1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16 
17 #include "rrpc.h"
18 
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21 
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 				struct nvm_rq *rqd, unsigned long flags);
24 
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26 		for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 			(i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28 
rrpc_page_invalidate(struct rrpc * rrpc,struct rrpc_addr * a)29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31 	struct rrpc_block *rblk = a->rblk;
32 	unsigned int pg_offset;
33 
34 	lockdep_assert_held(&rrpc->rev_lock);
35 
36 	if (a->addr == ADDR_EMPTY || !rblk)
37 		return;
38 
39 	spin_lock(&rblk->lock);
40 
41 	div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42 	WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 	rblk->nr_invalid_pages++;
44 
45 	spin_unlock(&rblk->lock);
46 
47 	rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49 
rrpc_invalidate_range(struct rrpc * rrpc,sector_t slba,unsigned len)50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 								unsigned len)
52 {
53 	sector_t i;
54 
55 	spin_lock(&rrpc->rev_lock);
56 	for (i = slba; i < slba + len; i++) {
57 		struct rrpc_addr *gp = &rrpc->trans_map[i];
58 
59 		rrpc_page_invalidate(rrpc, gp);
60 		gp->rblk = NULL;
61 	}
62 	spin_unlock(&rrpc->rev_lock);
63 }
64 
rrpc_inflight_laddr_acquire(struct rrpc * rrpc,sector_t laddr,unsigned int pages)65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 					sector_t laddr, unsigned int pages)
67 {
68 	struct nvm_rq *rqd;
69 	struct rrpc_inflight_rq *inf;
70 
71 	rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 	if (!rqd)
73 		return ERR_PTR(-ENOMEM);
74 
75 	inf = rrpc_get_inflight_rq(rqd);
76 	if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 		mempool_free(rqd, rrpc->rq_pool);
78 		return NULL;
79 	}
80 
81 	return rqd;
82 }
83 
rrpc_inflight_laddr_release(struct rrpc * rrpc,struct nvm_rq * rqd)84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86 	struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87 
88 	rrpc_unlock_laddr(rrpc, inf);
89 
90 	mempool_free(rqd, rrpc->rq_pool);
91 }
92 
rrpc_discard(struct rrpc * rrpc,struct bio * bio)93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95 	sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 	sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 	struct nvm_rq *rqd;
98 
99 	do {
100 		rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 		schedule();
102 	} while (!rqd);
103 
104 	if (IS_ERR(rqd)) {
105 		pr_err("rrpc: unable to acquire inflight IO\n");
106 		bio_io_error(bio);
107 		return;
108 	}
109 
110 	rrpc_invalidate_range(rrpc, slba, len);
111 	rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113 
block_is_full(struct rrpc * rrpc,struct rrpc_block * rblk)114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116 	return (rblk->next_page == rrpc->dev->pgs_per_blk);
117 }
118 
block_to_addr(struct rrpc * rrpc,struct rrpc_block * rblk)119 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
120 {
121 	struct nvm_block *blk = rblk->parent;
122 
123 	return blk->id * rrpc->dev->pgs_per_blk;
124 }
125 
linear_to_generic_addr(struct nvm_dev * dev,struct ppa_addr r)126 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
127 							struct ppa_addr r)
128 {
129 	struct ppa_addr l;
130 	int secs, pgs, blks, luns;
131 	sector_t ppa = r.ppa;
132 
133 	l.ppa = 0;
134 
135 	div_u64_rem(ppa, dev->sec_per_pg, &secs);
136 	l.g.sec = secs;
137 
138 	sector_div(ppa, dev->sec_per_pg);
139 	div_u64_rem(ppa, dev->sec_per_blk, &pgs);
140 	l.g.pg = pgs;
141 
142 	sector_div(ppa, dev->pgs_per_blk);
143 	div_u64_rem(ppa, dev->blks_per_lun, &blks);
144 	l.g.blk = blks;
145 
146 	sector_div(ppa, dev->blks_per_lun);
147 	div_u64_rem(ppa, dev->luns_per_chnl, &luns);
148 	l.g.lun = luns;
149 
150 	sector_div(ppa, dev->luns_per_chnl);
151 	l.g.ch = ppa;
152 
153 	return l;
154 }
155 
rrpc_ppa_to_gaddr(struct nvm_dev * dev,u64 addr)156 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
157 {
158 	struct ppa_addr paddr;
159 
160 	paddr.ppa = addr;
161 	return linear_to_generic_addr(dev, paddr);
162 }
163 
164 /* requires lun->lock taken */
rrpc_set_lun_cur(struct rrpc_lun * rlun,struct rrpc_block * rblk)165 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
166 {
167 	struct rrpc *rrpc = rlun->rrpc;
168 
169 	BUG_ON(!rblk);
170 
171 	if (rlun->cur) {
172 		spin_lock(&rlun->cur->lock);
173 		WARN_ON(!block_is_full(rrpc, rlun->cur));
174 		spin_unlock(&rlun->cur->lock);
175 	}
176 	rlun->cur = rblk;
177 }
178 
rrpc_get_blk(struct rrpc * rrpc,struct rrpc_lun * rlun,unsigned long flags)179 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
180 							unsigned long flags)
181 {
182 	struct nvm_block *blk;
183 	struct rrpc_block *rblk;
184 
185 	blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
186 	if (!blk)
187 		return NULL;
188 
189 	rblk = &rlun->blocks[blk->id];
190 	blk->priv = rblk;
191 
192 	bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
193 	rblk->next_page = 0;
194 	rblk->nr_invalid_pages = 0;
195 	atomic_set(&rblk->data_cmnt_size, 0);
196 
197 	return rblk;
198 }
199 
rrpc_put_blk(struct rrpc * rrpc,struct rrpc_block * rblk)200 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
201 {
202 	nvm_put_blk(rrpc->dev, rblk->parent);
203 }
204 
rrpc_put_blks(struct rrpc * rrpc)205 static void rrpc_put_blks(struct rrpc *rrpc)
206 {
207 	struct rrpc_lun *rlun;
208 	int i;
209 
210 	for (i = 0; i < rrpc->nr_luns; i++) {
211 		rlun = &rrpc->luns[i];
212 		if (rlun->cur)
213 			rrpc_put_blk(rrpc, rlun->cur);
214 		if (rlun->gc_cur)
215 			rrpc_put_blk(rrpc, rlun->gc_cur);
216 	}
217 }
218 
get_next_lun(struct rrpc * rrpc)219 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
220 {
221 	int next = atomic_inc_return(&rrpc->next_lun);
222 
223 	return &rrpc->luns[next % rrpc->nr_luns];
224 }
225 
rrpc_gc_kick(struct rrpc * rrpc)226 static void rrpc_gc_kick(struct rrpc *rrpc)
227 {
228 	struct rrpc_lun *rlun;
229 	unsigned int i;
230 
231 	for (i = 0; i < rrpc->nr_luns; i++) {
232 		rlun = &rrpc->luns[i];
233 		queue_work(rrpc->krqd_wq, &rlun->ws_gc);
234 	}
235 }
236 
237 /*
238  * timed GC every interval.
239  */
rrpc_gc_timer(unsigned long data)240 static void rrpc_gc_timer(unsigned long data)
241 {
242 	struct rrpc *rrpc = (struct rrpc *)data;
243 
244 	rrpc_gc_kick(rrpc);
245 	mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
246 }
247 
rrpc_end_sync_bio(struct bio * bio)248 static void rrpc_end_sync_bio(struct bio *bio)
249 {
250 	struct completion *waiting = bio->bi_private;
251 
252 	if (bio->bi_error)
253 		pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
254 
255 	complete(waiting);
256 }
257 
258 /*
259  * rrpc_move_valid_pages -- migrate live data off the block
260  * @rrpc: the 'rrpc' structure
261  * @block: the block from which to migrate live pages
262  *
263  * Description:
264  *   GC algorithms may call this function to migrate remaining live
265  *   pages off the block prior to erasing it. This function blocks
266  *   further execution until the operation is complete.
267  */
rrpc_move_valid_pages(struct rrpc * rrpc,struct rrpc_block * rblk)268 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
269 {
270 	struct request_queue *q = rrpc->dev->q;
271 	struct rrpc_rev_addr *rev;
272 	struct nvm_rq *rqd;
273 	struct bio *bio;
274 	struct page *page;
275 	int slot;
276 	int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
277 	u64 phys_addr;
278 	DECLARE_COMPLETION_ONSTACK(wait);
279 
280 	if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
281 		return 0;
282 
283 	bio = bio_alloc(GFP_NOIO, 1);
284 	if (!bio) {
285 		pr_err("nvm: could not alloc bio to gc\n");
286 		return -ENOMEM;
287 	}
288 
289 	page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
290 
291 	while ((slot = find_first_zero_bit(rblk->invalid_pages,
292 					    nr_pgs_per_blk)) < nr_pgs_per_blk) {
293 
294 		/* Lock laddr */
295 		phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
296 
297 try:
298 		spin_lock(&rrpc->rev_lock);
299 		/* Get logical address from physical to logical table */
300 		rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
301 		/* already updated by previous regular write */
302 		if (rev->addr == ADDR_EMPTY) {
303 			spin_unlock(&rrpc->rev_lock);
304 			continue;
305 		}
306 
307 		rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
308 		if (IS_ERR_OR_NULL(rqd)) {
309 			spin_unlock(&rrpc->rev_lock);
310 			schedule();
311 			goto try;
312 		}
313 
314 		spin_unlock(&rrpc->rev_lock);
315 
316 		/* Perform read to do GC */
317 		bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
318 		bio->bi_rw = READ;
319 		bio->bi_private = &wait;
320 		bio->bi_end_io = rrpc_end_sync_bio;
321 
322 		/* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
323 		bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
324 
325 		if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
326 			pr_err("rrpc: gc read failed.\n");
327 			rrpc_inflight_laddr_release(rrpc, rqd);
328 			goto finished;
329 		}
330 		wait_for_completion_io(&wait);
331 
332 		bio_reset(bio);
333 		reinit_completion(&wait);
334 
335 		bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
336 		bio->bi_rw = WRITE;
337 		bio->bi_private = &wait;
338 		bio->bi_end_io = rrpc_end_sync_bio;
339 
340 		bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
341 
342 		/* turn the command around and write the data back to a new
343 		 * address
344 		 */
345 		if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
346 			pr_err("rrpc: gc write failed.\n");
347 			rrpc_inflight_laddr_release(rrpc, rqd);
348 			goto finished;
349 		}
350 		wait_for_completion_io(&wait);
351 
352 		rrpc_inflight_laddr_release(rrpc, rqd);
353 
354 		bio_reset(bio);
355 	}
356 
357 finished:
358 	mempool_free(page, rrpc->page_pool);
359 	bio_put(bio);
360 
361 	if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
362 		pr_err("nvm: failed to garbage collect block\n");
363 		return -EIO;
364 	}
365 
366 	return 0;
367 }
368 
rrpc_block_gc(struct work_struct * work)369 static void rrpc_block_gc(struct work_struct *work)
370 {
371 	struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
372 									ws_gc);
373 	struct rrpc *rrpc = gcb->rrpc;
374 	struct rrpc_block *rblk = gcb->rblk;
375 	struct nvm_dev *dev = rrpc->dev;
376 
377 	pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
378 
379 	if (rrpc_move_valid_pages(rrpc, rblk))
380 		goto done;
381 
382 	nvm_erase_blk(dev, rblk->parent);
383 	rrpc_put_blk(rrpc, rblk);
384 done:
385 	mempool_free(gcb, rrpc->gcb_pool);
386 }
387 
388 /* the block with highest number of invalid pages, will be in the beginning
389  * of the list
390  */
rblock_max_invalid(struct rrpc_block * ra,struct rrpc_block * rb)391 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
392 							struct rrpc_block *rb)
393 {
394 	if (ra->nr_invalid_pages == rb->nr_invalid_pages)
395 		return ra;
396 
397 	return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
398 }
399 
400 /* linearly find the block with highest number of invalid pages
401  * requires lun->lock
402  */
block_prio_find_max(struct rrpc_lun * rlun)403 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
404 {
405 	struct list_head *prio_list = &rlun->prio_list;
406 	struct rrpc_block *rblock, *max;
407 
408 	BUG_ON(list_empty(prio_list));
409 
410 	max = list_first_entry(prio_list, struct rrpc_block, prio);
411 	list_for_each_entry(rblock, prio_list, prio)
412 		max = rblock_max_invalid(max, rblock);
413 
414 	return max;
415 }
416 
rrpc_lun_gc(struct work_struct * work)417 static void rrpc_lun_gc(struct work_struct *work)
418 {
419 	struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
420 	struct rrpc *rrpc = rlun->rrpc;
421 	struct nvm_lun *lun = rlun->parent;
422 	struct rrpc_block_gc *gcb;
423 	unsigned int nr_blocks_need;
424 
425 	nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
426 
427 	if (nr_blocks_need < rrpc->nr_luns)
428 		nr_blocks_need = rrpc->nr_luns;
429 
430 	spin_lock(&lun->lock);
431 	while (nr_blocks_need > lun->nr_free_blocks &&
432 					!list_empty(&rlun->prio_list)) {
433 		struct rrpc_block *rblock = block_prio_find_max(rlun);
434 		struct nvm_block *block = rblock->parent;
435 
436 		if (!rblock->nr_invalid_pages)
437 			break;
438 
439 		list_del_init(&rblock->prio);
440 
441 		BUG_ON(!block_is_full(rrpc, rblock));
442 
443 		pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
444 
445 		gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
446 		if (!gcb)
447 			break;
448 
449 		gcb->rrpc = rrpc;
450 		gcb->rblk = rblock;
451 		INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
452 
453 		queue_work(rrpc->kgc_wq, &gcb->ws_gc);
454 
455 		nr_blocks_need--;
456 	}
457 	spin_unlock(&lun->lock);
458 
459 	/* TODO: Hint that request queue can be started again */
460 }
461 
rrpc_gc_queue(struct work_struct * work)462 static void rrpc_gc_queue(struct work_struct *work)
463 {
464 	struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
465 									ws_gc);
466 	struct rrpc *rrpc = gcb->rrpc;
467 	struct rrpc_block *rblk = gcb->rblk;
468 	struct nvm_lun *lun = rblk->parent->lun;
469 	struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
470 
471 	spin_lock(&rlun->lock);
472 	list_add_tail(&rblk->prio, &rlun->prio_list);
473 	spin_unlock(&rlun->lock);
474 
475 	mempool_free(gcb, rrpc->gcb_pool);
476 	pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
477 							rblk->parent->id);
478 }
479 
480 static const struct block_device_operations rrpc_fops = {
481 	.owner		= THIS_MODULE,
482 };
483 
rrpc_get_lun_rr(struct rrpc * rrpc,int is_gc)484 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
485 {
486 	unsigned int i;
487 	struct rrpc_lun *rlun, *max_free;
488 
489 	if (!is_gc)
490 		return get_next_lun(rrpc);
491 
492 	/* during GC, we don't care about RR, instead we want to make
493 	 * sure that we maintain evenness between the block luns.
494 	 */
495 	max_free = &rrpc->luns[0];
496 	/* prevent GC-ing lun from devouring pages of a lun with
497 	 * little free blocks. We don't take the lock as we only need an
498 	 * estimate.
499 	 */
500 	rrpc_for_each_lun(rrpc, rlun, i) {
501 		if (rlun->parent->nr_free_blocks >
502 					max_free->parent->nr_free_blocks)
503 			max_free = rlun;
504 	}
505 
506 	return max_free;
507 }
508 
rrpc_update_map(struct rrpc * rrpc,sector_t laddr,struct rrpc_block * rblk,u64 paddr)509 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
510 					struct rrpc_block *rblk, u64 paddr)
511 {
512 	struct rrpc_addr *gp;
513 	struct rrpc_rev_addr *rev;
514 
515 	BUG_ON(laddr >= rrpc->nr_pages);
516 
517 	gp = &rrpc->trans_map[laddr];
518 	spin_lock(&rrpc->rev_lock);
519 	if (gp->rblk)
520 		rrpc_page_invalidate(rrpc, gp);
521 
522 	gp->addr = paddr;
523 	gp->rblk = rblk;
524 
525 	rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
526 	rev->addr = laddr;
527 	spin_unlock(&rrpc->rev_lock);
528 
529 	return gp;
530 }
531 
rrpc_alloc_addr(struct rrpc * rrpc,struct rrpc_block * rblk)532 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
533 {
534 	u64 addr = ADDR_EMPTY;
535 
536 	spin_lock(&rblk->lock);
537 	if (block_is_full(rrpc, rblk))
538 		goto out;
539 
540 	addr = block_to_addr(rrpc, rblk) + rblk->next_page;
541 
542 	rblk->next_page++;
543 out:
544 	spin_unlock(&rblk->lock);
545 	return addr;
546 }
547 
548 /* Simple round-robin Logical to physical address translation.
549  *
550  * Retrieve the mapping using the active append point. Then update the ap for
551  * the next write to the disk.
552  *
553  * Returns rrpc_addr with the physical address and block. Remember to return to
554  * rrpc->addr_cache when request is finished.
555  */
rrpc_map_page(struct rrpc * rrpc,sector_t laddr,int is_gc)556 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
557 								int is_gc)
558 {
559 	struct rrpc_lun *rlun;
560 	struct rrpc_block *rblk;
561 	struct nvm_lun *lun;
562 	u64 paddr;
563 
564 	rlun = rrpc_get_lun_rr(rrpc, is_gc);
565 	lun = rlun->parent;
566 
567 	if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
568 		return NULL;
569 
570 	spin_lock(&rlun->lock);
571 
572 	rblk = rlun->cur;
573 retry:
574 	paddr = rrpc_alloc_addr(rrpc, rblk);
575 
576 	if (paddr == ADDR_EMPTY) {
577 		rblk = rrpc_get_blk(rrpc, rlun, 0);
578 		if (rblk) {
579 			rrpc_set_lun_cur(rlun, rblk);
580 			goto retry;
581 		}
582 
583 		if (is_gc) {
584 			/* retry from emergency gc block */
585 			paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
586 			if (paddr == ADDR_EMPTY) {
587 				rblk = rrpc_get_blk(rrpc, rlun, 1);
588 				if (!rblk) {
589 					pr_err("rrpc: no more blocks");
590 					goto err;
591 				}
592 
593 				rlun->gc_cur = rblk;
594 				paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
595 			}
596 			rblk = rlun->gc_cur;
597 		}
598 	}
599 
600 	spin_unlock(&rlun->lock);
601 	return rrpc_update_map(rrpc, laddr, rblk, paddr);
602 err:
603 	spin_unlock(&rlun->lock);
604 	return NULL;
605 }
606 
rrpc_run_gc(struct rrpc * rrpc,struct rrpc_block * rblk)607 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
608 {
609 	struct rrpc_block_gc *gcb;
610 
611 	gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
612 	if (!gcb) {
613 		pr_err("rrpc: unable to queue block for gc.");
614 		return;
615 	}
616 
617 	gcb->rrpc = rrpc;
618 	gcb->rblk = rblk;
619 
620 	INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
621 	queue_work(rrpc->kgc_wq, &gcb->ws_gc);
622 }
623 
rrpc_end_io_write(struct rrpc * rrpc,struct rrpc_rq * rrqd,sector_t laddr,uint8_t npages)624 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
625 						sector_t laddr, uint8_t npages)
626 {
627 	struct rrpc_addr *p;
628 	struct rrpc_block *rblk;
629 	struct nvm_lun *lun;
630 	int cmnt_size, i;
631 
632 	for (i = 0; i < npages; i++) {
633 		p = &rrpc->trans_map[laddr + i];
634 		rblk = p->rblk;
635 		lun = rblk->parent->lun;
636 
637 		cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
638 		if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk))
639 			rrpc_run_gc(rrpc, rblk);
640 	}
641 }
642 
rrpc_end_io(struct nvm_rq * rqd,int error)643 static int rrpc_end_io(struct nvm_rq *rqd, int error)
644 {
645 	struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
646 	struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
647 	uint8_t npages = rqd->nr_pages;
648 	sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
649 
650 	if (bio_data_dir(rqd->bio) == WRITE)
651 		rrpc_end_io_write(rrpc, rrqd, laddr, npages);
652 
653 	if (rrqd->flags & NVM_IOTYPE_GC)
654 		return 0;
655 
656 	rrpc_unlock_rq(rrpc, rqd);
657 	bio_put(rqd->bio);
658 
659 	if (npages > 1)
660 		nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
661 	if (rqd->metadata)
662 		nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
663 
664 	mempool_free(rqd, rrpc->rq_pool);
665 
666 	return 0;
667 }
668 
rrpc_read_ppalist_rq(struct rrpc * rrpc,struct bio * bio,struct nvm_rq * rqd,unsigned long flags,int npages)669 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
670 			struct nvm_rq *rqd, unsigned long flags, int npages)
671 {
672 	struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
673 	struct rrpc_addr *gp;
674 	sector_t laddr = rrpc_get_laddr(bio);
675 	int is_gc = flags & NVM_IOTYPE_GC;
676 	int i;
677 
678 	if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
679 		nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
680 		return NVM_IO_REQUEUE;
681 	}
682 
683 	for (i = 0; i < npages; i++) {
684 		/* We assume that mapping occurs at 4KB granularity */
685 		BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
686 		gp = &rrpc->trans_map[laddr + i];
687 
688 		if (gp->rblk) {
689 			rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
690 								gp->addr);
691 		} else {
692 			BUG_ON(is_gc);
693 			rrpc_unlock_laddr(rrpc, r);
694 			nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
695 							rqd->dma_ppa_list);
696 			return NVM_IO_DONE;
697 		}
698 	}
699 
700 	rqd->opcode = NVM_OP_HBREAD;
701 
702 	return NVM_IO_OK;
703 }
704 
rrpc_read_rq(struct rrpc * rrpc,struct bio * bio,struct nvm_rq * rqd,unsigned long flags)705 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
706 							unsigned long flags)
707 {
708 	struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
709 	int is_gc = flags & NVM_IOTYPE_GC;
710 	sector_t laddr = rrpc_get_laddr(bio);
711 	struct rrpc_addr *gp;
712 
713 	if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
714 		return NVM_IO_REQUEUE;
715 
716 	BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
717 	gp = &rrpc->trans_map[laddr];
718 
719 	if (gp->rblk) {
720 		rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
721 	} else {
722 		BUG_ON(is_gc);
723 		rrpc_unlock_rq(rrpc, rqd);
724 		return NVM_IO_DONE;
725 	}
726 
727 	rqd->opcode = NVM_OP_HBREAD;
728 	rrqd->addr = gp;
729 
730 	return NVM_IO_OK;
731 }
732 
rrpc_write_ppalist_rq(struct rrpc * rrpc,struct bio * bio,struct nvm_rq * rqd,unsigned long flags,int npages)733 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
734 			struct nvm_rq *rqd, unsigned long flags, int npages)
735 {
736 	struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
737 	struct rrpc_addr *p;
738 	sector_t laddr = rrpc_get_laddr(bio);
739 	int is_gc = flags & NVM_IOTYPE_GC;
740 	int i;
741 
742 	if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
743 		nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
744 		return NVM_IO_REQUEUE;
745 	}
746 
747 	for (i = 0; i < npages; i++) {
748 		/* We assume that mapping occurs at 4KB granularity */
749 		p = rrpc_map_page(rrpc, laddr + i, is_gc);
750 		if (!p) {
751 			BUG_ON(is_gc);
752 			rrpc_unlock_laddr(rrpc, r);
753 			nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
754 							rqd->dma_ppa_list);
755 			rrpc_gc_kick(rrpc);
756 			return NVM_IO_REQUEUE;
757 		}
758 
759 		rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
760 								p->addr);
761 	}
762 
763 	rqd->opcode = NVM_OP_HBWRITE;
764 
765 	return NVM_IO_OK;
766 }
767 
rrpc_write_rq(struct rrpc * rrpc,struct bio * bio,struct nvm_rq * rqd,unsigned long flags)768 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
769 				struct nvm_rq *rqd, unsigned long flags)
770 {
771 	struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
772 	struct rrpc_addr *p;
773 	int is_gc = flags & NVM_IOTYPE_GC;
774 	sector_t laddr = rrpc_get_laddr(bio);
775 
776 	if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
777 		return NVM_IO_REQUEUE;
778 
779 	p = rrpc_map_page(rrpc, laddr, is_gc);
780 	if (!p) {
781 		BUG_ON(is_gc);
782 		rrpc_unlock_rq(rrpc, rqd);
783 		rrpc_gc_kick(rrpc);
784 		return NVM_IO_REQUEUE;
785 	}
786 
787 	rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
788 	rqd->opcode = NVM_OP_HBWRITE;
789 	rrqd->addr = p;
790 
791 	return NVM_IO_OK;
792 }
793 
rrpc_setup_rq(struct rrpc * rrpc,struct bio * bio,struct nvm_rq * rqd,unsigned long flags,uint8_t npages)794 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
795 			struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
796 {
797 	if (npages > 1) {
798 		rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
799 							&rqd->dma_ppa_list);
800 		if (!rqd->ppa_list) {
801 			pr_err("rrpc: not able to allocate ppa list\n");
802 			return NVM_IO_ERR;
803 		}
804 
805 		if (bio_rw(bio) == WRITE)
806 			return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
807 									npages);
808 
809 		return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
810 	}
811 
812 	if (bio_rw(bio) == WRITE)
813 		return rrpc_write_rq(rrpc, bio, rqd, flags);
814 
815 	return rrpc_read_rq(rrpc, bio, rqd, flags);
816 }
817 
rrpc_submit_io(struct rrpc * rrpc,struct bio * bio,struct nvm_rq * rqd,unsigned long flags)818 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
819 				struct nvm_rq *rqd, unsigned long flags)
820 {
821 	int err;
822 	struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
823 	uint8_t nr_pages = rrpc_get_pages(bio);
824 	int bio_size = bio_sectors(bio) << 9;
825 
826 	if (bio_size < rrpc->dev->sec_size)
827 		return NVM_IO_ERR;
828 	else if (bio_size > rrpc->dev->max_rq_size)
829 		return NVM_IO_ERR;
830 
831 	err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
832 	if (err)
833 		return err;
834 
835 	bio_get(bio);
836 	rqd->bio = bio;
837 	rqd->ins = &rrpc->instance;
838 	rqd->nr_pages = nr_pages;
839 	rrq->flags = flags;
840 
841 	err = nvm_submit_io(rrpc->dev, rqd);
842 	if (err) {
843 		pr_err("rrpc: I/O submission failed: %d\n", err);
844 		return NVM_IO_ERR;
845 	}
846 
847 	return NVM_IO_OK;
848 }
849 
rrpc_make_rq(struct request_queue * q,struct bio * bio)850 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
851 {
852 	struct rrpc *rrpc = q->queuedata;
853 	struct nvm_rq *rqd;
854 	int err;
855 
856 	if (bio->bi_rw & REQ_DISCARD) {
857 		rrpc_discard(rrpc, bio);
858 		return BLK_QC_T_NONE;
859 	}
860 
861 	rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
862 	if (!rqd) {
863 		pr_err_ratelimited("rrpc: not able to queue bio.");
864 		bio_io_error(bio);
865 		return BLK_QC_T_NONE;
866 	}
867 	memset(rqd, 0, sizeof(struct nvm_rq));
868 
869 	err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
870 	switch (err) {
871 	case NVM_IO_OK:
872 		return BLK_QC_T_NONE;
873 	case NVM_IO_ERR:
874 		bio_io_error(bio);
875 		break;
876 	case NVM_IO_DONE:
877 		bio_endio(bio);
878 		break;
879 	case NVM_IO_REQUEUE:
880 		spin_lock(&rrpc->bio_lock);
881 		bio_list_add(&rrpc->requeue_bios, bio);
882 		spin_unlock(&rrpc->bio_lock);
883 		queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
884 		break;
885 	}
886 
887 	mempool_free(rqd, rrpc->rq_pool);
888 	return BLK_QC_T_NONE;
889 }
890 
rrpc_requeue(struct work_struct * work)891 static void rrpc_requeue(struct work_struct *work)
892 {
893 	struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
894 	struct bio_list bios;
895 	struct bio *bio;
896 
897 	bio_list_init(&bios);
898 
899 	spin_lock(&rrpc->bio_lock);
900 	bio_list_merge(&bios, &rrpc->requeue_bios);
901 	bio_list_init(&rrpc->requeue_bios);
902 	spin_unlock(&rrpc->bio_lock);
903 
904 	while ((bio = bio_list_pop(&bios)))
905 		rrpc_make_rq(rrpc->disk->queue, bio);
906 }
907 
rrpc_gc_free(struct rrpc * rrpc)908 static void rrpc_gc_free(struct rrpc *rrpc)
909 {
910 	struct rrpc_lun *rlun;
911 	int i;
912 
913 	if (rrpc->krqd_wq)
914 		destroy_workqueue(rrpc->krqd_wq);
915 
916 	if (rrpc->kgc_wq)
917 		destroy_workqueue(rrpc->kgc_wq);
918 
919 	if (!rrpc->luns)
920 		return;
921 
922 	for (i = 0; i < rrpc->nr_luns; i++) {
923 		rlun = &rrpc->luns[i];
924 
925 		if (!rlun->blocks)
926 			break;
927 		vfree(rlun->blocks);
928 	}
929 }
930 
rrpc_gc_init(struct rrpc * rrpc)931 static int rrpc_gc_init(struct rrpc *rrpc)
932 {
933 	rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
934 								rrpc->nr_luns);
935 	if (!rrpc->krqd_wq)
936 		return -ENOMEM;
937 
938 	rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
939 	if (!rrpc->kgc_wq)
940 		return -ENOMEM;
941 
942 	setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
943 
944 	return 0;
945 }
946 
rrpc_map_free(struct rrpc * rrpc)947 static void rrpc_map_free(struct rrpc *rrpc)
948 {
949 	vfree(rrpc->rev_trans_map);
950 	vfree(rrpc->trans_map);
951 }
952 
rrpc_l2p_update(u64 slba,u32 nlb,__le64 * entries,void * private)953 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
954 {
955 	struct rrpc *rrpc = (struct rrpc *)private;
956 	struct nvm_dev *dev = rrpc->dev;
957 	struct rrpc_addr *addr = rrpc->trans_map + slba;
958 	struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
959 	sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
960 	u64 elba = slba + nlb;
961 	u64 i;
962 
963 	if (unlikely(elba > dev->total_pages)) {
964 		pr_err("nvm: L2P data from device is out of bounds!\n");
965 		return -EINVAL;
966 	}
967 
968 	for (i = 0; i < nlb; i++) {
969 		u64 pba = le64_to_cpu(entries[i]);
970 		/* LNVM treats address-spaces as silos, LBA and PBA are
971 		 * equally large and zero-indexed.
972 		 */
973 		if (unlikely(pba >= max_pages && pba != U64_MAX)) {
974 			pr_err("nvm: L2P data entry is out of bounds!\n");
975 			return -EINVAL;
976 		}
977 
978 		/* Address zero is a special one. The first page on a disk is
979 		 * protected. As it often holds internal device boot
980 		 * information.
981 		 */
982 		if (!pba)
983 			continue;
984 
985 		addr[i].addr = pba;
986 		raddr[pba].addr = slba + i;
987 	}
988 
989 	return 0;
990 }
991 
rrpc_map_init(struct rrpc * rrpc)992 static int rrpc_map_init(struct rrpc *rrpc)
993 {
994 	struct nvm_dev *dev = rrpc->dev;
995 	sector_t i;
996 	int ret;
997 
998 	rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
999 	if (!rrpc->trans_map)
1000 		return -ENOMEM;
1001 
1002 	rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1003 							* rrpc->nr_pages);
1004 	if (!rrpc->rev_trans_map)
1005 		return -ENOMEM;
1006 
1007 	for (i = 0; i < rrpc->nr_pages; i++) {
1008 		struct rrpc_addr *p = &rrpc->trans_map[i];
1009 		struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1010 
1011 		p->addr = ADDR_EMPTY;
1012 		r->addr = ADDR_EMPTY;
1013 	}
1014 
1015 	if (!dev->ops->get_l2p_tbl)
1016 		return 0;
1017 
1018 	/* Bring up the mapping table from device */
1019 	ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_pages,
1020 							rrpc_l2p_update, rrpc);
1021 	if (ret) {
1022 		pr_err("nvm: rrpc: could not read L2P table.\n");
1023 		return -EINVAL;
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 
1030 /* Minimum pages needed within a lun */
1031 #define PAGE_POOL_SIZE 16
1032 #define ADDR_POOL_SIZE 64
1033 
rrpc_core_init(struct rrpc * rrpc)1034 static int rrpc_core_init(struct rrpc *rrpc)
1035 {
1036 	down_write(&rrpc_lock);
1037 	if (!rrpc_gcb_cache) {
1038 		rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1039 				sizeof(struct rrpc_block_gc), 0, 0, NULL);
1040 		if (!rrpc_gcb_cache) {
1041 			up_write(&rrpc_lock);
1042 			return -ENOMEM;
1043 		}
1044 
1045 		rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1046 				sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1047 				0, 0, NULL);
1048 		if (!rrpc_rq_cache) {
1049 			kmem_cache_destroy(rrpc_gcb_cache);
1050 			up_write(&rrpc_lock);
1051 			return -ENOMEM;
1052 		}
1053 	}
1054 	up_write(&rrpc_lock);
1055 
1056 	rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1057 	if (!rrpc->page_pool)
1058 		return -ENOMEM;
1059 
1060 	rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1061 								rrpc_gcb_cache);
1062 	if (!rrpc->gcb_pool)
1063 		return -ENOMEM;
1064 
1065 	rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1066 	if (!rrpc->rq_pool)
1067 		return -ENOMEM;
1068 
1069 	spin_lock_init(&rrpc->inflights.lock);
1070 	INIT_LIST_HEAD(&rrpc->inflights.reqs);
1071 
1072 	return 0;
1073 }
1074 
rrpc_core_free(struct rrpc * rrpc)1075 static void rrpc_core_free(struct rrpc *rrpc)
1076 {
1077 	mempool_destroy(rrpc->page_pool);
1078 	mempool_destroy(rrpc->gcb_pool);
1079 	mempool_destroy(rrpc->rq_pool);
1080 }
1081 
rrpc_luns_free(struct rrpc * rrpc)1082 static void rrpc_luns_free(struct rrpc *rrpc)
1083 {
1084 	kfree(rrpc->luns);
1085 }
1086 
rrpc_luns_init(struct rrpc * rrpc,int lun_begin,int lun_end)1087 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1088 {
1089 	struct nvm_dev *dev = rrpc->dev;
1090 	struct rrpc_lun *rlun;
1091 	int i, j;
1092 
1093 	spin_lock_init(&rrpc->rev_lock);
1094 
1095 	rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1096 								GFP_KERNEL);
1097 	if (!rrpc->luns)
1098 		return -ENOMEM;
1099 
1100 	/* 1:1 mapping */
1101 	for (i = 0; i < rrpc->nr_luns; i++) {
1102 		struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1103 
1104 		if (dev->pgs_per_blk >
1105 				MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1106 			pr_err("rrpc: number of pages per block too high.");
1107 			goto err;
1108 		}
1109 
1110 		rlun = &rrpc->luns[i];
1111 		rlun->rrpc = rrpc;
1112 		rlun->parent = lun;
1113 		INIT_LIST_HEAD(&rlun->prio_list);
1114 		INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1115 		spin_lock_init(&rlun->lock);
1116 
1117 		rrpc->total_blocks += dev->blks_per_lun;
1118 		rrpc->nr_pages += dev->sec_per_lun;
1119 
1120 		rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1121 						rrpc->dev->blks_per_lun);
1122 		if (!rlun->blocks)
1123 			goto err;
1124 
1125 		for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1126 			struct rrpc_block *rblk = &rlun->blocks[j];
1127 			struct nvm_block *blk = &lun->blocks[j];
1128 
1129 			rblk->parent = blk;
1130 			INIT_LIST_HEAD(&rblk->prio);
1131 			spin_lock_init(&rblk->lock);
1132 		}
1133 	}
1134 
1135 	return 0;
1136 err:
1137 	return -ENOMEM;
1138 }
1139 
rrpc_free(struct rrpc * rrpc)1140 static void rrpc_free(struct rrpc *rrpc)
1141 {
1142 	rrpc_gc_free(rrpc);
1143 	rrpc_map_free(rrpc);
1144 	rrpc_core_free(rrpc);
1145 	rrpc_luns_free(rrpc);
1146 
1147 	kfree(rrpc);
1148 }
1149 
rrpc_exit(void * private)1150 static void rrpc_exit(void *private)
1151 {
1152 	struct rrpc *rrpc = private;
1153 
1154 	del_timer(&rrpc->gc_timer);
1155 
1156 	flush_workqueue(rrpc->krqd_wq);
1157 	flush_workqueue(rrpc->kgc_wq);
1158 
1159 	rrpc_free(rrpc);
1160 }
1161 
rrpc_capacity(void * private)1162 static sector_t rrpc_capacity(void *private)
1163 {
1164 	struct rrpc *rrpc = private;
1165 	struct nvm_dev *dev = rrpc->dev;
1166 	sector_t reserved, provisioned;
1167 
1168 	/* cur, gc, and two emergency blocks for each lun */
1169 	reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1170 	provisioned = rrpc->nr_pages - reserved;
1171 
1172 	if (reserved > rrpc->nr_pages) {
1173 		pr_err("rrpc: not enough space available to expose storage.\n");
1174 		return 0;
1175 	}
1176 
1177 	sector_div(provisioned, 10);
1178 	return provisioned * 9 * NR_PHY_IN_LOG;
1179 }
1180 
1181 /*
1182  * Looks up the logical address from reverse trans map and check if its valid by
1183  * comparing the logical to physical address with the physical address.
1184  * Returns 0 on free, otherwise 1 if in use
1185  */
rrpc_block_map_update(struct rrpc * rrpc,struct rrpc_block * rblk)1186 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1187 {
1188 	struct nvm_dev *dev = rrpc->dev;
1189 	int offset;
1190 	struct rrpc_addr *laddr;
1191 	u64 paddr, pladdr;
1192 
1193 	for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1194 		paddr = block_to_addr(rrpc, rblk) + offset;
1195 
1196 		pladdr = rrpc->rev_trans_map[paddr].addr;
1197 		if (pladdr == ADDR_EMPTY)
1198 			continue;
1199 
1200 		laddr = &rrpc->trans_map[pladdr];
1201 
1202 		if (paddr == laddr->addr) {
1203 			laddr->rblk = rblk;
1204 		} else {
1205 			set_bit(offset, rblk->invalid_pages);
1206 			rblk->nr_invalid_pages++;
1207 		}
1208 	}
1209 }
1210 
rrpc_blocks_init(struct rrpc * rrpc)1211 static int rrpc_blocks_init(struct rrpc *rrpc)
1212 {
1213 	struct rrpc_lun *rlun;
1214 	struct rrpc_block *rblk;
1215 	int lun_iter, blk_iter;
1216 
1217 	for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1218 		rlun = &rrpc->luns[lun_iter];
1219 
1220 		for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1221 								blk_iter++) {
1222 			rblk = &rlun->blocks[blk_iter];
1223 			rrpc_block_map_update(rrpc, rblk);
1224 		}
1225 	}
1226 
1227 	return 0;
1228 }
1229 
rrpc_luns_configure(struct rrpc * rrpc)1230 static int rrpc_luns_configure(struct rrpc *rrpc)
1231 {
1232 	struct rrpc_lun *rlun;
1233 	struct rrpc_block *rblk;
1234 	int i;
1235 
1236 	for (i = 0; i < rrpc->nr_luns; i++) {
1237 		rlun = &rrpc->luns[i];
1238 
1239 		rblk = rrpc_get_blk(rrpc, rlun, 0);
1240 		if (!rblk)
1241 			goto err;
1242 
1243 		rrpc_set_lun_cur(rlun, rblk);
1244 
1245 		/* Emergency gc block */
1246 		rblk = rrpc_get_blk(rrpc, rlun, 1);
1247 		if (!rblk)
1248 			goto err;
1249 		rlun->gc_cur = rblk;
1250 	}
1251 
1252 	return 0;
1253 err:
1254 	rrpc_put_blks(rrpc);
1255 	return -EINVAL;
1256 }
1257 
1258 static struct nvm_tgt_type tt_rrpc;
1259 
rrpc_init(struct nvm_dev * dev,struct gendisk * tdisk,int lun_begin,int lun_end)1260 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1261 						int lun_begin, int lun_end)
1262 {
1263 	struct request_queue *bqueue = dev->q;
1264 	struct request_queue *tqueue = tdisk->queue;
1265 	struct rrpc *rrpc;
1266 	int ret;
1267 
1268 	if (!(dev->identity.dom & NVM_RSP_L2P)) {
1269 		pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1270 							dev->identity.dom);
1271 		return ERR_PTR(-EINVAL);
1272 	}
1273 
1274 	rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1275 	if (!rrpc)
1276 		return ERR_PTR(-ENOMEM);
1277 
1278 	rrpc->instance.tt = &tt_rrpc;
1279 	rrpc->dev = dev;
1280 	rrpc->disk = tdisk;
1281 
1282 	bio_list_init(&rrpc->requeue_bios);
1283 	spin_lock_init(&rrpc->bio_lock);
1284 	INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1285 
1286 	rrpc->nr_luns = lun_end - lun_begin + 1;
1287 
1288 	/* simple round-robin strategy */
1289 	atomic_set(&rrpc->next_lun, -1);
1290 
1291 	ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1292 	if (ret) {
1293 		pr_err("nvm: rrpc: could not initialize luns\n");
1294 		goto err;
1295 	}
1296 
1297 	rrpc->poffset = dev->sec_per_lun * lun_begin;
1298 	rrpc->lun_offset = lun_begin;
1299 
1300 	ret = rrpc_core_init(rrpc);
1301 	if (ret) {
1302 		pr_err("nvm: rrpc: could not initialize core\n");
1303 		goto err;
1304 	}
1305 
1306 	ret = rrpc_map_init(rrpc);
1307 	if (ret) {
1308 		pr_err("nvm: rrpc: could not initialize maps\n");
1309 		goto err;
1310 	}
1311 
1312 	ret = rrpc_blocks_init(rrpc);
1313 	if (ret) {
1314 		pr_err("nvm: rrpc: could not initialize state for blocks\n");
1315 		goto err;
1316 	}
1317 
1318 	ret = rrpc_luns_configure(rrpc);
1319 	if (ret) {
1320 		pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1321 		goto err;
1322 	}
1323 
1324 	ret = rrpc_gc_init(rrpc);
1325 	if (ret) {
1326 		pr_err("nvm: rrpc: could not initialize gc\n");
1327 		goto err;
1328 	}
1329 
1330 	/* inherit the size from the underlying device */
1331 	blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1332 	blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1333 
1334 	pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1335 			rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1336 
1337 	mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1338 
1339 	return rrpc;
1340 err:
1341 	rrpc_free(rrpc);
1342 	return ERR_PTR(ret);
1343 }
1344 
1345 /* round robin, page-based FTL, and cost-based GC */
1346 static struct nvm_tgt_type tt_rrpc = {
1347 	.name		= "rrpc",
1348 	.version	= {1, 0, 0},
1349 
1350 	.make_rq	= rrpc_make_rq,
1351 	.capacity	= rrpc_capacity,
1352 	.end_io		= rrpc_end_io,
1353 
1354 	.init		= rrpc_init,
1355 	.exit		= rrpc_exit,
1356 };
1357 
rrpc_module_init(void)1358 static int __init rrpc_module_init(void)
1359 {
1360 	return nvm_register_target(&tt_rrpc);
1361 }
1362 
rrpc_module_exit(void)1363 static void rrpc_module_exit(void)
1364 {
1365 	nvm_unregister_target(&tt_rrpc);
1366 }
1367 
1368 module_init(rrpc_module_init);
1369 module_exit(rrpc_module_exit);
1370 MODULE_LICENSE("GPL v2");
1371 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");
1372