1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
46
47 /*
48 * Collection structure - just an ID, and a redistributor address to
49 * ping. We use one per CPU as a bag of interrupts assigned to this
50 * CPU.
51 */
52 struct its_collection {
53 u64 target_address;
54 u16 col_id;
55 };
56
57 /*
58 * The ITS structure - contains most of the infrastructure, with the
59 * top-level MSI domain, the command queue, the collections, and the
60 * list of devices writing to it.
61 */
62 struct its_node {
63 raw_spinlock_t lock;
64 struct list_head entry;
65 void __iomem *base;
66 unsigned long phys_base;
67 struct its_cmd_block *cmd_base;
68 struct its_cmd_block *cmd_write;
69 void *tables[GITS_BASER_NR_REGS];
70 struct its_collection *collections;
71 struct list_head its_device_list;
72 u64 flags;
73 u32 ite_size;
74 };
75
76 #define ITS_ITT_ALIGN SZ_256
77
78 struct event_lpi_map {
79 unsigned long *lpi_map;
80 u16 *col_map;
81 irq_hw_number_t lpi_base;
82 int nr_lpis;
83 };
84
85 /*
86 * The ITS view of a device - belongs to an ITS, a collection, owns an
87 * interrupt translation table, and a list of interrupts.
88 */
89 struct its_device {
90 struct list_head entry;
91 struct its_node *its;
92 struct event_lpi_map event_map;
93 void *itt;
94 u32 nr_ites;
95 u32 device_id;
96 };
97
98 static LIST_HEAD(its_nodes);
99 static DEFINE_SPINLOCK(its_lock);
100 static struct device_node *gic_root_node;
101 static struct rdists *gic_rdists;
102
103 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
104 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
105
dev_event_to_col(struct its_device * its_dev,u32 event)106 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
107 u32 event)
108 {
109 struct its_node *its = its_dev->its;
110
111 return its->collections + its_dev->event_map.col_map[event];
112 }
113
114 /*
115 * ITS command descriptors - parameters to be encoded in a command
116 * block.
117 */
118 struct its_cmd_desc {
119 union {
120 struct {
121 struct its_device *dev;
122 u32 event_id;
123 } its_inv_cmd;
124
125 struct {
126 struct its_device *dev;
127 u32 event_id;
128 } its_int_cmd;
129
130 struct {
131 struct its_device *dev;
132 int valid;
133 } its_mapd_cmd;
134
135 struct {
136 struct its_collection *col;
137 int valid;
138 } its_mapc_cmd;
139
140 struct {
141 struct its_device *dev;
142 u32 phys_id;
143 u32 event_id;
144 } its_mapvi_cmd;
145
146 struct {
147 struct its_device *dev;
148 struct its_collection *col;
149 u32 event_id;
150 } its_movi_cmd;
151
152 struct {
153 struct its_device *dev;
154 u32 event_id;
155 } its_discard_cmd;
156
157 struct {
158 struct its_collection *col;
159 } its_invall_cmd;
160 };
161 };
162
163 /*
164 * The ITS command block, which is what the ITS actually parses.
165 */
166 struct its_cmd_block {
167 u64 raw_cmd[4];
168 };
169
170 #define ITS_CMD_QUEUE_SZ SZ_64K
171 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
172
173 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
174 struct its_cmd_desc *);
175
176 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
177 {
178 cmd->raw_cmd[0] &= ~0xffUL;
179 cmd->raw_cmd[0] |= cmd_nr;
180 }
181
its_encode_devid(struct its_cmd_block * cmd,u32 devid)182 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
183 {
184 cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
185 cmd->raw_cmd[0] |= ((u64)devid) << 32;
186 }
187
its_encode_event_id(struct its_cmd_block * cmd,u32 id)188 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
189 {
190 cmd->raw_cmd[1] &= ~0xffffffffUL;
191 cmd->raw_cmd[1] |= id;
192 }
193
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)194 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
195 {
196 cmd->raw_cmd[1] &= 0xffffffffUL;
197 cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
198 }
199
its_encode_size(struct its_cmd_block * cmd,u8 size)200 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
201 {
202 cmd->raw_cmd[1] &= ~0x1fUL;
203 cmd->raw_cmd[1] |= size & 0x1f;
204 }
205
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)206 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
207 {
208 cmd->raw_cmd[2] &= ~0xffffffffffffUL;
209 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
210 }
211
its_encode_valid(struct its_cmd_block * cmd,int valid)212 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
213 {
214 cmd->raw_cmd[2] &= ~(1UL << 63);
215 cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
216 }
217
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)218 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
219 {
220 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
221 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
222 }
223
its_encode_collection(struct its_cmd_block * cmd,u16 col)224 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
225 {
226 cmd->raw_cmd[2] &= ~0xffffUL;
227 cmd->raw_cmd[2] |= col;
228 }
229
its_fixup_cmd(struct its_cmd_block * cmd)230 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
231 {
232 /* Let's fixup BE commands */
233 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
234 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
235 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
236 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
237 }
238
its_build_mapd_cmd(struct its_cmd_block * cmd,struct its_cmd_desc * desc)239 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
240 struct its_cmd_desc *desc)
241 {
242 unsigned long itt_addr;
243 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
244
245 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
246 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
247
248 its_encode_cmd(cmd, GITS_CMD_MAPD);
249 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
250 its_encode_size(cmd, size - 1);
251 its_encode_itt(cmd, itt_addr);
252 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
253
254 its_fixup_cmd(cmd);
255
256 return NULL;
257 }
258
its_build_mapc_cmd(struct its_cmd_block * cmd,struct its_cmd_desc * desc)259 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
260 struct its_cmd_desc *desc)
261 {
262 its_encode_cmd(cmd, GITS_CMD_MAPC);
263 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
264 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
265 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
266
267 its_fixup_cmd(cmd);
268
269 return desc->its_mapc_cmd.col;
270 }
271
its_build_mapvi_cmd(struct its_cmd_block * cmd,struct its_cmd_desc * desc)272 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
273 struct its_cmd_desc *desc)
274 {
275 struct its_collection *col;
276
277 col = dev_event_to_col(desc->its_mapvi_cmd.dev,
278 desc->its_mapvi_cmd.event_id);
279
280 its_encode_cmd(cmd, GITS_CMD_MAPVI);
281 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
282 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
283 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
284 its_encode_collection(cmd, col->col_id);
285
286 its_fixup_cmd(cmd);
287
288 return col;
289 }
290
its_build_movi_cmd(struct its_cmd_block * cmd,struct its_cmd_desc * desc)291 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
292 struct its_cmd_desc *desc)
293 {
294 struct its_collection *col;
295
296 col = dev_event_to_col(desc->its_movi_cmd.dev,
297 desc->its_movi_cmd.event_id);
298
299 its_encode_cmd(cmd, GITS_CMD_MOVI);
300 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
301 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
302 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
303
304 its_fixup_cmd(cmd);
305
306 return col;
307 }
308
its_build_discard_cmd(struct its_cmd_block * cmd,struct its_cmd_desc * desc)309 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
310 struct its_cmd_desc *desc)
311 {
312 struct its_collection *col;
313
314 col = dev_event_to_col(desc->its_discard_cmd.dev,
315 desc->its_discard_cmd.event_id);
316
317 its_encode_cmd(cmd, GITS_CMD_DISCARD);
318 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
319 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
320
321 its_fixup_cmd(cmd);
322
323 return col;
324 }
325
its_build_inv_cmd(struct its_cmd_block * cmd,struct its_cmd_desc * desc)326 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
327 struct its_cmd_desc *desc)
328 {
329 struct its_collection *col;
330
331 col = dev_event_to_col(desc->its_inv_cmd.dev,
332 desc->its_inv_cmd.event_id);
333
334 its_encode_cmd(cmd, GITS_CMD_INV);
335 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
336 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
337
338 its_fixup_cmd(cmd);
339
340 return col;
341 }
342
its_build_invall_cmd(struct its_cmd_block * cmd,struct its_cmd_desc * desc)343 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
344 struct its_cmd_desc *desc)
345 {
346 its_encode_cmd(cmd, GITS_CMD_INVALL);
347 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
348
349 its_fixup_cmd(cmd);
350
351 return NULL;
352 }
353
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)354 static u64 its_cmd_ptr_to_offset(struct its_node *its,
355 struct its_cmd_block *ptr)
356 {
357 return (ptr - its->cmd_base) * sizeof(*ptr);
358 }
359
its_queue_full(struct its_node * its)360 static int its_queue_full(struct its_node *its)
361 {
362 int widx;
363 int ridx;
364
365 widx = its->cmd_write - its->cmd_base;
366 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
367
368 /* This is incredibly unlikely to happen, unless the ITS locks up. */
369 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
370 return 1;
371
372 return 0;
373 }
374
its_allocate_entry(struct its_node * its)375 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
376 {
377 struct its_cmd_block *cmd;
378 u32 count = 1000000; /* 1s! */
379
380 while (its_queue_full(its)) {
381 count--;
382 if (!count) {
383 pr_err_ratelimited("ITS queue not draining\n");
384 return NULL;
385 }
386 cpu_relax();
387 udelay(1);
388 }
389
390 cmd = its->cmd_write++;
391
392 /* Handle queue wrapping */
393 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
394 its->cmd_write = its->cmd_base;
395
396 return cmd;
397 }
398
its_post_commands(struct its_node * its)399 static struct its_cmd_block *its_post_commands(struct its_node *its)
400 {
401 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
402
403 writel_relaxed(wr, its->base + GITS_CWRITER);
404
405 return its->cmd_write;
406 }
407
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)408 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
409 {
410 /*
411 * Make sure the commands written to memory are observable by
412 * the ITS.
413 */
414 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
415 __flush_dcache_area(cmd, sizeof(*cmd));
416 else
417 dsb(ishst);
418 }
419
its_wait_for_range_completion(struct its_node * its,struct its_cmd_block * from,struct its_cmd_block * to)420 static void its_wait_for_range_completion(struct its_node *its,
421 struct its_cmd_block *from,
422 struct its_cmd_block *to)
423 {
424 u64 rd_idx, from_idx, to_idx;
425 u32 count = 1000000; /* 1s! */
426
427 from_idx = its_cmd_ptr_to_offset(its, from);
428 to_idx = its_cmd_ptr_to_offset(its, to);
429
430 while (1) {
431 rd_idx = readl_relaxed(its->base + GITS_CREADR);
432 if (rd_idx >= to_idx || rd_idx < from_idx)
433 break;
434
435 count--;
436 if (!count) {
437 pr_err_ratelimited("ITS queue timeout\n");
438 return;
439 }
440 cpu_relax();
441 udelay(1);
442 }
443 }
444
its_send_single_command(struct its_node * its,its_cmd_builder_t builder,struct its_cmd_desc * desc)445 static void its_send_single_command(struct its_node *its,
446 its_cmd_builder_t builder,
447 struct its_cmd_desc *desc)
448 {
449 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
450 struct its_collection *sync_col;
451 unsigned long flags;
452
453 raw_spin_lock_irqsave(&its->lock, flags);
454
455 cmd = its_allocate_entry(its);
456 if (!cmd) { /* We're soooooo screewed... */
457 pr_err_ratelimited("ITS can't allocate, dropping command\n");
458 raw_spin_unlock_irqrestore(&its->lock, flags);
459 return;
460 }
461 sync_col = builder(cmd, desc);
462 its_flush_cmd(its, cmd);
463
464 if (sync_col) {
465 sync_cmd = its_allocate_entry(its);
466 if (!sync_cmd) {
467 pr_err_ratelimited("ITS can't SYNC, skipping\n");
468 goto post;
469 }
470 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
471 its_encode_target(sync_cmd, sync_col->target_address);
472 its_fixup_cmd(sync_cmd);
473 its_flush_cmd(its, sync_cmd);
474 }
475
476 post:
477 next_cmd = its_post_commands(its);
478 raw_spin_unlock_irqrestore(&its->lock, flags);
479
480 its_wait_for_range_completion(its, cmd, next_cmd);
481 }
482
its_send_inv(struct its_device * dev,u32 event_id)483 static void its_send_inv(struct its_device *dev, u32 event_id)
484 {
485 struct its_cmd_desc desc;
486
487 desc.its_inv_cmd.dev = dev;
488 desc.its_inv_cmd.event_id = event_id;
489
490 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
491 }
492
its_send_mapd(struct its_device * dev,int valid)493 static void its_send_mapd(struct its_device *dev, int valid)
494 {
495 struct its_cmd_desc desc;
496
497 desc.its_mapd_cmd.dev = dev;
498 desc.its_mapd_cmd.valid = !!valid;
499
500 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
501 }
502
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)503 static void its_send_mapc(struct its_node *its, struct its_collection *col,
504 int valid)
505 {
506 struct its_cmd_desc desc;
507
508 desc.its_mapc_cmd.col = col;
509 desc.its_mapc_cmd.valid = !!valid;
510
511 its_send_single_command(its, its_build_mapc_cmd, &desc);
512 }
513
its_send_mapvi(struct its_device * dev,u32 irq_id,u32 id)514 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
515 {
516 struct its_cmd_desc desc;
517
518 desc.its_mapvi_cmd.dev = dev;
519 desc.its_mapvi_cmd.phys_id = irq_id;
520 desc.its_mapvi_cmd.event_id = id;
521
522 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
523 }
524
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)525 static void its_send_movi(struct its_device *dev,
526 struct its_collection *col, u32 id)
527 {
528 struct its_cmd_desc desc;
529
530 desc.its_movi_cmd.dev = dev;
531 desc.its_movi_cmd.col = col;
532 desc.its_movi_cmd.event_id = id;
533
534 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
535 }
536
its_send_discard(struct its_device * dev,u32 id)537 static void its_send_discard(struct its_device *dev, u32 id)
538 {
539 struct its_cmd_desc desc;
540
541 desc.its_discard_cmd.dev = dev;
542 desc.its_discard_cmd.event_id = id;
543
544 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
545 }
546
its_send_invall(struct its_node * its,struct its_collection * col)547 static void its_send_invall(struct its_node *its, struct its_collection *col)
548 {
549 struct its_cmd_desc desc;
550
551 desc.its_invall_cmd.col = col;
552
553 its_send_single_command(its, its_build_invall_cmd, &desc);
554 }
555
556 /*
557 * irqchip functions - assumes MSI, mostly.
558 */
559
its_get_event_id(struct irq_data * d)560 static inline u32 its_get_event_id(struct irq_data *d)
561 {
562 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
563 return d->hwirq - its_dev->event_map.lpi_base;
564 }
565
lpi_set_config(struct irq_data * d,bool enable)566 static void lpi_set_config(struct irq_data *d, bool enable)
567 {
568 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
569 irq_hw_number_t hwirq = d->hwirq;
570 u32 id = its_get_event_id(d);
571 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
572
573 if (enable)
574 *cfg |= LPI_PROP_ENABLED;
575 else
576 *cfg &= ~LPI_PROP_ENABLED;
577
578 /*
579 * Make the above write visible to the redistributors.
580 * And yes, we're flushing exactly: One. Single. Byte.
581 * Humpf...
582 */
583 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
584 __flush_dcache_area(cfg, sizeof(*cfg));
585 else
586 dsb(ishst);
587 its_send_inv(its_dev, id);
588 }
589
its_mask_irq(struct irq_data * d)590 static void its_mask_irq(struct irq_data *d)
591 {
592 lpi_set_config(d, false);
593 }
594
its_unmask_irq(struct irq_data * d)595 static void its_unmask_irq(struct irq_data *d)
596 {
597 lpi_set_config(d, true);
598 }
599
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)600 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
601 bool force)
602 {
603 unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
604 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
605 struct its_collection *target_col;
606 u32 id = its_get_event_id(d);
607
608 if (cpu >= nr_cpu_ids)
609 return -EINVAL;
610
611 target_col = &its_dev->its->collections[cpu];
612 its_send_movi(its_dev, target_col, id);
613 its_dev->event_map.col_map[id] = cpu;
614
615 return IRQ_SET_MASK_OK_DONE;
616 }
617
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)618 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
619 {
620 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
621 struct its_node *its;
622 u64 addr;
623
624 its = its_dev->its;
625 addr = its->phys_base + GITS_TRANSLATER;
626
627 msg->address_lo = addr & ((1UL << 32) - 1);
628 msg->address_hi = addr >> 32;
629 msg->data = its_get_event_id(d);
630 }
631
632 static struct irq_chip its_irq_chip = {
633 .name = "ITS",
634 .irq_mask = its_mask_irq,
635 .irq_unmask = its_unmask_irq,
636 .irq_eoi = irq_chip_eoi_parent,
637 .irq_set_affinity = its_set_affinity,
638 .irq_compose_msi_msg = its_irq_compose_msi_msg,
639 };
640
641 /*
642 * How we allocate LPIs:
643 *
644 * The GIC has id_bits bits for interrupt identifiers. From there, we
645 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
646 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
647 * bits to the right.
648 *
649 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
650 */
651 #define IRQS_PER_CHUNK_SHIFT 5
652 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
653
654 static unsigned long *lpi_bitmap;
655 static u32 lpi_chunks;
656 static DEFINE_SPINLOCK(lpi_lock);
657
its_lpi_to_chunk(int lpi)658 static int its_lpi_to_chunk(int lpi)
659 {
660 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
661 }
662
its_chunk_to_lpi(int chunk)663 static int its_chunk_to_lpi(int chunk)
664 {
665 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
666 }
667
its_lpi_init(u32 id_bits)668 static int its_lpi_init(u32 id_bits)
669 {
670 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
671
672 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
673 GFP_KERNEL);
674 if (!lpi_bitmap) {
675 lpi_chunks = 0;
676 return -ENOMEM;
677 }
678
679 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
680 return 0;
681 }
682
its_lpi_alloc_chunks(int nr_irqs,int * base,int * nr_ids)683 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
684 {
685 unsigned long *bitmap = NULL;
686 int chunk_id;
687 int nr_chunks;
688 int i;
689
690 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
691
692 spin_lock(&lpi_lock);
693
694 do {
695 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
696 0, nr_chunks, 0);
697 if (chunk_id < lpi_chunks)
698 break;
699
700 nr_chunks--;
701 } while (nr_chunks > 0);
702
703 if (!nr_chunks)
704 goto out;
705
706 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
707 GFP_ATOMIC);
708 if (!bitmap)
709 goto out;
710
711 for (i = 0; i < nr_chunks; i++)
712 set_bit(chunk_id + i, lpi_bitmap);
713
714 *base = its_chunk_to_lpi(chunk_id);
715 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
716
717 out:
718 spin_unlock(&lpi_lock);
719
720 if (!bitmap)
721 *base = *nr_ids = 0;
722
723 return bitmap;
724 }
725
its_lpi_free(struct event_lpi_map * map)726 static void its_lpi_free(struct event_lpi_map *map)
727 {
728 int base = map->lpi_base;
729 int nr_ids = map->nr_lpis;
730 int lpi;
731
732 spin_lock(&lpi_lock);
733
734 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
735 int chunk = its_lpi_to_chunk(lpi);
736 BUG_ON(chunk > lpi_chunks);
737 if (test_bit(chunk, lpi_bitmap)) {
738 clear_bit(chunk, lpi_bitmap);
739 } else {
740 pr_err("Bad LPI chunk %d\n", chunk);
741 }
742 }
743
744 spin_unlock(&lpi_lock);
745
746 kfree(map->lpi_map);
747 kfree(map->col_map);
748 }
749
750 /*
751 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
752 * deal with (one configuration byte per interrupt). PENDBASE has to
753 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
754 */
755 #define LPI_PROPBASE_SZ SZ_64K
756 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
757
758 /*
759 * This is how many bits of ID we need, including the useless ones.
760 */
761 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
762
763 #define LPI_PROP_DEFAULT_PRIO 0xa0
764
its_alloc_lpi_tables(void)765 static int __init its_alloc_lpi_tables(void)
766 {
767 phys_addr_t paddr;
768
769 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
770 get_order(LPI_PROPBASE_SZ));
771 if (!gic_rdists->prop_page) {
772 pr_err("Failed to allocate PROPBASE\n");
773 return -ENOMEM;
774 }
775
776 paddr = page_to_phys(gic_rdists->prop_page);
777 pr_info("GIC: using LPI property table @%pa\n", &paddr);
778
779 /* Priority 0xa0, Group-1, disabled */
780 memset(page_address(gic_rdists->prop_page),
781 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
782 LPI_PROPBASE_SZ);
783
784 /* Make sure the GIC will observe the written configuration */
785 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
786
787 return 0;
788 }
789
790 static const char *its_base_type_string[] = {
791 [GITS_BASER_TYPE_DEVICE] = "Devices",
792 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
793 [GITS_BASER_TYPE_CPU] = "Physical CPUs",
794 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
795 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
796 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
797 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
798 };
799
its_free_tables(struct its_node * its)800 static void its_free_tables(struct its_node *its)
801 {
802 int i;
803
804 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
805 if (its->tables[i]) {
806 free_page((unsigned long)its->tables[i]);
807 its->tables[i] = NULL;
808 }
809 }
810 }
811
its_alloc_tables(const char * node_name,struct its_node * its)812 static int its_alloc_tables(const char *node_name, struct its_node *its)
813 {
814 int err;
815 int i;
816 int psz = SZ_64K;
817 u64 shr = GITS_BASER_InnerShareable;
818 u64 cache;
819 u64 typer;
820 u32 ids;
821
822 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
823 /*
824 * erratum 22375: only alloc 8MB table size
825 * erratum 24313: ignore memory access type
826 */
827 cache = 0;
828 ids = 0x14; /* 20 bits, 8MB */
829 } else {
830 cache = GITS_BASER_WaWb;
831 typer = readq_relaxed(its->base + GITS_TYPER);
832 ids = GITS_TYPER_DEVBITS(typer);
833 }
834
835 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
836 u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
837 u64 type = GITS_BASER_TYPE(val);
838 u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
839 int order = get_order(psz);
840 int alloc_size;
841 int alloc_pages;
842 u64 tmp;
843 void *base;
844
845 if (type == GITS_BASER_TYPE_NONE)
846 continue;
847
848 /*
849 * Allocate as many entries as required to fit the
850 * range of device IDs that the ITS can grok... The ID
851 * space being incredibly sparse, this results in a
852 * massive waste of memory.
853 *
854 * For other tables, only allocate a single page.
855 */
856 if (type == GITS_BASER_TYPE_DEVICE) {
857 /*
858 * 'order' was initialized earlier to the default page
859 * granule of the the ITS. We can't have an allocation
860 * smaller than that. If the requested allocation
861 * is smaller, round up to the default page granule.
862 */
863 order = max(get_order((1UL << ids) * entry_size),
864 order);
865 if (order >= MAX_ORDER) {
866 order = MAX_ORDER - 1;
867 pr_warn("%s: Device Table too large, reduce its page order to %u\n",
868 node_name, order);
869 }
870 }
871
872 alloc_size = (1 << order) * PAGE_SIZE;
873 alloc_pages = (alloc_size / psz);
874 if (alloc_pages > GITS_BASER_PAGES_MAX) {
875 alloc_pages = GITS_BASER_PAGES_MAX;
876 order = get_order(GITS_BASER_PAGES_MAX * psz);
877 pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
878 node_name, order, alloc_pages);
879 }
880
881 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
882 if (!base) {
883 err = -ENOMEM;
884 goto out_free;
885 }
886
887 its->tables[i] = base;
888
889 retry_baser:
890 val = (virt_to_phys(base) |
891 (type << GITS_BASER_TYPE_SHIFT) |
892 ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
893 cache |
894 shr |
895 GITS_BASER_VALID);
896
897 switch (psz) {
898 case SZ_4K:
899 val |= GITS_BASER_PAGE_SIZE_4K;
900 break;
901 case SZ_16K:
902 val |= GITS_BASER_PAGE_SIZE_16K;
903 break;
904 case SZ_64K:
905 val |= GITS_BASER_PAGE_SIZE_64K;
906 break;
907 }
908
909 val |= alloc_pages - 1;
910
911 writeq_relaxed(val, its->base + GITS_BASER + i * 8);
912 tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
913
914 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
915 /*
916 * Shareability didn't stick. Just use
917 * whatever the read reported, which is likely
918 * to be the only thing this redistributor
919 * supports. If that's zero, make it
920 * non-cacheable as well.
921 */
922 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
923 if (!shr) {
924 cache = GITS_BASER_nC;
925 __flush_dcache_area(base, alloc_size);
926 }
927 goto retry_baser;
928 }
929
930 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
931 /*
932 * Page size didn't stick. Let's try a smaller
933 * size and retry. If we reach 4K, then
934 * something is horribly wrong...
935 */
936 switch (psz) {
937 case SZ_16K:
938 psz = SZ_4K;
939 goto retry_baser;
940 case SZ_64K:
941 psz = SZ_16K;
942 goto retry_baser;
943 }
944 }
945
946 if (val != tmp) {
947 pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
948 node_name, i,
949 (unsigned long) val, (unsigned long) tmp);
950 err = -ENXIO;
951 goto out_free;
952 }
953
954 pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
955 (int)(alloc_size / entry_size),
956 its_base_type_string[type],
957 (unsigned long)virt_to_phys(base),
958 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
959 }
960
961 return 0;
962
963 out_free:
964 its_free_tables(its);
965
966 return err;
967 }
968
its_alloc_collections(struct its_node * its)969 static int its_alloc_collections(struct its_node *its)
970 {
971 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
972 GFP_KERNEL);
973 if (!its->collections)
974 return -ENOMEM;
975
976 return 0;
977 }
978
its_cpu_init_lpis(void)979 static void its_cpu_init_lpis(void)
980 {
981 void __iomem *rbase = gic_data_rdist_rd_base();
982 struct page *pend_page;
983 u64 val, tmp;
984
985 /* If we didn't allocate the pending table yet, do it now */
986 pend_page = gic_data_rdist()->pend_page;
987 if (!pend_page) {
988 phys_addr_t paddr;
989 /*
990 * The pending pages have to be at least 64kB aligned,
991 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
992 */
993 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
994 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
995 if (!pend_page) {
996 pr_err("Failed to allocate PENDBASE for CPU%d\n",
997 smp_processor_id());
998 return;
999 }
1000
1001 /* Make sure the GIC will observe the zero-ed page */
1002 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1003
1004 paddr = page_to_phys(pend_page);
1005 pr_info("CPU%d: using LPI pending table @%pa\n",
1006 smp_processor_id(), &paddr);
1007 gic_data_rdist()->pend_page = pend_page;
1008 }
1009
1010 /* Disable LPIs */
1011 val = readl_relaxed(rbase + GICR_CTLR);
1012 val &= ~GICR_CTLR_ENABLE_LPIS;
1013 writel_relaxed(val, rbase + GICR_CTLR);
1014
1015 /*
1016 * Make sure any change to the table is observable by the GIC.
1017 */
1018 dsb(sy);
1019
1020 /* set PROPBASE */
1021 val = (page_to_phys(gic_rdists->prop_page) |
1022 GICR_PROPBASER_InnerShareable |
1023 GICR_PROPBASER_WaWb |
1024 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1025
1026 writeq_relaxed(val, rbase + GICR_PROPBASER);
1027 tmp = readq_relaxed(rbase + GICR_PROPBASER);
1028
1029 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1030 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1031 /*
1032 * The HW reports non-shareable, we must
1033 * remove the cacheability attributes as
1034 * well.
1035 */
1036 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1037 GICR_PROPBASER_CACHEABILITY_MASK);
1038 val |= GICR_PROPBASER_nC;
1039 writeq_relaxed(val, rbase + GICR_PROPBASER);
1040 }
1041 pr_info_once("GIC: using cache flushing for LPI property table\n");
1042 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1043 }
1044
1045 /* set PENDBASE */
1046 val = (page_to_phys(pend_page) |
1047 GICR_PENDBASER_InnerShareable |
1048 GICR_PENDBASER_WaWb);
1049
1050 writeq_relaxed(val, rbase + GICR_PENDBASER);
1051 tmp = readq_relaxed(rbase + GICR_PENDBASER);
1052
1053 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1054 /*
1055 * The HW reports non-shareable, we must remove the
1056 * cacheability attributes as well.
1057 */
1058 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1059 GICR_PENDBASER_CACHEABILITY_MASK);
1060 val |= GICR_PENDBASER_nC;
1061 writeq_relaxed(val, rbase + GICR_PENDBASER);
1062 }
1063
1064 /* Enable LPIs */
1065 val = readl_relaxed(rbase + GICR_CTLR);
1066 val |= GICR_CTLR_ENABLE_LPIS;
1067 writel_relaxed(val, rbase + GICR_CTLR);
1068
1069 /* Make sure the GIC has seen the above */
1070 dsb(sy);
1071 }
1072
its_cpu_init_collection(void)1073 static void its_cpu_init_collection(void)
1074 {
1075 struct its_node *its;
1076 int cpu;
1077
1078 spin_lock(&its_lock);
1079 cpu = smp_processor_id();
1080
1081 list_for_each_entry(its, &its_nodes, entry) {
1082 u64 target;
1083
1084 /*
1085 * We now have to bind each collection to its target
1086 * redistributor.
1087 */
1088 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1089 /*
1090 * This ITS wants the physical address of the
1091 * redistributor.
1092 */
1093 target = gic_data_rdist()->phys_base;
1094 } else {
1095 /*
1096 * This ITS wants a linear CPU number.
1097 */
1098 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1099 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1100 }
1101
1102 /* Perform collection mapping */
1103 its->collections[cpu].target_address = target;
1104 its->collections[cpu].col_id = cpu;
1105
1106 its_send_mapc(its, &its->collections[cpu], 1);
1107 its_send_invall(its, &its->collections[cpu]);
1108 }
1109
1110 spin_unlock(&its_lock);
1111 }
1112
its_find_device(struct its_node * its,u32 dev_id)1113 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1114 {
1115 struct its_device *its_dev = NULL, *tmp;
1116 unsigned long flags;
1117
1118 raw_spin_lock_irqsave(&its->lock, flags);
1119
1120 list_for_each_entry(tmp, &its->its_device_list, entry) {
1121 if (tmp->device_id == dev_id) {
1122 its_dev = tmp;
1123 break;
1124 }
1125 }
1126
1127 raw_spin_unlock_irqrestore(&its->lock, flags);
1128
1129 return its_dev;
1130 }
1131
its_create_device(struct its_node * its,u32 dev_id,int nvecs)1132 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1133 int nvecs)
1134 {
1135 struct its_device *dev;
1136 unsigned long *lpi_map;
1137 unsigned long flags;
1138 u16 *col_map = NULL;
1139 void *itt;
1140 int lpi_base;
1141 int nr_lpis;
1142 int nr_ites;
1143 int sz;
1144
1145 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1146 /*
1147 * At least one bit of EventID is being used, hence a minimum
1148 * of two entries. No, the architecture doesn't let you
1149 * express an ITT with a single entry.
1150 */
1151 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1152 sz = nr_ites * its->ite_size;
1153 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1154 itt = kzalloc(sz, GFP_KERNEL);
1155 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1156 if (lpi_map)
1157 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1158
1159 if (!dev || !itt || !lpi_map || !col_map) {
1160 kfree(dev);
1161 kfree(itt);
1162 kfree(lpi_map);
1163 kfree(col_map);
1164 return NULL;
1165 }
1166
1167 __flush_dcache_area(itt, sz);
1168
1169 dev->its = its;
1170 dev->itt = itt;
1171 dev->nr_ites = nr_ites;
1172 dev->event_map.lpi_map = lpi_map;
1173 dev->event_map.col_map = col_map;
1174 dev->event_map.lpi_base = lpi_base;
1175 dev->event_map.nr_lpis = nr_lpis;
1176 dev->device_id = dev_id;
1177 INIT_LIST_HEAD(&dev->entry);
1178
1179 raw_spin_lock_irqsave(&its->lock, flags);
1180 list_add(&dev->entry, &its->its_device_list);
1181 raw_spin_unlock_irqrestore(&its->lock, flags);
1182
1183 /* Map device to its ITT */
1184 its_send_mapd(dev, 1);
1185
1186 return dev;
1187 }
1188
its_free_device(struct its_device * its_dev)1189 static void its_free_device(struct its_device *its_dev)
1190 {
1191 unsigned long flags;
1192
1193 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1194 list_del(&its_dev->entry);
1195 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1196 kfree(its_dev->itt);
1197 kfree(its_dev);
1198 }
1199
its_alloc_device_irq(struct its_device * dev,irq_hw_number_t * hwirq)1200 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1201 {
1202 int idx;
1203
1204 idx = find_first_zero_bit(dev->event_map.lpi_map,
1205 dev->event_map.nr_lpis);
1206 if (idx == dev->event_map.nr_lpis)
1207 return -ENOSPC;
1208
1209 *hwirq = dev->event_map.lpi_base + idx;
1210 set_bit(idx, dev->event_map.lpi_map);
1211
1212 return 0;
1213 }
1214
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)1215 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1216 int nvec, msi_alloc_info_t *info)
1217 {
1218 struct its_node *its;
1219 struct its_device *its_dev;
1220 struct msi_domain_info *msi_info;
1221 u32 dev_id;
1222
1223 /*
1224 * We ignore "dev" entierely, and rely on the dev_id that has
1225 * been passed via the scratchpad. This limits this domain's
1226 * usefulness to upper layers that definitely know that they
1227 * are built on top of the ITS.
1228 */
1229 dev_id = info->scratchpad[0].ul;
1230
1231 msi_info = msi_get_domain_info(domain);
1232 its = msi_info->data;
1233
1234 its_dev = its_find_device(its, dev_id);
1235 if (its_dev) {
1236 /*
1237 * We already have seen this ID, probably through
1238 * another alias (PCI bridge of some sort). No need to
1239 * create the device.
1240 */
1241 pr_debug("Reusing ITT for devID %x\n", dev_id);
1242 goto out;
1243 }
1244
1245 its_dev = its_create_device(its, dev_id, nvec);
1246 if (!its_dev)
1247 return -ENOMEM;
1248
1249 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1250 out:
1251 info->scratchpad[0].ptr = its_dev;
1252 return 0;
1253 }
1254
1255 static struct msi_domain_ops its_msi_domain_ops = {
1256 .msi_prepare = its_msi_prepare,
1257 };
1258
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)1259 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1260 unsigned int virq,
1261 irq_hw_number_t hwirq)
1262 {
1263 struct irq_fwspec fwspec;
1264
1265 if (irq_domain_get_of_node(domain->parent)) {
1266 fwspec.fwnode = domain->parent->fwnode;
1267 fwspec.param_count = 3;
1268 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1269 fwspec.param[1] = hwirq;
1270 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1271 } else {
1272 return -EINVAL;
1273 }
1274
1275 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1276 }
1277
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)1278 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1279 unsigned int nr_irqs, void *args)
1280 {
1281 msi_alloc_info_t *info = args;
1282 struct its_device *its_dev = info->scratchpad[0].ptr;
1283 irq_hw_number_t hwirq;
1284 int err;
1285 int i;
1286
1287 for (i = 0; i < nr_irqs; i++) {
1288 err = its_alloc_device_irq(its_dev, &hwirq);
1289 if (err)
1290 return err;
1291
1292 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1293 if (err)
1294 return err;
1295
1296 irq_domain_set_hwirq_and_chip(domain, virq + i,
1297 hwirq, &its_irq_chip, its_dev);
1298 pr_debug("ID:%d pID:%d vID:%d\n",
1299 (int)(hwirq - its_dev->event_map.lpi_base),
1300 (int) hwirq, virq + i);
1301 }
1302
1303 return 0;
1304 }
1305
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d)1306 static void its_irq_domain_activate(struct irq_domain *domain,
1307 struct irq_data *d)
1308 {
1309 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1310 u32 event = its_get_event_id(d);
1311
1312 /* Bind the LPI to the first possible CPU */
1313 its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1314
1315 /* Map the GIC IRQ and event to the device */
1316 its_send_mapvi(its_dev, d->hwirq, event);
1317 }
1318
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)1319 static void its_irq_domain_deactivate(struct irq_domain *domain,
1320 struct irq_data *d)
1321 {
1322 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1323 u32 event = its_get_event_id(d);
1324
1325 /* Stop the delivery of interrupts */
1326 its_send_discard(its_dev, event);
1327 }
1328
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1329 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1330 unsigned int nr_irqs)
1331 {
1332 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1333 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1334 int i;
1335
1336 for (i = 0; i < nr_irqs; i++) {
1337 struct irq_data *data = irq_domain_get_irq_data(domain,
1338 virq + i);
1339 u32 event = its_get_event_id(data);
1340
1341 /* Mark interrupt index as unused */
1342 clear_bit(event, its_dev->event_map.lpi_map);
1343
1344 /* Nuke the entry in the domain */
1345 irq_domain_reset_irq_data(data);
1346 }
1347
1348 /* If all interrupts have been freed, start mopping the floor */
1349 if (bitmap_empty(its_dev->event_map.lpi_map,
1350 its_dev->event_map.nr_lpis)) {
1351 its_lpi_free(&its_dev->event_map);
1352
1353 /* Unmap device/itt */
1354 its_send_mapd(its_dev, 0);
1355 its_free_device(its_dev);
1356 }
1357
1358 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1359 }
1360
1361 static const struct irq_domain_ops its_domain_ops = {
1362 .alloc = its_irq_domain_alloc,
1363 .free = its_irq_domain_free,
1364 .activate = its_irq_domain_activate,
1365 .deactivate = its_irq_domain_deactivate,
1366 };
1367
its_force_quiescent(void __iomem * base)1368 static int its_force_quiescent(void __iomem *base)
1369 {
1370 u32 count = 1000000; /* 1s */
1371 u32 val;
1372
1373 val = readl_relaxed(base + GITS_CTLR);
1374 if (val & GITS_CTLR_QUIESCENT)
1375 return 0;
1376
1377 /* Disable the generation of all interrupts to this ITS */
1378 val &= ~GITS_CTLR_ENABLE;
1379 writel_relaxed(val, base + GITS_CTLR);
1380
1381 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1382 while (1) {
1383 val = readl_relaxed(base + GITS_CTLR);
1384 if (val & GITS_CTLR_QUIESCENT)
1385 return 0;
1386
1387 count--;
1388 if (!count)
1389 return -EBUSY;
1390
1391 cpu_relax();
1392 udelay(1);
1393 }
1394 }
1395
its_enable_quirk_cavium_22375(void * data)1396 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1397 {
1398 struct its_node *its = data;
1399
1400 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1401 }
1402
1403 static const struct gic_quirk its_quirks[] = {
1404 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1405 {
1406 .desc = "ITS: Cavium errata 22375, 24313",
1407 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1408 .mask = 0xffff0fff,
1409 .init = its_enable_quirk_cavium_22375,
1410 },
1411 #endif
1412 {
1413 }
1414 };
1415
its_enable_quirks(struct its_node * its)1416 static void its_enable_quirks(struct its_node *its)
1417 {
1418 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1419
1420 gic_enable_quirks(iidr, its_quirks, its);
1421 }
1422
its_probe(struct device_node * node,struct irq_domain * parent)1423 static int its_probe(struct device_node *node, struct irq_domain *parent)
1424 {
1425 struct resource res;
1426 struct its_node *its;
1427 void __iomem *its_base;
1428 struct irq_domain *inner_domain;
1429 u32 val;
1430 u64 baser, tmp;
1431 int err;
1432
1433 err = of_address_to_resource(node, 0, &res);
1434 if (err) {
1435 pr_warn("%s: no regs?\n", node->full_name);
1436 return -ENXIO;
1437 }
1438
1439 its_base = ioremap(res.start, resource_size(&res));
1440 if (!its_base) {
1441 pr_warn("%s: unable to map registers\n", node->full_name);
1442 return -ENOMEM;
1443 }
1444
1445 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1446 if (val != 0x30 && val != 0x40) {
1447 pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1448 err = -ENODEV;
1449 goto out_unmap;
1450 }
1451
1452 err = its_force_quiescent(its_base);
1453 if (err) {
1454 pr_warn("%s: failed to quiesce, giving up\n",
1455 node->full_name);
1456 goto out_unmap;
1457 }
1458
1459 pr_info("ITS: %s\n", node->full_name);
1460
1461 its = kzalloc(sizeof(*its), GFP_KERNEL);
1462 if (!its) {
1463 err = -ENOMEM;
1464 goto out_unmap;
1465 }
1466
1467 raw_spin_lock_init(&its->lock);
1468 INIT_LIST_HEAD(&its->entry);
1469 INIT_LIST_HEAD(&its->its_device_list);
1470 its->base = its_base;
1471 its->phys_base = res.start;
1472 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1473
1474 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1475 if (!its->cmd_base) {
1476 err = -ENOMEM;
1477 goto out_free_its;
1478 }
1479 its->cmd_write = its->cmd_base;
1480
1481 its_enable_quirks(its);
1482
1483 err = its_alloc_tables(node->full_name, its);
1484 if (err)
1485 goto out_free_cmd;
1486
1487 err = its_alloc_collections(its);
1488 if (err)
1489 goto out_free_tables;
1490
1491 baser = (virt_to_phys(its->cmd_base) |
1492 GITS_CBASER_WaWb |
1493 GITS_CBASER_InnerShareable |
1494 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1495 GITS_CBASER_VALID);
1496
1497 writeq_relaxed(baser, its->base + GITS_CBASER);
1498 tmp = readq_relaxed(its->base + GITS_CBASER);
1499
1500 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1501 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1502 /*
1503 * The HW reports non-shareable, we must
1504 * remove the cacheability attributes as
1505 * well.
1506 */
1507 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1508 GITS_CBASER_CACHEABILITY_MASK);
1509 baser |= GITS_CBASER_nC;
1510 writeq_relaxed(baser, its->base + GITS_CBASER);
1511 }
1512 pr_info("ITS: using cache flushing for cmd queue\n");
1513 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1514 }
1515
1516 writeq_relaxed(0, its->base + GITS_CWRITER);
1517 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1518
1519 if (of_property_read_bool(node, "msi-controller")) {
1520 struct msi_domain_info *info;
1521
1522 info = kzalloc(sizeof(*info), GFP_KERNEL);
1523 if (!info) {
1524 err = -ENOMEM;
1525 goto out_free_tables;
1526 }
1527
1528 inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1529 if (!inner_domain) {
1530 err = -ENOMEM;
1531 kfree(info);
1532 goto out_free_tables;
1533 }
1534
1535 inner_domain->parent = parent;
1536 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1537 info->ops = &its_msi_domain_ops;
1538 info->data = its;
1539 inner_domain->host_data = info;
1540 }
1541
1542 spin_lock(&its_lock);
1543 list_add(&its->entry, &its_nodes);
1544 spin_unlock(&its_lock);
1545
1546 return 0;
1547
1548 out_free_tables:
1549 its_free_tables(its);
1550 out_free_cmd:
1551 kfree(its->cmd_base);
1552 out_free_its:
1553 kfree(its);
1554 out_unmap:
1555 iounmap(its_base);
1556 pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1557 return err;
1558 }
1559
gic_rdists_supports_plpis(void)1560 static bool gic_rdists_supports_plpis(void)
1561 {
1562 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1563 }
1564
its_cpu_init(void)1565 int its_cpu_init(void)
1566 {
1567 if (!list_empty(&its_nodes)) {
1568 if (!gic_rdists_supports_plpis()) {
1569 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1570 return -ENXIO;
1571 }
1572 its_cpu_init_lpis();
1573 its_cpu_init_collection();
1574 }
1575
1576 return 0;
1577 }
1578
1579 static struct of_device_id its_device_id[] = {
1580 { .compatible = "arm,gic-v3-its", },
1581 {},
1582 };
1583
its_init(struct device_node * node,struct rdists * rdists,struct irq_domain * parent_domain)1584 int its_init(struct device_node *node, struct rdists *rdists,
1585 struct irq_domain *parent_domain)
1586 {
1587 struct device_node *np;
1588
1589 for (np = of_find_matching_node(node, its_device_id); np;
1590 np = of_find_matching_node(np, its_device_id)) {
1591 its_probe(np, parent_domain);
1592 }
1593
1594 if (list_empty(&its_nodes)) {
1595 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1596 return -ENXIO;
1597 }
1598
1599 gic_rdists = rdists;
1600 gic_root_node = node;
1601
1602 its_alloc_lpi_tables();
1603 its_lpi_init(rdists->id_bits);
1604
1605 return 0;
1606 }
1607