1 /*
2  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <jroedel@suse.de>
4  *         Leo Duran <leo.duran@amd.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/irqdomain.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/io_apic.h>
40 #include <asm/apic.h>
41 #include <asm/hw_irq.h>
42 #include <asm/msidef.h>
43 #include <asm/proto.h>
44 #include <asm/iommu.h>
45 #include <asm/gart.h>
46 #include <asm/dma.h>
47 
48 #include "amd_iommu_proto.h"
49 #include "amd_iommu_types.h"
50 #include "irq_remapping.h"
51 
52 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
53 
54 #define LOOP_TIMEOUT	100000
55 
56 /*
57  * This bitmap is used to advertise the page sizes our hardware support
58  * to the IOMMU core, which will then use this information to split
59  * physically contiguous memory regions it is mapping into page sizes
60  * that we support.
61  *
62  * 512GB Pages are not supported due to a hardware bug
63  */
64 #define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
65 
66 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
67 
68 /* List of all available dev_data structures */
69 static LIST_HEAD(dev_data_list);
70 static DEFINE_SPINLOCK(dev_data_list_lock);
71 
72 LIST_HEAD(ioapic_map);
73 LIST_HEAD(hpet_map);
74 
75 /*
76  * Domain for untranslated devices - only allocated
77  * if iommu=pt passed on kernel cmd line.
78  */
79 static const struct iommu_ops amd_iommu_ops;
80 
81 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
82 int amd_iommu_max_glx_val = -1;
83 
84 static struct dma_map_ops amd_iommu_dma_ops;
85 
86 /*
87  * This struct contains device specific data for the IOMMU
88  */
89 struct iommu_dev_data {
90 	struct list_head list;		  /* For domain->dev_list */
91 	struct list_head dev_data_list;	  /* For global dev_data_list */
92 	struct protection_domain *domain; /* Domain the device is bound to */
93 	u16 devid;			  /* PCI Device ID */
94 	u16 alias;			  /* Alias Device ID */
95 	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
96 	bool passthrough;		  /* Device is identity mapped */
97 	struct {
98 		bool enabled;
99 		int qdep;
100 	} ats;				  /* ATS state */
101 	bool pri_tlp;			  /* PASID TLB required for
102 					     PPR completions */
103 	u32 errata;			  /* Bitmap for errata to apply */
104 };
105 
106 /*
107  * general struct to manage commands send to an IOMMU
108  */
109 struct iommu_cmd {
110 	u32 data[4];
111 };
112 
113 struct kmem_cache *amd_iommu_irq_cache;
114 
115 static void update_domain(struct protection_domain *domain);
116 static int protection_domain_init(struct protection_domain *domain);
117 
118 /****************************************************************************
119  *
120  * Helper functions
121  *
122  ****************************************************************************/
123 
to_pdomain(struct iommu_domain * dom)124 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
125 {
126 	return container_of(dom, struct protection_domain, domain);
127 }
128 
get_device_id(struct device * dev)129 static inline u16 get_device_id(struct device *dev)
130 {
131 	struct pci_dev *pdev = to_pci_dev(dev);
132 
133 	return PCI_DEVID(pdev->bus->number, pdev->devfn);
134 }
135 
alloc_dev_data(u16 devid)136 static struct iommu_dev_data *alloc_dev_data(u16 devid)
137 {
138 	struct iommu_dev_data *dev_data;
139 	unsigned long flags;
140 
141 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
142 	if (!dev_data)
143 		return NULL;
144 
145 	dev_data->devid = devid;
146 
147 	spin_lock_irqsave(&dev_data_list_lock, flags);
148 	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
149 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
150 
151 	return dev_data;
152 }
153 
search_dev_data(u16 devid)154 static struct iommu_dev_data *search_dev_data(u16 devid)
155 {
156 	struct iommu_dev_data *dev_data;
157 	unsigned long flags;
158 
159 	spin_lock_irqsave(&dev_data_list_lock, flags);
160 	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
161 		if (dev_data->devid == devid)
162 			goto out_unlock;
163 	}
164 
165 	dev_data = NULL;
166 
167 out_unlock:
168 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
169 
170 	return dev_data;
171 }
172 
__last_alias(struct pci_dev * pdev,u16 alias,void * data)173 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
174 {
175 	*(u16 *)data = alias;
176 	return 0;
177 }
178 
get_alias(struct device * dev)179 static u16 get_alias(struct device *dev)
180 {
181 	struct pci_dev *pdev = to_pci_dev(dev);
182 	u16 devid, ivrs_alias, pci_alias;
183 
184 	devid = get_device_id(dev);
185 	ivrs_alias = amd_iommu_alias_table[devid];
186 	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
187 
188 	if (ivrs_alias == pci_alias)
189 		return ivrs_alias;
190 
191 	/*
192 	 * DMA alias showdown
193 	 *
194 	 * The IVRS is fairly reliable in telling us about aliases, but it
195 	 * can't know about every screwy device.  If we don't have an IVRS
196 	 * reported alias, use the PCI reported alias.  In that case we may
197 	 * still need to initialize the rlookup and dev_table entries if the
198 	 * alias is to a non-existent device.
199 	 */
200 	if (ivrs_alias == devid) {
201 		if (!amd_iommu_rlookup_table[pci_alias]) {
202 			amd_iommu_rlookup_table[pci_alias] =
203 				amd_iommu_rlookup_table[devid];
204 			memcpy(amd_iommu_dev_table[pci_alias].data,
205 			       amd_iommu_dev_table[devid].data,
206 			       sizeof(amd_iommu_dev_table[pci_alias].data));
207 		}
208 
209 		return pci_alias;
210 	}
211 
212 	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
213 		"for device %s[%04x:%04x], kernel reported alias "
214 		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
215 		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
216 		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
217 		PCI_FUNC(pci_alias));
218 
219 	/*
220 	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
221 	 * bus, then the IVRS table may know about a quirk that we don't.
222 	 */
223 	if (pci_alias == devid &&
224 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
225 		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
226 		pdev->dma_alias_devfn = ivrs_alias & 0xff;
227 		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
228 			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
229 			dev_name(dev));
230 	}
231 
232 	return ivrs_alias;
233 }
234 
find_dev_data(u16 devid)235 static struct iommu_dev_data *find_dev_data(u16 devid)
236 {
237 	struct iommu_dev_data *dev_data;
238 
239 	dev_data = search_dev_data(devid);
240 
241 	if (dev_data == NULL)
242 		dev_data = alloc_dev_data(devid);
243 
244 	return dev_data;
245 }
246 
get_dev_data(struct device * dev)247 static struct iommu_dev_data *get_dev_data(struct device *dev)
248 {
249 	return dev->archdata.iommu;
250 }
251 
pci_iommuv2_capable(struct pci_dev * pdev)252 static bool pci_iommuv2_capable(struct pci_dev *pdev)
253 {
254 	static const int caps[] = {
255 		PCI_EXT_CAP_ID_ATS,
256 		PCI_EXT_CAP_ID_PRI,
257 		PCI_EXT_CAP_ID_PASID,
258 	};
259 	int i, pos;
260 
261 	for (i = 0; i < 3; ++i) {
262 		pos = pci_find_ext_capability(pdev, caps[i]);
263 		if (pos == 0)
264 			return false;
265 	}
266 
267 	return true;
268 }
269 
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)270 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
271 {
272 	struct iommu_dev_data *dev_data;
273 
274 	dev_data = get_dev_data(&pdev->dev);
275 
276 	return dev_data->errata & (1 << erratum) ? true : false;
277 }
278 
279 /*
280  * This function actually applies the mapping to the page table of the
281  * dma_ops domain.
282  */
alloc_unity_mapping(struct dma_ops_domain * dma_dom,struct unity_map_entry * e)283 static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
284 				struct unity_map_entry *e)
285 {
286 	u64 addr;
287 
288 	for (addr = e->address_start; addr < e->address_end;
289 	     addr += PAGE_SIZE) {
290 		if (addr < dma_dom->aperture_size)
291 			__set_bit(addr >> PAGE_SHIFT,
292 				  dma_dom->aperture[0]->bitmap);
293 	}
294 }
295 
296 /*
297  * Inits the unity mappings required for a specific device
298  */
init_unity_mappings_for_device(struct device * dev,struct dma_ops_domain * dma_dom)299 static void init_unity_mappings_for_device(struct device *dev,
300 					   struct dma_ops_domain *dma_dom)
301 {
302 	struct unity_map_entry *e;
303 	u16 devid;
304 
305 	devid = get_device_id(dev);
306 
307 	list_for_each_entry(e, &amd_iommu_unity_map, list) {
308 		if (!(devid >= e->devid_start && devid <= e->devid_end))
309 			continue;
310 		alloc_unity_mapping(dma_dom, e);
311 	}
312 }
313 
314 /*
315  * This function checks if the driver got a valid device from the caller to
316  * avoid dereferencing invalid pointers.
317  */
check_device(struct device * dev)318 static bool check_device(struct device *dev)
319 {
320 	u16 devid;
321 
322 	if (!dev || !dev->dma_mask)
323 		return false;
324 
325 	/* No PCI device */
326 	if (!dev_is_pci(dev))
327 		return false;
328 
329 	devid = get_device_id(dev);
330 
331 	/* Out of our scope? */
332 	if (devid > amd_iommu_last_bdf)
333 		return false;
334 
335 	if (amd_iommu_rlookup_table[devid] == NULL)
336 		return false;
337 
338 	return true;
339 }
340 
init_iommu_group(struct device * dev)341 static void init_iommu_group(struct device *dev)
342 {
343 	struct dma_ops_domain *dma_domain;
344 	struct iommu_domain *domain;
345 	struct iommu_group *group;
346 
347 	group = iommu_group_get_for_dev(dev);
348 	if (IS_ERR(group))
349 		return;
350 
351 	domain = iommu_group_default_domain(group);
352 	if (!domain)
353 		goto out;
354 
355 	dma_domain = to_pdomain(domain)->priv;
356 
357 	init_unity_mappings_for_device(dev, dma_domain);
358 out:
359 	iommu_group_put(group);
360 }
361 
iommu_init_device(struct device * dev)362 static int iommu_init_device(struct device *dev)
363 {
364 	struct pci_dev *pdev = to_pci_dev(dev);
365 	struct iommu_dev_data *dev_data;
366 
367 	if (dev->archdata.iommu)
368 		return 0;
369 
370 	dev_data = find_dev_data(get_device_id(dev));
371 	if (!dev_data)
372 		return -ENOMEM;
373 
374 	dev_data->alias = get_alias(dev);
375 
376 	if (pci_iommuv2_capable(pdev)) {
377 		struct amd_iommu *iommu;
378 
379 		iommu              = amd_iommu_rlookup_table[dev_data->devid];
380 		dev_data->iommu_v2 = iommu->is_iommu_v2;
381 	}
382 
383 	dev->archdata.iommu = dev_data;
384 
385 	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
386 			  dev);
387 
388 	return 0;
389 }
390 
iommu_ignore_device(struct device * dev)391 static void iommu_ignore_device(struct device *dev)
392 {
393 	u16 devid, alias;
394 
395 	devid = get_device_id(dev);
396 	alias = get_alias(dev);
397 
398 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
399 	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
400 
401 	amd_iommu_rlookup_table[devid] = NULL;
402 	amd_iommu_rlookup_table[alias] = NULL;
403 }
404 
iommu_uninit_device(struct device * dev)405 static void iommu_uninit_device(struct device *dev)
406 {
407 	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
408 
409 	if (!dev_data)
410 		return;
411 
412 	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
413 			    dev);
414 
415 	iommu_group_remove_device(dev);
416 
417 	/* Remove dma-ops */
418 	dev->archdata.dma_ops = NULL;
419 
420 	/*
421 	 * We keep dev_data around for unplugged devices and reuse it when the
422 	 * device is re-plugged - not doing so would introduce a ton of races.
423 	 */
424 }
425 
426 #ifdef CONFIG_AMD_IOMMU_STATS
427 
428 /*
429  * Initialization code for statistics collection
430  */
431 
432 DECLARE_STATS_COUNTER(compl_wait);
433 DECLARE_STATS_COUNTER(cnt_map_single);
434 DECLARE_STATS_COUNTER(cnt_unmap_single);
435 DECLARE_STATS_COUNTER(cnt_map_sg);
436 DECLARE_STATS_COUNTER(cnt_unmap_sg);
437 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
438 DECLARE_STATS_COUNTER(cnt_free_coherent);
439 DECLARE_STATS_COUNTER(cross_page);
440 DECLARE_STATS_COUNTER(domain_flush_single);
441 DECLARE_STATS_COUNTER(domain_flush_all);
442 DECLARE_STATS_COUNTER(alloced_io_mem);
443 DECLARE_STATS_COUNTER(total_map_requests);
444 DECLARE_STATS_COUNTER(complete_ppr);
445 DECLARE_STATS_COUNTER(invalidate_iotlb);
446 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
447 DECLARE_STATS_COUNTER(pri_requests);
448 
449 static struct dentry *stats_dir;
450 static struct dentry *de_fflush;
451 
amd_iommu_stats_add(struct __iommu_counter * cnt)452 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
453 {
454 	if (stats_dir == NULL)
455 		return;
456 
457 	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
458 				       &cnt->value);
459 }
460 
amd_iommu_stats_init(void)461 static void amd_iommu_stats_init(void)
462 {
463 	stats_dir = debugfs_create_dir("amd-iommu", NULL);
464 	if (stats_dir == NULL)
465 		return;
466 
467 	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
468 					 &amd_iommu_unmap_flush);
469 
470 	amd_iommu_stats_add(&compl_wait);
471 	amd_iommu_stats_add(&cnt_map_single);
472 	amd_iommu_stats_add(&cnt_unmap_single);
473 	amd_iommu_stats_add(&cnt_map_sg);
474 	amd_iommu_stats_add(&cnt_unmap_sg);
475 	amd_iommu_stats_add(&cnt_alloc_coherent);
476 	amd_iommu_stats_add(&cnt_free_coherent);
477 	amd_iommu_stats_add(&cross_page);
478 	amd_iommu_stats_add(&domain_flush_single);
479 	amd_iommu_stats_add(&domain_flush_all);
480 	amd_iommu_stats_add(&alloced_io_mem);
481 	amd_iommu_stats_add(&total_map_requests);
482 	amd_iommu_stats_add(&complete_ppr);
483 	amd_iommu_stats_add(&invalidate_iotlb);
484 	amd_iommu_stats_add(&invalidate_iotlb_all);
485 	amd_iommu_stats_add(&pri_requests);
486 }
487 
488 #endif
489 
490 /****************************************************************************
491  *
492  * Interrupt handling functions
493  *
494  ****************************************************************************/
495 
dump_dte_entry(u16 devid)496 static void dump_dte_entry(u16 devid)
497 {
498 	int i;
499 
500 	for (i = 0; i < 4; ++i)
501 		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
502 			amd_iommu_dev_table[devid].data[i]);
503 }
504 
dump_command(unsigned long phys_addr)505 static void dump_command(unsigned long phys_addr)
506 {
507 	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
508 	int i;
509 
510 	for (i = 0; i < 4; ++i)
511 		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
512 }
513 
iommu_print_event(struct amd_iommu * iommu,void * __evt)514 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
515 {
516 	int type, devid, domid, flags;
517 	volatile u32 *event = __evt;
518 	int count = 0;
519 	u64 address;
520 
521 retry:
522 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
523 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
524 	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
525 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
526 	address = (u64)(((u64)event[3]) << 32) | event[2];
527 
528 	if (type == 0) {
529 		/* Did we hit the erratum? */
530 		if (++count == LOOP_TIMEOUT) {
531 			pr_err("AMD-Vi: No event written to event log\n");
532 			return;
533 		}
534 		udelay(1);
535 		goto retry;
536 	}
537 
538 	printk(KERN_ERR "AMD-Vi: Event logged [");
539 
540 	switch (type) {
541 	case EVENT_TYPE_ILL_DEV:
542 		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
543 		       "address=0x%016llx flags=0x%04x]\n",
544 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
545 		       address, flags);
546 		dump_dte_entry(devid);
547 		break;
548 	case EVENT_TYPE_IO_FAULT:
549 		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
550 		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
551 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
552 		       domid, address, flags);
553 		break;
554 	case EVENT_TYPE_DEV_TAB_ERR:
555 		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
556 		       "address=0x%016llx flags=0x%04x]\n",
557 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
558 		       address, flags);
559 		break;
560 	case EVENT_TYPE_PAGE_TAB_ERR:
561 		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
562 		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
563 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
564 		       domid, address, flags);
565 		break;
566 	case EVENT_TYPE_ILL_CMD:
567 		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
568 		dump_command(address);
569 		break;
570 	case EVENT_TYPE_CMD_HARD_ERR:
571 		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
572 		       "flags=0x%04x]\n", address, flags);
573 		break;
574 	case EVENT_TYPE_IOTLB_INV_TO:
575 		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
576 		       "address=0x%016llx]\n",
577 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
578 		       address);
579 		break;
580 	case EVENT_TYPE_INV_DEV_REQ:
581 		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
582 		       "address=0x%016llx flags=0x%04x]\n",
583 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
584 		       address, flags);
585 		break;
586 	default:
587 		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
588 	}
589 
590 	memset(__evt, 0, 4 * sizeof(u32));
591 }
592 
iommu_poll_events(struct amd_iommu * iommu)593 static void iommu_poll_events(struct amd_iommu *iommu)
594 {
595 	u32 head, tail;
596 
597 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
598 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
599 
600 	while (head != tail) {
601 		iommu_print_event(iommu, iommu->evt_buf + head);
602 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
603 	}
604 
605 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
606 }
607 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)608 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
609 {
610 	struct amd_iommu_fault fault;
611 
612 	INC_STATS_COUNTER(pri_requests);
613 
614 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
615 		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
616 		return;
617 	}
618 
619 	fault.address   = raw[1];
620 	fault.pasid     = PPR_PASID(raw[0]);
621 	fault.device_id = PPR_DEVID(raw[0]);
622 	fault.tag       = PPR_TAG(raw[0]);
623 	fault.flags     = PPR_FLAGS(raw[0]);
624 
625 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
626 }
627 
iommu_poll_ppr_log(struct amd_iommu * iommu)628 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
629 {
630 	u32 head, tail;
631 
632 	if (iommu->ppr_log == NULL)
633 		return;
634 
635 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
636 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
637 
638 	while (head != tail) {
639 		volatile u64 *raw;
640 		u64 entry[2];
641 		int i;
642 
643 		raw = (u64 *)(iommu->ppr_log + head);
644 
645 		/*
646 		 * Hardware bug: Interrupt may arrive before the entry is
647 		 * written to memory. If this happens we need to wait for the
648 		 * entry to arrive.
649 		 */
650 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
651 			if (PPR_REQ_TYPE(raw[0]) != 0)
652 				break;
653 			udelay(1);
654 		}
655 
656 		/* Avoid memcpy function-call overhead */
657 		entry[0] = raw[0];
658 		entry[1] = raw[1];
659 
660 		/*
661 		 * To detect the hardware bug we need to clear the entry
662 		 * back to zero.
663 		 */
664 		raw[0] = raw[1] = 0UL;
665 
666 		/* Update head pointer of hardware ring-buffer */
667 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
668 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
669 
670 		/* Handle PPR entry */
671 		iommu_handle_ppr_entry(iommu, entry);
672 
673 		/* Refresh ring-buffer information */
674 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
675 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
676 	}
677 }
678 
amd_iommu_int_thread(int irq,void * data)679 irqreturn_t amd_iommu_int_thread(int irq, void *data)
680 {
681 	struct amd_iommu *iommu = (struct amd_iommu *) data;
682 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
683 
684 	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
685 		/* Enable EVT and PPR interrupts again */
686 		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
687 			iommu->mmio_base + MMIO_STATUS_OFFSET);
688 
689 		if (status & MMIO_STATUS_EVT_INT_MASK) {
690 			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
691 			iommu_poll_events(iommu);
692 		}
693 
694 		if (status & MMIO_STATUS_PPR_INT_MASK) {
695 			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
696 			iommu_poll_ppr_log(iommu);
697 		}
698 
699 		/*
700 		 * Hardware bug: ERBT1312
701 		 * When re-enabling interrupt (by writing 1
702 		 * to clear the bit), the hardware might also try to set
703 		 * the interrupt bit in the event status register.
704 		 * In this scenario, the bit will be set, and disable
705 		 * subsequent interrupts.
706 		 *
707 		 * Workaround: The IOMMU driver should read back the
708 		 * status register and check if the interrupt bits are cleared.
709 		 * If not, driver will need to go through the interrupt handler
710 		 * again and re-clear the bits
711 		 */
712 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
713 	}
714 	return IRQ_HANDLED;
715 }
716 
amd_iommu_int_handler(int irq,void * data)717 irqreturn_t amd_iommu_int_handler(int irq, void *data)
718 {
719 	return IRQ_WAKE_THREAD;
720 }
721 
722 /****************************************************************************
723  *
724  * IOMMU command queuing functions
725  *
726  ****************************************************************************/
727 
wait_on_sem(volatile u64 * sem)728 static int wait_on_sem(volatile u64 *sem)
729 {
730 	int i = 0;
731 
732 	while (*sem == 0 && i < LOOP_TIMEOUT) {
733 		udelay(1);
734 		i += 1;
735 	}
736 
737 	if (i == LOOP_TIMEOUT) {
738 		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
739 		return -EIO;
740 	}
741 
742 	return 0;
743 }
744 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd,u32 tail)745 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
746 			       struct iommu_cmd *cmd,
747 			       u32 tail)
748 {
749 	u8 *target;
750 
751 	target = iommu->cmd_buf + tail;
752 	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
753 
754 	/* Copy command to buffer */
755 	memcpy(target, cmd, sizeof(*cmd));
756 
757 	/* Tell the IOMMU about it */
758 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
759 }
760 
build_completion_wait(struct iommu_cmd * cmd,u64 address)761 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
762 {
763 	WARN_ON(address & 0x7ULL);
764 
765 	memset(cmd, 0, sizeof(*cmd));
766 	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
767 	cmd->data[1] = upper_32_bits(__pa(address));
768 	cmd->data[2] = 1;
769 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
770 }
771 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)772 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
773 {
774 	memset(cmd, 0, sizeof(*cmd));
775 	cmd->data[0] = devid;
776 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
777 }
778 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)779 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
780 				  size_t size, u16 domid, int pde)
781 {
782 	u64 pages;
783 	bool s;
784 
785 	pages = iommu_num_pages(address, size, PAGE_SIZE);
786 	s     = false;
787 
788 	if (pages > 1) {
789 		/*
790 		 * If we have to flush more than one page, flush all
791 		 * TLB entries for this domain
792 		 */
793 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
794 		s = true;
795 	}
796 
797 	address &= PAGE_MASK;
798 
799 	memset(cmd, 0, sizeof(*cmd));
800 	cmd->data[1] |= domid;
801 	cmd->data[2]  = lower_32_bits(address);
802 	cmd->data[3]  = upper_32_bits(address);
803 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
804 	if (s) /* size bit - we flush more than one 4kb page */
805 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
806 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
807 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
808 }
809 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)810 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
811 				  u64 address, size_t size)
812 {
813 	u64 pages;
814 	bool s;
815 
816 	pages = iommu_num_pages(address, size, PAGE_SIZE);
817 	s     = false;
818 
819 	if (pages > 1) {
820 		/*
821 		 * If we have to flush more than one page, flush all
822 		 * TLB entries for this domain
823 		 */
824 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
825 		s = true;
826 	}
827 
828 	address &= PAGE_MASK;
829 
830 	memset(cmd, 0, sizeof(*cmd));
831 	cmd->data[0]  = devid;
832 	cmd->data[0] |= (qdep & 0xff) << 24;
833 	cmd->data[1]  = devid;
834 	cmd->data[2]  = lower_32_bits(address);
835 	cmd->data[3]  = upper_32_bits(address);
836 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
837 	if (s)
838 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
839 }
840 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,int pasid,u64 address,bool size)841 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
842 				  u64 address, bool size)
843 {
844 	memset(cmd, 0, sizeof(*cmd));
845 
846 	address &= ~(0xfffULL);
847 
848 	cmd->data[0]  = pasid;
849 	cmd->data[1]  = domid;
850 	cmd->data[2]  = lower_32_bits(address);
851 	cmd->data[3]  = upper_32_bits(address);
852 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
853 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
854 	if (size)
855 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
856 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
857 }
858 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,int pasid,int qdep,u64 address,bool size)859 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
860 				  int qdep, u64 address, bool size)
861 {
862 	memset(cmd, 0, sizeof(*cmd));
863 
864 	address &= ~(0xfffULL);
865 
866 	cmd->data[0]  = devid;
867 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
868 	cmd->data[0] |= (qdep  & 0xff) << 24;
869 	cmd->data[1]  = devid;
870 	cmd->data[1] |= (pasid & 0xff) << 16;
871 	cmd->data[2]  = lower_32_bits(address);
872 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
873 	cmd->data[3]  = upper_32_bits(address);
874 	if (size)
875 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
876 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
877 }
878 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,int pasid,int status,int tag,bool gn)879 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
880 			       int status, int tag, bool gn)
881 {
882 	memset(cmd, 0, sizeof(*cmd));
883 
884 	cmd->data[0]  = devid;
885 	if (gn) {
886 		cmd->data[1]  = pasid;
887 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
888 	}
889 	cmd->data[3]  = tag & 0x1ff;
890 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
891 
892 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
893 }
894 
build_inv_all(struct iommu_cmd * cmd)895 static void build_inv_all(struct iommu_cmd *cmd)
896 {
897 	memset(cmd, 0, sizeof(*cmd));
898 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
899 }
900 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)901 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
902 {
903 	memset(cmd, 0, sizeof(*cmd));
904 	cmd->data[0] = devid;
905 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
906 }
907 
908 /*
909  * Writes the command to the IOMMUs command buffer and informs the
910  * hardware about the new command.
911  */
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)912 static int iommu_queue_command_sync(struct amd_iommu *iommu,
913 				    struct iommu_cmd *cmd,
914 				    bool sync)
915 {
916 	u32 left, tail, head, next_tail;
917 	unsigned long flags;
918 
919 again:
920 	spin_lock_irqsave(&iommu->lock, flags);
921 
922 	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
923 	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
924 	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
925 	left      = (head - next_tail) % CMD_BUFFER_SIZE;
926 
927 	if (left <= 2) {
928 		struct iommu_cmd sync_cmd;
929 		volatile u64 sem = 0;
930 		int ret;
931 
932 		build_completion_wait(&sync_cmd, (u64)&sem);
933 		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
934 
935 		spin_unlock_irqrestore(&iommu->lock, flags);
936 
937 		if ((ret = wait_on_sem(&sem)) != 0)
938 			return ret;
939 
940 		goto again;
941 	}
942 
943 	copy_cmd_to_buffer(iommu, cmd, tail);
944 
945 	/* We need to sync now to make sure all commands are processed */
946 	iommu->need_sync = sync;
947 
948 	spin_unlock_irqrestore(&iommu->lock, flags);
949 
950 	return 0;
951 }
952 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)953 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
954 {
955 	return iommu_queue_command_sync(iommu, cmd, true);
956 }
957 
958 /*
959  * This function queues a completion wait command into the command
960  * buffer of an IOMMU
961  */
iommu_completion_wait(struct amd_iommu * iommu)962 static int iommu_completion_wait(struct amd_iommu *iommu)
963 {
964 	struct iommu_cmd cmd;
965 	volatile u64 sem = 0;
966 	int ret;
967 
968 	if (!iommu->need_sync)
969 		return 0;
970 
971 	build_completion_wait(&cmd, (u64)&sem);
972 
973 	ret = iommu_queue_command_sync(iommu, &cmd, false);
974 	if (ret)
975 		return ret;
976 
977 	return wait_on_sem(&sem);
978 }
979 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)980 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
981 {
982 	struct iommu_cmd cmd;
983 
984 	build_inv_dte(&cmd, devid);
985 
986 	return iommu_queue_command(iommu, &cmd);
987 }
988 
iommu_flush_dte_all(struct amd_iommu * iommu)989 static void iommu_flush_dte_all(struct amd_iommu *iommu)
990 {
991 	u32 devid;
992 
993 	for (devid = 0; devid <= 0xffff; ++devid)
994 		iommu_flush_dte(iommu, devid);
995 
996 	iommu_completion_wait(iommu);
997 }
998 
999 /*
1000  * This function uses heavy locking and may disable irqs for some time. But
1001  * this is no issue because it is only called during resume.
1002  */
iommu_flush_tlb_all(struct amd_iommu * iommu)1003 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1004 {
1005 	u32 dom_id;
1006 
1007 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1008 		struct iommu_cmd cmd;
1009 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1010 				      dom_id, 1);
1011 		iommu_queue_command(iommu, &cmd);
1012 	}
1013 
1014 	iommu_completion_wait(iommu);
1015 }
1016 
iommu_flush_all(struct amd_iommu * iommu)1017 static void iommu_flush_all(struct amd_iommu *iommu)
1018 {
1019 	struct iommu_cmd cmd;
1020 
1021 	build_inv_all(&cmd);
1022 
1023 	iommu_queue_command(iommu, &cmd);
1024 	iommu_completion_wait(iommu);
1025 }
1026 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1027 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1028 {
1029 	struct iommu_cmd cmd;
1030 
1031 	build_inv_irt(&cmd, devid);
1032 
1033 	iommu_queue_command(iommu, &cmd);
1034 }
1035 
iommu_flush_irt_all(struct amd_iommu * iommu)1036 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1037 {
1038 	u32 devid;
1039 
1040 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1041 		iommu_flush_irt(iommu, devid);
1042 
1043 	iommu_completion_wait(iommu);
1044 }
1045 
iommu_flush_all_caches(struct amd_iommu * iommu)1046 void iommu_flush_all_caches(struct amd_iommu *iommu)
1047 {
1048 	if (iommu_feature(iommu, FEATURE_IA)) {
1049 		iommu_flush_all(iommu);
1050 	} else {
1051 		iommu_flush_dte_all(iommu);
1052 		iommu_flush_irt_all(iommu);
1053 		iommu_flush_tlb_all(iommu);
1054 	}
1055 }
1056 
1057 /*
1058  * Command send function for flushing on-device TLB
1059  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1060 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1061 			      u64 address, size_t size)
1062 {
1063 	struct amd_iommu *iommu;
1064 	struct iommu_cmd cmd;
1065 	int qdep;
1066 
1067 	qdep     = dev_data->ats.qdep;
1068 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1069 
1070 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1071 
1072 	return iommu_queue_command(iommu, &cmd);
1073 }
1074 
1075 /*
1076  * Command send function for invalidating a device table entry
1077  */
device_flush_dte(struct iommu_dev_data * dev_data)1078 static int device_flush_dte(struct iommu_dev_data *dev_data)
1079 {
1080 	struct amd_iommu *iommu;
1081 	u16 alias;
1082 	int ret;
1083 
1084 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1085 	alias = dev_data->alias;
1086 
1087 	ret = iommu_flush_dte(iommu, dev_data->devid);
1088 	if (!ret && alias != dev_data->devid)
1089 		ret = iommu_flush_dte(iommu, alias);
1090 	if (ret)
1091 		return ret;
1092 
1093 	if (dev_data->ats.enabled)
1094 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1095 
1096 	return ret;
1097 }
1098 
1099 /*
1100  * TLB invalidation function which is called from the mapping functions.
1101  * It invalidates a single PTE if the range to flush is within a single
1102  * page. Otherwise it flushes the whole TLB of the IOMMU.
1103  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1104 static void __domain_flush_pages(struct protection_domain *domain,
1105 				 u64 address, size_t size, int pde)
1106 {
1107 	struct iommu_dev_data *dev_data;
1108 	struct iommu_cmd cmd;
1109 	int ret = 0, i;
1110 
1111 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1112 
1113 	for (i = 0; i < amd_iommus_present; ++i) {
1114 		if (!domain->dev_iommu[i])
1115 			continue;
1116 
1117 		/*
1118 		 * Devices of this domain are behind this IOMMU
1119 		 * We need a TLB flush
1120 		 */
1121 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1122 	}
1123 
1124 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1125 
1126 		if (!dev_data->ats.enabled)
1127 			continue;
1128 
1129 		ret |= device_flush_iotlb(dev_data, address, size);
1130 	}
1131 
1132 	WARN_ON(ret);
1133 }
1134 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1135 static void domain_flush_pages(struct protection_domain *domain,
1136 			       u64 address, size_t size)
1137 {
1138 	__domain_flush_pages(domain, address, size, 0);
1139 }
1140 
1141 /* Flush the whole IO/TLB for a given protection domain */
domain_flush_tlb(struct protection_domain * domain)1142 static void domain_flush_tlb(struct protection_domain *domain)
1143 {
1144 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1145 }
1146 
1147 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1148 static void domain_flush_tlb_pde(struct protection_domain *domain)
1149 {
1150 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1151 }
1152 
domain_flush_complete(struct protection_domain * domain)1153 static void domain_flush_complete(struct protection_domain *domain)
1154 {
1155 	int i;
1156 
1157 	for (i = 0; i < amd_iommus_present; ++i) {
1158 		if (!domain->dev_iommu[i])
1159 			continue;
1160 
1161 		/*
1162 		 * Devices of this domain are behind this IOMMU
1163 		 * We need to wait for completion of all commands.
1164 		 */
1165 		iommu_completion_wait(amd_iommus[i]);
1166 	}
1167 }
1168 
1169 
1170 /*
1171  * This function flushes the DTEs for all devices in domain
1172  */
domain_flush_devices(struct protection_domain * domain)1173 static void domain_flush_devices(struct protection_domain *domain)
1174 {
1175 	struct iommu_dev_data *dev_data;
1176 
1177 	list_for_each_entry(dev_data, &domain->dev_list, list)
1178 		device_flush_dte(dev_data);
1179 }
1180 
1181 /****************************************************************************
1182  *
1183  * The functions below are used the create the page table mappings for
1184  * unity mapped regions.
1185  *
1186  ****************************************************************************/
1187 
1188 /*
1189  * This function is used to add another level to an IO page table. Adding
1190  * another level increases the size of the address space by 9 bits to a size up
1191  * to 64 bits.
1192  */
increase_address_space(struct protection_domain * domain,gfp_t gfp)1193 static bool increase_address_space(struct protection_domain *domain,
1194 				   gfp_t gfp)
1195 {
1196 	u64 *pte;
1197 
1198 	if (domain->mode == PAGE_MODE_6_LEVEL)
1199 		/* address space already 64 bit large */
1200 		return false;
1201 
1202 	pte = (void *)get_zeroed_page(gfp);
1203 	if (!pte)
1204 		return false;
1205 
1206 	*pte             = PM_LEVEL_PDE(domain->mode,
1207 					virt_to_phys(domain->pt_root));
1208 	domain->pt_root  = pte;
1209 	domain->mode    += 1;
1210 	domain->updated  = true;
1211 
1212 	return true;
1213 }
1214 
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp)1215 static u64 *alloc_pte(struct protection_domain *domain,
1216 		      unsigned long address,
1217 		      unsigned long page_size,
1218 		      u64 **pte_page,
1219 		      gfp_t gfp)
1220 {
1221 	int level, end_lvl;
1222 	u64 *pte, *page;
1223 
1224 	BUG_ON(!is_power_of_2(page_size));
1225 
1226 	while (address > PM_LEVEL_SIZE(domain->mode))
1227 		increase_address_space(domain, gfp);
1228 
1229 	level   = domain->mode - 1;
1230 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1231 	address = PAGE_SIZE_ALIGN(address, page_size);
1232 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1233 
1234 	while (level > end_lvl) {
1235 		if (!IOMMU_PTE_PRESENT(*pte)) {
1236 			page = (u64 *)get_zeroed_page(gfp);
1237 			if (!page)
1238 				return NULL;
1239 			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1240 		}
1241 
1242 		/* No level skipping support yet */
1243 		if (PM_PTE_LEVEL(*pte) != level)
1244 			return NULL;
1245 
1246 		level -= 1;
1247 
1248 		pte = IOMMU_PTE_PAGE(*pte);
1249 
1250 		if (pte_page && level == end_lvl)
1251 			*pte_page = pte;
1252 
1253 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1254 	}
1255 
1256 	return pte;
1257 }
1258 
1259 /*
1260  * This function checks if there is a PTE for a given dma address. If
1261  * there is one, it returns the pointer to it.
1262  */
fetch_pte(struct protection_domain * domain,unsigned long address,unsigned long * page_size)1263 static u64 *fetch_pte(struct protection_domain *domain,
1264 		      unsigned long address,
1265 		      unsigned long *page_size)
1266 {
1267 	int level;
1268 	u64 *pte;
1269 
1270 	if (address > PM_LEVEL_SIZE(domain->mode))
1271 		return NULL;
1272 
1273 	level	   =  domain->mode - 1;
1274 	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1275 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1276 
1277 	while (level > 0) {
1278 
1279 		/* Not Present */
1280 		if (!IOMMU_PTE_PRESENT(*pte))
1281 			return NULL;
1282 
1283 		/* Large PTE */
1284 		if (PM_PTE_LEVEL(*pte) == 7 ||
1285 		    PM_PTE_LEVEL(*pte) == 0)
1286 			break;
1287 
1288 		/* No level skipping support yet */
1289 		if (PM_PTE_LEVEL(*pte) != level)
1290 			return NULL;
1291 
1292 		level -= 1;
1293 
1294 		/* Walk to the next level */
1295 		pte	   = IOMMU_PTE_PAGE(*pte);
1296 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
1297 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
1298 	}
1299 
1300 	if (PM_PTE_LEVEL(*pte) == 0x07) {
1301 		unsigned long pte_mask;
1302 
1303 		/*
1304 		 * If we have a series of large PTEs, make
1305 		 * sure to return a pointer to the first one.
1306 		 */
1307 		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1308 		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1309 		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1310 	}
1311 
1312 	return pte;
1313 }
1314 
1315 /*
1316  * Generic mapping functions. It maps a physical address into a DMA
1317  * address space. It allocates the page table pages if necessary.
1318  * In the future it can be extended to a generic mapping function
1319  * supporting all features of AMD IOMMU page tables like level skipping
1320  * and full 64 bit address spaces.
1321  */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,int prot,unsigned long page_size)1322 static int iommu_map_page(struct protection_domain *dom,
1323 			  unsigned long bus_addr,
1324 			  unsigned long phys_addr,
1325 			  int prot,
1326 			  unsigned long page_size)
1327 {
1328 	u64 __pte, *pte;
1329 	int i, count;
1330 
1331 	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1332 	BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1333 
1334 	if (!(prot & IOMMU_PROT_MASK))
1335 		return -EINVAL;
1336 
1337 	count = PAGE_SIZE_PTE_COUNT(page_size);
1338 	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1339 
1340 	if (!pte)
1341 		return -ENOMEM;
1342 
1343 	for (i = 0; i < count; ++i)
1344 		if (IOMMU_PTE_PRESENT(pte[i]))
1345 			return -EBUSY;
1346 
1347 	if (count > 1) {
1348 		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1349 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1350 	} else
1351 		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1352 
1353 	if (prot & IOMMU_PROT_IR)
1354 		__pte |= IOMMU_PTE_IR;
1355 	if (prot & IOMMU_PROT_IW)
1356 		__pte |= IOMMU_PTE_IW;
1357 
1358 	for (i = 0; i < count; ++i)
1359 		pte[i] = __pte;
1360 
1361 	update_domain(dom);
1362 
1363 	return 0;
1364 }
1365 
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1366 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1367 				      unsigned long bus_addr,
1368 				      unsigned long page_size)
1369 {
1370 	unsigned long long unmapped;
1371 	unsigned long unmap_size;
1372 	u64 *pte;
1373 
1374 	BUG_ON(!is_power_of_2(page_size));
1375 
1376 	unmapped = 0;
1377 
1378 	while (unmapped < page_size) {
1379 
1380 		pte = fetch_pte(dom, bus_addr, &unmap_size);
1381 
1382 		if (pte) {
1383 			int i, count;
1384 
1385 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1386 			for (i = 0; i < count; i++)
1387 				pte[i] = 0ULL;
1388 		}
1389 
1390 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1391 		unmapped += unmap_size;
1392 	}
1393 
1394 	BUG_ON(unmapped && !is_power_of_2(unmapped));
1395 
1396 	return unmapped;
1397 }
1398 
1399 /****************************************************************************
1400  *
1401  * The next functions belong to the address allocator for the dma_ops
1402  * interface functions. They work like the allocators in the other IOMMU
1403  * drivers. Its basically a bitmap which marks the allocated pages in
1404  * the aperture. Maybe it could be enhanced in the future to a more
1405  * efficient allocator.
1406  *
1407  ****************************************************************************/
1408 
1409 /*
1410  * The address allocator core functions.
1411  *
1412  * called with domain->lock held
1413  */
1414 
1415 /*
1416  * Used to reserve address ranges in the aperture (e.g. for exclusion
1417  * ranges.
1418  */
dma_ops_reserve_addresses(struct dma_ops_domain * dom,unsigned long start_page,unsigned int pages)1419 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1420 				      unsigned long start_page,
1421 				      unsigned int pages)
1422 {
1423 	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1424 
1425 	if (start_page + pages > last_page)
1426 		pages = last_page - start_page;
1427 
1428 	for (i = start_page; i < start_page + pages; ++i) {
1429 		int index = i / APERTURE_RANGE_PAGES;
1430 		int page  = i % APERTURE_RANGE_PAGES;
1431 		__set_bit(page, dom->aperture[index]->bitmap);
1432 	}
1433 }
1434 
1435 /*
1436  * This function is used to add a new aperture range to an existing
1437  * aperture in case of dma_ops domain allocation or address allocation
1438  * failure.
1439  */
alloc_new_range(struct dma_ops_domain * dma_dom,bool populate,gfp_t gfp)1440 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1441 			   bool populate, gfp_t gfp)
1442 {
1443 	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1444 	struct amd_iommu *iommu;
1445 	unsigned long i, old_size, pte_pgsize;
1446 
1447 #ifdef CONFIG_IOMMU_STRESS
1448 	populate = false;
1449 #endif
1450 
1451 	if (index >= APERTURE_MAX_RANGES)
1452 		return -ENOMEM;
1453 
1454 	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1455 	if (!dma_dom->aperture[index])
1456 		return -ENOMEM;
1457 
1458 	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1459 	if (!dma_dom->aperture[index]->bitmap)
1460 		goto out_free;
1461 
1462 	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1463 
1464 	if (populate) {
1465 		unsigned long address = dma_dom->aperture_size;
1466 		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1467 		u64 *pte, *pte_page;
1468 
1469 		for (i = 0; i < num_ptes; ++i) {
1470 			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1471 					&pte_page, gfp);
1472 			if (!pte)
1473 				goto out_free;
1474 
1475 			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1476 
1477 			address += APERTURE_RANGE_SIZE / 64;
1478 		}
1479 	}
1480 
1481 	old_size                = dma_dom->aperture_size;
1482 	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1483 
1484 	/* Reserve address range used for MSI messages */
1485 	if (old_size < MSI_ADDR_BASE_LO &&
1486 	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1487 		unsigned long spage;
1488 		int pages;
1489 
1490 		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1491 		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1492 
1493 		dma_ops_reserve_addresses(dma_dom, spage, pages);
1494 	}
1495 
1496 	/* Initialize the exclusion range if necessary */
1497 	for_each_iommu(iommu) {
1498 		if (iommu->exclusion_start &&
1499 		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1500 		    && iommu->exclusion_start < dma_dom->aperture_size) {
1501 			unsigned long startpage;
1502 			int pages = iommu_num_pages(iommu->exclusion_start,
1503 						    iommu->exclusion_length,
1504 						    PAGE_SIZE);
1505 			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1506 			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1507 		}
1508 	}
1509 
1510 	/*
1511 	 * Check for areas already mapped as present in the new aperture
1512 	 * range and mark those pages as reserved in the allocator. Such
1513 	 * mappings may already exist as a result of requested unity
1514 	 * mappings for devices.
1515 	 */
1516 	for (i = dma_dom->aperture[index]->offset;
1517 	     i < dma_dom->aperture_size;
1518 	     i += pte_pgsize) {
1519 		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1520 		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1521 			continue;
1522 
1523 		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1524 					  pte_pgsize >> 12);
1525 	}
1526 
1527 	update_domain(&dma_dom->domain);
1528 
1529 	return 0;
1530 
1531 out_free:
1532 	update_domain(&dma_dom->domain);
1533 
1534 	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1535 
1536 	kfree(dma_dom->aperture[index]);
1537 	dma_dom->aperture[index] = NULL;
1538 
1539 	return -ENOMEM;
1540 }
1541 
dma_ops_area_alloc(struct device * dev,struct dma_ops_domain * dom,unsigned int pages,unsigned long align_mask,u64 dma_mask,unsigned long start)1542 static unsigned long dma_ops_area_alloc(struct device *dev,
1543 					struct dma_ops_domain *dom,
1544 					unsigned int pages,
1545 					unsigned long align_mask,
1546 					u64 dma_mask,
1547 					unsigned long start)
1548 {
1549 	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1550 	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1551 	int i = start >> APERTURE_RANGE_SHIFT;
1552 	unsigned long boundary_size, mask;
1553 	unsigned long address = -1;
1554 	unsigned long limit;
1555 
1556 	next_bit >>= PAGE_SHIFT;
1557 
1558 	mask = dma_get_seg_boundary(dev);
1559 
1560 	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1561 				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1562 
1563 	for (;i < max_index; ++i) {
1564 		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1565 
1566 		if (dom->aperture[i]->offset >= dma_mask)
1567 			break;
1568 
1569 		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1570 					       dma_mask >> PAGE_SHIFT);
1571 
1572 		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1573 					   limit, next_bit, pages, 0,
1574 					    boundary_size, align_mask);
1575 		if (address != -1) {
1576 			address = dom->aperture[i]->offset +
1577 				  (address << PAGE_SHIFT);
1578 			dom->next_address = address + (pages << PAGE_SHIFT);
1579 			break;
1580 		}
1581 
1582 		next_bit = 0;
1583 	}
1584 
1585 	return address;
1586 }
1587 
dma_ops_alloc_addresses(struct device * dev,struct dma_ops_domain * dom,unsigned int pages,unsigned long align_mask,u64 dma_mask)1588 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1589 					     struct dma_ops_domain *dom,
1590 					     unsigned int pages,
1591 					     unsigned long align_mask,
1592 					     u64 dma_mask)
1593 {
1594 	unsigned long address;
1595 
1596 #ifdef CONFIG_IOMMU_STRESS
1597 	dom->next_address = 0;
1598 	dom->need_flush = true;
1599 #endif
1600 
1601 	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1602 				     dma_mask, dom->next_address);
1603 
1604 	if (address == -1) {
1605 		dom->next_address = 0;
1606 		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1607 					     dma_mask, 0);
1608 		dom->need_flush = true;
1609 	}
1610 
1611 	if (unlikely(address == -1))
1612 		address = DMA_ERROR_CODE;
1613 
1614 	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1615 
1616 	return address;
1617 }
1618 
1619 /*
1620  * The address free function.
1621  *
1622  * called with domain->lock held
1623  */
dma_ops_free_addresses(struct dma_ops_domain * dom,unsigned long address,unsigned int pages)1624 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1625 				   unsigned long address,
1626 				   unsigned int pages)
1627 {
1628 	unsigned i = address >> APERTURE_RANGE_SHIFT;
1629 	struct aperture_range *range = dom->aperture[i];
1630 
1631 	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1632 
1633 #ifdef CONFIG_IOMMU_STRESS
1634 	if (i < 4)
1635 		return;
1636 #endif
1637 
1638 	if (address >= dom->next_address)
1639 		dom->need_flush = true;
1640 
1641 	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1642 
1643 	bitmap_clear(range->bitmap, address, pages);
1644 
1645 }
1646 
1647 /****************************************************************************
1648  *
1649  * The next functions belong to the domain allocation. A domain is
1650  * allocated for every IOMMU as the default domain. If device isolation
1651  * is enabled, every device get its own domain. The most important thing
1652  * about domains is the page table mapping the DMA address space they
1653  * contain.
1654  *
1655  ****************************************************************************/
1656 
1657 /*
1658  * This function adds a protection domain to the global protection domain list
1659  */
add_domain_to_list(struct protection_domain * domain)1660 static void add_domain_to_list(struct protection_domain *domain)
1661 {
1662 	unsigned long flags;
1663 
1664 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1665 	list_add(&domain->list, &amd_iommu_pd_list);
1666 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1667 }
1668 
1669 /*
1670  * This function removes a protection domain to the global
1671  * protection domain list
1672  */
del_domain_from_list(struct protection_domain * domain)1673 static void del_domain_from_list(struct protection_domain *domain)
1674 {
1675 	unsigned long flags;
1676 
1677 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1678 	list_del(&domain->list);
1679 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1680 }
1681 
domain_id_alloc(void)1682 static u16 domain_id_alloc(void)
1683 {
1684 	unsigned long flags;
1685 	int id;
1686 
1687 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1688 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1689 	BUG_ON(id == 0);
1690 	if (id > 0 && id < MAX_DOMAIN_ID)
1691 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1692 	else
1693 		id = 0;
1694 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1695 
1696 	return id;
1697 }
1698 
domain_id_free(int id)1699 static void domain_id_free(int id)
1700 {
1701 	unsigned long flags;
1702 
1703 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1704 	if (id > 0 && id < MAX_DOMAIN_ID)
1705 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1706 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1707 }
1708 
1709 #define DEFINE_FREE_PT_FN(LVL, FN)				\
1710 static void free_pt_##LVL (unsigned long __pt)			\
1711 {								\
1712 	unsigned long p;					\
1713 	u64 *pt;						\
1714 	int i;							\
1715 								\
1716 	pt = (u64 *)__pt;					\
1717 								\
1718 	for (i = 0; i < 512; ++i) {				\
1719 		/* PTE present? */				\
1720 		if (!IOMMU_PTE_PRESENT(pt[i]))			\
1721 			continue;				\
1722 								\
1723 		/* Large PTE? */				\
1724 		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
1725 		    PM_PTE_LEVEL(pt[i]) == 7)			\
1726 			continue;				\
1727 								\
1728 		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
1729 		FN(p);						\
1730 	}							\
1731 	free_page((unsigned long)pt);				\
1732 }
1733 
DEFINE_FREE_PT_FN(l2,free_page)1734 DEFINE_FREE_PT_FN(l2, free_page)
1735 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1736 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1737 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1738 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1739 
1740 static void free_pagetable(struct protection_domain *domain)
1741 {
1742 	unsigned long root = (unsigned long)domain->pt_root;
1743 
1744 	switch (domain->mode) {
1745 	case PAGE_MODE_NONE:
1746 		break;
1747 	case PAGE_MODE_1_LEVEL:
1748 		free_page(root);
1749 		break;
1750 	case PAGE_MODE_2_LEVEL:
1751 		free_pt_l2(root);
1752 		break;
1753 	case PAGE_MODE_3_LEVEL:
1754 		free_pt_l3(root);
1755 		break;
1756 	case PAGE_MODE_4_LEVEL:
1757 		free_pt_l4(root);
1758 		break;
1759 	case PAGE_MODE_5_LEVEL:
1760 		free_pt_l5(root);
1761 		break;
1762 	case PAGE_MODE_6_LEVEL:
1763 		free_pt_l6(root);
1764 		break;
1765 	default:
1766 		BUG();
1767 	}
1768 }
1769 
free_gcr3_tbl_level1(u64 * tbl)1770 static void free_gcr3_tbl_level1(u64 *tbl)
1771 {
1772 	u64 *ptr;
1773 	int i;
1774 
1775 	for (i = 0; i < 512; ++i) {
1776 		if (!(tbl[i] & GCR3_VALID))
1777 			continue;
1778 
1779 		ptr = __va(tbl[i] & PAGE_MASK);
1780 
1781 		free_page((unsigned long)ptr);
1782 	}
1783 }
1784 
free_gcr3_tbl_level2(u64 * tbl)1785 static void free_gcr3_tbl_level2(u64 *tbl)
1786 {
1787 	u64 *ptr;
1788 	int i;
1789 
1790 	for (i = 0; i < 512; ++i) {
1791 		if (!(tbl[i] & GCR3_VALID))
1792 			continue;
1793 
1794 		ptr = __va(tbl[i] & PAGE_MASK);
1795 
1796 		free_gcr3_tbl_level1(ptr);
1797 	}
1798 }
1799 
free_gcr3_table(struct protection_domain * domain)1800 static void free_gcr3_table(struct protection_domain *domain)
1801 {
1802 	if (domain->glx == 2)
1803 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1804 	else if (domain->glx == 1)
1805 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1806 	else
1807 		BUG_ON(domain->glx != 0);
1808 
1809 	free_page((unsigned long)domain->gcr3_tbl);
1810 }
1811 
1812 /*
1813  * Free a domain, only used if something went wrong in the
1814  * allocation path and we need to free an already allocated page table
1815  */
dma_ops_domain_free(struct dma_ops_domain * dom)1816 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1817 {
1818 	int i;
1819 
1820 	if (!dom)
1821 		return;
1822 
1823 	del_domain_from_list(&dom->domain);
1824 
1825 	free_pagetable(&dom->domain);
1826 
1827 	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1828 		if (!dom->aperture[i])
1829 			continue;
1830 		free_page((unsigned long)dom->aperture[i]->bitmap);
1831 		kfree(dom->aperture[i]);
1832 	}
1833 
1834 	kfree(dom);
1835 }
1836 
1837 /*
1838  * Allocates a new protection domain usable for the dma_ops functions.
1839  * It also initializes the page table and the address allocator data
1840  * structures required for the dma_ops interface
1841  */
dma_ops_domain_alloc(void)1842 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1843 {
1844 	struct dma_ops_domain *dma_dom;
1845 
1846 	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1847 	if (!dma_dom)
1848 		return NULL;
1849 
1850 	if (protection_domain_init(&dma_dom->domain))
1851 		goto free_dma_dom;
1852 
1853 	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1854 	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1855 	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1856 	dma_dom->domain.priv = dma_dom;
1857 	if (!dma_dom->domain.pt_root)
1858 		goto free_dma_dom;
1859 
1860 	dma_dom->need_flush = false;
1861 
1862 	add_domain_to_list(&dma_dom->domain);
1863 
1864 	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1865 		goto free_dma_dom;
1866 
1867 	/*
1868 	 * mark the first page as allocated so we never return 0 as
1869 	 * a valid dma-address. So we can use 0 as error value
1870 	 */
1871 	dma_dom->aperture[0]->bitmap[0] = 1;
1872 	dma_dom->next_address = 0;
1873 
1874 
1875 	return dma_dom;
1876 
1877 free_dma_dom:
1878 	dma_ops_domain_free(dma_dom);
1879 
1880 	return NULL;
1881 }
1882 
1883 /*
1884  * little helper function to check whether a given protection domain is a
1885  * dma_ops domain
1886  */
dma_ops_domain(struct protection_domain * domain)1887 static bool dma_ops_domain(struct protection_domain *domain)
1888 {
1889 	return domain->flags & PD_DMA_OPS_MASK;
1890 }
1891 
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats)1892 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1893 {
1894 	u64 pte_root = 0;
1895 	u64 flags = 0;
1896 
1897 	if (domain->mode != PAGE_MODE_NONE)
1898 		pte_root = virt_to_phys(domain->pt_root);
1899 
1900 	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1901 		    << DEV_ENTRY_MODE_SHIFT;
1902 	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1903 
1904 	flags = amd_iommu_dev_table[devid].data[1];
1905 
1906 	if (ats)
1907 		flags |= DTE_FLAG_IOTLB;
1908 
1909 	if (domain->flags & PD_IOMMUV2_MASK) {
1910 		u64 gcr3 = __pa(domain->gcr3_tbl);
1911 		u64 glx  = domain->glx;
1912 		u64 tmp;
1913 
1914 		pte_root |= DTE_FLAG_GV;
1915 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1916 
1917 		/* First mask out possible old values for GCR3 table */
1918 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1919 		flags    &= ~tmp;
1920 
1921 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1922 		flags    &= ~tmp;
1923 
1924 		/* Encode GCR3 table into DTE */
1925 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1926 		pte_root |= tmp;
1927 
1928 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1929 		flags    |= tmp;
1930 
1931 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1932 		flags    |= tmp;
1933 	}
1934 
1935 	flags &= ~(0xffffUL);
1936 	flags |= domain->id;
1937 
1938 	amd_iommu_dev_table[devid].data[1]  = flags;
1939 	amd_iommu_dev_table[devid].data[0]  = pte_root;
1940 }
1941 
clear_dte_entry(u16 devid)1942 static void clear_dte_entry(u16 devid)
1943 {
1944 	/* remove entry from the device table seen by the hardware */
1945 	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
1946 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1947 
1948 	amd_iommu_apply_erratum_63(devid);
1949 }
1950 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1951 static void do_attach(struct iommu_dev_data *dev_data,
1952 		      struct protection_domain *domain)
1953 {
1954 	struct amd_iommu *iommu;
1955 	u16 alias;
1956 	bool ats;
1957 
1958 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1959 	alias = dev_data->alias;
1960 	ats   = dev_data->ats.enabled;
1961 
1962 	/* Update data structures */
1963 	dev_data->domain = domain;
1964 	list_add(&dev_data->list, &domain->dev_list);
1965 
1966 	/* Do reference counting */
1967 	domain->dev_iommu[iommu->index] += 1;
1968 	domain->dev_cnt                 += 1;
1969 
1970 	/* Update device table */
1971 	set_dte_entry(dev_data->devid, domain, ats);
1972 	if (alias != dev_data->devid)
1973 		set_dte_entry(alias, domain, ats);
1974 
1975 	device_flush_dte(dev_data);
1976 }
1977 
do_detach(struct iommu_dev_data * dev_data)1978 static void do_detach(struct iommu_dev_data *dev_data)
1979 {
1980 	struct amd_iommu *iommu;
1981 	u16 alias;
1982 
1983 	/*
1984 	 * First check if the device is still attached. It might already
1985 	 * be detached from its domain because the generic
1986 	 * iommu_detach_group code detached it and we try again here in
1987 	 * our alias handling.
1988 	 */
1989 	if (!dev_data->domain)
1990 		return;
1991 
1992 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1993 	alias = dev_data->alias;
1994 
1995 	/* decrease reference counters */
1996 	dev_data->domain->dev_iommu[iommu->index] -= 1;
1997 	dev_data->domain->dev_cnt                 -= 1;
1998 
1999 	/* Update data structures */
2000 	dev_data->domain = NULL;
2001 	list_del(&dev_data->list);
2002 	clear_dte_entry(dev_data->devid);
2003 	if (alias != dev_data->devid)
2004 		clear_dte_entry(alias);
2005 
2006 	/* Flush the DTE entry */
2007 	device_flush_dte(dev_data);
2008 }
2009 
2010 /*
2011  * If a device is not yet associated with a domain, this function does
2012  * assigns it visible for the hardware
2013  */
__attach_device(struct iommu_dev_data * dev_data,struct protection_domain * domain)2014 static int __attach_device(struct iommu_dev_data *dev_data,
2015 			   struct protection_domain *domain)
2016 {
2017 	int ret;
2018 
2019 	/*
2020 	 * Must be called with IRQs disabled. Warn here to detect early
2021 	 * when its not.
2022 	 */
2023 	WARN_ON(!irqs_disabled());
2024 
2025 	/* lock domain */
2026 	spin_lock(&domain->lock);
2027 
2028 	ret = -EBUSY;
2029 	if (dev_data->domain != NULL)
2030 		goto out_unlock;
2031 
2032 	/* Attach alias group root */
2033 	do_attach(dev_data, domain);
2034 
2035 	ret = 0;
2036 
2037 out_unlock:
2038 
2039 	/* ready */
2040 	spin_unlock(&domain->lock);
2041 
2042 	return ret;
2043 }
2044 
2045 
pdev_iommuv2_disable(struct pci_dev * pdev)2046 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2047 {
2048 	pci_disable_ats(pdev);
2049 	pci_disable_pri(pdev);
2050 	pci_disable_pasid(pdev);
2051 }
2052 
2053 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)2054 static int pri_reset_while_enabled(struct pci_dev *pdev)
2055 {
2056 	u16 control;
2057 	int pos;
2058 
2059 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2060 	if (!pos)
2061 		return -EINVAL;
2062 
2063 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2064 	control |= PCI_PRI_CTRL_RESET;
2065 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2066 
2067 	return 0;
2068 }
2069 
pdev_iommuv2_enable(struct pci_dev * pdev)2070 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2071 {
2072 	bool reset_enable;
2073 	int reqs, ret;
2074 
2075 	/* FIXME: Hardcode number of outstanding requests for now */
2076 	reqs = 32;
2077 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2078 		reqs = 1;
2079 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2080 
2081 	/* Only allow access to user-accessible pages */
2082 	ret = pci_enable_pasid(pdev, 0);
2083 	if (ret)
2084 		goto out_err;
2085 
2086 	/* First reset the PRI state of the device */
2087 	ret = pci_reset_pri(pdev);
2088 	if (ret)
2089 		goto out_err;
2090 
2091 	/* Enable PRI */
2092 	ret = pci_enable_pri(pdev, reqs);
2093 	if (ret)
2094 		goto out_err;
2095 
2096 	if (reset_enable) {
2097 		ret = pri_reset_while_enabled(pdev);
2098 		if (ret)
2099 			goto out_err;
2100 	}
2101 
2102 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2103 	if (ret)
2104 		goto out_err;
2105 
2106 	return 0;
2107 
2108 out_err:
2109 	pci_disable_pri(pdev);
2110 	pci_disable_pasid(pdev);
2111 
2112 	return ret;
2113 }
2114 
2115 /* FIXME: Move this to PCI code */
2116 #define PCI_PRI_TLP_OFF		(1 << 15)
2117 
pci_pri_tlp_required(struct pci_dev * pdev)2118 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2119 {
2120 	u16 status;
2121 	int pos;
2122 
2123 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2124 	if (!pos)
2125 		return false;
2126 
2127 	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2128 
2129 	return (status & PCI_PRI_TLP_OFF) ? true : false;
2130 }
2131 
2132 /*
2133  * If a device is not yet associated with a domain, this function
2134  * assigns it visible for the hardware
2135  */
attach_device(struct device * dev,struct protection_domain * domain)2136 static int attach_device(struct device *dev,
2137 			 struct protection_domain *domain)
2138 {
2139 	struct pci_dev *pdev = to_pci_dev(dev);
2140 	struct iommu_dev_data *dev_data;
2141 	unsigned long flags;
2142 	int ret;
2143 
2144 	dev_data = get_dev_data(dev);
2145 
2146 	if (domain->flags & PD_IOMMUV2_MASK) {
2147 		if (!dev_data->passthrough)
2148 			return -EINVAL;
2149 
2150 		if (dev_data->iommu_v2) {
2151 			if (pdev_iommuv2_enable(pdev) != 0)
2152 				return -EINVAL;
2153 
2154 			dev_data->ats.enabled = true;
2155 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2156 			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2157 		}
2158 	} else if (amd_iommu_iotlb_sup &&
2159 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2160 		dev_data->ats.enabled = true;
2161 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2162 	}
2163 
2164 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2165 	ret = __attach_device(dev_data, domain);
2166 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2167 
2168 	/*
2169 	 * We might boot into a crash-kernel here. The crashed kernel
2170 	 * left the caches in the IOMMU dirty. So we have to flush
2171 	 * here to evict all dirty stuff.
2172 	 */
2173 	domain_flush_tlb_pde(domain);
2174 
2175 	return ret;
2176 }
2177 
2178 /*
2179  * Removes a device from a protection domain (unlocked)
2180  */
__detach_device(struct iommu_dev_data * dev_data)2181 static void __detach_device(struct iommu_dev_data *dev_data)
2182 {
2183 	struct protection_domain *domain;
2184 
2185 	/*
2186 	 * Must be called with IRQs disabled. Warn here to detect early
2187 	 * when its not.
2188 	 */
2189 	WARN_ON(!irqs_disabled());
2190 
2191 	if (WARN_ON(!dev_data->domain))
2192 		return;
2193 
2194 	domain = dev_data->domain;
2195 
2196 	spin_lock(&domain->lock);
2197 
2198 	do_detach(dev_data);
2199 
2200 	spin_unlock(&domain->lock);
2201 }
2202 
2203 /*
2204  * Removes a device from a protection domain (with devtable_lock held)
2205  */
detach_device(struct device * dev)2206 static void detach_device(struct device *dev)
2207 {
2208 	struct protection_domain *domain;
2209 	struct iommu_dev_data *dev_data;
2210 	unsigned long flags;
2211 
2212 	dev_data = get_dev_data(dev);
2213 	domain   = dev_data->domain;
2214 
2215 	/* lock device table */
2216 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2217 	__detach_device(dev_data);
2218 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2219 
2220 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2221 		pdev_iommuv2_disable(to_pci_dev(dev));
2222 	else if (dev_data->ats.enabled)
2223 		pci_disable_ats(to_pci_dev(dev));
2224 
2225 	dev_data->ats.enabled = false;
2226 }
2227 
amd_iommu_add_device(struct device * dev)2228 static int amd_iommu_add_device(struct device *dev)
2229 {
2230 	struct iommu_dev_data *dev_data;
2231 	struct iommu_domain *domain;
2232 	struct amd_iommu *iommu;
2233 	u16 devid;
2234 	int ret;
2235 
2236 	if (!check_device(dev) || get_dev_data(dev))
2237 		return 0;
2238 
2239 	devid = get_device_id(dev);
2240 	iommu = amd_iommu_rlookup_table[devid];
2241 
2242 	ret = iommu_init_device(dev);
2243 	if (ret) {
2244 		if (ret != -ENOTSUPP)
2245 			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2246 				dev_name(dev));
2247 
2248 		iommu_ignore_device(dev);
2249 		dev->archdata.dma_ops = &nommu_dma_ops;
2250 		goto out;
2251 	}
2252 	init_iommu_group(dev);
2253 
2254 	dev_data = get_dev_data(dev);
2255 
2256 	BUG_ON(!dev_data);
2257 
2258 	if (iommu_pass_through || dev_data->iommu_v2)
2259 		iommu_request_dm_for_dev(dev);
2260 
2261 	/* Domains are initialized for this device - have a look what we ended up with */
2262 	domain = iommu_get_domain_for_dev(dev);
2263 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2264 		dev_data->passthrough = true;
2265 	else
2266 		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2267 
2268 out:
2269 	iommu_completion_wait(iommu);
2270 
2271 	return 0;
2272 }
2273 
amd_iommu_remove_device(struct device * dev)2274 static void amd_iommu_remove_device(struct device *dev)
2275 {
2276 	struct amd_iommu *iommu;
2277 	u16 devid;
2278 
2279 	if (!check_device(dev))
2280 		return;
2281 
2282 	devid = get_device_id(dev);
2283 	iommu = amd_iommu_rlookup_table[devid];
2284 
2285 	iommu_uninit_device(dev);
2286 	iommu_completion_wait(iommu);
2287 }
2288 
2289 /*****************************************************************************
2290  *
2291  * The next functions belong to the dma_ops mapping/unmapping code.
2292  *
2293  *****************************************************************************/
2294 
2295 /*
2296  * In the dma_ops path we only have the struct device. This function
2297  * finds the corresponding IOMMU, the protection domain and the
2298  * requestor id for a given device.
2299  * If the device is not yet associated with a domain this is also done
2300  * in this function.
2301  */
get_domain(struct device * dev)2302 static struct protection_domain *get_domain(struct device *dev)
2303 {
2304 	struct protection_domain *domain;
2305 	struct iommu_domain *io_domain;
2306 
2307 	if (!check_device(dev))
2308 		return ERR_PTR(-EINVAL);
2309 
2310 	io_domain = iommu_get_domain_for_dev(dev);
2311 	if (!io_domain)
2312 		return NULL;
2313 
2314 	domain = to_pdomain(io_domain);
2315 	if (!dma_ops_domain(domain))
2316 		return ERR_PTR(-EBUSY);
2317 
2318 	return domain;
2319 }
2320 
update_device_table(struct protection_domain * domain)2321 static void update_device_table(struct protection_domain *domain)
2322 {
2323 	struct iommu_dev_data *dev_data;
2324 
2325 	list_for_each_entry(dev_data, &domain->dev_list, list)
2326 		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2327 }
2328 
update_domain(struct protection_domain * domain)2329 static void update_domain(struct protection_domain *domain)
2330 {
2331 	if (!domain->updated)
2332 		return;
2333 
2334 	update_device_table(domain);
2335 
2336 	domain_flush_devices(domain);
2337 	domain_flush_tlb_pde(domain);
2338 
2339 	domain->updated = false;
2340 }
2341 
2342 /*
2343  * This function fetches the PTE for a given address in the aperture
2344  */
dma_ops_get_pte(struct dma_ops_domain * dom,unsigned long address)2345 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2346 			    unsigned long address)
2347 {
2348 	struct aperture_range *aperture;
2349 	u64 *pte, *pte_page;
2350 
2351 	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2352 	if (!aperture)
2353 		return NULL;
2354 
2355 	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2356 	if (!pte) {
2357 		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2358 				GFP_ATOMIC);
2359 		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2360 	} else
2361 		pte += PM_LEVEL_INDEX(0, address);
2362 
2363 	update_domain(&dom->domain);
2364 
2365 	return pte;
2366 }
2367 
2368 /*
2369  * This is the generic map function. It maps one 4kb page at paddr to
2370  * the given address in the DMA address space for the domain.
2371  */
dma_ops_domain_map(struct dma_ops_domain * dom,unsigned long address,phys_addr_t paddr,int direction)2372 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2373 				     unsigned long address,
2374 				     phys_addr_t paddr,
2375 				     int direction)
2376 {
2377 	u64 *pte, __pte;
2378 
2379 	WARN_ON(address > dom->aperture_size);
2380 
2381 	paddr &= PAGE_MASK;
2382 
2383 	pte  = dma_ops_get_pte(dom, address);
2384 	if (!pte)
2385 		return DMA_ERROR_CODE;
2386 
2387 	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2388 
2389 	if (direction == DMA_TO_DEVICE)
2390 		__pte |= IOMMU_PTE_IR;
2391 	else if (direction == DMA_FROM_DEVICE)
2392 		__pte |= IOMMU_PTE_IW;
2393 	else if (direction == DMA_BIDIRECTIONAL)
2394 		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2395 
2396 	WARN_ON(*pte);
2397 
2398 	*pte = __pte;
2399 
2400 	return (dma_addr_t)address;
2401 }
2402 
2403 /*
2404  * The generic unmapping function for on page in the DMA address space.
2405  */
dma_ops_domain_unmap(struct dma_ops_domain * dom,unsigned long address)2406 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2407 				 unsigned long address)
2408 {
2409 	struct aperture_range *aperture;
2410 	u64 *pte;
2411 
2412 	if (address >= dom->aperture_size)
2413 		return;
2414 
2415 	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2416 	if (!aperture)
2417 		return;
2418 
2419 	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2420 	if (!pte)
2421 		return;
2422 
2423 	pte += PM_LEVEL_INDEX(0, address);
2424 
2425 	WARN_ON(!*pte);
2426 
2427 	*pte = 0ULL;
2428 }
2429 
2430 /*
2431  * This function contains common code for mapping of a physically
2432  * contiguous memory region into DMA address space. It is used by all
2433  * mapping functions provided with this IOMMU driver.
2434  * Must be called with the domain lock held.
2435  */
__map_single(struct device * dev,struct dma_ops_domain * dma_dom,phys_addr_t paddr,size_t size,int dir,bool align,u64 dma_mask)2436 static dma_addr_t __map_single(struct device *dev,
2437 			       struct dma_ops_domain *dma_dom,
2438 			       phys_addr_t paddr,
2439 			       size_t size,
2440 			       int dir,
2441 			       bool align,
2442 			       u64 dma_mask)
2443 {
2444 	dma_addr_t offset = paddr & ~PAGE_MASK;
2445 	dma_addr_t address, start, ret;
2446 	unsigned int pages;
2447 	unsigned long align_mask = 0;
2448 	int i;
2449 
2450 	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2451 	paddr &= PAGE_MASK;
2452 
2453 	INC_STATS_COUNTER(total_map_requests);
2454 
2455 	if (pages > 1)
2456 		INC_STATS_COUNTER(cross_page);
2457 
2458 	if (align)
2459 		align_mask = (1UL << get_order(size)) - 1;
2460 
2461 retry:
2462 	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2463 					  dma_mask);
2464 	if (unlikely(address == DMA_ERROR_CODE)) {
2465 		/*
2466 		 * setting next_address here will let the address
2467 		 * allocator only scan the new allocated range in the
2468 		 * first run. This is a small optimization.
2469 		 */
2470 		dma_dom->next_address = dma_dom->aperture_size;
2471 
2472 		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2473 			goto out;
2474 
2475 		/*
2476 		 * aperture was successfully enlarged by 128 MB, try
2477 		 * allocation again
2478 		 */
2479 		goto retry;
2480 	}
2481 
2482 	start = address;
2483 	for (i = 0; i < pages; ++i) {
2484 		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2485 		if (ret == DMA_ERROR_CODE)
2486 			goto out_unmap;
2487 
2488 		paddr += PAGE_SIZE;
2489 		start += PAGE_SIZE;
2490 	}
2491 	address += offset;
2492 
2493 	ADD_STATS_COUNTER(alloced_io_mem, size);
2494 
2495 	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2496 		domain_flush_tlb(&dma_dom->domain);
2497 		dma_dom->need_flush = false;
2498 	} else if (unlikely(amd_iommu_np_cache))
2499 		domain_flush_pages(&dma_dom->domain, address, size);
2500 
2501 out:
2502 	return address;
2503 
2504 out_unmap:
2505 
2506 	for (--i; i >= 0; --i) {
2507 		start -= PAGE_SIZE;
2508 		dma_ops_domain_unmap(dma_dom, start);
2509 	}
2510 
2511 	dma_ops_free_addresses(dma_dom, address, pages);
2512 
2513 	return DMA_ERROR_CODE;
2514 }
2515 
2516 /*
2517  * Does the reverse of the __map_single function. Must be called with
2518  * the domain lock held too
2519  */
__unmap_single(struct dma_ops_domain * dma_dom,dma_addr_t dma_addr,size_t size,int dir)2520 static void __unmap_single(struct dma_ops_domain *dma_dom,
2521 			   dma_addr_t dma_addr,
2522 			   size_t size,
2523 			   int dir)
2524 {
2525 	dma_addr_t flush_addr;
2526 	dma_addr_t i, start;
2527 	unsigned int pages;
2528 
2529 	if ((dma_addr == DMA_ERROR_CODE) ||
2530 	    (dma_addr + size > dma_dom->aperture_size))
2531 		return;
2532 
2533 	flush_addr = dma_addr;
2534 	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2535 	dma_addr &= PAGE_MASK;
2536 	start = dma_addr;
2537 
2538 	for (i = 0; i < pages; ++i) {
2539 		dma_ops_domain_unmap(dma_dom, start);
2540 		start += PAGE_SIZE;
2541 	}
2542 
2543 	SUB_STATS_COUNTER(alloced_io_mem, size);
2544 
2545 	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2546 
2547 	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2548 		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2549 		dma_dom->need_flush = false;
2550 	}
2551 }
2552 
2553 /*
2554  * The exported map_single function for dma_ops.
2555  */
map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2556 static dma_addr_t map_page(struct device *dev, struct page *page,
2557 			   unsigned long offset, size_t size,
2558 			   enum dma_data_direction dir,
2559 			   struct dma_attrs *attrs)
2560 {
2561 	unsigned long flags;
2562 	struct protection_domain *domain;
2563 	dma_addr_t addr;
2564 	u64 dma_mask;
2565 	phys_addr_t paddr = page_to_phys(page) + offset;
2566 
2567 	INC_STATS_COUNTER(cnt_map_single);
2568 
2569 	domain = get_domain(dev);
2570 	if (PTR_ERR(domain) == -EINVAL)
2571 		return (dma_addr_t)paddr;
2572 	else if (IS_ERR(domain))
2573 		return DMA_ERROR_CODE;
2574 
2575 	dma_mask = *dev->dma_mask;
2576 
2577 	spin_lock_irqsave(&domain->lock, flags);
2578 
2579 	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2580 			    dma_mask);
2581 	if (addr == DMA_ERROR_CODE)
2582 		goto out;
2583 
2584 	domain_flush_complete(domain);
2585 
2586 out:
2587 	spin_unlock_irqrestore(&domain->lock, flags);
2588 
2589 	return addr;
2590 }
2591 
2592 /*
2593  * The exported unmap_single function for dma_ops.
2594  */
unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2595 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2596 		       enum dma_data_direction dir, struct dma_attrs *attrs)
2597 {
2598 	unsigned long flags;
2599 	struct protection_domain *domain;
2600 
2601 	INC_STATS_COUNTER(cnt_unmap_single);
2602 
2603 	domain = get_domain(dev);
2604 	if (IS_ERR(domain))
2605 		return;
2606 
2607 	spin_lock_irqsave(&domain->lock, flags);
2608 
2609 	__unmap_single(domain->priv, dma_addr, size, dir);
2610 
2611 	domain_flush_complete(domain);
2612 
2613 	spin_unlock_irqrestore(&domain->lock, flags);
2614 }
2615 
2616 /*
2617  * The exported map_sg function for dma_ops (handles scatter-gather
2618  * lists).
2619  */
map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)2620 static int map_sg(struct device *dev, struct scatterlist *sglist,
2621 		  int nelems, enum dma_data_direction dir,
2622 		  struct dma_attrs *attrs)
2623 {
2624 	unsigned long flags;
2625 	struct protection_domain *domain;
2626 	int i;
2627 	struct scatterlist *s;
2628 	phys_addr_t paddr;
2629 	int mapped_elems = 0;
2630 	u64 dma_mask;
2631 
2632 	INC_STATS_COUNTER(cnt_map_sg);
2633 
2634 	domain = get_domain(dev);
2635 	if (IS_ERR(domain))
2636 		return 0;
2637 
2638 	dma_mask = *dev->dma_mask;
2639 
2640 	spin_lock_irqsave(&domain->lock, flags);
2641 
2642 	for_each_sg(sglist, s, nelems, i) {
2643 		paddr = sg_phys(s);
2644 
2645 		s->dma_address = __map_single(dev, domain->priv,
2646 					      paddr, s->length, dir, false,
2647 					      dma_mask);
2648 
2649 		if (s->dma_address) {
2650 			s->dma_length = s->length;
2651 			mapped_elems++;
2652 		} else
2653 			goto unmap;
2654 	}
2655 
2656 	domain_flush_complete(domain);
2657 
2658 out:
2659 	spin_unlock_irqrestore(&domain->lock, flags);
2660 
2661 	return mapped_elems;
2662 unmap:
2663 	for_each_sg(sglist, s, mapped_elems, i) {
2664 		if (s->dma_address)
2665 			__unmap_single(domain->priv, s->dma_address,
2666 				       s->dma_length, dir);
2667 		s->dma_address = s->dma_length = 0;
2668 	}
2669 
2670 	mapped_elems = 0;
2671 
2672 	goto out;
2673 }
2674 
2675 /*
2676  * The exported map_sg function for dma_ops (handles scatter-gather
2677  * lists).
2678  */
unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)2679 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2680 		     int nelems, enum dma_data_direction dir,
2681 		     struct dma_attrs *attrs)
2682 {
2683 	unsigned long flags;
2684 	struct protection_domain *domain;
2685 	struct scatterlist *s;
2686 	int i;
2687 
2688 	INC_STATS_COUNTER(cnt_unmap_sg);
2689 
2690 	domain = get_domain(dev);
2691 	if (IS_ERR(domain))
2692 		return;
2693 
2694 	spin_lock_irqsave(&domain->lock, flags);
2695 
2696 	for_each_sg(sglist, s, nelems, i) {
2697 		__unmap_single(domain->priv, s->dma_address,
2698 			       s->dma_length, dir);
2699 		s->dma_address = s->dma_length = 0;
2700 	}
2701 
2702 	domain_flush_complete(domain);
2703 
2704 	spin_unlock_irqrestore(&domain->lock, flags);
2705 }
2706 
2707 /*
2708  * The exported alloc_coherent function for dma_ops.
2709  */
alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag,struct dma_attrs * attrs)2710 static void *alloc_coherent(struct device *dev, size_t size,
2711 			    dma_addr_t *dma_addr, gfp_t flag,
2712 			    struct dma_attrs *attrs)
2713 {
2714 	u64 dma_mask = dev->coherent_dma_mask;
2715 	struct protection_domain *domain;
2716 	unsigned long flags;
2717 	struct page *page;
2718 
2719 	INC_STATS_COUNTER(cnt_alloc_coherent);
2720 
2721 	domain = get_domain(dev);
2722 	if (PTR_ERR(domain) == -EINVAL) {
2723 		page = alloc_pages(flag, get_order(size));
2724 		*dma_addr = page_to_phys(page);
2725 		return page_address(page);
2726 	} else if (IS_ERR(domain))
2727 		return NULL;
2728 
2729 	size	  = PAGE_ALIGN(size);
2730 	dma_mask  = dev->coherent_dma_mask;
2731 	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2732 	flag     |= __GFP_ZERO;
2733 
2734 	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2735 	if (!page) {
2736 		if (!gfpflags_allow_blocking(flag))
2737 			return NULL;
2738 
2739 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2740 						 get_order(size));
2741 		if (!page)
2742 			return NULL;
2743 	}
2744 
2745 	if (!dma_mask)
2746 		dma_mask = *dev->dma_mask;
2747 
2748 	spin_lock_irqsave(&domain->lock, flags);
2749 
2750 	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2751 				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2752 
2753 	if (*dma_addr == DMA_ERROR_CODE) {
2754 		spin_unlock_irqrestore(&domain->lock, flags);
2755 		goto out_free;
2756 	}
2757 
2758 	domain_flush_complete(domain);
2759 
2760 	spin_unlock_irqrestore(&domain->lock, flags);
2761 
2762 	return page_address(page);
2763 
2764 out_free:
2765 
2766 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2767 		__free_pages(page, get_order(size));
2768 
2769 	return NULL;
2770 }
2771 
2772 /*
2773  * The exported free_coherent function for dma_ops.
2774  */
free_coherent(struct device * dev,size_t size,void * virt_addr,dma_addr_t dma_addr,struct dma_attrs * attrs)2775 static void free_coherent(struct device *dev, size_t size,
2776 			  void *virt_addr, dma_addr_t dma_addr,
2777 			  struct dma_attrs *attrs)
2778 {
2779 	struct protection_domain *domain;
2780 	unsigned long flags;
2781 	struct page *page;
2782 
2783 	INC_STATS_COUNTER(cnt_free_coherent);
2784 
2785 	page = virt_to_page(virt_addr);
2786 	size = PAGE_ALIGN(size);
2787 
2788 	domain = get_domain(dev);
2789 	if (IS_ERR(domain))
2790 		goto free_mem;
2791 
2792 	spin_lock_irqsave(&domain->lock, flags);
2793 
2794 	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2795 
2796 	domain_flush_complete(domain);
2797 
2798 	spin_unlock_irqrestore(&domain->lock, flags);
2799 
2800 free_mem:
2801 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2802 		__free_pages(page, get_order(size));
2803 }
2804 
2805 /*
2806  * This function is called by the DMA layer to find out if we can handle a
2807  * particular device. It is part of the dma_ops.
2808  */
amd_iommu_dma_supported(struct device * dev,u64 mask)2809 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2810 {
2811 	return check_device(dev);
2812 }
2813 
2814 static struct dma_map_ops amd_iommu_dma_ops = {
2815 	.alloc = alloc_coherent,
2816 	.free = free_coherent,
2817 	.map_page = map_page,
2818 	.unmap_page = unmap_page,
2819 	.map_sg = map_sg,
2820 	.unmap_sg = unmap_sg,
2821 	.dma_supported = amd_iommu_dma_supported,
2822 };
2823 
amd_iommu_init_api(void)2824 int __init amd_iommu_init_api(void)
2825 {
2826 	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2827 }
2828 
amd_iommu_init_dma_ops(void)2829 int __init amd_iommu_init_dma_ops(void)
2830 {
2831 	swiotlb        = iommu_pass_through ? 1 : 0;
2832 	iommu_detected = 1;
2833 
2834 	/*
2835 	 * In case we don't initialize SWIOTLB (actually the common case
2836 	 * when AMD IOMMU is enabled), make sure there are global
2837 	 * dma_ops set as a fall-back for devices not handled by this
2838 	 * driver (for example non-PCI devices).
2839 	 */
2840 	if (!swiotlb)
2841 		dma_ops = &nommu_dma_ops;
2842 
2843 	amd_iommu_stats_init();
2844 
2845 	if (amd_iommu_unmap_flush)
2846 		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2847 	else
2848 		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2849 
2850 	return 0;
2851 }
2852 
2853 /*****************************************************************************
2854  *
2855  * The following functions belong to the exported interface of AMD IOMMU
2856  *
2857  * This interface allows access to lower level functions of the IOMMU
2858  * like protection domain handling and assignement of devices to domains
2859  * which is not possible with the dma_ops interface.
2860  *
2861  *****************************************************************************/
2862 
cleanup_domain(struct protection_domain * domain)2863 static void cleanup_domain(struct protection_domain *domain)
2864 {
2865 	struct iommu_dev_data *entry;
2866 	unsigned long flags;
2867 
2868 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2869 
2870 	while (!list_empty(&domain->dev_list)) {
2871 		entry = list_first_entry(&domain->dev_list,
2872 					 struct iommu_dev_data, list);
2873 		__detach_device(entry);
2874 	}
2875 
2876 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2877 }
2878 
protection_domain_free(struct protection_domain * domain)2879 static void protection_domain_free(struct protection_domain *domain)
2880 {
2881 	if (!domain)
2882 		return;
2883 
2884 	del_domain_from_list(domain);
2885 
2886 	if (domain->id)
2887 		domain_id_free(domain->id);
2888 
2889 	kfree(domain);
2890 }
2891 
protection_domain_init(struct protection_domain * domain)2892 static int protection_domain_init(struct protection_domain *domain)
2893 {
2894 	spin_lock_init(&domain->lock);
2895 	mutex_init(&domain->api_lock);
2896 	domain->id = domain_id_alloc();
2897 	if (!domain->id)
2898 		return -ENOMEM;
2899 	INIT_LIST_HEAD(&domain->dev_list);
2900 
2901 	return 0;
2902 }
2903 
protection_domain_alloc(void)2904 static struct protection_domain *protection_domain_alloc(void)
2905 {
2906 	struct protection_domain *domain;
2907 
2908 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2909 	if (!domain)
2910 		return NULL;
2911 
2912 	if (protection_domain_init(domain))
2913 		goto out_err;
2914 
2915 	add_domain_to_list(domain);
2916 
2917 	return domain;
2918 
2919 out_err:
2920 	kfree(domain);
2921 
2922 	return NULL;
2923 }
2924 
amd_iommu_domain_alloc(unsigned type)2925 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2926 {
2927 	struct protection_domain *pdomain;
2928 	struct dma_ops_domain *dma_domain;
2929 
2930 	switch (type) {
2931 	case IOMMU_DOMAIN_UNMANAGED:
2932 		pdomain = protection_domain_alloc();
2933 		if (!pdomain)
2934 			return NULL;
2935 
2936 		pdomain->mode    = PAGE_MODE_3_LEVEL;
2937 		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2938 		if (!pdomain->pt_root) {
2939 			protection_domain_free(pdomain);
2940 			return NULL;
2941 		}
2942 
2943 		pdomain->domain.geometry.aperture_start = 0;
2944 		pdomain->domain.geometry.aperture_end   = ~0ULL;
2945 		pdomain->domain.geometry.force_aperture = true;
2946 
2947 		break;
2948 	case IOMMU_DOMAIN_DMA:
2949 		dma_domain = dma_ops_domain_alloc();
2950 		if (!dma_domain) {
2951 			pr_err("AMD-Vi: Failed to allocate\n");
2952 			return NULL;
2953 		}
2954 		pdomain = &dma_domain->domain;
2955 		break;
2956 	case IOMMU_DOMAIN_IDENTITY:
2957 		pdomain = protection_domain_alloc();
2958 		if (!pdomain)
2959 			return NULL;
2960 
2961 		pdomain->mode = PAGE_MODE_NONE;
2962 		break;
2963 	default:
2964 		return NULL;
2965 	}
2966 
2967 	return &pdomain->domain;
2968 }
2969 
amd_iommu_domain_free(struct iommu_domain * dom)2970 static void amd_iommu_domain_free(struct iommu_domain *dom)
2971 {
2972 	struct protection_domain *domain;
2973 
2974 	if (!dom)
2975 		return;
2976 
2977 	domain = to_pdomain(dom);
2978 
2979 	if (domain->dev_cnt > 0)
2980 		cleanup_domain(domain);
2981 
2982 	BUG_ON(domain->dev_cnt != 0);
2983 
2984 	if (domain->mode != PAGE_MODE_NONE)
2985 		free_pagetable(domain);
2986 
2987 	if (domain->flags & PD_IOMMUV2_MASK)
2988 		free_gcr3_table(domain);
2989 
2990 	protection_domain_free(domain);
2991 }
2992 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)2993 static void amd_iommu_detach_device(struct iommu_domain *dom,
2994 				    struct device *dev)
2995 {
2996 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2997 	struct amd_iommu *iommu;
2998 	u16 devid;
2999 
3000 	if (!check_device(dev))
3001 		return;
3002 
3003 	devid = get_device_id(dev);
3004 
3005 	if (dev_data->domain != NULL)
3006 		detach_device(dev);
3007 
3008 	iommu = amd_iommu_rlookup_table[devid];
3009 	if (!iommu)
3010 		return;
3011 
3012 	iommu_completion_wait(iommu);
3013 }
3014 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)3015 static int amd_iommu_attach_device(struct iommu_domain *dom,
3016 				   struct device *dev)
3017 {
3018 	struct protection_domain *domain = to_pdomain(dom);
3019 	struct iommu_dev_data *dev_data;
3020 	struct amd_iommu *iommu;
3021 	int ret;
3022 
3023 	if (!check_device(dev))
3024 		return -EINVAL;
3025 
3026 	dev_data = dev->archdata.iommu;
3027 
3028 	iommu = amd_iommu_rlookup_table[dev_data->devid];
3029 	if (!iommu)
3030 		return -EINVAL;
3031 
3032 	if (dev_data->domain)
3033 		detach_device(dev);
3034 
3035 	ret = attach_device(dev, domain);
3036 
3037 	iommu_completion_wait(iommu);
3038 
3039 	return ret;
3040 }
3041 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot)3042 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3043 			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3044 {
3045 	struct protection_domain *domain = to_pdomain(dom);
3046 	int prot = 0;
3047 	int ret;
3048 
3049 	if (domain->mode == PAGE_MODE_NONE)
3050 		return -EINVAL;
3051 
3052 	if (iommu_prot & IOMMU_READ)
3053 		prot |= IOMMU_PROT_IR;
3054 	if (iommu_prot & IOMMU_WRITE)
3055 		prot |= IOMMU_PROT_IW;
3056 
3057 	mutex_lock(&domain->api_lock);
3058 	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3059 	mutex_unlock(&domain->api_lock);
3060 
3061 	return ret;
3062 }
3063 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size)3064 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3065 			   size_t page_size)
3066 {
3067 	struct protection_domain *domain = to_pdomain(dom);
3068 	size_t unmap_size;
3069 
3070 	if (domain->mode == PAGE_MODE_NONE)
3071 		return -EINVAL;
3072 
3073 	mutex_lock(&domain->api_lock);
3074 	unmap_size = iommu_unmap_page(domain, iova, page_size);
3075 	mutex_unlock(&domain->api_lock);
3076 
3077 	domain_flush_tlb_pde(domain);
3078 
3079 	return unmap_size;
3080 }
3081 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)3082 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3083 					  dma_addr_t iova)
3084 {
3085 	struct protection_domain *domain = to_pdomain(dom);
3086 	unsigned long offset_mask, pte_pgsize;
3087 	u64 *pte, __pte;
3088 
3089 	if (domain->mode == PAGE_MODE_NONE)
3090 		return iova;
3091 
3092 	pte = fetch_pte(domain, iova, &pte_pgsize);
3093 
3094 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3095 		return 0;
3096 
3097 	offset_mask = pte_pgsize - 1;
3098 	__pte	    = *pte & PM_ADDR_MASK;
3099 
3100 	return (__pte & ~offset_mask) | (iova & offset_mask);
3101 }
3102 
amd_iommu_capable(enum iommu_cap cap)3103 static bool amd_iommu_capable(enum iommu_cap cap)
3104 {
3105 	switch (cap) {
3106 	case IOMMU_CAP_CACHE_COHERENCY:
3107 		return true;
3108 	case IOMMU_CAP_INTR_REMAP:
3109 		return (irq_remapping_enabled == 1);
3110 	case IOMMU_CAP_NOEXEC:
3111 		return false;
3112 	}
3113 
3114 	return false;
3115 }
3116 
amd_iommu_get_dm_regions(struct device * dev,struct list_head * head)3117 static void amd_iommu_get_dm_regions(struct device *dev,
3118 				     struct list_head *head)
3119 {
3120 	struct unity_map_entry *entry;
3121 	u16 devid;
3122 
3123 	devid = get_device_id(dev);
3124 
3125 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3126 		struct iommu_dm_region *region;
3127 
3128 		if (devid < entry->devid_start || devid > entry->devid_end)
3129 			continue;
3130 
3131 		region = kzalloc(sizeof(*region), GFP_KERNEL);
3132 		if (!region) {
3133 			pr_err("Out of memory allocating dm-regions for %s\n",
3134 				dev_name(dev));
3135 			return;
3136 		}
3137 
3138 		region->start = entry->address_start;
3139 		region->length = entry->address_end - entry->address_start;
3140 		if (entry->prot & IOMMU_PROT_IR)
3141 			region->prot |= IOMMU_READ;
3142 		if (entry->prot & IOMMU_PROT_IW)
3143 			region->prot |= IOMMU_WRITE;
3144 
3145 		list_add_tail(&region->list, head);
3146 	}
3147 }
3148 
amd_iommu_put_dm_regions(struct device * dev,struct list_head * head)3149 static void amd_iommu_put_dm_regions(struct device *dev,
3150 				     struct list_head *head)
3151 {
3152 	struct iommu_dm_region *entry, *next;
3153 
3154 	list_for_each_entry_safe(entry, next, head, list)
3155 		kfree(entry);
3156 }
3157 
3158 static const struct iommu_ops amd_iommu_ops = {
3159 	.capable = amd_iommu_capable,
3160 	.domain_alloc = amd_iommu_domain_alloc,
3161 	.domain_free  = amd_iommu_domain_free,
3162 	.attach_dev = amd_iommu_attach_device,
3163 	.detach_dev = amd_iommu_detach_device,
3164 	.map = amd_iommu_map,
3165 	.unmap = amd_iommu_unmap,
3166 	.map_sg = default_iommu_map_sg,
3167 	.iova_to_phys = amd_iommu_iova_to_phys,
3168 	.add_device = amd_iommu_add_device,
3169 	.remove_device = amd_iommu_remove_device,
3170 	.device_group = pci_device_group,
3171 	.get_dm_regions = amd_iommu_get_dm_regions,
3172 	.put_dm_regions = amd_iommu_put_dm_regions,
3173 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3174 };
3175 
3176 /*****************************************************************************
3177  *
3178  * The next functions do a basic initialization of IOMMU for pass through
3179  * mode
3180  *
3181  * In passthrough mode the IOMMU is initialized and enabled but not used for
3182  * DMA-API translation.
3183  *
3184  *****************************************************************************/
3185 
3186 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)3187 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3188 {
3189 	return atomic_notifier_chain_register(&ppr_notifier, nb);
3190 }
3191 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3192 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)3193 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3194 {
3195 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3196 }
3197 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3198 
amd_iommu_domain_direct_map(struct iommu_domain * dom)3199 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3200 {
3201 	struct protection_domain *domain = to_pdomain(dom);
3202 	unsigned long flags;
3203 
3204 	spin_lock_irqsave(&domain->lock, flags);
3205 
3206 	/* Update data structure */
3207 	domain->mode    = PAGE_MODE_NONE;
3208 	domain->updated = true;
3209 
3210 	/* Make changes visible to IOMMUs */
3211 	update_domain(domain);
3212 
3213 	/* Page-table is not visible to IOMMU anymore, so free it */
3214 	free_pagetable(domain);
3215 
3216 	spin_unlock_irqrestore(&domain->lock, flags);
3217 }
3218 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3219 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)3220 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3221 {
3222 	struct protection_domain *domain = to_pdomain(dom);
3223 	unsigned long flags;
3224 	int levels, ret;
3225 
3226 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3227 		return -EINVAL;
3228 
3229 	/* Number of GCR3 table levels required */
3230 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3231 		levels += 1;
3232 
3233 	if (levels > amd_iommu_max_glx_val)
3234 		return -EINVAL;
3235 
3236 	spin_lock_irqsave(&domain->lock, flags);
3237 
3238 	/*
3239 	 * Save us all sanity checks whether devices already in the
3240 	 * domain support IOMMUv2. Just force that the domain has no
3241 	 * devices attached when it is switched into IOMMUv2 mode.
3242 	 */
3243 	ret = -EBUSY;
3244 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3245 		goto out;
3246 
3247 	ret = -ENOMEM;
3248 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3249 	if (domain->gcr3_tbl == NULL)
3250 		goto out;
3251 
3252 	domain->glx      = levels;
3253 	domain->flags   |= PD_IOMMUV2_MASK;
3254 	domain->updated  = true;
3255 
3256 	update_domain(domain);
3257 
3258 	ret = 0;
3259 
3260 out:
3261 	spin_unlock_irqrestore(&domain->lock, flags);
3262 
3263 	return ret;
3264 }
3265 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3266 
__flush_pasid(struct protection_domain * domain,int pasid,u64 address,bool size)3267 static int __flush_pasid(struct protection_domain *domain, int pasid,
3268 			 u64 address, bool size)
3269 {
3270 	struct iommu_dev_data *dev_data;
3271 	struct iommu_cmd cmd;
3272 	int i, ret;
3273 
3274 	if (!(domain->flags & PD_IOMMUV2_MASK))
3275 		return -EINVAL;
3276 
3277 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3278 
3279 	/*
3280 	 * IOMMU TLB needs to be flushed before Device TLB to
3281 	 * prevent device TLB refill from IOMMU TLB
3282 	 */
3283 	for (i = 0; i < amd_iommus_present; ++i) {
3284 		if (domain->dev_iommu[i] == 0)
3285 			continue;
3286 
3287 		ret = iommu_queue_command(amd_iommus[i], &cmd);
3288 		if (ret != 0)
3289 			goto out;
3290 	}
3291 
3292 	/* Wait until IOMMU TLB flushes are complete */
3293 	domain_flush_complete(domain);
3294 
3295 	/* Now flush device TLBs */
3296 	list_for_each_entry(dev_data, &domain->dev_list, list) {
3297 		struct amd_iommu *iommu;
3298 		int qdep;
3299 
3300 		/*
3301 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
3302 		 * domain.
3303 		 */
3304 		if (!dev_data->ats.enabled)
3305 			continue;
3306 
3307 		qdep  = dev_data->ats.qdep;
3308 		iommu = amd_iommu_rlookup_table[dev_data->devid];
3309 
3310 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3311 				      qdep, address, size);
3312 
3313 		ret = iommu_queue_command(iommu, &cmd);
3314 		if (ret != 0)
3315 			goto out;
3316 	}
3317 
3318 	/* Wait until all device TLBs are flushed */
3319 	domain_flush_complete(domain);
3320 
3321 	ret = 0;
3322 
3323 out:
3324 
3325 	return ret;
3326 }
3327 
__amd_iommu_flush_page(struct protection_domain * domain,int pasid,u64 address)3328 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3329 				  u64 address)
3330 {
3331 	INC_STATS_COUNTER(invalidate_iotlb);
3332 
3333 	return __flush_pasid(domain, pasid, address, false);
3334 }
3335 
amd_iommu_flush_page(struct iommu_domain * dom,int pasid,u64 address)3336 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3337 			 u64 address)
3338 {
3339 	struct protection_domain *domain = to_pdomain(dom);
3340 	unsigned long flags;
3341 	int ret;
3342 
3343 	spin_lock_irqsave(&domain->lock, flags);
3344 	ret = __amd_iommu_flush_page(domain, pasid, address);
3345 	spin_unlock_irqrestore(&domain->lock, flags);
3346 
3347 	return ret;
3348 }
3349 EXPORT_SYMBOL(amd_iommu_flush_page);
3350 
__amd_iommu_flush_tlb(struct protection_domain * domain,int pasid)3351 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3352 {
3353 	INC_STATS_COUNTER(invalidate_iotlb_all);
3354 
3355 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3356 			     true);
3357 }
3358 
amd_iommu_flush_tlb(struct iommu_domain * dom,int pasid)3359 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3360 {
3361 	struct protection_domain *domain = to_pdomain(dom);
3362 	unsigned long flags;
3363 	int ret;
3364 
3365 	spin_lock_irqsave(&domain->lock, flags);
3366 	ret = __amd_iommu_flush_tlb(domain, pasid);
3367 	spin_unlock_irqrestore(&domain->lock, flags);
3368 
3369 	return ret;
3370 }
3371 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3372 
__get_gcr3_pte(u64 * root,int level,int pasid,bool alloc)3373 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3374 {
3375 	int index;
3376 	u64 *pte;
3377 
3378 	while (true) {
3379 
3380 		index = (pasid >> (9 * level)) & 0x1ff;
3381 		pte   = &root[index];
3382 
3383 		if (level == 0)
3384 			break;
3385 
3386 		if (!(*pte & GCR3_VALID)) {
3387 			if (!alloc)
3388 				return NULL;
3389 
3390 			root = (void *)get_zeroed_page(GFP_ATOMIC);
3391 			if (root == NULL)
3392 				return NULL;
3393 
3394 			*pte = __pa(root) | GCR3_VALID;
3395 		}
3396 
3397 		root = __va(*pte & PAGE_MASK);
3398 
3399 		level -= 1;
3400 	}
3401 
3402 	return pte;
3403 }
3404 
__set_gcr3(struct protection_domain * domain,int pasid,unsigned long cr3)3405 static int __set_gcr3(struct protection_domain *domain, int pasid,
3406 		      unsigned long cr3)
3407 {
3408 	u64 *pte;
3409 
3410 	if (domain->mode != PAGE_MODE_NONE)
3411 		return -EINVAL;
3412 
3413 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3414 	if (pte == NULL)
3415 		return -ENOMEM;
3416 
3417 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3418 
3419 	return __amd_iommu_flush_tlb(domain, pasid);
3420 }
3421 
__clear_gcr3(struct protection_domain * domain,int pasid)3422 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3423 {
3424 	u64 *pte;
3425 
3426 	if (domain->mode != PAGE_MODE_NONE)
3427 		return -EINVAL;
3428 
3429 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3430 	if (pte == NULL)
3431 		return 0;
3432 
3433 	*pte = 0;
3434 
3435 	return __amd_iommu_flush_tlb(domain, pasid);
3436 }
3437 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,int pasid,unsigned long cr3)3438 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3439 			      unsigned long cr3)
3440 {
3441 	struct protection_domain *domain = to_pdomain(dom);
3442 	unsigned long flags;
3443 	int ret;
3444 
3445 	spin_lock_irqsave(&domain->lock, flags);
3446 	ret = __set_gcr3(domain, pasid, cr3);
3447 	spin_unlock_irqrestore(&domain->lock, flags);
3448 
3449 	return ret;
3450 }
3451 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3452 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,int pasid)3453 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3454 {
3455 	struct protection_domain *domain = to_pdomain(dom);
3456 	unsigned long flags;
3457 	int ret;
3458 
3459 	spin_lock_irqsave(&domain->lock, flags);
3460 	ret = __clear_gcr3(domain, pasid);
3461 	spin_unlock_irqrestore(&domain->lock, flags);
3462 
3463 	return ret;
3464 }
3465 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3466 
amd_iommu_complete_ppr(struct pci_dev * pdev,int pasid,int status,int tag)3467 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3468 			   int status, int tag)
3469 {
3470 	struct iommu_dev_data *dev_data;
3471 	struct amd_iommu *iommu;
3472 	struct iommu_cmd cmd;
3473 
3474 	INC_STATS_COUNTER(complete_ppr);
3475 
3476 	dev_data = get_dev_data(&pdev->dev);
3477 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3478 
3479 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3480 			   tag, dev_data->pri_tlp);
3481 
3482 	return iommu_queue_command(iommu, &cmd);
3483 }
3484 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3485 
amd_iommu_get_v2_domain(struct pci_dev * pdev)3486 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3487 {
3488 	struct protection_domain *pdomain;
3489 
3490 	pdomain = get_domain(&pdev->dev);
3491 	if (IS_ERR(pdomain))
3492 		return NULL;
3493 
3494 	/* Only return IOMMUv2 domains */
3495 	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3496 		return NULL;
3497 
3498 	return &pdomain->domain;
3499 }
3500 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3501 
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3502 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3503 {
3504 	struct iommu_dev_data *dev_data;
3505 
3506 	if (!amd_iommu_v2_supported())
3507 		return;
3508 
3509 	dev_data = get_dev_data(&pdev->dev);
3510 	dev_data->errata |= (1 << erratum);
3511 }
3512 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3513 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3514 int amd_iommu_device_info(struct pci_dev *pdev,
3515                           struct amd_iommu_device_info *info)
3516 {
3517 	int max_pasids;
3518 	int pos;
3519 
3520 	if (pdev == NULL || info == NULL)
3521 		return -EINVAL;
3522 
3523 	if (!amd_iommu_v2_supported())
3524 		return -EINVAL;
3525 
3526 	memset(info, 0, sizeof(*info));
3527 
3528 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3529 	if (pos)
3530 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3531 
3532 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3533 	if (pos)
3534 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3535 
3536 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3537 	if (pos) {
3538 		int features;
3539 
3540 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3541 		max_pasids = min(max_pasids, (1 << 20));
3542 
3543 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3544 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3545 
3546 		features = pci_pasid_features(pdev);
3547 		if (features & PCI_PASID_CAP_EXEC)
3548 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3549 		if (features & PCI_PASID_CAP_PRIV)
3550 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3551 	}
3552 
3553 	return 0;
3554 }
3555 EXPORT_SYMBOL(amd_iommu_device_info);
3556 
3557 #ifdef CONFIG_IRQ_REMAP
3558 
3559 /*****************************************************************************
3560  *
3561  * Interrupt Remapping Implementation
3562  *
3563  *****************************************************************************/
3564 
3565 union irte {
3566 	u32 val;
3567 	struct {
3568 		u32 valid	: 1,
3569 		    no_fault	: 1,
3570 		    int_type	: 3,
3571 		    rq_eoi	: 1,
3572 		    dm		: 1,
3573 		    rsvd_1	: 1,
3574 		    destination	: 8,
3575 		    vector	: 8,
3576 		    rsvd_2	: 8;
3577 	} fields;
3578 };
3579 
3580 struct irq_2_irte {
3581 	u16 devid; /* Device ID for IRTE table */
3582 	u16 index; /* Index into IRTE table*/
3583 };
3584 
3585 struct amd_ir_data {
3586 	struct irq_2_irte			irq_2_irte;
3587 	union irte				irte_entry;
3588 	union {
3589 		struct msi_msg			msi_entry;
3590 	};
3591 };
3592 
3593 static struct irq_chip amd_ir_chip;
3594 
3595 #define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
3596 #define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
3597 #define DTE_IRQ_TABLE_LEN       (8ULL << 1)
3598 #define DTE_IRQ_REMAP_ENABLE    1ULL
3599 
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)3600 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3601 {
3602 	u64 dte;
3603 
3604 	dte	= amd_iommu_dev_table[devid].data[2];
3605 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3606 	dte	|= virt_to_phys(table->table);
3607 	dte	|= DTE_IRQ_REMAP_INTCTL;
3608 	dte	|= DTE_IRQ_TABLE_LEN;
3609 	dte	|= DTE_IRQ_REMAP_ENABLE;
3610 
3611 	amd_iommu_dev_table[devid].data[2] = dte;
3612 }
3613 
3614 #define IRTE_ALLOCATED (~1U)
3615 
get_irq_table(u16 devid,bool ioapic)3616 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3617 {
3618 	struct irq_remap_table *table = NULL;
3619 	struct amd_iommu *iommu;
3620 	unsigned long flags;
3621 	u16 alias;
3622 
3623 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3624 
3625 	iommu = amd_iommu_rlookup_table[devid];
3626 	if (!iommu)
3627 		goto out_unlock;
3628 
3629 	table = irq_lookup_table[devid];
3630 	if (table)
3631 		goto out;
3632 
3633 	alias = amd_iommu_alias_table[devid];
3634 	table = irq_lookup_table[alias];
3635 	if (table) {
3636 		irq_lookup_table[devid] = table;
3637 		set_dte_irq_entry(devid, table);
3638 		iommu_flush_dte(iommu, devid);
3639 		goto out;
3640 	}
3641 
3642 	/* Nothing there yet, allocate new irq remapping table */
3643 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
3644 	if (!table)
3645 		goto out;
3646 
3647 	/* Initialize table spin-lock */
3648 	spin_lock_init(&table->lock);
3649 
3650 	if (ioapic)
3651 		/* Keep the first 32 indexes free for IOAPIC interrupts */
3652 		table->min_index = 32;
3653 
3654 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3655 	if (!table->table) {
3656 		kfree(table);
3657 		table = NULL;
3658 		goto out;
3659 	}
3660 
3661 	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3662 
3663 	if (ioapic) {
3664 		int i;
3665 
3666 		for (i = 0; i < 32; ++i)
3667 			table->table[i] = IRTE_ALLOCATED;
3668 	}
3669 
3670 	irq_lookup_table[devid] = table;
3671 	set_dte_irq_entry(devid, table);
3672 	iommu_flush_dte(iommu, devid);
3673 	if (devid != alias) {
3674 		irq_lookup_table[alias] = table;
3675 		set_dte_irq_entry(alias, table);
3676 		iommu_flush_dte(iommu, alias);
3677 	}
3678 
3679 out:
3680 	iommu_completion_wait(iommu);
3681 
3682 out_unlock:
3683 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3684 
3685 	return table;
3686 }
3687 
alloc_irq_index(u16 devid,int count)3688 static int alloc_irq_index(u16 devid, int count)
3689 {
3690 	struct irq_remap_table *table;
3691 	unsigned long flags;
3692 	int index, c;
3693 
3694 	table = get_irq_table(devid, false);
3695 	if (!table)
3696 		return -ENODEV;
3697 
3698 	spin_lock_irqsave(&table->lock, flags);
3699 
3700 	/* Scan table for free entries */
3701 	for (c = 0, index = table->min_index;
3702 	     index < MAX_IRQS_PER_TABLE;
3703 	     ++index) {
3704 		if (table->table[index] == 0)
3705 			c += 1;
3706 		else
3707 			c = 0;
3708 
3709 		if (c == count)	{
3710 			for (; c != 0; --c)
3711 				table->table[index - c + 1] = IRTE_ALLOCATED;
3712 
3713 			index -= count - 1;
3714 			goto out;
3715 		}
3716 	}
3717 
3718 	index = -ENOSPC;
3719 
3720 out:
3721 	spin_unlock_irqrestore(&table->lock, flags);
3722 
3723 	return index;
3724 }
3725 
modify_irte(u16 devid,int index,union irte irte)3726 static int modify_irte(u16 devid, int index, union irte irte)
3727 {
3728 	struct irq_remap_table *table;
3729 	struct amd_iommu *iommu;
3730 	unsigned long flags;
3731 
3732 	iommu = amd_iommu_rlookup_table[devid];
3733 	if (iommu == NULL)
3734 		return -EINVAL;
3735 
3736 	table = get_irq_table(devid, false);
3737 	if (!table)
3738 		return -ENOMEM;
3739 
3740 	spin_lock_irqsave(&table->lock, flags);
3741 	table->table[index] = irte.val;
3742 	spin_unlock_irqrestore(&table->lock, flags);
3743 
3744 	iommu_flush_irt(iommu, devid);
3745 	iommu_completion_wait(iommu);
3746 
3747 	return 0;
3748 }
3749 
free_irte(u16 devid,int index)3750 static void free_irte(u16 devid, int index)
3751 {
3752 	struct irq_remap_table *table;
3753 	struct amd_iommu *iommu;
3754 	unsigned long flags;
3755 
3756 	iommu = amd_iommu_rlookup_table[devid];
3757 	if (iommu == NULL)
3758 		return;
3759 
3760 	table = get_irq_table(devid, false);
3761 	if (!table)
3762 		return;
3763 
3764 	spin_lock_irqsave(&table->lock, flags);
3765 	table->table[index] = 0;
3766 	spin_unlock_irqrestore(&table->lock, flags);
3767 
3768 	iommu_flush_irt(iommu, devid);
3769 	iommu_completion_wait(iommu);
3770 }
3771 
get_devid(struct irq_alloc_info * info)3772 static int get_devid(struct irq_alloc_info *info)
3773 {
3774 	int devid = -1;
3775 
3776 	switch (info->type) {
3777 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3778 		devid     = get_ioapic_devid(info->ioapic_id);
3779 		break;
3780 	case X86_IRQ_ALLOC_TYPE_HPET:
3781 		devid     = get_hpet_devid(info->hpet_id);
3782 		break;
3783 	case X86_IRQ_ALLOC_TYPE_MSI:
3784 	case X86_IRQ_ALLOC_TYPE_MSIX:
3785 		devid = get_device_id(&info->msi_dev->dev);
3786 		break;
3787 	default:
3788 		BUG_ON(1);
3789 		break;
3790 	}
3791 
3792 	return devid;
3793 }
3794 
get_ir_irq_domain(struct irq_alloc_info * info)3795 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3796 {
3797 	struct amd_iommu *iommu;
3798 	int devid;
3799 
3800 	if (!info)
3801 		return NULL;
3802 
3803 	devid = get_devid(info);
3804 	if (devid >= 0) {
3805 		iommu = amd_iommu_rlookup_table[devid];
3806 		if (iommu)
3807 			return iommu->ir_domain;
3808 	}
3809 
3810 	return NULL;
3811 }
3812 
get_irq_domain(struct irq_alloc_info * info)3813 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3814 {
3815 	struct amd_iommu *iommu;
3816 	int devid;
3817 
3818 	if (!info)
3819 		return NULL;
3820 
3821 	switch (info->type) {
3822 	case X86_IRQ_ALLOC_TYPE_MSI:
3823 	case X86_IRQ_ALLOC_TYPE_MSIX:
3824 		devid = get_device_id(&info->msi_dev->dev);
3825 		if (devid >= 0) {
3826 			iommu = amd_iommu_rlookup_table[devid];
3827 			if (iommu)
3828 				return iommu->msi_domain;
3829 		}
3830 		break;
3831 	default:
3832 		break;
3833 	}
3834 
3835 	return NULL;
3836 }
3837 
3838 struct irq_remap_ops amd_iommu_irq_ops = {
3839 	.prepare		= amd_iommu_prepare,
3840 	.enable			= amd_iommu_enable,
3841 	.disable		= amd_iommu_disable,
3842 	.reenable		= amd_iommu_reenable,
3843 	.enable_faulting	= amd_iommu_enable_faulting,
3844 	.get_ir_irq_domain	= get_ir_irq_domain,
3845 	.get_irq_domain		= get_irq_domain,
3846 };
3847 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3848 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3849 				       struct irq_cfg *irq_cfg,
3850 				       struct irq_alloc_info *info,
3851 				       int devid, int index, int sub_handle)
3852 {
3853 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3854 	struct msi_msg *msg = &data->msi_entry;
3855 	union irte *irte = &data->irte_entry;
3856 	struct IO_APIC_route_entry *entry;
3857 
3858 	data->irq_2_irte.devid = devid;
3859 	data->irq_2_irte.index = index + sub_handle;
3860 
3861 	/* Setup IRTE for IOMMU */
3862 	irte->val = 0;
3863 	irte->fields.vector      = irq_cfg->vector;
3864 	irte->fields.int_type    = apic->irq_delivery_mode;
3865 	irte->fields.destination = irq_cfg->dest_apicid;
3866 	irte->fields.dm          = apic->irq_dest_mode;
3867 	irte->fields.valid       = 1;
3868 
3869 	switch (info->type) {
3870 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3871 		/* Setup IOAPIC entry */
3872 		entry = info->ioapic_entry;
3873 		info->ioapic_entry = NULL;
3874 		memset(entry, 0, sizeof(*entry));
3875 		entry->vector        = index;
3876 		entry->mask          = 0;
3877 		entry->trigger       = info->ioapic_trigger;
3878 		entry->polarity      = info->ioapic_polarity;
3879 		/* Mask level triggered irqs. */
3880 		if (info->ioapic_trigger)
3881 			entry->mask = 1;
3882 		break;
3883 
3884 	case X86_IRQ_ALLOC_TYPE_HPET:
3885 	case X86_IRQ_ALLOC_TYPE_MSI:
3886 	case X86_IRQ_ALLOC_TYPE_MSIX:
3887 		msg->address_hi = MSI_ADDR_BASE_HI;
3888 		msg->address_lo = MSI_ADDR_BASE_LO;
3889 		msg->data = irte_info->index;
3890 		break;
3891 
3892 	default:
3893 		BUG_ON(1);
3894 		break;
3895 	}
3896 }
3897 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3898 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3899 			       unsigned int nr_irqs, void *arg)
3900 {
3901 	struct irq_alloc_info *info = arg;
3902 	struct irq_data *irq_data;
3903 	struct amd_ir_data *data;
3904 	struct irq_cfg *cfg;
3905 	int i, ret, devid;
3906 	int index = -1;
3907 
3908 	if (!info)
3909 		return -EINVAL;
3910 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
3911 	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3912 		return -EINVAL;
3913 
3914 	/*
3915 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
3916 	 * to support multiple MSI interrupts.
3917 	 */
3918 	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
3919 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3920 
3921 	devid = get_devid(info);
3922 	if (devid < 0)
3923 		return -EINVAL;
3924 
3925 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3926 	if (ret < 0)
3927 		return ret;
3928 
3929 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3930 		if (get_irq_table(devid, true))
3931 			index = info->ioapic_pin;
3932 		else
3933 			ret = -ENOMEM;
3934 	} else {
3935 		index = alloc_irq_index(devid, nr_irqs);
3936 	}
3937 	if (index < 0) {
3938 		pr_warn("Failed to allocate IRTE\n");
3939 		goto out_free_parent;
3940 	}
3941 
3942 	for (i = 0; i < nr_irqs; i++) {
3943 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3944 		cfg = irqd_cfg(irq_data);
3945 		if (!irq_data || !cfg) {
3946 			ret = -EINVAL;
3947 			goto out_free_data;
3948 		}
3949 
3950 		ret = -ENOMEM;
3951 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3952 		if (!data)
3953 			goto out_free_data;
3954 
3955 		irq_data->hwirq = (devid << 16) + i;
3956 		irq_data->chip_data = data;
3957 		irq_data->chip = &amd_ir_chip;
3958 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3959 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3960 	}
3961 
3962 	return 0;
3963 
3964 out_free_data:
3965 	for (i--; i >= 0; i--) {
3966 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3967 		if (irq_data)
3968 			kfree(irq_data->chip_data);
3969 	}
3970 	for (i = 0; i < nr_irqs; i++)
3971 		free_irte(devid, index + i);
3972 out_free_parent:
3973 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3974 	return ret;
3975 }
3976 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3977 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3978 			       unsigned int nr_irqs)
3979 {
3980 	struct irq_2_irte *irte_info;
3981 	struct irq_data *irq_data;
3982 	struct amd_ir_data *data;
3983 	int i;
3984 
3985 	for (i = 0; i < nr_irqs; i++) {
3986 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3987 		if (irq_data && irq_data->chip_data) {
3988 			data = irq_data->chip_data;
3989 			irte_info = &data->irq_2_irte;
3990 			free_irte(irte_info->devid, irte_info->index);
3991 			kfree(data);
3992 		}
3993 	}
3994 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3995 }
3996 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data)3997 static void irq_remapping_activate(struct irq_domain *domain,
3998 				   struct irq_data *irq_data)
3999 {
4000 	struct amd_ir_data *data = irq_data->chip_data;
4001 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4002 
4003 	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4004 }
4005 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)4006 static void irq_remapping_deactivate(struct irq_domain *domain,
4007 				     struct irq_data *irq_data)
4008 {
4009 	struct amd_ir_data *data = irq_data->chip_data;
4010 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4011 	union irte entry;
4012 
4013 	entry.val = 0;
4014 	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4015 }
4016 
4017 static struct irq_domain_ops amd_ir_domain_ops = {
4018 	.alloc = irq_remapping_alloc,
4019 	.free = irq_remapping_free,
4020 	.activate = irq_remapping_activate,
4021 	.deactivate = irq_remapping_deactivate,
4022 };
4023 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4024 static int amd_ir_set_affinity(struct irq_data *data,
4025 			       const struct cpumask *mask, bool force)
4026 {
4027 	struct amd_ir_data *ir_data = data->chip_data;
4028 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4029 	struct irq_cfg *cfg = irqd_cfg(data);
4030 	struct irq_data *parent = data->parent_data;
4031 	int ret;
4032 
4033 	ret = parent->chip->irq_set_affinity(parent, mask, force);
4034 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4035 		return ret;
4036 
4037 	/*
4038 	 * Atomically updates the IRTE with the new destination, vector
4039 	 * and flushes the interrupt entry cache.
4040 	 */
4041 	ir_data->irte_entry.fields.vector = cfg->vector;
4042 	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4043 	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4044 
4045 	/*
4046 	 * After this point, all the interrupts will start arriving
4047 	 * at the new destination. So, time to cleanup the previous
4048 	 * vector allocation.
4049 	 */
4050 	send_cleanup_vector(cfg);
4051 
4052 	return IRQ_SET_MASK_OK_DONE;
4053 }
4054 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4055 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4056 {
4057 	struct amd_ir_data *ir_data = irq_data->chip_data;
4058 
4059 	*msg = ir_data->msi_entry;
4060 }
4061 
4062 static struct irq_chip amd_ir_chip = {
4063 	.irq_ack = ir_ack_apic_edge,
4064 	.irq_set_affinity = amd_ir_set_affinity,
4065 	.irq_compose_msi_msg = ir_compose_msi_msg,
4066 };
4067 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4068 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4069 {
4070 	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4071 	if (!iommu->ir_domain)
4072 		return -ENOMEM;
4073 
4074 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4075 	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4076 
4077 	return 0;
4078 }
4079 #endif
4080