1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23
24#define DM_MSG_PREFIX "table"
25
26#define MAX_DEPTH 16
27#define NODE_SIZE L1_CACHE_BYTES
28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31struct dm_table {
32	struct mapped_device *md;
33	unsigned type;
34
35	/* btree table */
36	unsigned int depth;
37	unsigned int counts[MAX_DEPTH];	/* in nodes */
38	sector_t *index[MAX_DEPTH];
39
40	unsigned int num_targets;
41	unsigned int num_allocated;
42	sector_t *highs;
43	struct dm_target *targets;
44
45	struct target_type *immutable_target_type;
46	unsigned integrity_supported:1;
47	unsigned singleton:1;
48
49	/*
50	 * Indicates the rw permissions for the new logical
51	 * device.  This should be a combination of FMODE_READ
52	 * and FMODE_WRITE.
53	 */
54	fmode_t mode;
55
56	/* a list of devices used by this table */
57	struct list_head devices;
58
59	/* events get handed up using this callback */
60	void (*event_fn)(void *);
61	void *event_context;
62
63	struct dm_md_mempools *mempools;
64
65	struct list_head target_callbacks;
66};
67
68/*
69 * Similar to ceiling(log_size(n))
70 */
71static unsigned int int_log(unsigned int n, unsigned int base)
72{
73	int result = 0;
74
75	while (n > 1) {
76		n = dm_div_up(n, base);
77		result++;
78	}
79
80	return result;
81}
82
83/*
84 * Calculate the index of the child node of the n'th node k'th key.
85 */
86static inline unsigned int get_child(unsigned int n, unsigned int k)
87{
88	return (n * CHILDREN_PER_NODE) + k;
89}
90
91/*
92 * Return the n'th node of level l from table t.
93 */
94static inline sector_t *get_node(struct dm_table *t,
95				 unsigned int l, unsigned int n)
96{
97	return t->index[l] + (n * KEYS_PER_NODE);
98}
99
100/*
101 * Return the highest key that you could lookup from the n'th
102 * node on level l of the btree.
103 */
104static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105{
106	for (; l < t->depth - 1; l++)
107		n = get_child(n, CHILDREN_PER_NODE - 1);
108
109	if (n >= t->counts[l])
110		return (sector_t) - 1;
111
112	return get_node(t, l, n)[KEYS_PER_NODE - 1];
113}
114
115/*
116 * Fills in a level of the btree based on the highs of the level
117 * below it.
118 */
119static int setup_btree_index(unsigned int l, struct dm_table *t)
120{
121	unsigned int n, k;
122	sector_t *node;
123
124	for (n = 0U; n < t->counts[l]; n++) {
125		node = get_node(t, l, n);
126
127		for (k = 0U; k < KEYS_PER_NODE; k++)
128			node[k] = high(t, l + 1, get_child(n, k));
129	}
130
131	return 0;
132}
133
134void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135{
136	unsigned long size;
137	void *addr;
138
139	/*
140	 * Check that we're not going to overflow.
141	 */
142	if (nmemb > (ULONG_MAX / elem_size))
143		return NULL;
144
145	size = nmemb * elem_size;
146	addr = vzalloc(size);
147
148	return addr;
149}
150EXPORT_SYMBOL(dm_vcalloc);
151
152/*
153 * highs, and targets are managed as dynamic arrays during a
154 * table load.
155 */
156static int alloc_targets(struct dm_table *t, unsigned int num)
157{
158	sector_t *n_highs;
159	struct dm_target *n_targets;
160
161	/*
162	 * Allocate both the target array and offset array at once.
163	 * Append an empty entry to catch sectors beyond the end of
164	 * the device.
165	 */
166	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167					  sizeof(sector_t));
168	if (!n_highs)
169		return -ENOMEM;
170
171	n_targets = (struct dm_target *) (n_highs + num);
172
173	memset(n_highs, -1, sizeof(*n_highs) * num);
174	vfree(t->highs);
175
176	t->num_allocated = num;
177	t->highs = n_highs;
178	t->targets = n_targets;
179
180	return 0;
181}
182
183int dm_table_create(struct dm_table **result, fmode_t mode,
184		    unsigned num_targets, struct mapped_device *md)
185{
186	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187
188	if (!t)
189		return -ENOMEM;
190
191	INIT_LIST_HEAD(&t->devices);
192	INIT_LIST_HEAD(&t->target_callbacks);
193
194	if (!num_targets)
195		num_targets = KEYS_PER_NODE;
196
197	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198
199	if (!num_targets) {
200		kfree(t);
201		return -ENOMEM;
202	}
203
204	if (alloc_targets(t, num_targets)) {
205		kfree(t);
206		return -ENOMEM;
207	}
208
209	t->mode = mode;
210	t->md = md;
211	*result = t;
212	return 0;
213}
214
215static void free_devices(struct list_head *devices, struct mapped_device *md)
216{
217	struct list_head *tmp, *next;
218
219	list_for_each_safe(tmp, next, devices) {
220		struct dm_dev_internal *dd =
221		    list_entry(tmp, struct dm_dev_internal, list);
222		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223		       dm_device_name(md), dd->dm_dev->name);
224		dm_put_table_device(md, dd->dm_dev);
225		kfree(dd);
226	}
227}
228
229void dm_table_destroy(struct dm_table *t)
230{
231	unsigned int i;
232
233	if (!t)
234		return;
235
236	/* free the indexes */
237	if (t->depth >= 2)
238		vfree(t->index[t->depth - 2]);
239
240	/* free the targets */
241	for (i = 0; i < t->num_targets; i++) {
242		struct dm_target *tgt = t->targets + i;
243
244		if (tgt->type->dtr)
245			tgt->type->dtr(tgt);
246
247		dm_put_target_type(tgt->type);
248	}
249
250	vfree(t->highs);
251
252	/* free the device list */
253	free_devices(&t->devices, t->md);
254
255	dm_free_md_mempools(t->mempools);
256
257	kfree(t);
258}
259
260/*
261 * See if we've already got a device in the list.
262 */
263static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264{
265	struct dm_dev_internal *dd;
266
267	list_for_each_entry (dd, l, list)
268		if (dd->dm_dev->bdev->bd_dev == dev)
269			return dd;
270
271	return NULL;
272}
273
274/*
275 * If possible, this checks an area of a destination device is invalid.
276 */
277static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278				  sector_t start, sector_t len, void *data)
279{
280	struct request_queue *q;
281	struct queue_limits *limits = data;
282	struct block_device *bdev = dev->bdev;
283	sector_t dev_size =
284		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285	unsigned short logical_block_size_sectors =
286		limits->logical_block_size >> SECTOR_SHIFT;
287	char b[BDEVNAME_SIZE];
288
289	/*
290	 * Some devices exist without request functions,
291	 * such as loop devices not yet bound to backing files.
292	 * Forbid the use of such devices.
293	 */
294	q = bdev_get_queue(bdev);
295	if (!q || !q->make_request_fn) {
296		DMWARN("%s: %s is not yet initialised: "
297		       "start=%llu, len=%llu, dev_size=%llu",
298		       dm_device_name(ti->table->md), bdevname(bdev, b),
299		       (unsigned long long)start,
300		       (unsigned long long)len,
301		       (unsigned long long)dev_size);
302		return 1;
303	}
304
305	if (!dev_size)
306		return 0;
307
308	if ((start >= dev_size) || (start + len > dev_size)) {
309		DMWARN("%s: %s too small for target: "
310		       "start=%llu, len=%llu, dev_size=%llu",
311		       dm_device_name(ti->table->md), bdevname(bdev, b),
312		       (unsigned long long)start,
313		       (unsigned long long)len,
314		       (unsigned long long)dev_size);
315		return 1;
316	}
317
318	if (logical_block_size_sectors <= 1)
319		return 0;
320
321	if (start & (logical_block_size_sectors - 1)) {
322		DMWARN("%s: start=%llu not aligned to h/w "
323		       "logical block size %u of %s",
324		       dm_device_name(ti->table->md),
325		       (unsigned long long)start,
326		       limits->logical_block_size, bdevname(bdev, b));
327		return 1;
328	}
329
330	if (len & (logical_block_size_sectors - 1)) {
331		DMWARN("%s: len=%llu not aligned to h/w "
332		       "logical block size %u of %s",
333		       dm_device_name(ti->table->md),
334		       (unsigned long long)len,
335		       limits->logical_block_size, bdevname(bdev, b));
336		return 1;
337	}
338
339	return 0;
340}
341
342/*
343 * This upgrades the mode on an already open dm_dev, being
344 * careful to leave things as they were if we fail to reopen the
345 * device and not to touch the existing bdev field in case
346 * it is accessed concurrently inside dm_table_any_congested().
347 */
348static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349			struct mapped_device *md)
350{
351	int r;
352	struct dm_dev *old_dev, *new_dev;
353
354	old_dev = dd->dm_dev;
355
356	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357				dd->dm_dev->mode | new_mode, &new_dev);
358	if (r)
359		return r;
360
361	dd->dm_dev = new_dev;
362	dm_put_table_device(md, old_dev);
363
364	return 0;
365}
366
367/*
368 * Convert the path to a device
369 */
370dev_t dm_get_dev_t(const char *path)
371{
372	dev_t uninitialized_var(dev);
373	struct block_device *bdev;
374
375	bdev = lookup_bdev(path);
376	if (IS_ERR(bdev))
377		dev = name_to_dev_t(path);
378	else {
379		dev = bdev->bd_dev;
380		bdput(bdev);
381	}
382
383	return dev;
384}
385EXPORT_SYMBOL_GPL(dm_get_dev_t);
386
387/*
388 * Add a device to the list, or just increment the usage count if
389 * it's already present.
390 */
391int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
392		  struct dm_dev **result)
393{
394	int r;
395	dev_t dev;
396	struct dm_dev_internal *dd;
397	struct dm_table *t = ti->table;
398
399	BUG_ON(!t);
400
401	dev = dm_get_dev_t(path);
402	if (!dev)
403		return -ENODEV;
404
405	dd = find_device(&t->devices, dev);
406	if (!dd) {
407		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
408		if (!dd)
409			return -ENOMEM;
410
411		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
412			kfree(dd);
413			return r;
414		}
415
416		atomic_set(&dd->count, 0);
417		list_add(&dd->list, &t->devices);
418
419	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
420		r = upgrade_mode(dd, mode, t->md);
421		if (r)
422			return r;
423	}
424	atomic_inc(&dd->count);
425
426	*result = dd->dm_dev;
427	return 0;
428}
429EXPORT_SYMBOL(dm_get_device);
430
431static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
432				sector_t start, sector_t len, void *data)
433{
434	struct queue_limits *limits = data;
435	struct block_device *bdev = dev->bdev;
436	struct request_queue *q = bdev_get_queue(bdev);
437	char b[BDEVNAME_SIZE];
438
439	if (unlikely(!q)) {
440		DMWARN("%s: Cannot set limits for nonexistent device %s",
441		       dm_device_name(ti->table->md), bdevname(bdev, b));
442		return 0;
443	}
444
445	if (bdev_stack_limits(limits, bdev, start) < 0)
446		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
447		       "physical_block_size=%u, logical_block_size=%u, "
448		       "alignment_offset=%u, start=%llu",
449		       dm_device_name(ti->table->md), bdevname(bdev, b),
450		       q->limits.physical_block_size,
451		       q->limits.logical_block_size,
452		       q->limits.alignment_offset,
453		       (unsigned long long) start << SECTOR_SHIFT);
454
455	return 0;
456}
457
458/*
459 * Decrement a device's use count and remove it if necessary.
460 */
461void dm_put_device(struct dm_target *ti, struct dm_dev *d)
462{
463	int found = 0;
464	struct list_head *devices = &ti->table->devices;
465	struct dm_dev_internal *dd;
466
467	list_for_each_entry(dd, devices, list) {
468		if (dd->dm_dev == d) {
469			found = 1;
470			break;
471		}
472	}
473	if (!found) {
474		DMWARN("%s: device %s not in table devices list",
475		       dm_device_name(ti->table->md), d->name);
476		return;
477	}
478	if (atomic_dec_and_test(&dd->count)) {
479		dm_put_table_device(ti->table->md, d);
480		list_del(&dd->list);
481		kfree(dd);
482	}
483}
484EXPORT_SYMBOL(dm_put_device);
485
486/*
487 * Checks to see if the target joins onto the end of the table.
488 */
489static int adjoin(struct dm_table *table, struct dm_target *ti)
490{
491	struct dm_target *prev;
492
493	if (!table->num_targets)
494		return !ti->begin;
495
496	prev = &table->targets[table->num_targets - 1];
497	return (ti->begin == (prev->begin + prev->len));
498}
499
500/*
501 * Used to dynamically allocate the arg array.
502 *
503 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
504 * process messages even if some device is suspended. These messages have a
505 * small fixed number of arguments.
506 *
507 * On the other hand, dm-switch needs to process bulk data using messages and
508 * excessive use of GFP_NOIO could cause trouble.
509 */
510static char **realloc_argv(unsigned *array_size, char **old_argv)
511{
512	char **argv;
513	unsigned new_size;
514	gfp_t gfp;
515
516	if (*array_size) {
517		new_size = *array_size * 2;
518		gfp = GFP_KERNEL;
519	} else {
520		new_size = 8;
521		gfp = GFP_NOIO;
522	}
523	argv = kmalloc(new_size * sizeof(*argv), gfp);
524	if (argv) {
525		memcpy(argv, old_argv, *array_size * sizeof(*argv));
526		*array_size = new_size;
527	}
528
529	kfree(old_argv);
530	return argv;
531}
532
533/*
534 * Destructively splits up the argument list to pass to ctr.
535 */
536int dm_split_args(int *argc, char ***argvp, char *input)
537{
538	char *start, *end = input, *out, **argv = NULL;
539	unsigned array_size = 0;
540
541	*argc = 0;
542
543	if (!input) {
544		*argvp = NULL;
545		return 0;
546	}
547
548	argv = realloc_argv(&array_size, argv);
549	if (!argv)
550		return -ENOMEM;
551
552	while (1) {
553		/* Skip whitespace */
554		start = skip_spaces(end);
555
556		if (!*start)
557			break;	/* success, we hit the end */
558
559		/* 'out' is used to remove any back-quotes */
560		end = out = start;
561		while (*end) {
562			/* Everything apart from '\0' can be quoted */
563			if (*end == '\\' && *(end + 1)) {
564				*out++ = *(end + 1);
565				end += 2;
566				continue;
567			}
568
569			if (isspace(*end))
570				break;	/* end of token */
571
572			*out++ = *end++;
573		}
574
575		/* have we already filled the array ? */
576		if ((*argc + 1) > array_size) {
577			argv = realloc_argv(&array_size, argv);
578			if (!argv)
579				return -ENOMEM;
580		}
581
582		/* we know this is whitespace */
583		if (*end)
584			end++;
585
586		/* terminate the string and put it in the array */
587		*out = '\0';
588		argv[*argc] = start;
589		(*argc)++;
590	}
591
592	*argvp = argv;
593	return 0;
594}
595
596/*
597 * Impose necessary and sufficient conditions on a devices's table such
598 * that any incoming bio which respects its logical_block_size can be
599 * processed successfully.  If it falls across the boundary between
600 * two or more targets, the size of each piece it gets split into must
601 * be compatible with the logical_block_size of the target processing it.
602 */
603static int validate_hardware_logical_block_alignment(struct dm_table *table,
604						 struct queue_limits *limits)
605{
606	/*
607	 * This function uses arithmetic modulo the logical_block_size
608	 * (in units of 512-byte sectors).
609	 */
610	unsigned short device_logical_block_size_sects =
611		limits->logical_block_size >> SECTOR_SHIFT;
612
613	/*
614	 * Offset of the start of the next table entry, mod logical_block_size.
615	 */
616	unsigned short next_target_start = 0;
617
618	/*
619	 * Given an aligned bio that extends beyond the end of a
620	 * target, how many sectors must the next target handle?
621	 */
622	unsigned short remaining = 0;
623
624	struct dm_target *uninitialized_var(ti);
625	struct queue_limits ti_limits;
626	unsigned i = 0;
627
628	/*
629	 * Check each entry in the table in turn.
630	 */
631	while (i < dm_table_get_num_targets(table)) {
632		ti = dm_table_get_target(table, i++);
633
634		blk_set_stacking_limits(&ti_limits);
635
636		/* combine all target devices' limits */
637		if (ti->type->iterate_devices)
638			ti->type->iterate_devices(ti, dm_set_device_limits,
639						  &ti_limits);
640
641		/*
642		 * If the remaining sectors fall entirely within this
643		 * table entry are they compatible with its logical_block_size?
644		 */
645		if (remaining < ti->len &&
646		    remaining & ((ti_limits.logical_block_size >>
647				  SECTOR_SHIFT) - 1))
648			break;	/* Error */
649
650		next_target_start =
651		    (unsigned short) ((next_target_start + ti->len) &
652				      (device_logical_block_size_sects - 1));
653		remaining = next_target_start ?
654		    device_logical_block_size_sects - next_target_start : 0;
655	}
656
657	if (remaining) {
658		DMWARN("%s: table line %u (start sect %llu len %llu) "
659		       "not aligned to h/w logical block size %u",
660		       dm_device_name(table->md), i,
661		       (unsigned long long) ti->begin,
662		       (unsigned long long) ti->len,
663		       limits->logical_block_size);
664		return -EINVAL;
665	}
666
667	return 0;
668}
669
670int dm_table_add_target(struct dm_table *t, const char *type,
671			sector_t start, sector_t len, char *params)
672{
673	int r = -EINVAL, argc;
674	char **argv;
675	struct dm_target *tgt;
676
677	if (t->singleton) {
678		DMERR("%s: target type %s must appear alone in table",
679		      dm_device_name(t->md), t->targets->type->name);
680		return -EINVAL;
681	}
682
683	BUG_ON(t->num_targets >= t->num_allocated);
684
685	tgt = t->targets + t->num_targets;
686	memset(tgt, 0, sizeof(*tgt));
687
688	if (!len) {
689		DMERR("%s: zero-length target", dm_device_name(t->md));
690		return -EINVAL;
691	}
692
693	tgt->type = dm_get_target_type(type);
694	if (!tgt->type) {
695		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
696		      type);
697		return -EINVAL;
698	}
699
700	if (dm_target_needs_singleton(tgt->type)) {
701		if (t->num_targets) {
702			DMERR("%s: target type %s must appear alone in table",
703			      dm_device_name(t->md), type);
704			return -EINVAL;
705		}
706		t->singleton = 1;
707	}
708
709	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
710		DMERR("%s: target type %s may not be included in read-only tables",
711		      dm_device_name(t->md), type);
712		return -EINVAL;
713	}
714
715	if (t->immutable_target_type) {
716		if (t->immutable_target_type != tgt->type) {
717			DMERR("%s: immutable target type %s cannot be mixed with other target types",
718			      dm_device_name(t->md), t->immutable_target_type->name);
719			return -EINVAL;
720		}
721	} else if (dm_target_is_immutable(tgt->type)) {
722		if (t->num_targets) {
723			DMERR("%s: immutable target type %s cannot be mixed with other target types",
724			      dm_device_name(t->md), tgt->type->name);
725			return -EINVAL;
726		}
727		t->immutable_target_type = tgt->type;
728	}
729
730	tgt->table = t;
731	tgt->begin = start;
732	tgt->len = len;
733	tgt->error = "Unknown error";
734
735	/*
736	 * Does this target adjoin the previous one ?
737	 */
738	if (!adjoin(t, tgt)) {
739		tgt->error = "Gap in table";
740		r = -EINVAL;
741		goto bad;
742	}
743
744	r = dm_split_args(&argc, &argv, params);
745	if (r) {
746		tgt->error = "couldn't split parameters (insufficient memory)";
747		goto bad;
748	}
749
750	r = tgt->type->ctr(tgt, argc, argv);
751	kfree(argv);
752	if (r)
753		goto bad;
754
755	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
756
757	if (!tgt->num_discard_bios && tgt->discards_supported)
758		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
759		       dm_device_name(t->md), type);
760
761	return 0;
762
763 bad:
764	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
765	dm_put_target_type(tgt->type);
766	return r;
767}
768
769/*
770 * Target argument parsing helpers.
771 */
772static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
773			     unsigned *value, char **error, unsigned grouped)
774{
775	const char *arg_str = dm_shift_arg(arg_set);
776	char dummy;
777
778	if (!arg_str ||
779	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
780	    (*value < arg->min) ||
781	    (*value > arg->max) ||
782	    (grouped && arg_set->argc < *value)) {
783		*error = arg->error;
784		return -EINVAL;
785	}
786
787	return 0;
788}
789
790int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
791		unsigned *value, char **error)
792{
793	return validate_next_arg(arg, arg_set, value, error, 0);
794}
795EXPORT_SYMBOL(dm_read_arg);
796
797int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
798		      unsigned *value, char **error)
799{
800	return validate_next_arg(arg, arg_set, value, error, 1);
801}
802EXPORT_SYMBOL(dm_read_arg_group);
803
804const char *dm_shift_arg(struct dm_arg_set *as)
805{
806	char *r;
807
808	if (as->argc) {
809		as->argc--;
810		r = *as->argv;
811		as->argv++;
812		return r;
813	}
814
815	return NULL;
816}
817EXPORT_SYMBOL(dm_shift_arg);
818
819void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
820{
821	BUG_ON(as->argc < num_args);
822	as->argc -= num_args;
823	as->argv += num_args;
824}
825EXPORT_SYMBOL(dm_consume_args);
826
827static bool __table_type_request_based(unsigned table_type)
828{
829	return (table_type == DM_TYPE_REQUEST_BASED ||
830		table_type == DM_TYPE_MQ_REQUEST_BASED);
831}
832
833static int dm_table_set_type(struct dm_table *t)
834{
835	unsigned i;
836	unsigned bio_based = 0, request_based = 0, hybrid = 0;
837	bool use_blk_mq = false;
838	struct dm_target *tgt;
839	struct dm_dev_internal *dd;
840	struct list_head *devices;
841	unsigned live_md_type = dm_get_md_type(t->md);
842
843	for (i = 0; i < t->num_targets; i++) {
844		tgt = t->targets + i;
845		if (dm_target_hybrid(tgt))
846			hybrid = 1;
847		else if (dm_target_request_based(tgt))
848			request_based = 1;
849		else
850			bio_based = 1;
851
852		if (bio_based && request_based) {
853			DMWARN("Inconsistent table: different target types"
854			       " can't be mixed up");
855			return -EINVAL;
856		}
857	}
858
859	if (hybrid && !bio_based && !request_based) {
860		/*
861		 * The targets can work either way.
862		 * Determine the type from the live device.
863		 * Default to bio-based if device is new.
864		 */
865		if (__table_type_request_based(live_md_type))
866			request_based = 1;
867		else
868			bio_based = 1;
869	}
870
871	if (bio_based) {
872		/* We must use this table as bio-based */
873		t->type = DM_TYPE_BIO_BASED;
874		return 0;
875	}
876
877	BUG_ON(!request_based); /* No targets in this table */
878
879	/*
880	 * Request-based dm supports only tables that have a single target now.
881	 * To support multiple targets, request splitting support is needed,
882	 * and that needs lots of changes in the block-layer.
883	 * (e.g. request completion process for partial completion.)
884	 */
885	if (t->num_targets > 1) {
886		DMWARN("Request-based dm doesn't support multiple targets yet");
887		return -EINVAL;
888	}
889
890	/* Non-request-stackable devices can't be used for request-based dm */
891	devices = dm_table_get_devices(t);
892	list_for_each_entry(dd, devices, list) {
893		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
894
895		if (!blk_queue_stackable(q)) {
896			DMERR("table load rejected: including"
897			      " non-request-stackable devices");
898			return -EINVAL;
899		}
900
901		if (q->mq_ops)
902			use_blk_mq = true;
903	}
904
905	if (use_blk_mq) {
906		/* verify _all_ devices in the table are blk-mq devices */
907		list_for_each_entry(dd, devices, list)
908			if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
909				DMERR("table load rejected: not all devices"
910				      " are blk-mq request-stackable");
911				return -EINVAL;
912			}
913		t->type = DM_TYPE_MQ_REQUEST_BASED;
914
915	} else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
916		/* inherit live MD type */
917		t->type = live_md_type;
918
919	} else
920		t->type = DM_TYPE_REQUEST_BASED;
921
922	return 0;
923}
924
925unsigned dm_table_get_type(struct dm_table *t)
926{
927	return t->type;
928}
929
930struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
931{
932	return t->immutable_target_type;
933}
934
935bool dm_table_request_based(struct dm_table *t)
936{
937	return __table_type_request_based(dm_table_get_type(t));
938}
939
940bool dm_table_mq_request_based(struct dm_table *t)
941{
942	return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
943}
944
945static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
946{
947	unsigned type = dm_table_get_type(t);
948	unsigned per_bio_data_size = 0;
949	struct dm_target *tgt;
950	unsigned i;
951
952	if (unlikely(type == DM_TYPE_NONE)) {
953		DMWARN("no table type is set, can't allocate mempools");
954		return -EINVAL;
955	}
956
957	if (type == DM_TYPE_BIO_BASED)
958		for (i = 0; i < t->num_targets; i++) {
959			tgt = t->targets + i;
960			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
961		}
962
963	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
964	if (!t->mempools)
965		return -ENOMEM;
966
967	return 0;
968}
969
970void dm_table_free_md_mempools(struct dm_table *t)
971{
972	dm_free_md_mempools(t->mempools);
973	t->mempools = NULL;
974}
975
976struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
977{
978	return t->mempools;
979}
980
981static int setup_indexes(struct dm_table *t)
982{
983	int i;
984	unsigned int total = 0;
985	sector_t *indexes;
986
987	/* allocate the space for *all* the indexes */
988	for (i = t->depth - 2; i >= 0; i--) {
989		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
990		total += t->counts[i];
991	}
992
993	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
994	if (!indexes)
995		return -ENOMEM;
996
997	/* set up internal nodes, bottom-up */
998	for (i = t->depth - 2; i >= 0; i--) {
999		t->index[i] = indexes;
1000		indexes += (KEYS_PER_NODE * t->counts[i]);
1001		setup_btree_index(i, t);
1002	}
1003
1004	return 0;
1005}
1006
1007/*
1008 * Builds the btree to index the map.
1009 */
1010static int dm_table_build_index(struct dm_table *t)
1011{
1012	int r = 0;
1013	unsigned int leaf_nodes;
1014
1015	/* how many indexes will the btree have ? */
1016	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1017	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1018
1019	/* leaf layer has already been set up */
1020	t->counts[t->depth - 1] = leaf_nodes;
1021	t->index[t->depth - 1] = t->highs;
1022
1023	if (t->depth >= 2)
1024		r = setup_indexes(t);
1025
1026	return r;
1027}
1028
1029static bool integrity_profile_exists(struct gendisk *disk)
1030{
1031	return !!blk_get_integrity(disk);
1032}
1033
1034/*
1035 * Get a disk whose integrity profile reflects the table's profile.
1036 * Returns NULL if integrity support was inconsistent or unavailable.
1037 */
1038static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1039{
1040	struct list_head *devices = dm_table_get_devices(t);
1041	struct dm_dev_internal *dd = NULL;
1042	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1043
1044	list_for_each_entry(dd, devices, list) {
1045		template_disk = dd->dm_dev->bdev->bd_disk;
1046		if (!integrity_profile_exists(template_disk))
1047			goto no_integrity;
1048		else if (prev_disk &&
1049			 blk_integrity_compare(prev_disk, template_disk) < 0)
1050			goto no_integrity;
1051		prev_disk = template_disk;
1052	}
1053
1054	return template_disk;
1055
1056no_integrity:
1057	if (prev_disk)
1058		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1059		       dm_device_name(t->md),
1060		       prev_disk->disk_name,
1061		       template_disk->disk_name);
1062	return NULL;
1063}
1064
1065/*
1066 * Register the mapped device for blk_integrity support if the
1067 * underlying devices have an integrity profile.  But all devices may
1068 * not have matching profiles (checking all devices isn't reliable
1069 * during table load because this table may use other DM device(s) which
1070 * must be resumed before they will have an initialized integity
1071 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1072 * profile validation: First pass during table load, final pass during
1073 * resume.
1074 */
1075static int dm_table_register_integrity(struct dm_table *t)
1076{
1077	struct mapped_device *md = t->md;
1078	struct gendisk *template_disk = NULL;
1079
1080	template_disk = dm_table_get_integrity_disk(t);
1081	if (!template_disk)
1082		return 0;
1083
1084	if (!integrity_profile_exists(dm_disk(md))) {
1085		t->integrity_supported = 1;
1086		/*
1087		 * Register integrity profile during table load; we can do
1088		 * this because the final profile must match during resume.
1089		 */
1090		blk_integrity_register(dm_disk(md),
1091				       blk_get_integrity(template_disk));
1092		return 0;
1093	}
1094
1095	/*
1096	 * If DM device already has an initialized integrity
1097	 * profile the new profile should not conflict.
1098	 */
1099	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1100		DMWARN("%s: conflict with existing integrity profile: "
1101		       "%s profile mismatch",
1102		       dm_device_name(t->md),
1103		       template_disk->disk_name);
1104		return 1;
1105	}
1106
1107	/* Preserve existing integrity profile */
1108	t->integrity_supported = 1;
1109	return 0;
1110}
1111
1112/*
1113 * Prepares the table for use by building the indices,
1114 * setting the type, and allocating mempools.
1115 */
1116int dm_table_complete(struct dm_table *t)
1117{
1118	int r;
1119
1120	r = dm_table_set_type(t);
1121	if (r) {
1122		DMERR("unable to set table type");
1123		return r;
1124	}
1125
1126	r = dm_table_build_index(t);
1127	if (r) {
1128		DMERR("unable to build btrees");
1129		return r;
1130	}
1131
1132	r = dm_table_register_integrity(t);
1133	if (r) {
1134		DMERR("could not register integrity profile.");
1135		return r;
1136	}
1137
1138	r = dm_table_alloc_md_mempools(t, t->md);
1139	if (r)
1140		DMERR("unable to allocate mempools");
1141
1142	return r;
1143}
1144
1145static DEFINE_MUTEX(_event_lock);
1146void dm_table_event_callback(struct dm_table *t,
1147			     void (*fn)(void *), void *context)
1148{
1149	mutex_lock(&_event_lock);
1150	t->event_fn = fn;
1151	t->event_context = context;
1152	mutex_unlock(&_event_lock);
1153}
1154
1155void dm_table_event(struct dm_table *t)
1156{
1157	/*
1158	 * You can no longer call dm_table_event() from interrupt
1159	 * context, use a bottom half instead.
1160	 */
1161	BUG_ON(in_interrupt());
1162
1163	mutex_lock(&_event_lock);
1164	if (t->event_fn)
1165		t->event_fn(t->event_context);
1166	mutex_unlock(&_event_lock);
1167}
1168EXPORT_SYMBOL(dm_table_event);
1169
1170sector_t dm_table_get_size(struct dm_table *t)
1171{
1172	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1173}
1174EXPORT_SYMBOL(dm_table_get_size);
1175
1176struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1177{
1178	if (index >= t->num_targets)
1179		return NULL;
1180
1181	return t->targets + index;
1182}
1183
1184/*
1185 * Search the btree for the correct target.
1186 *
1187 * Caller should check returned pointer with dm_target_is_valid()
1188 * to trap I/O beyond end of device.
1189 */
1190struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1191{
1192	unsigned int l, n = 0, k = 0;
1193	sector_t *node;
1194
1195	for (l = 0; l < t->depth; l++) {
1196		n = get_child(n, k);
1197		node = get_node(t, l, n);
1198
1199		for (k = 0; k < KEYS_PER_NODE; k++)
1200			if (node[k] >= sector)
1201				break;
1202	}
1203
1204	return &t->targets[(KEYS_PER_NODE * n) + k];
1205}
1206
1207static int count_device(struct dm_target *ti, struct dm_dev *dev,
1208			sector_t start, sector_t len, void *data)
1209{
1210	unsigned *num_devices = data;
1211
1212	(*num_devices)++;
1213
1214	return 0;
1215}
1216
1217/*
1218 * Check whether a table has no data devices attached using each
1219 * target's iterate_devices method.
1220 * Returns false if the result is unknown because a target doesn't
1221 * support iterate_devices.
1222 */
1223bool dm_table_has_no_data_devices(struct dm_table *table)
1224{
1225	struct dm_target *uninitialized_var(ti);
1226	unsigned i = 0, num_devices = 0;
1227
1228	while (i < dm_table_get_num_targets(table)) {
1229		ti = dm_table_get_target(table, i++);
1230
1231		if (!ti->type->iterate_devices)
1232			return false;
1233
1234		ti->type->iterate_devices(ti, count_device, &num_devices);
1235		if (num_devices)
1236			return false;
1237	}
1238
1239	return true;
1240}
1241
1242/*
1243 * Establish the new table's queue_limits and validate them.
1244 */
1245int dm_calculate_queue_limits(struct dm_table *table,
1246			      struct queue_limits *limits)
1247{
1248	struct dm_target *uninitialized_var(ti);
1249	struct queue_limits ti_limits;
1250	unsigned i = 0;
1251
1252	blk_set_stacking_limits(limits);
1253
1254	while (i < dm_table_get_num_targets(table)) {
1255		blk_set_stacking_limits(&ti_limits);
1256
1257		ti = dm_table_get_target(table, i++);
1258
1259		if (!ti->type->iterate_devices)
1260			goto combine_limits;
1261
1262		/*
1263		 * Combine queue limits of all the devices this target uses.
1264		 */
1265		ti->type->iterate_devices(ti, dm_set_device_limits,
1266					  &ti_limits);
1267
1268		/* Set I/O hints portion of queue limits */
1269		if (ti->type->io_hints)
1270			ti->type->io_hints(ti, &ti_limits);
1271
1272		/*
1273		 * Check each device area is consistent with the target's
1274		 * overall queue limits.
1275		 */
1276		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1277					      &ti_limits))
1278			return -EINVAL;
1279
1280combine_limits:
1281		/*
1282		 * Merge this target's queue limits into the overall limits
1283		 * for the table.
1284		 */
1285		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1286			DMWARN("%s: adding target device "
1287			       "(start sect %llu len %llu) "
1288			       "caused an alignment inconsistency",
1289			       dm_device_name(table->md),
1290			       (unsigned long long) ti->begin,
1291			       (unsigned long long) ti->len);
1292	}
1293
1294	return validate_hardware_logical_block_alignment(table, limits);
1295}
1296
1297/*
1298 * Verify that all devices have an integrity profile that matches the
1299 * DM device's registered integrity profile.  If the profiles don't
1300 * match then unregister the DM device's integrity profile.
1301 */
1302static void dm_table_verify_integrity(struct dm_table *t)
1303{
1304	struct gendisk *template_disk = NULL;
1305
1306	if (t->integrity_supported) {
1307		/*
1308		 * Verify that the original integrity profile
1309		 * matches all the devices in this table.
1310		 */
1311		template_disk = dm_table_get_integrity_disk(t);
1312		if (template_disk &&
1313		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1314			return;
1315	}
1316
1317	if (integrity_profile_exists(dm_disk(t->md))) {
1318		DMWARN("%s: unable to establish an integrity profile",
1319		       dm_device_name(t->md));
1320		blk_integrity_unregister(dm_disk(t->md));
1321	}
1322}
1323
1324static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1325				sector_t start, sector_t len, void *data)
1326{
1327	unsigned flush = (*(unsigned *)data);
1328	struct request_queue *q = bdev_get_queue(dev->bdev);
1329
1330	return q && (q->flush_flags & flush);
1331}
1332
1333static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1334{
1335	struct dm_target *ti;
1336	unsigned i = 0;
1337
1338	/*
1339	 * Require at least one underlying device to support flushes.
1340	 * t->devices includes internal dm devices such as mirror logs
1341	 * so we need to use iterate_devices here, which targets
1342	 * supporting flushes must provide.
1343	 */
1344	while (i < dm_table_get_num_targets(t)) {
1345		ti = dm_table_get_target(t, i++);
1346
1347		if (!ti->num_flush_bios)
1348			continue;
1349
1350		if (ti->flush_supported)
1351			return true;
1352
1353		if (ti->type->iterate_devices &&
1354		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1355			return true;
1356	}
1357
1358	return false;
1359}
1360
1361static bool dm_table_discard_zeroes_data(struct dm_table *t)
1362{
1363	struct dm_target *ti;
1364	unsigned i = 0;
1365
1366	/* Ensure that all targets supports discard_zeroes_data. */
1367	while (i < dm_table_get_num_targets(t)) {
1368		ti = dm_table_get_target(t, i++);
1369
1370		if (ti->discard_zeroes_data_unsupported)
1371			return false;
1372	}
1373
1374	return true;
1375}
1376
1377static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1378			    sector_t start, sector_t len, void *data)
1379{
1380	struct request_queue *q = bdev_get_queue(dev->bdev);
1381
1382	return q && blk_queue_nonrot(q);
1383}
1384
1385static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1386			     sector_t start, sector_t len, void *data)
1387{
1388	struct request_queue *q = bdev_get_queue(dev->bdev);
1389
1390	return q && !blk_queue_add_random(q);
1391}
1392
1393static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1394				   sector_t start, sector_t len, void *data)
1395{
1396	struct request_queue *q = bdev_get_queue(dev->bdev);
1397
1398	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1399}
1400
1401static bool dm_table_all_devices_attribute(struct dm_table *t,
1402					   iterate_devices_callout_fn func)
1403{
1404	struct dm_target *ti;
1405	unsigned i = 0;
1406
1407	while (i < dm_table_get_num_targets(t)) {
1408		ti = dm_table_get_target(t, i++);
1409
1410		if (!ti->type->iterate_devices ||
1411		    !ti->type->iterate_devices(ti, func, NULL))
1412			return false;
1413	}
1414
1415	return true;
1416}
1417
1418static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1419					 sector_t start, sector_t len, void *data)
1420{
1421	struct request_queue *q = bdev_get_queue(dev->bdev);
1422
1423	return q && !q->limits.max_write_same_sectors;
1424}
1425
1426static bool dm_table_supports_write_same(struct dm_table *t)
1427{
1428	struct dm_target *ti;
1429	unsigned i = 0;
1430
1431	while (i < dm_table_get_num_targets(t)) {
1432		ti = dm_table_get_target(t, i++);
1433
1434		if (!ti->num_write_same_bios)
1435			return false;
1436
1437		if (!ti->type->iterate_devices ||
1438		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1439			return false;
1440	}
1441
1442	return true;
1443}
1444
1445static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1446				  sector_t start, sector_t len, void *data)
1447{
1448	struct request_queue *q = bdev_get_queue(dev->bdev);
1449
1450	return q && blk_queue_discard(q);
1451}
1452
1453static bool dm_table_supports_discards(struct dm_table *t)
1454{
1455	struct dm_target *ti;
1456	unsigned i = 0;
1457
1458	/*
1459	 * Unless any target used by the table set discards_supported,
1460	 * require at least one underlying device to support discards.
1461	 * t->devices includes internal dm devices such as mirror logs
1462	 * so we need to use iterate_devices here, which targets
1463	 * supporting discard selectively must provide.
1464	 */
1465	while (i < dm_table_get_num_targets(t)) {
1466		ti = dm_table_get_target(t, i++);
1467
1468		if (!ti->num_discard_bios)
1469			continue;
1470
1471		if (ti->discards_supported)
1472			return true;
1473
1474		if (ti->type->iterate_devices &&
1475		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1476			return true;
1477	}
1478
1479	return false;
1480}
1481
1482void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1483			       struct queue_limits *limits)
1484{
1485	unsigned flush = 0;
1486
1487	/*
1488	 * Copy table's limits to the DM device's request_queue
1489	 */
1490	q->limits = *limits;
1491
1492	if (!dm_table_supports_discards(t))
1493		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1494	else
1495		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1496
1497	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1498		flush |= REQ_FLUSH;
1499		if (dm_table_supports_flush(t, REQ_FUA))
1500			flush |= REQ_FUA;
1501	}
1502	blk_queue_flush(q, flush);
1503
1504	if (!dm_table_discard_zeroes_data(t))
1505		q->limits.discard_zeroes_data = 0;
1506
1507	/* Ensure that all underlying devices are non-rotational. */
1508	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1509		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1510	else
1511		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1512
1513	if (!dm_table_supports_write_same(t))
1514		q->limits.max_write_same_sectors = 0;
1515
1516	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1517		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1518	else
1519		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1520
1521	dm_table_verify_integrity(t);
1522
1523	/*
1524	 * Determine whether or not this queue's I/O timings contribute
1525	 * to the entropy pool, Only request-based targets use this.
1526	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1527	 * have it set.
1528	 */
1529	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1530		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1531
1532	/*
1533	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1534	 * visible to other CPUs because, once the flag is set, incoming bios
1535	 * are processed by request-based dm, which refers to the queue
1536	 * settings.
1537	 * Until the flag set, bios are passed to bio-based dm and queued to
1538	 * md->deferred where queue settings are not needed yet.
1539	 * Those bios are passed to request-based dm at the resume time.
1540	 */
1541	smp_mb();
1542	if (dm_table_request_based(t))
1543		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1544}
1545
1546unsigned int dm_table_get_num_targets(struct dm_table *t)
1547{
1548	return t->num_targets;
1549}
1550
1551struct list_head *dm_table_get_devices(struct dm_table *t)
1552{
1553	return &t->devices;
1554}
1555
1556fmode_t dm_table_get_mode(struct dm_table *t)
1557{
1558	return t->mode;
1559}
1560EXPORT_SYMBOL(dm_table_get_mode);
1561
1562enum suspend_mode {
1563	PRESUSPEND,
1564	PRESUSPEND_UNDO,
1565	POSTSUSPEND,
1566};
1567
1568static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1569{
1570	int i = t->num_targets;
1571	struct dm_target *ti = t->targets;
1572
1573	while (i--) {
1574		switch (mode) {
1575		case PRESUSPEND:
1576			if (ti->type->presuspend)
1577				ti->type->presuspend(ti);
1578			break;
1579		case PRESUSPEND_UNDO:
1580			if (ti->type->presuspend_undo)
1581				ti->type->presuspend_undo(ti);
1582			break;
1583		case POSTSUSPEND:
1584			if (ti->type->postsuspend)
1585				ti->type->postsuspend(ti);
1586			break;
1587		}
1588		ti++;
1589	}
1590}
1591
1592void dm_table_presuspend_targets(struct dm_table *t)
1593{
1594	if (!t)
1595		return;
1596
1597	suspend_targets(t, PRESUSPEND);
1598}
1599
1600void dm_table_presuspend_undo_targets(struct dm_table *t)
1601{
1602	if (!t)
1603		return;
1604
1605	suspend_targets(t, PRESUSPEND_UNDO);
1606}
1607
1608void dm_table_postsuspend_targets(struct dm_table *t)
1609{
1610	if (!t)
1611		return;
1612
1613	suspend_targets(t, POSTSUSPEND);
1614}
1615
1616int dm_table_resume_targets(struct dm_table *t)
1617{
1618	int i, r = 0;
1619
1620	for (i = 0; i < t->num_targets; i++) {
1621		struct dm_target *ti = t->targets + i;
1622
1623		if (!ti->type->preresume)
1624			continue;
1625
1626		r = ti->type->preresume(ti);
1627		if (r) {
1628			DMERR("%s: %s: preresume failed, error = %d",
1629			      dm_device_name(t->md), ti->type->name, r);
1630			return r;
1631		}
1632	}
1633
1634	for (i = 0; i < t->num_targets; i++) {
1635		struct dm_target *ti = t->targets + i;
1636
1637		if (ti->type->resume)
1638			ti->type->resume(ti);
1639	}
1640
1641	return 0;
1642}
1643
1644void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1645{
1646	list_add(&cb->list, &t->target_callbacks);
1647}
1648EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1649
1650int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1651{
1652	struct dm_dev_internal *dd;
1653	struct list_head *devices = dm_table_get_devices(t);
1654	struct dm_target_callbacks *cb;
1655	int r = 0;
1656
1657	list_for_each_entry(dd, devices, list) {
1658		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1659		char b[BDEVNAME_SIZE];
1660
1661		if (likely(q))
1662			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1663		else
1664			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1665				     dm_device_name(t->md),
1666				     bdevname(dd->dm_dev->bdev, b));
1667	}
1668
1669	list_for_each_entry(cb, &t->target_callbacks, list)
1670		if (cb->congested_fn)
1671			r |= cb->congested_fn(cb, bdi_bits);
1672
1673	return r;
1674}
1675
1676struct mapped_device *dm_table_get_md(struct dm_table *t)
1677{
1678	return t->md;
1679}
1680EXPORT_SYMBOL(dm_table_get_md);
1681
1682void dm_table_run_md_queue_async(struct dm_table *t)
1683{
1684	struct mapped_device *md;
1685	struct request_queue *queue;
1686	unsigned long flags;
1687
1688	if (!dm_table_request_based(t))
1689		return;
1690
1691	md = dm_table_get_md(t);
1692	queue = dm_get_md_queue(md);
1693	if (queue) {
1694		if (queue->mq_ops)
1695			blk_mq_run_hw_queues(queue, true);
1696		else {
1697			spin_lock_irqsave(queue->queue_lock, flags);
1698			blk_run_queue_async(queue);
1699			spin_unlock_irqrestore(queue->queue_lock, flags);
1700		}
1701	}
1702}
1703EXPORT_SYMBOL(dm_table_run_md_queue_async);
1704
1705