DMERR("sb_check failed: magic %llu: "
251		      "wanted %llu", le64_to_cpu(disk_super->magic),
252		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
253		return -EILSEQ;
254	}
255
256	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
257					     block_size - sizeof(__le32),
258					     SUPERBLOCK_CSUM_XOR));
259	if (csum_le != disk_super->csum) {
260		DMERR("sb_check failed: csum %u: wanted %u",
261		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
262		return -EILSEQ;
263	}
264
265	return 0;
266}
267
268static struct dm_block_validator sb_validator = {
269	.name = "superblock",
270	.prepare_for_write = sb_prepare_for_write,
271	.check = sb_check
272};
273
274/*----------------------------------------------------------------
275 * Methods for the btree value types
276 *--------------------------------------------------------------*/
277
278static uint64_t pack_block_time(dm_block_t b, uint32_t t)
279{
280	return (b << 24) | t;
281}
282
283static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
284{
285	*b = v >> 24;
286	*t = v & ((1 << 24) - 1);
287}
288
289static void data_block_inc(void *context, const void *value_le)
290{
291	struct dm_space_map *sm = context;
292	__le64 v_le;
293	uint64_t b;
294	uint32_t t;
295
296	memcpy(&v_le, value_le, sizeof(v_le));
297	unpack_block_time(le64_to_cpu(v_le), &b, &t);
298	dm_sm_inc_block(sm, b);
299}
300
301static void data_block_dec(void *context, const void *value_le)
302{
303	struct dm_space_map *sm = context;
304	__le64 v_le;
305	uint64_t b;
306	uint32_t t;
307
308	memcpy(&v_le, value_le, sizeof(v_le));
309	unpack_block_time(le64_to_cpu(v_le), &b, &t);
310	dm_sm_dec_block(sm, b);
311}
312
313static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
314{
315	__le64 v1_le, v2_le;
316	uint64_t b1, b2;
317	uint32_t t;
318
319	memcpy(&v1_le, value1_le, sizeof(v1_le));
320	memcpy(&v2_le, value2_le, sizeof(v2_le));
321	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
322	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
323
324	return b1 == b2;
325}
326
327static void subtree_inc(void *context, const void *value)
328{
329	struct dm_btree_info *info = context;
330	__le64 root_le;
331	uint64_t root;
332
333	memcpy(&root_le, value, sizeof(root_le));
334	root = le64_to_cpu(root_le);
335	dm_tm_inc(info->tm, root);
336}
337
338static void subtree_dec(void *context, const void *value)
339{
340	struct dm_btree_info *info = context;
341	__le64 root_le;
342	uint64_t root;
343
344	memcpy(&root_le, value, sizeof(root_le));
345	root = le64_to_cpu(root_le);
346	if (dm_btree_del(info, root))
347		DMERR("btree delete failed\n");
348}
349
350static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
351{
352	__le64 v1_le, v2_le;
353	memcpy(&v1_le, value1_le, sizeof(v1_le));
354	memcpy(&v2_le, value2_le, sizeof(v2_le));
355
356	return v1_le == v2_le;
357}
358
359/*----------------------------------------------------------------*/
360
361static int superblock_lock_zero(struct dm_pool_metadata *pmd,
362				struct dm_block **sblock)
363{
364	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
365				     &sb_validator, sblock);
366}
367
368static int superblock_lock(struct dm_pool_metadata *pmd,
369			   struct dm_block **sblock)
370{
371	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
372				&sb_validator, sblock);
373}
374
375static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
376{
377	int r;
378	unsigned i;
379	struct dm_block *b;
380	__le64 *data_le, zero = cpu_to_le64(0);
381	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
382
383	/*
384	 * We can't use a validator here - it may be all zeroes.
385	 */
386	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
387	if (r)
388		return r;
389
390	data_le = dm_block_data(b);
391	*result = 1;
392	for (i = 0; i < block_size; i++) {
393		if (data_le[i] != zero) {
394			*result = 0;
395			break;
396		}
397	}
398
399	dm_bm_unlock(b);
400
401	return 0;
402}
403
404static void __setup_btree_details(struct dm_pool_metadata *pmd)
405{
406	pmd->info.tm = pmd->tm;
407	pmd->info.levels = 2;
408	pmd->info.value_type.context = pmd->data_sm;
409	pmd->info.value_type.size = sizeof(__le64);
410	pmd->info.value_type.inc = data_block_inc;
411	pmd->info.value_type.dec = data_block_dec;
412	pmd->info.value_type.equal = data_block_equal;
413
414	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
415	pmd->nb_info.tm = pmd->nb_tm;
416
417	pmd->tl_info.tm = pmd->tm;
418	pmd->tl_info.levels = 1;
419	pmd->tl_info.value_type.context = &pmd->bl_info;
420	pmd->tl_info.value_type.size = sizeof(__le64);
421	pmd->tl_info.value_type.inc = subtree_inc;
422	pmd->tl_info.value_type.dec = subtree_dec;
423	pmd->tl_info.value_type.equal = subtree_equal;
424
425	pmd->bl_info.tm = pmd->tm;
426	pmd->bl_info.levels = 1;
427	pmd->bl_info.value_type.context = pmd->data_sm;
428	pmd->bl_info.value_type.size = sizeof(__le64);
429	pmd->bl_info.value_type.inc = data_block_inc;
430	pmd->bl_info.value_type.dec = data_block_dec;
431	pmd->bl_info.value_type.equal = data_block_equal;
432
433	pmd->details_info.tm = pmd->tm;
434	pmd->details_info.levels = 1;
435	pmd->details_info.value_type.context = NULL;
436	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
437	pmd->details_info.value_type.inc = NULL;
438	pmd->details_info.value_type.dec = NULL;
439	pmd->details_info.value_type.equal = NULL;
440}
441
442static int save_sm_roots(struct dm_pool_metadata *pmd)
443{
444	int r;
445	size_t len;
446
447	r = dm_sm_root_size(pmd->metadata_sm, &len);
448	if (r < 0)
449		return r;
450
451	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
452	if (r < 0)
453		return r;
454
455	r = dm_sm_root_size(pmd->data_sm, &len);
456	if (r < 0)
457		return r;
458
459	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
460}
461
462static void copy_sm_roots(struct dm_pool_metadata *pmd,
463			  struct thin_disk_superblock *disk)
464{
465	memcpy(&disk->metadata_space_map_root,
466	       &pmd->metadata_space_map_root,
467	       sizeof(pmd->metadata_space_map_root));
468
469	memcpy(&disk->data_space_map_root,
470	       &pmd->data_space_map_root,
471	       sizeof(pmd->data_space_map_root));
472}
473
474static int __write_initial_superblock(struct dm_pool_metadata *pmd)
475{
476	int r;
477	struct dm_block *sblock;
478	struct thin_disk_superblock *disk_super;
479	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
480
481	if (bdev_size > THIN_METADATA_MAX_SECTORS)
482		bdev_size = THIN_METADATA_MAX_SECTORS;
483
484	r = dm_sm_commit(pmd->data_sm);
485	if (r < 0)
486		return r;
487
488	r = save_sm_roots(pmd);
489	if (r < 0)
490		return r;
491
492	r = dm_tm_pre_commit(pmd->tm);
493	if (r < 0)
494		return r;
495
496	r = superblock_lock_zero(pmd, &sblock);
497	if (r)
498		return r;
499
500	disk_super = dm_block_data(sblock);
501	disk_super->flags = 0;
502	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
503	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
504	disk_super->version = cpu_to_le32(THIN_VERSION);
505	disk_super->time = 0;
506	disk_super->trans_id = 0;
507	disk_super->held_root = 0;
508
509	copy_sm_roots(pmd, disk_super);
510
511	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
512	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
513	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
514	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
515	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
516
517	return dm_tm_commit(pmd->tm, sblock);
518}
519
520static int __format_metadata(struct dm_pool_metadata *pmd)
521{
522	int r;
523
524	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
525				 &pmd->tm, &pmd->metadata_sm);
526	if (r < 0) {
527		DMERR("tm_create_with_sm failed");
528		return r;
529	}
530
531	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
532	if (IS_ERR(pmd->data_sm)) {
533		DMERR("sm_disk_create failed");
534		r = PTR_ERR(pmd->data_sm);
535		goto bad_cleanup_tm;
536	}
537
538	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
539	if (!pmd->nb_tm) {
540		DMERR("could not create non-blocking clone tm");
541		r = -ENOMEM;
542		goto bad_cleanup_data_sm;
543	}
544
545	__setup_btree_details(pmd);
546
547	r = dm_btree_empty(&pmd->info, &pmd->root);
548	if (r < 0)
549		goto bad_cleanup_nb_tm;
550
551	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
552	if (r < 0) {
553		DMERR("couldn't create devices root");
554		goto bad_cleanup_nb_tm;
555	}
556
557	r = __write_initial_superblock(pmd);
558	if (r)
559		goto bad_cleanup_nb_tm;
560
561	return 0;
562
563bad_cleanup_nb_tm:
564	dm_tm_destroy(pmd->nb_tm);
565bad_cleanup_data_sm:
566	dm_sm_destroy(pmd->data_sm);
567bad_cleanup_tm:
568	dm_tm_destroy(pmd->tm);
569	dm_sm_destroy(pmd->metadata_sm);
570
571	return r;
572}
573
574static int __check_incompat_features(struct thin_disk_superblock *disk_super,
575				     struct dm_pool_metadata *pmd)
576{
577	uint32_t features;
578
579	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
580	if (features) {
581		DMERR("could not access metadata due to unsupported optional features (%lx).",
582		      (unsigned long)features);
583		return -EINVAL;
584	}
585
586	/*
587	 * Check for read-only metadata to skip the following RDWR checks.
588	 */
589	if (get_disk_ro(pmd->bdev->bd_disk))
590		return 0;
591
592	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
593	if (features) {
594		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
595		      (unsigned long)features);
596		return -EINVAL;
597	}
598
599	return 0;
600}
601
602static int __open_metadata(struct dm_pool_metadata *pmd)
603{
604	int r;
605	struct dm_block *sblock;
606	struct thin_disk_superblock *disk_super;
607
608	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
609			    &sb_validator, &sblock);
610	if (r < 0) {
611		DMERR("couldn't read superblock");
612		return r;
613	}
614
615	disk_super = dm_block_data(sblock);
616
617	/* Verify the data block size hasn't changed */
618	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
619		DMERR("changing the data block size (from %u to %llu) is not supported",
620		      le32_to_cpu(disk_super->data_block_size),
621		      (unsigned long long)pmd->data_block_size);
622		r = -EINVAL;
623		goto bad_unlock_sblock;
624	}
625
626	r = __check_incompat_features(disk_super, pmd);
627	if (r < 0)
628		goto bad_unlock_sblock;
629
630	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
631			       disk_super->metadata_space_map_root,
632			       sizeof(disk_super->metadata_space_map_root),
633			       &pmd->tm, &pmd->metadata_sm);
634	if (r < 0) {
635		DMERR("tm_open_with_sm failed");
636		goto bad_unlock_sblock;
637	}
638
639	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
640				       sizeof(disk_super->data_space_map_root));
641	if (IS_ERR(pmd->data_sm)) {
642		DMERR("sm_disk_open failed");
643		r = PTR_ERR(pmd->data_sm);
644		goto bad_cleanup_tm;
645	}
646
647	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
648	if (!pmd->nb_tm) {
649		DMERR("could not create non-blocking clone tm");
650		r = -ENOMEM;
651		goto bad_cleanup_data_sm;
652	}
653
654	__setup_btree_details(pmd);
655	dm_bm_unlock(sblock);
656
657	return 0;
658
659bad_cleanup_data_sm:
660	dm_sm_destroy(pmd->data_sm);
661bad_cleanup_tm:
662	dm_tm_destroy(pmd->tm);
663	dm_sm_destroy(pmd->metadata_sm);
664bad_unlock_sblock:
665	dm_bm_unlock(sblock);
666
667	return r;
668}
669
670static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
671{
672	int r, unformatted;
673
674	r = __superblock_all_zeroes(pmd->bm, &unformatted);
675	if (r)
676		return r;
677
678	if (unformatted)
679		return format_device ? __format_metadata(pmd) : -EPERM;
680
681	return __open_metadata(pmd);
682}
683
684static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
685{
686	int r;
687
688	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
689					  THIN_METADATA_CACHE_SIZE,
690					  THIN_MAX_CONCURRENT_LOCKS);
691	if (IS_ERR(pmd->bm)) {
692		DMERR("could not create block manager");
693		return PTR_ERR(pmd->bm);
694	}
695
696	r = __open_or_format_metadata(pmd, format_device);
697	if (r)
698		dm_block_manager_destroy(pmd->bm);
699
700	return r;
701}
702
703static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
704{
705	dm_sm_destroy(pmd->data_sm);
706	dm_sm_destroy(pmd->metadata_sm);
707	dm_tm_destroy(pmd->nb_tm);
708	dm_tm_destroy(pmd->tm);
709	dm_block_manager_destroy(pmd->bm);
710}
711
712static int __begin_transaction(struct dm_pool_metadata *pmd)
713{
714	int r;
715	struct thin_disk_superblock *disk_super;
716	struct dm_block *sblock;
717
718	/*
719	 * We re-read the superblock every time.  Shouldn't need to do this
720	 * really.
721	 */
722	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
723			    &sb_validator, &sblock);
724	if (r)
725		return r;
726
727	disk_super = dm_block_data(sblock);
728	pmd->time = le32_to_cpu(disk_super->time);
729	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
730	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
731	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
732	pmd->flags = le32_to_cpu(disk_super->flags);
733	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
734
735	dm_bm_unlock(sblock);
736	return 0;
737}
738
739static int __write_changed_details(struct dm_pool_metadata *pmd)
740{
741	int r;
742	struct dm_thin_device *td, *tmp;
743	struct disk_device_details details;
744	uint64_t key;
745
746	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
747		if (!td->changed)
748			continue;
749
750		key = td->id;
751
752		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
753		details.transaction_id = cpu_to_le64(td->transaction_id);
754		details.creation_time = cpu_to_le32(td->creation_time);
755		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
756		__dm_bless_for_disk(&details);
757
758		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
759				    &key, &details, &pmd->details_root);
760		if (r)
761			return r;
762
763		if (td->open_count)
764			td->changed = 0;
765		else {
766			list_del(&td->list);
767			kfree(td);
768		}
769	}
770
771	return 0;
772}
773
774static int __commit_transaction(struct dm_pool_metadata *pmd)
775{
776	int r;
777	size_t metadata_len, data_len;
778	struct thin_disk_superblock *disk_super;
779	struct dm_block *sblock;
780
781	/*
782	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
783	 */
784	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
785
786	r = __write_changed_details(pmd);
787	if (r < 0)
788		return r;
789
790	r = dm_sm_commit(pmd->data_sm);
791	if (r < 0)
792		return r;
793
794	r = dm_tm_pre_commit(pmd->tm);
795	if (r < 0)
796		return r;
797
798	r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
799	if (r < 0)
800		return r;
801
802	r = dm_sm_root_size(pmd->data_sm, &data_len);
803	if (r < 0)
804		return r;
805
806	r = save_sm_roots(pmd);
807	if (r < 0)
808		return r;
809
810	r = superblock_lock(pmd, &sblock);
811	if (r)
812		return r;
813
814	disk_super = dm_block_data(sblock);
815	disk_super->time = cpu_to_le32(pmd->time);
816	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
817	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
818	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
819	disk_super->flags = cpu_to_le32(pmd->flags);
820
821	copy_sm_roots(pmd, disk_super);
822
823	return dm_tm_commit(pmd->tm, sblock);
824}
825
826struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
827					       sector_t data_block_size,
828					       bool format_device)
829{
830	int r;
831	struct dm_pool_metadata *pmd;
832
833	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
834	if (!pmd) {
835		DMERR("could not allocate metadata struct");
836		return ERR_PTR(-ENOMEM);
837	}
838
839	init_rwsem(&pmd->root_lock);
840	pmd->time = 0;
841	INIT_LIST_HEAD(&pmd->thin_devices);
842	pmd->fail_io = false;
843	pmd->bdev = bdev;
844	pmd->data_block_size = data_block_size;
845
846	r = __create_persistent_data_objects(pmd, format_device);
847	if (r) {
848		kfree(pmd);
849		return ERR_PTR(r);
850	}
851
852	r = __begin_transaction(pmd);
853	if (r < 0) {
854		if (dm_pool_metadata_close(pmd) < 0)
855			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
856		return ERR_PTR(r);
857	}
858
859	return pmd;
860}
861
862int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
863{
864	int r;
865	unsigned open_devices = 0;
866	struct dm_thin_device *td, *tmp;
867
868	down_read(&pmd->root_lock);
869	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
870		if (td->open_count)
871			open_devices++;
872		else {
873			list_del(&td->list);
874			kfree(td);
875		}
876	}
877	up_read(&pmd->root_lock);
878
879	if (open_devices) {
880		DMERR("attempt to close pmd when %u device(s) are still open",
881		       open_devices);
882		return -EBUSY;
883	}
884
885	if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
886		r = __commit_transaction(pmd);
887		if (r < 0)
888			DMWARN("%s: __commit_transaction() failed, error = %d",
889			       __func__, r);
890	}
891
892	if (!pmd->fail_io)
893		__destroy_persistent_data_objects(pmd);
894
895	kfree(pmd);
896	return 0;
897}
898
899/*
900 * __open_device: Returns @td corresponding to device with id @dev,
901 * creating it if @create is set and incrementing @td->open_count.
902 * On failure, @td is undefined.
903 */
904static int __open_device(struct dm_pool_metadata *pmd,
905			 dm_thin_id dev, int create,
906			 struct dm_thin_device **td)
907{
908	int r, changed = 0;
909	struct dm_thin_device *td2;
910	uint64_t key = dev;
911	struct disk_device_details details_le;
912
913	/*
914	 * If the device is already open, return it.
915	 */
916	list_for_each_entry(td2, &pmd->thin_devices, list)
917		if (td2->id == dev) {
918			/*
919			 * May not create an already-open device.
920			 */
921			if (create)
922				return -EEXIST;
923
924			td2->open_count++;
925			*td = td2;
926			return 0;
927		}
928
929	/*
930	 * Check the device exists.
931	 */
932	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
933			    &key, &details_le);
934	if (r) {
935		if (r != -ENODATA || !create)
936			return r;
937
938		/*
939		 * Create new device.
940		 */
941		changed = 1;
942		details_le.mapped_blocks = 0;
943		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
944		details_le.creation_time = cpu_to_le32(pmd->time);
945		details_le.snapshotted_time = cpu_to_le32(pmd->time);
946	}
947
948	*td = kmalloc(sizeof(**td), GFP_NOIO);
949	if (!*td)
950		return -ENOMEM;
951
952	(*td)->pmd = pmd;
953	(*td)->id = dev;
954	(*td)->open_count = 1;
955	(*td)->changed = changed;
956	(*td)->aborted_with_changes = false;
957	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
958	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
959	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
960	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
961
962	list_add(&(*td)->list, &pmd->thin_devices);
963
964	return 0;
965}
966
967static void __close_device(struct dm_thin_device *td)
968{
969	--td->open_count;
970}
971
972static int __create_thin(struct dm_pool_metadata *pmd,
973			 dm_thin_id dev)
974{
975	int r;
976	dm_block_t dev_root;
977	uint64_t key = dev;
978	struct disk_device_details details_le;
979	struct dm_thin_device *td;
980	__le64 value;
981
982	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
983			    &key, &details_le);
984	if (!r)
985		return -EEXIST;
986
987	/*
988	 * Create an empty btree for the mappings.
989	 */
990	r = dm_btree_empty(&pmd->bl_info, &dev_root);
991	if (r)
992		return r;
993
994	/*
995	 * Insert it into the main mapping tree.
996	 */
997	value = cpu_to_le64(dev_root);
998	__dm_bless_for_disk(&value);
999	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1000	if (r) {
1001		dm_btree_del(&pmd->bl_info, dev_root);
1002		return r;
1003	}
1004
1005	r = __open_device(pmd, dev, 1, &td);
1006	if (r) {
1007		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1008		dm_btree_del(&pmd->bl_info, dev_root);
1009		return r;
1010	}
1011	__close_device(td);
1012
1013	return r;
1014}
1015
1016int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1017{
1018	int r = -EINVAL;
1019
1020	down_write(&pmd->root_lock);
1021	if (!pmd->fail_io)
1022		r = __create_thin(pmd, dev);
1023	up_write(&pmd->root_lock);
1024
1025	return r;
1026}
1027
1028static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1029				  struct dm_thin_device *snap,
1030				  dm_thin_id origin, uint32_t time)
1031{
1032	int r;
1033	struct dm_thin_device *td;
1034
1035	r = __open_device(pmd, origin, 0, &td);
1036	if (r)
1037		return r;
1038
1039	td->changed = 1;
1040	td->snapshotted_time = time;
1041
1042	snap->mapped_blocks = td->mapped_blocks;
1043	snap->snapshotted_time = time;
1044	__close_device(td);
1045
1046	return 0;
1047}
1048
1049static int __create_snap(struct dm_pool_metadata *pmd,
1050			 dm_thin_id dev, dm_thin_id origin)
1051{
1052	int r;
1053	dm_block_t origin_root;
1054	uint64_t key = origin, dev_key = dev;
1055	struct dm_thin_device *td;
1056	struct disk_device_details details_le;
1057	__le64 value;
1058
1059	/* check this device is unused */
1060	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1061			    &dev_key, &details_le);
1062	if (!r)
1063		return -EEXIST;
1064
1065	/* find the mapping tree for the origin */
1066	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1067	if (r)
1068		return r;
1069	origin_root = le64_to_cpu(value);
1070
1071	/* clone the origin, an inc will do */
1072	dm_tm_inc(pmd->tm, origin_root);
1073
1074	/* insert into the main mapping tree */
1075	value = cpu_to_le64(origin_root);
1076	__dm_bless_for_disk(&value);
1077	key = dev;
1078	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1079	if (r) {
1080		dm_tm_dec(pmd->tm, origin_root);
1081		return r;
1082	}
1083
1084	pmd->time++;
1085
1086	r = __open_device(pmd, dev, 1, &td);
1087	if (r)
1088		goto bad;
1089
1090	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1091	__close_device(td);
1092
1093	if (r)
1094		goto bad;
1095
1096	return 0;
1097
1098bad:
1099	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1100	dm_btree_remove(&pmd->details_info, pmd->details_root,
1101			&key, &pmd->details_root);
1102	return r;
1103}
1104
1105int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1106				 dm_thin_id dev,
1107				 dm_thin_id origin)
1108{
1109	int r = -EINVAL;
1110
1111	down_write(&pmd->root_lock);
1112	if (!pmd->fail_io)
1113		r = __create_snap(pmd, dev, origin);
1114	up_write(&pmd->root_lock);
1115
1116	return r;
1117}
1118
1119static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1120{
1121	int r;
1122	uint64_t key = dev;
1123	struct dm_thin_device *td;
1124
1125	/* TODO: failure should mark the transaction invalid */
1126	r = __open_device(pmd, dev, 0, &td);
1127	if (r)
1128		return r;
1129
1130	if (td->open_count > 1) {
1131		__close_device(td);
1132		return -EBUSY;
1133	}
1134
1135	list_del(&td->list);
1136	kfree(td);
1137	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1138			    &key, &pmd->details_root);
1139	if (r)
1140		return r;
1141
1142	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1143	if (r)
1144		return r;
1145
1146	return 0;
1147}
1148
1149int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1150			       dm_thin_id dev)
1151{
1152	int r = -EINVAL;
1153
1154	down_write(&pmd->root_lock);
1155	if (!pmd->fail_io)
1156		r = __delete_device(pmd, dev);
1157	up_write(&pmd->root_lock);
1158
1159	return r;
1160}
1161
1162int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1163					uint64_t current_id,
1164					uint64_t new_id)
1165{
1166	int r = -EINVAL;
1167
1168	down_write(&pmd->root_lock);
1169
1170	if (pmd->fail_io)
1171		goto out;
1172
1173	if (pmd->trans_id != current_id) {
1174		DMERR("mismatched transaction id");
1175		goto out;
1176	}
1177
1178	pmd->trans_id = new_id;
1179	r = 0;
1180
1181out:
1182	up_write(&pmd->root_lock);
1183
1184	return r;
1185}
1186
1187int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1188					uint64_t *result)
1189{
1190	int r = -EINVAL;
1191
1192	down_read(&pmd->root_lock);
1193	if (!pmd->fail_io) {
1194		*result = pmd->trans_id;
1195		r = 0;
1196	}
1197	up_read(&pmd->root_lock);
1198
1199	return r;
1200}
1201
1202static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1203{
1204	int r, inc;
1205	struct thin_disk_superblock *disk_super;
1206	struct dm_block *copy, *sblock;
1207	dm_block_t held_root;
1208
1209	/*
1210	 * We commit to ensure the btree roots which we increment in a
1211	 * moment are up to date.
1212	 */
1213	__commit_transaction(pmd);
1214
1215	/*
1216	 * Copy the superblock.
1217	 */
1218	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1219	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1220			       &sb_validator, &copy, &inc);
1221	if (r)
1222		return r;
1223
1224	BUG_ON(!inc);
1225
1226	held_root = dm_block_location(copy);
1227	disk_super = dm_block_data(copy);
1228
1229	if (le64_to_cpu(disk_super->held_root)) {
1230		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1231
1232		dm_tm_dec(pmd->tm, held_root);
1233		dm_tm_unlock(pmd->tm, copy);
1234		return -EBUSY;
1235	}
1236
1237	/*
1238	 * Wipe the spacemap since we're not publishing this.
1239	 */
1240	memset(&disk_super->data_space_map_root, 0,
1241	       sizeof(disk_super->data_space_map_root));
1242	memset(&disk_super->metadata_space_map_root, 0,
1243	       sizeof(disk_super->metadata_space_map_root));
1244
1245	/*
1246	 * Increment the data structures that need to be preserved.
1247	 */
1248	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1249	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1250	dm_tm_unlock(pmd->tm, copy);
1251
1252	/*
1253	 * Write the held root into the superblock.
1254	 */
1255	r = superblock_lock(pmd, &sblock);
1256	if (r) {
1257		dm_tm_dec(pmd->tm, held_root);
1258		return r;
1259	}
1260
1261	disk_super = dm_block_data(sblock);
1262	disk_super->held_root = cpu_to_le64(held_root);
1263	dm_bm_unlock(sblock);
1264	return 0;
1265}
1266
1267int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1268{
1269	int r = -EINVAL;
1270
1271	down_write(&pmd->root_lock);
1272	if (!pmd->fail_io)
1273		r = __reserve_metadata_snap(pmd);
1274	up_write(&pmd->root_lock);
1275
1276	return r;
1277}
1278
1279static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1280{
1281	int r;
1282	struct thin_disk_superblock *disk_super;
1283	struct dm_block *sblock, *copy;
1284	dm_block_t held_root;
1285
1286	r = superblock_lock(pmd, &sblock);
1287	if (r)
1288		return r;
1289
1290	disk_super = dm_block_data(sblock);
1291	held_root = le64_to_cpu(disk_super->held_root);
1292	disk_super->held_root = cpu_to_le64(0);
1293
1294	dm_bm_unlock(sblock);
1295
1296	if (!held_root) {
1297		DMWARN("No pool metadata snapshot found: nothing to release.");
1298		return -EINVAL;
1299	}
1300
1301	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1302	if (r)
1303		return r;
1304
1305	disk_super = dm_block_data(copy);
1306	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1307	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1308	dm_sm_dec_block(pmd->metadata_sm, held_root);
1309
1310	dm_tm_unlock(pmd->tm, copy);
1311
1312	return 0;
1313}
1314
1315int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1316{
1317	int r = -EINVAL;
1318
1319	down_write(&pmd->root_lock);
1320	if (!pmd->fail_io)
1321		r = __release_metadata_snap(pmd);
1322	up_write(&pmd->root_lock);
1323
1324	return r;
1325}
1326
1327static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1328			       dm_block_t *result)
1329{
1330	int r;
1331	struct thin_disk_superblock *disk_super;
1332	struct dm_block *sblock;
1333
1334	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1335			    &sb_validator, &sblock);
1336	if (r)
1337		return r;
1338
1339	disk_super = dm_block_data(sblock);
1340	*result = le64_to_cpu(disk_super->held_root);
1341
1342	dm_bm_unlock(sblock);
1343
1344	return 0;
1345}
1346
1347int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1348			      dm_block_t *result)
1349{
1350	int r = -EINVAL;
1351
1352	down_read(&pmd->root_lock);
1353	if (!pmd->fail_io)
1354		r = __get_metadata_snap(pmd, result);
1355	up_read(&pmd->root_lock);
1356
1357	return r;
1358}
1359
1360int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1361			     struct dm_thin_device **td)
1362{
1363	int r = -EINVAL;
1364
1365	down_write(&pmd->root_lock);
1366	if (!pmd->fail_io)
1367		r = __open_device(pmd, dev, 0, td);
1368	up_write(&pmd->root_lock);
1369
1370	return r;
1371}
1372
1373int dm_pool_close_thin_device(struct dm_thin_device *td)
1374{
1375	down_write(&td->pmd->root_lock);
1376	__close_device(td);
1377	up_write(&td->pmd->root_lock);
1378
1379	return 0;
1380}
1381
1382dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1383{
1384	return td->id;
1385}
1386
1387/*
1388 * Check whether @time (of block creation) is older than @td's last snapshot.
1389 * If so then the associated block is shared with the last snapshot device.
1390 * Any block on a device created *after* the device last got snapshotted is
1391 * necessarily not shared.
1392 */
1393static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1394{
1395	return td->snapshotted_time > time;
1396}
1397
1398int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1399		       int can_issue_io, struct dm_thin_lookup_result *result)
1400{
1401	int r;
1402	__le64 value;
1403	struct dm_pool_metadata *pmd = td->pmd;
1404	dm_block_t keys[2] = { td->id, block };
1405	struct dm_btree_info *info;
1406
1407	down_read(&pmd->root_lock);
1408	if (pmd->fail_io) {
1409		up_read(&pmd->root_lock);
1410		return -EINVAL;
1411	}
1412
1413	if (can_issue_io) {
1414		info = &pmd->info;
1415	} else
1416		info = &pmd->nb_info;
1417
1418	r = dm_btree_lookup(info, pmd->root, keys, &value);
1419	if (!r) {
1420		uint64_t block_time = 0;
1421		dm_block_t exception_block;
1422		uint32_t exception_time;
1423
1424		block_time = le64_to_cpu(value);
1425		unpack_block_time(block_time, &exception_block,
1426				  &exception_time);
1427		result->block = exception_block;
1428		result->shared = __snapshotted_since(td, exception_time);
1429	}
1430
1431	up_read(&pmd->root_lock);
1432	return r;
1433}
1434
1435/* FIXME: write a more efficient one in btree */
1436int dm_thin_find_mapped_range(struct dm_thin_device *td,
1437			      dm_block_t begin, dm_block_t end,
1438			      dm_block_t *thin_begin, dm_block_t *thin_end,
1439			      dm_block_t *pool_begin, bool *maybe_shared)
1440{
1441	int r;
1442	dm_block_t pool_end;
1443	struct dm_thin_lookup_result lookup;
1444
1445	if (end < begin)
1446		return -ENODATA;
1447
1448	/*
1449	 * Find first mapped block.
1450	 */
1451	while (begin < end) {
1452		r = dm_thin_find_block(td, begin, true, &lookup);
1453		if (r) {
1454			if (r != -ENODATA)
1455				return r;
1456		} else
1457			break;
1458
1459		begin++;
1460	}
1461
1462	if (begin == end)
1463		return -ENODATA;
1464
1465	*thin_begin = begin;
1466	*pool_begin = lookup.block;
1467	*maybe_shared = lookup.shared;
1468
1469	begin++;
1470	pool_end = *pool_begin + 1;
1471	while (begin != end) {
1472		r = dm_thin_find_block(td, begin, true, &lookup);
1473		if (r) {
1474			if (r == -ENODATA)
1475				break;
1476			else
1477				return r;
1478		}
1479
1480		if ((lookup.block != pool_end) ||
1481		    (lookup.shared != *maybe_shared))
1482			break;
1483
1484		pool_end++;
1485		begin++;
1486	}
1487
1488	*thin_end = begin;
1489	return 0;
1490}
1491
1492static int __insert(struct dm_thin_device *td, dm_block_t block,
1493		    dm_block_t data_block)
1494{
1495	int r, inserted;
1496	__le64 value;
1497	struct dm_pool_metadata *pmd = td->pmd;
1498	dm_block_t keys[2] = { td->id, block };
1499
1500	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1501	__dm_bless_for_disk(&value);
1502
1503	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1504				   &pmd->root, &inserted);
1505	if (r)
1506		return r;
1507
1508	td->changed = 1;
1509	if (inserted)
1510		td->mapped_blocks++;
1511
1512	return 0;
1513}
1514
1515int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1516			 dm_block_t data_block)
1517{
1518	int r = -EINVAL;
1519
1520	down_write(&td->pmd->root_lock);
1521	if (!td->pmd->fail_io)
1522		r = __insert(td, block, data_block);
1523	up_write(&td->pmd->root_lock);
1524
1525	return r;
1526}
1527
1528static int __remove(struct dm_thin_device *td, dm_block_t block)
1529{
1530	int r;
1531	struct dm_pool_metadata *pmd = td->pmd;
1532	dm_block_t keys[2] = { td->id, block };
1533
1534	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1535	if (r)
1536		return r;
1537
1538	td->mapped_blocks--;
1539	td->changed = 1;
1540
1541	return 0;
1542}
1543
1544static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1545{
1546	int r;
1547	unsigned count, total_count = 0;
1548	struct dm_pool_metadata *pmd = td->pmd;
1549	dm_block_t keys[1] = { td->id };
1550	__le64 value;
1551	dm_block_t mapping_root;
1552
1553	/*
1554	 * Find the mapping tree
1555	 */
1556	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1557	if (r)
1558		return r;
1559
1560	/*
1561	 * Remove from the mapping tree, taking care to inc the
1562	 * ref count so it doesn't get deleted.
1563	 */
1564	mapping_root = le64_to_cpu(value);
1565	dm_tm_inc(pmd->tm, mapping_root);
1566	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1567	if (r)
1568		return r;
1569
1570	/*
1571	 * Remove leaves stops at the first unmapped entry, so we have to
1572	 * loop round finding mapped ranges.
1573	 */
1574	while (begin < end) {
1575		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1576		if (r == -ENODATA)
1577			break;
1578
1579		if (r)
1580			return r;
1581
1582		if (begin >= end)
1583			break;
1584
1585		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1586		if (r)
1587			return r;
1588
1589		total_count += count;
1590	}
1591
1592	td->mapped_blocks -= total_count;
1593	td->changed = 1;
1594
1595	/*
1596	 * Reinsert the mapping tree.
1597	 */
1598	value = cpu_to_le64(mapping_root);
1599	__dm_bless_for_disk(&value);
1600	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1601}
1602
1603int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1604{
1605	int r = -EINVAL;
1606
1607	down_write(&td->pmd->root_lock);
1608	if (!td->pmd->fail_io)
1609		r = __remove(td, block);
1610	up_write(&td->pmd->root_lock);
1611
1612	return r;
1613}
1614
1615int dm_thin_remove_range(struct dm_thin_device *td,
1616			 dm_block_t begin, dm_block_t end)
1617{
1618	int r = -EINVAL;
1619
1620	down_write(&td->pmd->root_lock);
1621	if (!td->pmd->fail_io)
1622		r = __remove_range(td, begin, end);
1623	up_write(&td->pmd->root_lock);
1624
1625	return r;
1626}
1627
1628int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1629{
1630	int r;
1631	uint32_t ref_count;
1632
1633	down_read(&pmd->root_lock);
1634	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1635	if (!r)
1636		*result = (ref_count != 0);
1637	up_read(&pmd->root_lock);
1638
1639	return r;
1640}
1641
1642bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1643{
1644	int r;
1645
1646	down_read(&td->pmd->root_lock);
1647	r = td->changed;
1648	up_read(&td->pmd->root_lock);
1649
1650	return r;
1651}
1652
1653bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1654{
1655	bool r = false;
1656	struct dm_thin_device *td, *tmp;
1657
1658	down_read(&pmd->root_lock);
1659	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1660		if (td->changed) {
1661			r = td->changed;
1662			break;
1663		}
1664	}
1665	up_read(&pmd->root_lock);
1666
1667	return r;
1668}
1669
1670bool dm_thin_aborted_changes(struct dm_thin_device *td)
1671{
1672	bool r;
1673
1674	down_read(&td->pmd->root_lock);
1675	r = td->aborted_with_changes;
1676	up_read(&td->pmd->root_lock);
1677
1678	return r;
1679}
1680
1681int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1682{
1683	int r = -EINVAL;
1684
1685	down_write(&pmd->root_lock);
1686	if (!pmd->fail_io)
1687		r = dm_sm_new_block(pmd->data_sm, result);
1688	up_write(&pmd->root_lock);
1689
1690	return r;
1691}
1692
1693int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1694{
1695	int r = -EINVAL;
1696
1697	down_write(&pmd->root_lock);
1698	if (pmd->fail_io)
1699		goto out;
1700
1701	r = __commit_transaction(pmd);
1702	if (r <= 0)
1703		goto out;
1704
1705	/*
1706	 * Open the next transaction.
1707	 */
1708	r = __begin_transaction(pmd);
1709out:
1710	up_write(&pmd->root_lock);
1711	return r;
1712}
1713
1714static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1715{
1716	struct dm_thin_device *td;
1717
1718	list_for_each_entry(td, &pmd->thin_devices, list)
1719		td->aborted_with_changes = td->changed;
1720}
1721
1722int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1723{
1724	int r = -EINVAL;
1725
1726	down_write(&pmd->root_lock);
1727	if (pmd->fail_io)
1728		goto out;
1729
1730	__set_abort_with_changes_flags(pmd);
1731	__destroy_persistent_data_objects(pmd);
1732	r = __create_persistent_data_objects(pmd, false);
1733	if (r)
1734		pmd->fail_io = true;
1735
1736out:
1737	up_write(&pmd->root_lock);
1738
1739	return r;
1740}
1741
1742int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1743{
1744	int r = -EINVAL;
1745
1746	down_read(&pmd->root_lock);
1747	if (!pmd->fail_io)
1748		r = dm_sm_get_nr_free(pmd->data_sm, result);
1749	up_read(&pmd->root_lock);
1750
1751	return r;
1752}
1753
1754int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1755					  dm_block_t *result)
1756{
1757	int r = -EINVAL;
1758
1759	down_read(&pmd->root_lock);
1760	if (!pmd->fail_io)
1761		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1762	up_read(&pmd->root_lock);
1763
1764	return r;
1765}
1766
1767int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1768				  dm_block_t *result)
1769{
1770	int r = -EINVAL;
1771
1772	down_read(&pmd->root_lock);
1773	if (!pmd->fail_io)
1774		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1775	up_read(&pmd->root_lock);
1776
1777	return r;
1778}
1779
1780int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1781{
1782	int r = -EINVAL;
1783
1784	down_read(&pmd->root_lock);
1785	if (!pmd->fail_io)
1786		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1787	up_read(&pmd->root_lock);
1788
1789	return r;
1790}
1791
1792int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1793{
1794	int r = -EINVAL;
1795	struct dm_pool_metadata *pmd = td->pmd;
1796
1797	down_read(&pmd->root_lock);
1798	if (!pmd->fail_io) {
1799		*result = td->mapped_blocks;
1800		r = 0;
1801	}
1802	up_read(&pmd->root_lock);
1803
1804	return r;
1805}
1806
1807static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1808{
1809	int r;
1810	__le64 value_le;
1811	dm_block_t thin_root;
1812	struct dm_pool_metadata *pmd = td->pmd;
1813
1814	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1815	if (r)
1816		return r;
1817
1818	thin_root = le64_to_cpu(value_le);
1819
1820	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1821}
1822
1823int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1824				     dm_block_t *result)
1825{
1826	int r = -EINVAL;
1827	struct dm_pool_metadata *pmd = td->pmd;
1828
1829	down_read(&pmd->root_lock);
1830	if (!pmd->fail_io)
1831		r = __highest_block(td, result);
1832	up_read(&pmd->root_lock);
1833
1834	return r;
1835}
1836
1837static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1838{
1839	int r;
1840	dm_block_t old_count;
1841
1842	r = dm_sm_get_nr_blocks(sm, &old_count);
1843	if (r)
1844		return r;
1845
1846	if (new_count == old_count)
1847		return 0;
1848
1849	if (new_count < old_count) {
1850		DMERR("cannot reduce size of space map");
1851		return -EINVAL;
1852	}
1853
1854	return dm_sm_extend(sm, new_count - old_count);
1855}
1856
1857int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1858{
1859	int r = -EINVAL;
1860
1861	down_write(&pmd->root_lock);
1862	if (!pmd->fail_io)
1863		r = __resize_space_map(pmd->data_sm, new_count);
1864	up_write(&pmd->root_lock);
1865
1866	return r;
1867}
1868
1869int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1870{
1871	int r = -EINVAL;
1872
1873	down_write(&pmd->root_lock);
1874	if (!pmd->fail_io)
1875		r = __resize_space_map(pmd->metadata_sm, new_count);
1876	up_write(&pmd->root_lock);
1877
1878	return r;
1879}
1880
1881void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1882{
1883	down_write(&pmd->root_lock);
1884	dm_bm_set_read_only(pmd->bm);
1885	up_write(&pmd->root_lock);
1886}
1887
1888void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1889{
1890	down_write(&pmd->root_lock);
1891	dm_bm_set_read_write(pmd->bm);
1892	up_write(&pmd->root_lock);
1893}
1894
1895int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1896					dm_block_t threshold,
1897					dm_sm_threshold_fn fn,
1898					void *context)
1899{
1900	int r;
1901
1902	down_write(&pmd->root_lock);
1903	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1904	up_write(&pmd->root_lock);
1905
1906	return r;
1907}
1908
1909int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1910{
1911	int r;
1912	struct dm_block *sblock;
1913	struct thin_disk_superblock *disk_super;
1914
1915	down_write(&pmd->root_lock);
1916	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1917
1918	r = superblock_lock(pmd, &sblock);
1919	if (r) {
1920		DMERR("couldn't read superblock");
1921		goto out;
1922	}
1923
1924	disk_super = dm_block_data(sblock);
1925	disk_super->flags = cpu_to_le32(pmd->flags);
1926
1927	dm_bm_unlock(sblock);
1928out:
1929	up_write(&pmd->root_lock);
1930	return r;
1931}
1932
1933bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1934{
1935	bool needs_check;
1936
1937	down_read(&pmd->root_lock);
1938	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
1939	up_read(&pmd->root_lock);
1940
1941	return needs_check;
1942}
1943
1944void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
1945{
1946	down_read(&pmd->root_lock);
1947	if (!pmd->fail_io)
1948		dm_tm_issue_prefetches(pmd->tm);
1949	up_read(&pmd->root_lock);
1950}
1951